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ABSTRACT 

The study of developmental systems may help to resolve the disagreement between 

morphological data and molecular data when it comes to the placement of Testudines 

among Amniota.  Among other unique morphological adaptations, turtles possess an 

anapsid (unfenestrated) condition of the temporal region of the skull.  If turtles are 

descended from diapsids, as molecular data suggests, this implies a rapid transformation 

of the temporal region from the diapsid condition to the anapsid condition.  This study 

specifically addressed temporal bone heterochony among amniotes using the methods of 

Continuous Analysis (Germain and Laurin 2009) and Parsimov-based Genetic Inference 

(Harrison and Larsson 2008) to analyze cranial ossification sequences from 

representative taxa of all major orders of amniotes.  In addition to the use of Continuous 

Analysis (Germain and Laurin 2009), this study recorded the internodal heterochronies 

reconstructed with this method.  A smaller, complete dataset was analyzed by Continuous 

Analysis and PGi so that a direct comparison of the methods could be made.  A larger 

dataset with missing data was also analyzed by PGi.  Each analysis had three iterations 

for the three supported placements of Testudines within Amniota.  With the data used in 

this study, I was also able to empirically assess the hypothesis that endochondral bones 

shift more often during evolution than dermal bones.  Endochondral bones were not 

found to shift any more often than dermal bones during the course of evolution.  The 

results of the analyses of the smaller dataset do not support any particular placement of 

turtles over another.  However, the results of the analyses of the larger dataset support 

Testudines as sister to all of Diapsida.  
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INTRODUCTION 

Heterochrony 

Ernst Haeckel (1880) suggested that change in the ontogeny of a species was only 

accelerative, and that descendant taxa had “added to” the developmental plan of their 

ancestor, such that juveniles of descendant taxa were representative of the adult state of 

the ancestral taxon.  For example, the fish-like appearance of tetrapod embryos 

represented a recapitulation of their fish-like ancestor.  This change in developmental 

plan between an ancestor and its descendants was termed “heterochrony”, a reference to 

the change in timing of developmental events.  Gould (1985) later synthesized the idea 

that heterochrony was not a purely accelerative phenomenon, and by its modern 

definition (Gould 1977, p. 222-234), heterochrony is recognized to operate under two 

basic mechanisms that can each occur through three patterns (or types) of shifts (Reilly et 

al. 1997: Fig. 1).  The primary mechanisms include peramorphosis (i.e., accelerated 

development which is characterized by an extension in development relative to an 

ancestor) and paedomorphosis (characterized by a truncation in development relative to 

an ancestor).  Both of these mechanisms can occur by changes in rate of development, or 

a shift in the timing of onset or offset of development, and in either scenario, these 

changes are suggested to occur between a common ancestor and a descendant taxon 

(Gould 1985; Reilly et al. 1997: Fig. 1).  The most well-known examples of heterochrony 

are those that demonstrate paedomorphosis, or retention of juvenile or larval traits in a 

sexually mature adult organism (e.g., retention of larval gills in Ambystoma mexicanum), 

but heterochrony has also been demonstrated in the development of specific somatic 

organs, such as the loss of limbs in snakes (Cohn and Tickle 1999) and the development 
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of the ribs in turtles (Nagashima et al. 2009).  Changes in ontogenetic or developmental 

patterns are thought to be primary drivers of evolution (Gould 1985). 

Early studies of heterochrony focused on how this evolutionary process can affect 

gross morphology or the shape of specific organs, by quantifying developmental 

trajectories (Alberch et al. 1979; Reilly et al. 1997).  However, recent studies of 

heterochrony have been generally applied to sequences of development of modular 

systems, such as the relative timing of appearance of structures associated with major 

portions of the basic tetrapod body plan (Werneburg and Sánchez-Villagra 2009) or 

specifically, bones in the skeleton (Mabee et al. 2000; Sánchez-Villagra et al. 2009; 

Harrington et al. 2013; Sheil et al. 2014; Koyabu et al. 2014).  Renewed interest in 

collecting developmental data, combined with the publication of new methods to 

compare developmental events, has resulted in more comparative studies and discoveries 

of heterochrony in gross morphology and ossification sequences (Nunn and Smith 1998; 

Jeffery et al. 2002a; Schoch 2006; Werneburg et al. 2009; Werneburg and Sánchez-

Villagra 2009; Harrington et al. 2013; Sheil et al. 2014; Koyabu et al. 2014).   

Developmental sequences are empirical data that describe the entire ontogeny of an 

organism, and by comparting developmental sequences across taxa one can infer 

evolutionary changes in development in a comprehensive context, as opposed to the 

narrow focus of developmental trajectories.  Ossification sequences are widely used in 

studies of heterochrony, because the timing of ossification of bones may correlate with 

the evolution of other structures in the body, such as the brain, and distinct life history 

strategies, such as the short gestation period of marsupials as compared to placental 

mammals (Nunn and Smith 1998; Maxwell and Larsson 2009; Harrington et al. 2013; 



  8 

Koyabu et al. 2014).   

Whereas some major patterns of heterochrony are now well-understood, more 

specific patterns of heterochrony are mostly hypothetical.  For instance, it is hypothesized 

that structures that are reduced or “lost” (i.e., those that fail to develop in a descendant) 

do so through progressive delay (or post-displacement) in initiation of development, and 

may present a comparative reduction in size (Alberch 1979; Cohn and Tickle 1999; 

Maxwell and Larsson 2009).  For example, flightless ratite birds have small forelimbs, 

the appearance of which seems to be correlated with relatively late ossification of the 

forelimb bones (Maxwell and Larsson 2009).  Among temnospondyls, loss of skull bones 

appears to be preceded by a post-displacement of their timing in the developmental 

sequence, possibly due to a reduction in the overall relative size of these bones (Schoch 

2002).  Additionally, it has been hypothesized that within the skull, endochondral bones 

ossify later (Shaner 1926; Good 1995) and exhibit more variability in timing of 

ossification than dermal bones, and therefore may exhibit more heterochronic shifts 

(Smith 1997; Montero et al. 1999; Mabee et al. 2000; Sheil and Greenbaum 2005; 

Sánchez-Villagra et al. 2008). It is unclear if these observations are predictable patterns 

or even strict laws of heterochrony, and so they need to be empirically studied. 

To study heterochrony in an evolutionary context, it is necessary to compare 

development among taxa.  However, standard metrics of developmental progress,(e.g., 

the length of gestation, crown-rump or snout-vent length, or developmental progress in 

limb or head formation), vary widely among taxa, meaning the timing of developmental 

events must be scaled before comparisons are made in a phylogenetic context (Bininda-

Emonds et al. 2002; Jeffery et al. 2002a).  The common practice is to rank events in a 
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sequence, which reduces variability in measures to their timing relative to other events 

thereby removing any consideration of absolute timing and allowing for direct 

comparisons to be made among taxa (Velhagen 1997; Harrison and Larsson 2008; 

Germain and Laurin 2009).  Developmental sequence data from extant organisms can be 

used to reconstruct ancestral developmental sequences in a process of mapping onto 

existing phylogenetic hypotheses (Germain and Laurin 2009; Harrison and Larsson 2008; 

Harrington et al. 2013; Sheil et al. 2014).  Instances of heterochrony can then be 

discovered by comparing sequences of developmental events between taxa (i.e., between 

nodes or between nodes and terminal taxa), thereby identifying changes in timing of 

events between ancestors and descendant taxa. 

When considering heterochrony in developmental sequences it is important to 

understand the modes by which an element may appear to shift (Fig. 1).  For instance, the 

apparent switch in developmental timing of the maxilla and frontal bones can occur five 

ways; (1) the frontal has moved later relative to the maxilla, (2) the maxilla has moved 

earlier relative to the frontal, (3) they have both moved in opposite direction, (4) they 

have both moved to later positions but the frontal moved much later than the maxilla, or 

(5) they have both moved earlier, but moved much earlier (Fig. 1; Jeffery et al. 2002b).  

The mode of a shift in relative timing is important to understand because it demonstrates 

which elements are actually shifting, and in which direction.  Ultimately, knowing which 

type of shift has occurred helps one to understand the general mobility of the elements, 

and in a larger context, the evolution of developmental sequences. 

Although the mode of shifting is important to understanding heterochrony, not all 

methods for reconstructing sequence heterochrony are capable of making these 
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distinctions.  Currently, the methods that exist for reconstructing sequence heterochrony 

have distinctly different approaches each with several strengths and weaknesses.  The 

methods that exist to discover heterochrony include Event-pairing (Velhagen 1997); 

Parsimov (Jeffery et al. 2005); Parsimov-based Genetic Inference (Harrison and Larsson 

2008); and Continuous Analysis (Germain and Laurin 2009).  These methods are used to 

reconstruct the ancestral sequences of development and can be used to identify 

heterochronic shifts in the developmental sequences of descendant species, but only PGi 

provides actual sequences at ancestral nodes and identifies which of the five possible 

shifts (Fig. 1) must occur between ancestors and descendants. 

Event-pairing (Velhagen 1997) operates by converting pairs of events in a 

developmental sequence into characters that are scored according to the relationship of 

the event pair, which can then be mapped onto existing phylogenetic trees to reconstruct 

ancestral sequences.  For example, the relative timing of the ossification of the frontal 

(event A) and the maxilla (event B) would be represented by a character “AB” that would 

receive the state of “0” (the frontal ossifies before the maxilla), “1” (the frontal and 

maxilla ossify simultaneously), or “2” (the maxilla ossifies before the frontal).  These 

data are then used to create a character matrix of event-pairs, which is optimized onto a 

phylogenetic tree, thereby reconstructing the ancestral sequences of development.  

Heterochrony is then identified as changes that occur between the ancestral and 

descendant taxa sequences.  Parsimov (Jeffery et al. 2005) was developed as an 

automated method to find the most parsimonious explanation of heterochronies 

reconstructed with event-pairing data.  It is a method that is considered to seek an 

explanation that minimizes the number of event shifts that could explain the distribution 
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of ossification sequences observed among terminal taxa, thereby identifying the 

distribution of ancestral sequences and shifts that requires the fewest possible instances of 

heterochrony.  However, event-pairing as a method of inferring sequence heterochrony is 

problematic because it creates multiple characters for the same event, cannot incorporate 

missing data into its analyses, and is known to reconstruct ancestral sequences that are 

logically inconsistent.  For example, Parsimov is known to reconstruct ancestral 

sequences in which element A appears before element B, B appears before element C, 

and C appears before A (Schulmeister and Wheeler 2004; Germain and Laurin 2009).  

Additionally, Parsimov assumes that event-pairs are independent, heritable characters 

that have biological meaning, and that these event pairs can be mapped on trees to 

reconstruct ancestral sequences.   

Parsimov-based Genetic Inference (PGi; Harrison and Larsson 2008) avoids these 

paradoxical reconstructions among ancestors by analyzing entire sequences of 

ossification as complex characters.  PGi uses a modified version of the Parsimov 

algorithm and a heuristic search method to reconstruct entire ancestral sequences, which 

avoids the issues of atomizing a sequence into event-pairs, and can reconstruct 

descendant sequences that require the fewest number of evolutionary steps.  Additionally, 

PGi is appealing because it provides the mode of shifting, as per Jeffery et al. (2002b), 

and can be applied to ossification sequences for which data are missing for timing of 

appearance of some bones; however, PGi has not yet been updated to be used in 

conjunction with time-calibrated trees (Harrington et al. 2013).    

Continuous Analysis (CA, Germain and Laurin 2009) also avoids the logical 

inconsistencies of event-pairing, but does so by treating developmental events (such as 
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timing of appearances of bones) as continuous characters that are scored on a continuum, 

rather than a discrete scale.  Each developmental event can be analyzed through squared-

change parsimony, which uses a quadratic formula to optimize the reconstructed value of 

each ancestral character; this is done by considering the values of its descendants and 

ancestral states (Maddison 1991).  Confidence intervals for the reconstructed ancestral 

values are calculated from Felsenstein’s Independent Contrasts (Felsenstein [1985] as 

modified by Garland and Ives [2000]), and descendant values that are shown to fall 

outside of the confidence intervals are considered to represent significant changes 

(instances of heterochronies; Germain and Laurin 2009). Additionally, Continuous 

Analysis could be considered appealing because it is a method that can incorporate 

branch-length data, a more realistic approach because it considers the amount of 

evolutionary time that has passed.  A disadvantage of this method is that it may not be 

used to analyze datasets with missing sequence data without losing the capacity to 

reconstruct the affected heterochronies (Laurin and Germain 2011).  

Event-pairing, Parsimov-based Genetic Inference, and Continuous Analysis have 

been applied to discover instances of heterochrony in organogenesis among major clades 

(Jeffery et al. 2002a; Weisbecker et al. 2008; Werneburg and Sánchez-Villagra 2009), as 

well as general patterns of heterochrony in post-cranial and cranial ossification (Sheil 

2003; Schoch 2006; Germain and Laurin 2009; Werneburg et al. 2009; Harrington et al. 

2013; Koyabu et al. 2014; Sheil et al. 2014; Werneburg and Sánchez-Villagra 2014).  

These studies have revealed potentially important links between changes in development 

and the evolution of new biological functions (e.g., endothermy in mammals [Jeffery et 

al. 2002a]). 
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Temporal Fenestration 

The temporal region of the amniote skull is the site of origin for muscles related to 

jaw movement.  Many amniotes have openings or fenestrae in the temporal region that 

allow for expansion of muscles during jaw adduction, thereby providing greater bite force 

(Frazzetta 1968).  Several patterns of temporal fenestration exist among Amniota and are 

defined by the bones that border them (Frazzetta 1968; Carroll 1988) (Fig. 2). The 

anapsid condition presents a skull that lacks temporal fenestration and is considered the 

plesiomorphic condition for amniotes (Fig. 2A; Carroll 1988).  This condition is common 

among the Parareptilia (Fig. 3).  In the synapsid condition (which characterizes the clade 

Synapsida) there is a single, subtemporal fenestra, which is bordered by the postorbital, 

squamosal, and jugal, and sometimes the quadratojugal and quadrate bones (Fig. 2B).  

Within early Reptilia, some lineages possesed the diapsid condition instead of the 

plesiomorphic anapsid condition (Carroll 1988).  The diapsid condition is the defining 

condition of the clade Diapsida, and is characterized by the presence of the supratemporal 

fenestra (which is consistently bordered by the parietal, postorbital, and squamosal 

bones) and the subtemporal fenestra (which is bordered by the postorbital, squamosal, 

and jugal, and sometimes the quadratojugal and quadrate bones) (Fig. 2D).  However, the 

diapsid condition has been modified evolutionarily several times.  For instance, the 

extinct group Euryapsida has lost the lower temporal opening (Fig. 2C), and the lower 

temporal bar (formed by the jugal and sometimes qudratojugal bones) is commonly lost 

among Squamata, resulting in ventrolateral emargination of the skull—this represents one 

of several highly modified conditions of the diapsid skull.  Among extant amniotes, 

turtles are the only group that do not display temporal fenestration, which is frequently 
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used as evidence to demonstrate that they have the anapsid condition.  However, recent 

evidence supports the hypothesis that this condition may be derived from the diapsid 

condition (Bever et al. 2015; Schoch and Sues 2015).   

Fenestration may have evolved independently in the synapsid and diapsid lineages, 

as well as in some extinct early amniotes (Carroll 1988) and at least two hypotheses exist 

for the origin of these holes in the skull.  The most widely accepted hypothesis of skull 

evolution proposes that temporal fenestration followed a shift in muscle attachment to 

concentrated areas of a vertically-expanding skull roof, and secondarily allowed for 

additional expansion of jaw musculature during jaw adduction (Frazzetta 1968, Carroll 

1988).  An alternative hypothesis proposes that fenestration allowed for a lighter skull, 

perhaps as a logical outcome of the transition to a terrestrial life, as air is a less physically 

supportive medium than water (Werneburg 2012).  Although turtles lack fenestration, 

many clades have significant lateral and posterodorsal emargination of their skulls 

(Gaffney 1979; Müller 2003), which may be functionally comparable to the temporal 

fenestration of other amniotes (Frazzetta 1968, Werneburg 2012).  The lateral 

emargination of turtles may be produced through the loss of the lower temporal bar, as it 

is in Squamata, however, the posterior emargination is most likely a unique modification 

of the skull related to neck retraction (Schoch and Sues 2015; Werneburg 2015). 

 

The Evolutionary Origin of Turtles 

Amniotes, united by the ability to lay a cleidoic egg (since lost in placental 

mammals), includes four major groups (Fig. 3): Mammalia (the mammals), Parareptilia 

(an extinct group of reptile-like amniotes), Archosauria (birds and crocodiles), and 
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Lepidosauria (squamates and tuatara).  The largest unsolved mystery of amniote 

phylogeny includes one of the most interesting groups in amniotes, in terms of issues 

relating to development, the Testudines.  Turtles are unique among extant amniotes in 

their possession of an apparently anapsid skull, a condition that is also prevalent in the 

extinct, paraphyletic, group of basal reptiles, Parareptilia (Fig. 2), and that may represent 

the plesiomorphic condition of the skull in the earliest amniotes and reptiles.  However, 

the temporal bones of turtles (jugal, parietal, postorbital, quadratojugal, and squamosal) 

appear to have a different arrangement than most extinct anapsid reptiles, with regard to 

the relative positions of the jugal and quadratojugal (Müller 2003), and recent evidence 

suggests that their anapsid condition may represent yet another state derived from the 

diapsid condition (Bever et al. 2015; Schoch and Sues 2015).  Turtles also possess a 

carapace and plastron, and pectoral and pelvic girdles have shifted (evolutionarily) 

beneath the ribcage, making statements of morphological homology between turtles and 

other reptiles difficult (Carroll 1988; Rieppel 1996; Lee 1997a; Wilkinson et al. 1997; 

Nagashima et al. 2013).  The monophyly of the major clades of amniotes is well 

supported, and the relationships among them are well understood with the exception of 

the placement of Testudines relative to other reptiles (Reisz and Laurin 1991; deBraga 

and Rieppel 1997; Wilkinson et al. 1997; Rieppel and Reisz 1999; Lyson et al. 2012; 

Werneburg 2013).  The transitional fossils that demonstrate putative intermediate forms 

between the anatomy of turtles and other reptile clades are inconclusive, and hypotheses 

for the placement of turtles have often relied heavily on inference from morphological 

and molecular data of crown-group taxa only. Because turtles are so highly derived, most 

phylogenetic hypotheses based on morphological data have placed them entirely outside 
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all other extant reptiles (Fig. 3, Scenario 1; Gauthier et al. 1988; Reisz and Laurin 1991; 

Lee 1997b; Werneburg and Sanchez-Villagra 2009).  Contrary to most morphological 

studies, the majority of molecular-based phylogenetic hypotheses find support for the 

placement of turtles within Diapsida (Fig. 3, Scenarios 2 and 3; Hedges and Poling 1999; 

Iwabe et al. 2005; Chiari et al. 2012; Crawford et al. 2012; Lyson et al. 2012; Lu et al. 

2013; Crawford et al. 2015), and support their placement either nested within, or as sister 

to, Archosauria (Fig. 3, Scenario 2; Kirsch and Mayer 1998; Hedges and Poling 1999; 

Kumazawa and Nishida 1999; Iwabe et al. 2005; Chiari et al. 2012; Fong et al. 2012; Lu 

et al. 2013; Field et al. 2014).  Fewer molecular studies support the placement of turtles 

as related to Lepidosauria (Fig. 3, Scenario 3; Lyson et al. 2012).  The results of 

Werneburg and Sánchez-Villagra (2009), which examines developmental data, support 

the placement of turtles as sister to Diapsida, but do not refute alternative placements 

within Diapsida. 

Knowing the true placement of turtles within Amniota is key to understanding the 

evolutionary history and origin of various patterns of temporal fenestration in amniote 

skulls.  The major implication of turtles as sister to archosauromorph or 

lepidosauromorph reptiles is that the anapsid condition of the skull would represent a 

secondarily-derived condition from a diapsid skull, and the pattern seen in turtles is 

therefore not plesiomorphic, but rather represents a highly derived diapsid condition.  

This scenario also implies that during the course of turtle evolution, the skull evolved 

from the typical diapsid condition to that of an apparent anapsid condition, and becoming 

extremely emarginated in some species (Gaffney 1979).  Depending on where turtles are 

placed (Fig. 3), they either represent a plesiomorphic skull condition, or one of the most 
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derived examples of a modified diapsid skull (Fig. 2). 

The disagreement on the phylogenetic placement of turtles based on results of 

analyses of molecular and morphological data may be resolved with input from 

developmental data.  Despite the extensive investigation of amniote phylogeny, few 

studies employ developmental data to reconstruct phylogenetic history (Fucik 1991; 

Schoch 2006; Weisbecker et al. 2008; Werneburg and Sanchez-Villagra 2009), and all 

have difficulties in doing so.  Fewer studies specifically address the temporal regions of 

amniote skulls beyond simply stating that alternate placements have implied alternate 

scenarios of temporal series evolution (Werneburg and Sánchez-Villagra 2009).  A study 

of the morphology of tendons in the temporal region of amniotes (Werneburg 2013) 

supported a placement of turtles outside of Sauria (sensu deBraga and Rieppel 1997) 

(Fig. 3), but does not exclude the possibility that turtles are basal diapsids.  Comparative 

studies of developmental sequences are lacking, mainly because the methods of 

comparison have only recently been developed (Harrison and Larsson 2008; Germain and 

Laurin 2009), and comparable new ossification data rarely are combined with existing 

data in the literature.  As a consequence, large-scale comparative developmental 

sequence studies are relatively new, and few have specifically analyzed ossification 

sequences (Jeffery et al. 2002a; Schoch 2006; Werneburg et al. 2009; Werneburg and 

Sánchez-Villagra 2009; Harrington et al. 2013, Koyabu et al. 2014).  

 

Hypotheses 

Because the variable position of turtles within Amniota has different implications 

for the evolution of the skull, I hypothesize that the scenarios of skull bone heterochrony 
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will differ when the three alternate phylogenetic placements of turtles are considered 

(Fig. 3): Scenario 1) as sister to Diapsida (Gauthier et al. 1988; Laurin and Reisz 1995; 

Werneburg and Sánchez-Villagra 2009; Lyson et al. 2010); Scenario 2) sister to 

Archosauria (Kirsch and Mayer 1998; Meyer and Zardoya 1998; Hedges and Poling 

1999; Kumazawa and Nishida 1999; Iwabe et al. 2005; Chiari et al. 2012; Fong et al. 

2012; Lu et al. 2013; Schoch and Sues 2015) and therefore representing a modified 

diapsid condition; and Scenario 3) as sister to Lepidosauria (deBraga and Rieppel 1997; 

Rieppel and Reisz 1999; Li et al. 2008; Lyson et al. 2012) and therefore representing a 

modified diapsid condition. Herein, my preferred placement of turtles will be the one that 

requires the fewest number of evolutionary steps or the fewest reconstructed 

heterochronies.  

I hypothesize specifically that there are identifiable instances of ossification 

sequence heterochrony in the formation of the temporal series bones (jugal, parietal, 

postorbial, quadratojugal, and squamosal) among crown-group amniotes, because there is 

a wide range of temporal modification in this clade, and that the ossification sequence of 

the temporal series of turtles should fit most parsimoniously in one of the three 

phylogenetic positions tested.  Due to the reduction of the postorbital and jugal bones 

through emargination in turtles (Gaffney 1979), I would expect these bones to be delayed 

in ossification relative to other clades, but not necessarily among Lepidosauria, in which 

many clades exhibit reduction or loss of the jugal.  The hypotheses of temporal bone 

evolution and heterochrony will be tested through Continuous Analysis (Germain & 

Laurin 2009) and Parsimov-based Genetic Inference (PGi: Harrison & Larsson 2008).  I 

hypothesize that endochondral bones will exhibit significantly more shifts than dermal 
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bones, and I will test this with a Chi-squared test of the heterochronic shifts reconstructed 

with PGi. 

 

METHODS 

Cranial Ossification Sequence Data 

Cranial ossification sequence data were compiled from published literature for 70 

unique species (Table 1) from five major clades within Amniota (38 Mammalia, 11 

Testudines, 10 Squamata, 8 Aves, and 3 Crocodilia) and newly-collected data are 

reported for Lepidochelys olivacea and Eretmochelys imbricata (Tables 1 and 2).  These 

data summarize the sequence of appearance of bones through ontogeny.  At a minimum, 

each order of amniotes was represented by one species. Amphibians were not included as 

an outgroup because their skulls are highly derived and do not possess many of the bones 

that are present in amniotes; including Amphibia would reduce the pool of bones that are 

common across all taxa, and therefore the number of bones that could be used in the 

analyses.  Because of the study’s focus on the placement of turtles within Reptilia, 

Mammalia were treated as the outgroup in all analyses for the purpose of reconstructing 

ancestral developmental sequences at the base of Amniota.  Snakes were not included in 

the dataset because their skulls are highly derived and therefore might skew 

reconstructions of ancestral sequences within Squamata (Werneburg and Sánchez-

Villagra 2014).  The postorbital and quadratojugal bones were not included in any 

analysis, because of low representation in the literature.  The sequence for Eretmochelys 

imbricata (Sheil 2013) was recorded from the original specimens and original notes, 

rather than the published table of data, because discrepancies exist in the original 
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published descriptions.  New, original data were obtained for Lepidochelys olivacea 

(Table 2), based on 53 specimens ranging from Stage 20 to Stage 31 (Crastz 1982; Miller 

1985; Appendix 1).  Embryos were staged based on reference to external anatomy 

according to Miller (1985), with reference to Crastz (1982).  Embryos were cleared and 

double-stained with Alzarin Red and Alcian Blue to indicate the presence and timing of 

ossification of bone and cartilage, respectively (Taylor and Van Dyke 1985; Sheil 1999).  

The ossification sequence was inferred by examination of dissected embryos with a 

dissecting microscope (Leica MZ125, Leica Microsystems Ltd., Switzerland). 

 

Considerations of the Dataset 

The wide range of taxa included in this study introduced some complexity to 

assessment of ossification sequences because different identities and names have been 

applied to homologous elements across some taxa (Table 1 legend).  For example, the 

incus in mammals is homologous to the quadrate in reptiles.  The complete set of 

metadata was optimized individually for each of the analyses run (either CA or PGi), and 

was analyzed on each of the three scenarios for the phylogenetic placement of turtles 

(Fig. 3).  For each analysis, a dataset was constructed from the metadata set that 

eliminated bones and/or taxa to construct datasets that maximized the number of taxa and 

bones, while considering the constraints of an analysis (e.g., CA cannot reconstruct 

heterochronies with missing data).  Inclusion of bones in every generated dataset was 

prioritized over inclusion of taxa, as the exclusion of bones increases the chance that a 

bone will erroneously not appear to move, because the analyses are reconstructing the 

relative motion of bones within a sequence.  
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Analysis Number of Taxa Number of Bones 
Continuous Analysis 20 15 
PGi (complete) 20 15 
PGi (with missing data) 39 15 
 

Sequences with poor resolution (i.e., a great number of “ties” in appearance of 

bones) are, at a minimum, unresolved (Velhagen 1997; Bininda-Emonds 2002).  Lack of 

sequence resolution increases the likelihood of Type I error, because the greater the 

number of events that are “tied,” the more uncertain the actual timing of these events 

becomes and the higher the chance that they will erroneously appear to shift (see 

Discussion).  Therefore, species with a sequence resolution (i.e., number of 

developmental stages or ranks) of 3 or less were excluded from all datasets, with the 

exceptions of Ornithorhynchus anatinus (de Beer and Fell 1936; de Beer 1937) and 

Sphenodon punctatus (Howes and Swinnerton 1901), which were left in the analyses 

because these are critical, basal taxa among Mammalia and Lepidosauria, respectively 

(Table 1). 

Finally, in recording ossification sequences from the existing literature, the criteria 

for what qualifies as first appearance of a bone were recorded for each sequence.  Most 

studies (including this one) recognize first appearance of bone as the first stage at which 

100% of the embryos retain Alizarin stain in the bone in question.  However, some 

studies label first appearance based on the observation of bone-like texture of tissue that 

preceeds retention of Alizarin stain in bone.  When appearance of texture and retention of 

Alizarin stain were recorded in the same study, the data given for retention of Alizarin 

stain was taken for use in this study. 
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Phylogenetic Hypotheses 

The phylogenetic placement of turtles is contentious (Gauthier et al. 1988; Reisz 

and Laurin 1991; Lee 1997b; Kirsch and Mayer 1998; Hedges and Poling 1999; 

Kumazawa and Nishida 1999; Rieppel and Reisz 1999; Iwabe et al. 2005; Li et al. 2008; 

Werneburg and Sanchez-Villagra 2009; Chiari et al. 2012; Fong et al. 2012; Lyson et al. 

2012; Lu et al. 2013; Field et al. 2014; Schoch and Sues 2015), and three possible 

placements (Scenario 1, 2, and 3) have been proposed by molecular and morphological 

data (Fig. 3).  To examine the impact of these competing hypotheses, turtles were placed 

at these positions on the tree for all analyses: Scenario 1) as sister to Diapsida (Gauthier 

et al. 1988); Scenario 2) sister to Archosauria (Hedges and Poling 1999); and Scenario 3) 

sister to Lepidosauria (deBraga and Rieppel 1997).  For the rest of this paper these 

phylogenetic hypotheses will be referred to as Scenario 1, Scenario 2, and Scenario 3, 

respectively. 

Trees used for the reconstruction of ancestral states through mapping were pared 

down from the existing literature (Novacek 1992; Thomson and Shaffer 2009; Barley et 

al. 2010; Kimball et al. 2013; Pyron et al. 2013; Wang et al. 2013; Shinohara et al. 2014).  

Time-calibration of the trees (used by CA) was based primarily on information from 

TimeTree.org in December 2014 (Hedges et al. 2006) using the “Expert” divergence 

date, unless a discrepancy occurred between the divergence dates and the phylogenetic 

hypothesis, in which case the “Median” date was used.  In other words, if the 

TimeTree.org “Expert” date would require a clade to be in an incorrect position, then the 

“Median” date was used instead.  The divergence date for turtles and all other reptiles 

(Scenario 1) of 282 Mya was taken specifically from Pereira and Baker (2006), as 
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TimeTree.org does not yield different results when comparing Testudines to either 

Diapsida or any subset of Diapsida (e.g., Lepidosauria, Archosauria, Squamata, etc.).  

 

Continuous Analysis of the Complete Dataset 

 Continuous Analysis (Germain and Laurin 2009) of a pared dataset with 20 taxa (7 

turtles, 4 squamates, 6 birds, 1 crocodilian, and 2 mammals; Table 3), 15 bones, and no 

missing data (i.e., a complete dataset) was performed as a complement to a PGi analysis 

(below).  In their original paper, Germain and Laurin (2009) compared ossification 

sequences from terminal taxa to the reconstructed sequence of the root node and used this 

comparison to infer instances of heterochrony; however, this type of comparison 

precludes the ability to identify on which exact branch a significant instance of 

heterochrony occurred.  Herein, adjacent nodes were compared so that significant shifts 

could be said to occur definitively between a particular ancestor and its immediate 

descendant.  Sequences from terminal taxa were also compared to the root node to 

complement and compare to the node-to-node approach.  Lastly, terminal taxa within 

Testudines were compared to their last common ancestor with all diapsids, archosaurs, or 

lepidosaurs, for Scenarios 1, 2, or 3, to see the differences in reconstructed heterochrony 

among all phylogenetic hypotheses.   

In each of the 20 ossification sequences (Table 3), the 15 bones were scored 

according to their position in the sequence of ossification of the cranium, following the 

ranking protocols for CA (Germain and Laurin 2009).  The first and last bone(s) to 

appear were scored as “0” and “1,” respectively, and every bone appearing between these 

extremes was scored proportionally according to the formula: 
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y =  (xi-xmin)/(xmax-xmin) 

where y is the assigned value, xi is the rank value of the bone, xmin is the lowest rank in 

the sequence, and xmax is the highest rank in the sequence.  For example, if there are “n” 

events (appearances of bones), the interval from “0 to 1” is divided into n–1 segments at 

equal intervals. Given the focus of this study on turtles and the temporal region, bones 

generally not found in turtles (e.g., nasals and lacrimals) were excluded from this 

analysis, whereas some temporal bones (e.g., jugal) were mandatory in the sequence for a 

taxon to be included in the analysis (Table 3).  Ancestral nodal sequences were 

reconstructed using squared-change parsimony (Maddison 1991) on a time-calibrated 

phylogeny in Mesquite v2.75 (build 564) (Maddison and Maddison 2011) for each of 

Scenarios 1, 2, and 3 for the placement of turtles (Fig. 3).  Confidence intervals for every 

event in an ancestral sequence were calculated with Felsenstein’s Independent Contrasts 

(Felsenstein 1985), using the PDAP module v1.16 of Mesquite (Midford et al. 2010), 

following the protocols of Maddison (1991).  Heterochrony was inferred by identifying 

instances in which difference in the relative timing of ossification of a descendant taxon 

fell outside of the 95% CI of the ancestral value; these significant shifts were considered 

to be instances of heterochrony, sensu Germain and Laurin (2009) and Laurin and 

Germain (2011).   

 

Parsimov-based Genetic Inference of the Complete Dataset 

The dataset with no missing data (Table 3) was analyzed with three iterations 

(Scenarios 1, 2, and 3) for the placement of turtles within Reptilia using PGi.  This 

permitted direct comparison of the results of PGi and CA.  Each of the 15 cranial bones 
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in each of the 20 sequences was scored according to their position in the sequence of 

ossification, following the ranking protocols of PGi (Harrison and Larsson 2008).  The 

bones were assigned a numerical rank for positions 1 through 9, and an alphabetical rank 

beyond that, due to constraints of the program (e.g., 10 = A, 11 = B, etc.).  All analyses 

were run using a Parsimov edit-cost function, and a semi-strict superconsensus with 30 

cycles and 2,000 replicates. 

 

Parsimov-based Genetic Inference of the Dataset with Missing Data 

A Parsimov-based Genetic Inference (PGi) analysis of a larger dataset that 

incorporated missing data was run and allowed for an analysis of a larger set of taxa.  

Analyses were run for all three scenarios for the placement of turtles (Fig. 3) to address 

the hypotheses of temporal bone heterochrony in amniotes.  The dataset pared from the 

metadata had 15 bones and 39 taxa (9 turtles, 4 squamates, 6 birds, 1 crocodilian, and 19 

mammals; see Table 4).  Individual bones had a maximum of 40% missing data across 

taxa (coded as Z), individual taxa had a maximum of 20% missing data, and overall 

missing data for the entire dataset was 6.2%. Cranial bones in every sequence were 

scored as described above.  All analyses were run using a Parsimov edit-cost function, 

and a semi-strict superconsensus with 30 cycles and 2,000 replicates. 

 

Chi-Squared Test 

A Chi-squared test was run to test the hypothesis that endochondral bones shift 

more often in the course of evolution than dermal bones.  The shifts reconstructed with 

both PGi analyses were used as the count data.  The number of reconstructed shifts in 
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endochondral bones was compared to the number of reconstructed dermal bones, per 

scenario of turtle placement.  The null hypothesis was that endochondral bones and 

dermal bones would exhibit an equivalent number of shifts. 

 

RESULTS 

Cranial Ossification Sequence for Lepidochelys olivacea 

The sequence of cranial ossification for Lepidochelys olivacea (Table 2) describes 

the appearance of 26 bones resolved over 13 stages.  Nine stages captured a single 

instance of ossification, and four stages captured two or more ossification events.  Some 

variability was observed in the relative timing of ossification of the exoccipital, 

supraoccipital, basioccipital, prootic, and opisthotic bones as indicated by variable 

presence in embryos at earlier stages.  All cranial bones initiated ossification by the time 

of hatching.  Timing of appearance of bones was based on the criterion of first 

appearance prior to stage 26, because of the low numbers of specimens and (in some 

instances) moderate bleaching led to weak indication of staining with Alizarin Red.  

Timing of appearance in Stages 25 and beyond was based on 100% retention of Alizarin, 

except in the case of the prootic and opisthotic bones, which consistently ossified 

together but had only 67% retention by Stage 30 (Sheil et al. 2014).  The decision was 

made to treat the prootic and opisthotic bones as ossifying before the articular bone, 

because the articular did not retain Alizarin until Stage 30, whereas the prootic and 

opisthotic first retained Alizarin at late Stage 28. 
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Continuous Analysis of the Complete Dataset 

Ancestral sequences were reconstructed with minor differences among Scenarios 1, 

2, and 3 for the placement of turtles.  For example, the pterygoid and squamosal bones in 

Archosauria occupy the 4th and 5th positions, respectively (Scenario 1), but occupy the 5th 

and 4th positions, respectively, in Tables 6 and 7 (for Scenarios 2 and 3, respectively).  

Similarly, one-position shifts were also found in Lepidosauria, Testudines, and Amniota 

for the maxilla and pterygoid bones, pterygoid and palatine bones, and premaxilla and 

pterygoid bones, respectively (Tables 5–7).  The ancestral sequences reconstructed on 

Scenario 2 were not unique and were either identical to those reconstructed on Scenario 3 

or Scenario 1.  Node-to-node comparison of reconstructions for all three phylogenetic 

hypotheses yielded an early shift of the prootic bone in Coturnix coturnix only, and no 

other significant heterochronic shifts were found.  Some differences in reconstructed 

heterochrony were found among the comparisons of terminal branches for Testudines 

relative to their three different hypothetical ancestors (e.g., an early ossification of the 

pterygoid bone in Chelydra, Eretmochelys, and Phrynops in Scenario 1 but not Scenario 

2 or 3; and significant shifts of the jugal bone in Eretmochelys, Apalone, and Phrynops in 

Scenarios 2 and 3 but not Scenario 1) (Table 8).  There were no differences in 

reconstructed heterochrony among Scenarios 1-3 when comparing terminal taxa to the 

root node (Table 9).  In all scenarios, when comparing ossification sequences for terminal 

taxa to the root node, late ossification of the supraoccipital bone was found in 7 of the 19 

non-mammalian taxa, late ossification of the pterygoid bone was found in both 

mammalian taxa (Ornithorhynchus and Loris) and early ossification of the pterygoid 

bone was reconstructed for 8 of the remaining 19 taxa (Table 9).  There were no 
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differences in reconstructed among Scenarios 1–3 when comparing terminal taxa to the 

ancestor of Testudines, and all scenarios reconstructed a late ossification of the jugal 

bone in Macrochelys and Apalone (Table 10).  The dentary bone of Lepidochelys ossifies 

late in all scenarios, when compared with the ancestor of Testudines, and in Scenarios 2 

and 3 when compared to the shared ancestor with Archosauromorpha and with 

Lepidosauromorpha (Table 10).  All scenarios and node-to-tip comparisons reconstructed 

an early ossification of the parietal bone in Chelydra and Eretmochelys (Tables 8–10). 

Comparing a terminal taxon to more than one ancestor yields some variability in 

the reconstructed heterochronies.  For example, compared to the root node of all amniotes 

(Table 9), Chelydra serpentina has relatively early ossification of the frontal, parietal, 

and pterygoid bones.  Compared to the alternate ancestors (Scenarios 1–3; Table 8), C. 

serpentina has relatively early ossification of the frontal, parietal, premaxilla, pteryoid, 

and squamosal bones (Scenario 1), or relatively early ossification of the frontal, parietal, 

premaxilla, and squamosal bones (Scenario 2 and 3).  Compared to the ancestor of 

Testudines, C. serpentina has relatively early ossification of the frontal, parietal, and 

premaxilla bones.  Compared to its immediate ancestor, C. serpentina has no significant 

shifts.  In all comparisons, the frontal and the parietal bones are shifted early.  However, 

the other heterochronies do not reconstruct in every comparison.  All of the species of 

Testudines exhibited similar variability when compared to the various ancestors (Tables 

8–10). 

 

Parsimov-based Genetic Inference of the Complete Dataset  

The PGi analysis of the data used for CA (Table 3) reconstructed 124 (56 early and 
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68 late), 122 (62 early and 60 late), and 123 (52 early and 71 late) shifts for Scenarios 1, 

2, and 3, respectively (Table 11).  The maxilla exhibited the greatest number of shifts (34 

total) and the palatine exhibited the fewest number of shifts (10 total) among Scenarios 

1–3 (Table 11).  However, the basioccipital, basisphenoid, dentary, and supraoccipital 

bones shifted the most (11 shifts) in Scenario 1, and the palatine the fewest (3 shifts).  

The jugal exhibited the most shifts (13) in Scenario 2, and the palatine the fewest (3 

shifts).  The maxilla exhibited the most shifts (12) in Scenario 3, and the prootic the 

fewest (1 shift).  Notably, the jugal shifted only 6 times in Scenario 1, but 13 and 8 times 

in Scenarios 2 and 3, respectively.  Ancestral sequences reconstructed with PGi using this 

dataset had minor differences among all scenarios (Tables 5–7).  The general pattern of 

temporal bone heterochrony progressing from the ancestor of Reptilia (Figs. 4–6 

internode 4; Table 11 row 4) to the ancestor of Cryptodira (Figs. 4–6 internode 7; Table 

11 row 7) is similar across all scenarios.  Between the ancestor of Reptilia and the 

ancestor of Cryptodira, the palatine exhibited no shifts in any scenario (Table 11, Figs. 4–

6); but 22 heterochronies were reconstructed across all three scenarios, regardless of the 

placement of Testudines (Table 11).  Of particular interest are the late shift of the parietal 

and squamosal bones in Cryptodira, because they did not move as hypothesized (Table 

11). 

 

Parsimov-based Genetic Inference of the Dataset with Missing Data 

PGi reconstructed differences in ancestral sequences among Scenarios 1–3 (Table 

12).  The PGi analysis of the dataset with missing data (Table 4) yielded 127 (62 early 

and 65 late), 264 (147 early and 117 late), and 290 (162 early and 128 late) shifts in 
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timing for Scenarios 1, 2, and 3, respectively.  The nasal exhibited the most shifts (55 

total) and the dentary exhibited the fewest shifts (28 total) among all scenarios (Table 

13).  However, the nasal shifted the most (13 shifts) in Scenario 1, and the dentary and 

parietal the fewest (5 shifts).  The pterygoid exhibited the most shifts (23) in Scenario 2, 

and the dentary the fewest (10 shifts).  The premaxilla exhibited the most shifts (27) in 

Scenario 3, and the supraoccipital the fewest (10 shifts).  Notably, the parietal shifted 

only 5 times in Scenario 1, but shifted 18 and 23 times in Scenarios 2 and 3 respectively. 

Between Reptilia (Figs. 7–9 internode 38; Table 13 row 38) and Cryptodira (Figs. 7–9 

internode 43; Table 13 row 43) the reconstructed heterochronies are not similar across 

scenarios.  That is, across Scenarios 1–3 the placement of turtles produced a mostly 

unique set of heterochronies (Table 13).  The only congruence between the scenarios was 

a lack of shifts in the maxilla between the Reptilia ancestor and the Cryptodira ancestor 

(Table 13, Figs. 7–9).  Eighteen heterochronies were reconstructed across Scenarios 1–3, 

regardless of the placement of Testudines (Table 13). 

 

Comparison of PGi and Continuous Analysis 

The ancestral sequences reconstructed using CA and PGi on the same dataset were 

similar, overall, but sometimes reconstructed larger differences.  For example, in the 

Amniota ancestor in Scenario 1, the pterygoid reconstructed first with CA in a 15-event 

sequence, but second-to-last using PGi in a 4-event sequence (Table 5).  In the ancestor 

of Iguania and Anguimorpha in Scenario 2, the squamosal reconstructed fifth with CA in 

a sequence of 15 events but fifth with PGi in a sequence of 8 events.  The early shift of 

the prootic in Coturnix found with CA was not found in any scenario using PGi (Table 
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11).  There was no overlap in reconstructed heterochronies for Eretmochelys or 

Lepidochelys between the PGi analysis and Continuous Analysis.  Heterochronies 

overlap between the PGi analysis and Continuous Analysis for the rest of the species of 

Testudines.  The early shift of the opisthotic in Pelodiscus was the only heterochrony to 

reconstruct in all analyses and comparisons (Tables 8-11). 

 

Chi-Squared Test 

None of the Chi-squared tests of shifts in endochondral versus dermal bones for 

either set of PGi analyses (the complete dataset or the dataset with missing data) were 

significant.  The lowest p-value among the Chi-squared tests was 0.58, for Scenario 2 of 

the PGi analysis of the complete dataset.  The highest p-value among the Chi-squared 

tests was 1.00, for Scenario 3 of the PGi analysis of the complete dataset. 

 

DISCUSSION 

The Placement of Testudines 

Ossification sequence heterochrony of skull bones was reconstructed differentially 

among scenarios of turtle placement, supporting the hypothesis that the phylogenetic 

position of turtles may influence reconstructions of skull bone evolution.  Each set of 

analyses reconstructed a different set of heterochronies, and therefore a different set of 

hypotheses of skull evolution (below).  The preferred scenario of placement of turtles 

according to the PGi analysis of the dataset with missing data is as sister to all other 

diapsids, given the 137 fewer shifts reconstructed in that scenario (Table 13).  However, 

the PGi analyses of the complete dataset reconstructed similar numbers of shifts across 
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scenarios, so I cannot reject Scenarios 2 and 3 as possibilities (Table 11).  My preferred 

scenario of turtles as sister to Diapsida contradicts the recent finding of Sues and Schoch 

(2015) who support turtles as nested with Lepidosauria based on morphological evidence.  

However, it does not preclude the possibility that turtles are diapsids, a possibility 

supported by Bever et al. (2015) who re-examined Eunotosaurus africanus, a good 

candidate for a close ancestor of turtles (Lyson et al. 2010).  They found E. africanus to 

be potentially transitional between the diapsid condition and anapsid condition of the 

temporal region, as the juveniles of E. africanus appear to have a supratemporal fenestra 

which is closed in adults, possibly an ontogenetic analog of the evolutionary closure of 

that fenestra.  Indeed, our findings are consistent with the hypothesis that the placement 

of Testudines within Diapsida requires more changes in the skull, as that scenario 

requires that the anapsid condition of the turtle skull arose from the diapsid condition, 

and the results of the PGi analysis of the dataset with missing data reconstructed a much 

greater number of shifts in Scenarios 2 and 3 (the scenarios which place turtles within 

Diapsida) than in Scenario 1 (Table 13). 

 

Continuous Analysis of the Complete Dataset 

Continuous Analysis finds differences in ancestral sequences depending on the 

hypothesis of turtle placement (Scenarios 1–3).  However, there were only differences in 

reconstructed heterochronies among the three scenarios when comparing to the three 

hypothetical, common ancestors of all Diapsida, Archosauromorpha, or 

Lepidosauromorpha (Table 8, Figs. 4–6 Node 3).  For example, the pterygoid 

reconstructs as shifting early in Scenario 1 in Chelydra, but not in Scenario 2 or 3, and 
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the jugal reconstructs as shifting late in Scenarios 2 and 3 in Apalone, but not in Scenario 

1 (Table 8).  Additionally, heterochronies reconstructed in Scenarios 2 and 3 were more 

similar to each other than to those reconstructed in Scenario 1.  This suggests that the 

divergence date of turtles was more influential than the position of turtles within the tree, 

because Scenarios 2 and 3 had the same divergence date (262 Mya), whereas Scenario 1 

required an earlier divergence date (282 Mya) (Figs. 4–6). 

Changing the phylogenetic position of Testudines (Scenarios 1–3) had only minor 

effects on reconstructed heterochronies, because of the nature of the analysis.  

Continuous Analysis infers the values of the root node from the terminal nodes, and 

changing positions within the tree doesn’t change the pool of observations for the 

terminal taxa, demonstrating that the values of the root node are more dependent on the 

data for the terminal taxa than the relationships within the tree.   

Although the differences between the scenarios of turtle placement are minor and 

the biological relevance is obscure, the reconstructions of the supraoccipital, pterygoid, 

and jugal are interesting.  Late ossification of the supraoccipital in 7 out of 19 non-

mammalian terminal taxa (as compared to the root node) may support the finding of 

Koyabu et al. (2014) of early supraoccipital timing in mammals being correlated with 

encephalization—later ossification of the supraoccipital (Table 9) may reflect the 

comparatively smaller brain size in non-mammalian taxa.  The early ossification of the 

pterygoid in Chelydra, Eretmochelys, and Phrynops in Scenario 1 (but not in Scenarios 2 

and 3) may reflect the larger palate of turtles as compared to other Reptilia (Table 8).  

Crocodilians have expanded palates (i.e., the secondary palate), however, only one 

crocodilian (Caiman) was included in the analysis.  If additional crocodilians were 
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included, the pterygoid might not be reconstructed as ossifying earlier in Testudines, or it 

might appear to ossify late in Archosauria.  The ossification sequences for Alligator 

mississipiensis (Rieppel 1993) and Crocodylus cataphractus (Müller 1967) were not 

included because they lacked records for key bones. 

The variability among these reconstructions in the ossification of the jugal between 

Scenario 1 and Scenarios 2 and 3, may reflect the implied differences in temporal bone 

evolution.  Interestingly, these differences only exist between the placement of turtles 

within crown-group Diapsida, or outside of crown-group Diapsida.  Early ossification of 

the jugal in Eretmochelys may reflect the comparative lack of temporal emargination in 

that species (Gaffney 1979).  The early ossification of the jugal in Phrynops may be 

related to its contribution to the unique pleurodiran structure of the postorbital wall 

(Gaffney 1979).  Late ossification of the jugal in Macrochelys and Apalone, as compared 

to the common ancestor of all Testudines may reflect temporal emargination and 

consequent reduction of the jugal, supporting my hypothesis that ossification of the jugal 

will be delayed in Testudines. 

This study’s finding that node-to-node comparisons using the Continuous Analysis 

method do not produce significant heterochronies except under extreme circumstances 

(e.g., the early ossification of the prootic in Coturnix), would indicate that, at least used in 

this way, Continuous Analysis is a highly conservative method of heterochrony 

reconstruction.  This also means that Continuous Analysis is not a comparable method to 

PGi, in that Continuous Analysis cannot recreate the exact internodal branches on which 

heterochronies occur, and therefore cannot be used to quantify heterochronic shifts the 

way that PGi can.  Continuous Analysis is best used to generalize about heterochronic 
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change and for estimating the rate at which a bone shifts (part of the calculation in 

Felsenstein’s Independent Constrasts; Felsenstein 1985). 

Some of the heterochronies reconstructed with Continuous Analysis may be 

artifacts of poor sequence resolution.  For example, the sequence of Coturnix has lower 

resolution than the other bird sequences used in these analyses (Table 1), which may 

explain the reconstruction of a significant early shift of the prootic.  In particular, 7 of the 

15 bones used in the analysis were tied for the same position in the Coturnix sequence.  

Similarly, the reconstruction of a late-ossifying dentary in Lepidochelys may be the 

consequence of there being 7 ties with other bones for the second position (Table 3 and 

8).  If the dentary truly ossifies in the second position, for example, its value (as assigned 

by Continuous Analysis) is inflated.  Continuous Analysis may also have deflated the 

values of the parietal in Chelydra and Eretmochelys, both of which exhibit the parietal as 

tied for the first position with 7 and 6 bones, respectively (Table 3), thereby explaining 

their significantly early ossification.  For example, consider a sequence of events 

involving seven bones.  If the sequence is fully resolved, the bones will be scored 0, 0.17, 

0.33, 0.5, 0.67, 0.83, and 1, in order (see Methods for the formula).  However, if the first 

five bones are tied, they will be scored 0, 0, 0, 0, 0, 0.75, and 1, respectively.  Note that 

whichever bone is in the fifth position (indicated with bold) has its value reduced by 

more than half the interval when tied with other bones.  Additionally, the value of the 

sixth bone is deflated.  It could be argued that Continuous Analysis is particularly 

sensitive to ties in sequences, and the more bones tied for a position, the worse the 

distortion of their true values. 
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Parsimov-based Genetic Inference of the Complete Dataset 

In the set of analyses using PGi and the dataset without missing data, there weas no 

preferred scenario of turtle placement, as all Scenarios 1, 2, and 3 reconstructed 124, 122, 

and 123 shifts respectively, a difference too small to dismiss any scenario as a plausible 

placement for Testudines.  Among results of analyses for all three scenarios, the jugal 

reconstructed with fewer shifts in Scenario 1 than in either Scenario 2 or 3, which 

suggests that Scenario 1 may afford the most parsimonious explanation for the evolution 

of temporal bone development.  Overall, the placement of Testudines did not seem to 

have a large influence on ancestral sequences or the general patterns of reconstructed 

heterochrony, particularly in the temporal bones (Table 11).  

For the complete dataset, some ancestral sequence reconstructions generated with 

PGi produced unusual patters of ossification that are not typical of most extant taxa, that 

fall into four categories: 1) the dentary, maxilla, or premaxilla bones are not the first to 

ossify; 2) the dentary and/or maxilla appear in the fourth position or later in the sequence; 

3) the exoccipital, basioccipital, or basisphenoid bones ossifying first or second in the 

sequence; or 4) the premaxilla ossifies within five positions from the end of the sequence 

in sequences that exhibit a resolution greater than 7 events.  Scenario 1 reconstructed 12 

of these unusual timings, whereas Scenario 2 reconstructed 13 of these events, and 

Scenario 3 reconstructed 11 of these events (Tables 5–7).  These unusual patterns of 

ossification may be artifacts of the poor resolution of many sequences in the dataset, as a 

result of numerous ties and/or poor specimen sampling across development. 

The maxilla exhibited the most shifts across all three scenarios which may be a 

result of the apparent lability of bones related directly to feeding (Bever 2009; Curtis et 
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al. 2011; Harrington et al. 2013).  The low number of shifts in the palatine across all three 

scenarios is not surprising given the consistency with which it ossifies early (Table 3).  

These counts also suggest that endochondral bones are not more evolutionarily flexible in 

timing than dermal bones, as endochondral bones and dermal bones shifted roughly the 

same amount (Tables 4–6). 

The heterochronies reconstructed in all three scenarios of turtle placement suggest 

that the evolution of the turtle skull involved an early- (then late) shift of the jugal, a late- 

(then early) shift of the parietal, and an early shift of the squamosal.  The late shift of the 

jugal supports our hypothesis of lateral emargination causing a delay in the timing of the 

jugal.  The late timing of the parietal, however, does not support the hypothesis that 

larger bones will have an earlier onset of ossification, and the early shift of the squamosal 

could be related to its final size, or to the development of jaw musculature.  Late shifts of 

the parietal and squamosal in Cryptodira (Table 11) are interesting, because they do not 

support the hypothesis of final bone size being linked to the timing of onset of 

ossification.  However, the late shift of the parietal may be related to the posterior 

emargination of the skull, similar to the hypothetical delay in ossification of the jugal, 

which is due to lateral emargination.  

 

Parsimov-based Genetic Inference of the Dataset with Missing Data 

In the set of analyses using PGi and the dataset with missing data, Scenario 1 

presents the scenario of turtle placement that requires the fewest number of heterochronic 

shifts in bones, requiring approximately half the number of shifts (Table 13).  Scenario 1 

requires 127 shifts, whereas Scenario 2 and 3 require 264 and 290, respectively.  



  38 

Additionally, the parietal reconstructs the fewest (5) shifts in Scenario 1, whereas 

Scenarios 2 and 3 require an average number of shifts (18 and 23 respectively), 

suggesting that Scenario 1 may also be the most parsimonious scenario of temporal bone 

evolution. The heterochronies and ancestral sequences reconstructed in each scenario in 

this set of analyses differed more widely than in either of the other two sets of analyses 

(Tables 5–13), most likely because of the inclusion of missing data and the larger size of 

the dataset.   

For the dataset that included missing data, some of the ancestral sequences that 

were generated with PGi yielded unusual patterns of ossification sequences that were not 

typical of patterns seen among extant taxa, that fall into four categories: 1) the dentary, 

maxilla, or premaxilla bones are not the first to ossify; 2) the dentary and/or maxilla 

appear in the fourth position or later in the sequence; 3) the exoccipital, basioccipital, or 

basisphenoid bones ossifying first or second in the sequence; or 4) the premaxilla ossifies 

within five positions from the end of the sequence in sequences that exhibit a resolution 

greater than 7 events.  These unusual patterns of ossification may be artifacts of the poor 

resolution of many sequences in the dataset, as a result of numerous ties and/or poor 

specimen sampling across development.  Scenario 1 reconstructed 12 of these 

questionable timings, whereas Scenario 2 reconstructed 17, and Scenario 3 reconstructed 

40 (Table 12).  The greater number of questionable timings in Scenario 3 may weaken 

support for turtles as sister to Lepidosauria as compared to the other scenarios. 

The fact that the nasal shifted the most across scenarios may be a consequence of 

the high variability in timing of the nasal across amniotes as well as its absence in 

Testudines (Table 4).  For instance, in Squamates the nasal ossifies relatively late 
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whereas in Archosauria it ossifies relatively early, and in Mammalia there appears to be 

no trend (Table 4).  The low number of shifts in the dentary across scenarios may reflect 

the consistent early ossification of this bone (Table 4).   

The heterochronies reconstructed in Scenario 1 suggest that the evolution of turtles 

involved an early shift of the parietal, and a late shift of the jugal and supraoccipital.  The 

early shift of the parietal may be related to the relatively large size of the parietal in 

turtles, whereas the late shift of the jugal is congruent with my hypothesis that 

emargination would cause a delay in the onset of ossification of the jugal.  The late shift 

of the supraoccipital, however, does not support the hypothesis that earlier ossification 

may result in larger final size of a bone—the supraoccipital in turtles is relatively 

expanded, and thus its large final size may be produced through a change in the rate of 

development, i.e., the bone grows faster, rather than a change in the timing of 

ossification, meaning the bone has more time to grow.   

 

Comparison of PGi and Continuous Analysis 

The degree of congruence between Continuous Analysis and Parsimov-based 

Genetic Inference was small, indicating that the different approaches of the two methods 

may not produce similar results and therefore will infer different histories of 

heterochrony to explain observed sequences of ossification.  The first point of difference 

between the methods is with the reconstructed ancestral sequences, which consequently 

exacerbates differences in the reconstructed heterochronies because they are based on a 

comparison with the ancestral sequence or values—if the ancestral sequences are 

different to begin with, the recovery of identical heterochronies by both methods is much 
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more unlikely.  Continuous Analysis seems more sensitive to ties in ossification data, and 

does not produce different results when taxa are rearranged on the tree (e.g., Scenarios 1–

3). 

 

Comparison of PGi using Complete or Incomplete Datasets 

The PGi analysis of the dataset with missing data reconstructed greater differences 

among the three scenarios of turtle placement (Table 13).  This might imply that key taxa 

were included in the dataset with missing data that were not included in the complete 

dataset.  Alternatively, the PGi analysis of the complete dataset had fewer differences in 

reconstructed heterochronies among scenarios of turtle placement, which might imply 

that PGi is not greatly affected by rearrangements of the tree unless there are gaps in the 

data.   

 

Chi-Squared Test  

 The results of the Chi-squared tests failed to reject the null hypothesis of 

equivalent number of ossification sequence shifts through evolution.  The implication is 

that the timing of ossification of endochondral bones is not necessarily more 

evolutionarily variable than the timing of ossification of dermal bones, and so 

evolutionary modifications of the skull involving endochondral bones are not more likely 

than modifications involving dermal bones.  However, the test does not address the issue 

of intraspecific variation in timing, for which there is evidence that endochondral bones 

are more variable than dermal bones (Rieppel 1994; Smith 1997; Mabee et al. 2000; Sheil 

and Greenbaum 2005; Sheil et al. 2014).  It is possible that the observed intraspecific 
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variability in the ossification endochondral bones does not translate to an increase in 

interspecific variability in timing. 

 

On the Nature of Ossification Sequence Data 

Although most studies of heterochrony necessarily treat developmental events as 

independent (Schoch 2006; Werneburg and Sánchez-Villagra 2009; Harrington et al. 

2013; Koyabu et al. 2014), they are not (Bininda-Emonds et al. 2002).  This is of special 

concern in the study of skull bone ossification, where the complexity of the skull 

obscures the developmental relationships of the structures within it; heterochrony in the 

ossification of skull bones cannot be fully understood without knowledge of the non-

independence of these data.  Although some studies find no evidence for modularity of 

bone ossification in the skull (Goswami 2007; Koyabu et al. 2011), the idea that sets of 

skull bones belong to developmental modules is supported by common developmental 

origin (e.g., endochondral vs. dermal) and observations of sets of bones whose 

ossification appears to be linked (e.g., the facial bone series) (Hanken and Thorogood 

1993; Rieppel 1994; Mabee et al. 2000; Schoch 2006; Piekarski et al. 2014).  In fact, the 

data compiled and collected by this study supports the observation that dermal bones 

typically ossify before endochondral bones (Shaner 1926; Rieppel 1994; Good 1995; 

Abdala et al. 1997; Montero et al. 1999).  The implication of modularity for studies of 

heterochrony is that shifts in timing of individual bones may be correlated among bones 

that represent discrete, developmentally-linked modules (e.g., the mandibular-, palatal-, 

circumorbital-, skull roof-, and neurocranial-modules; Schoch 2006).  The data and 

reconstructed ancestral sequences in this study seem to show a relationship between the 
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maxilla and dentary bones, which often ossify together and first, the basioccipital, 

basisphenoid, exoccipital, and supraoccipital bones, which often ossify last, and the 

prootic and opsithotic bones, which often together and late (Tables 5–7 and 12). 

Interestingly, the vomer (which is dermal) often ossifies late and with the basioccipital, 

basisphenoid, exoccipital, and supraoccipital.  Additionally, bones of the skull are known 

to have at least two distinct developmental origins: cranial neural crest cells and 

mesoderm. Furthermore, the neural crest cells are known to produce distinct mandibular, 

hyoid, and branchial neural crest cell streams (Piekarski et al. 2014) and these bones 

might then respond by shifting earlier or later in development as a consequence of 

representing derivatives of one stream of cells.  If the cells of the neural crest progenitor 

region are delayed in development, then we might expect to see a correlated shift in 

timing of ossification or appearance of these bones.  Whether the cellular origin of bones 

creates modularity has yet to be shown conclusively, but at a minimum, bones of the 

skull are known to be derived from related tissues, and modularity should continue to be 

explored in studies of heterochrony.  Observed patterns or shifts in timing of ossification 

and heterochrony might provide insights into the early formation and determination of 

neural crest cells and cells of the lateral mesoderm.  

The existence of modularity is related to the problem of ties in a sequence of 

ossification through the possible simultaneous appearance of two or more bones that are 

treated as separate, when in reality they may actually represent a single bone.  For 

example, two or more bones may be inextricably linked developmentally, and therefore 

may appear to ossify at the same time, thereby producing an observed “tie” (Maxwell 

2008).  This was observed in the prootic and opisthotic bones in Lepidochelys olivacea, 
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in which eight late-stage embryos had initiated ossification of both bones, and no 

embryos were observed with either the prootic or opisthotic only.  If true ties such as this 

do exist, it would be erroneous to treat the bones in question as tied for timing of 

appearance.  Instead, they should be treated as a single element or event.   

Another consideration when using ossification sequence data is whether or not to 

include the timing of other developmental events.  For instance, Smith (1997) compared 

placental mammals and marsupials and found an early ossification of the facial bones in 

marsupials relative to the development of the central nervous system, a unique 

developmental strategy that is only observed in a context larger than ossification of the 

skeleton.  It does seem that a broader context is generally more useful, especially given 

the ambiguous phylogenetic signal of ossification sequences (Sánchez-Villagra 2002; 

Schoch 2006; Maxwell et al. 2010; Laurin and Germain 2011; Werneburg and Sánchez-

Villagra 2014).  In addition to expanding the developmental sequences to include key 

non-ossification events, it has been proposed that the focus of heterochrony studies 

should also include the study of heterotopy, the evolutionary change in the spatial 

arrangement of structures and/or gene expression (Schoch 2014; Hanken 2015). 

 

CONCLUSIONS 

Herein, PGi provided greater utility than Continuous Analysis in terms of the 

results that it generated.  PGi was considered more useful than CA, primarily because the 

latter was so insensitive to changes in the movement of turtles across each of Scenarios 

1–3 that it could not reconstruct differences in ancestral sequences or instances of 

heterochrony no matter where turtles were placed; the only exception was in the case of 
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comparing the alternate ancestors of turtles and their potential sister group.  Additionally, 

CA does not provide explicit reconstructions of ancestral sequences for specific nodes 

internodes, nor does it map exactly where heterochrony occurred on each internode; 

therefore, hypotheses of evolution based on the results of CA could not be specific about 

when and where specific changes occurred, nor could it provide information about trends 

of movement in individual bones.  This problem is compounded by the fact that only one 

instance of heterochrony was reconstructed when adjacent nodes were compared (the 

early ossification of the prootic in Coturnix). 

The result that endochondral bones are not more evolutionarily variable than 

dermal bones might indicate that timing of ossification is not a selectable trait.  However, 

the data used for the Chi-squared tests were the results of an analysis of changing in 

timing of skull bone ossification relative to other skull bones, and modularity of the skull 

bones was not considered here.  If the developmental sequences incorporated timing of 

appearance of organs and non-skeletal structures, and also considered the potential 

modularity of skull bones, then endochondral bones might appear to be more 

evolutionarily variable. 

In a very general sense, there is some indication of modularity in these results, as 

dermal bones were generally found to begin ossification before endochondral bones 

(Shaner 1926; Rieppel 1994; Good 1995; Abdala et al. 1997; Montero et al. 1999), a 

pattern that likely is linked to their membrane versus cartilage origins, respectively.  

From the results of this study, there also appear to be links between the timing of 

ossification of the dentary and maxilla, the prootic and opisthotic, and the basioccipital, 

basisphenoid, exoccipital, and supraoccipital bones.  In the case of the prootic and 
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opisthotic, their ossification was observed to be consistently simultaneous in 

Lepidochelys olivacea, indicating that rather than treating them as tied for appearance, 

their appearance should be treated as a single event. 

It is intriguing that when turtles are placed as sister to all other reptiles (Fig. 1, 

Scenario 1), PGi infers fewer than half the number of instances of heterochrony (127 

shifts) than when placed in Scenario 2 (264 reconstructed shifts) or Scenario 3 (290 

reconstructed shifts).  Placement of turtles in Scenario 1 seems to fit with historical 

notions of Testudines as an extant lineage of reptiles that exhibit an anapsid skull.  

Though a strict application of parsimony as a system of choosing among competing 

hypotheses would indicate that Scenario 1 is the preferred placement of turtles (i.e., 

turtles as sister to all other reptiles) because it would require the fewest number of events 

of heterochrony, the majority of recent phylogenetic analyses provide compelling 

evidence that turtles are the sister to Archosauria (Fig. 3, Scenario 3) and that they are not 

sister to all other crown reptiles (Scenario 1) or sister to Lepidosauria (Scenario 2) 

(Kirsch and Mayer 1998; Meyer and Zardoya 1998; Hedges and Poling 1999; Kumazawa 

and Nishida 1999; Iwabe et al. 2005; Chiari et al. 2012; Fong et al. 2012; Lu et al. 2013; 

Schoch and Sues 2015).  Placement of turtles in either Scenario 2 or 3 (i.e., within 

Diapsida) then requires that the anapsid skulls observed in extant turtles represents an 

example of a highly modified diapsid skull—in short, preference for either Scenarios 2 or 

3 suggests that turtles are members of Diapsida that have secondarily lost the diapsid 

condition.  Placement of turtles as sister to Archosauria (or perhaps as a member of 

unkonw placement among Archosauromorpha) would require radical changes in the 

overall appearance of the skull, and the larger number of instances of heterochrony 
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required of Scenario 3 may be consistent with type of changes that would be required of 

evolving such derived, highly modified anapsid skull from an ancestral anapsid 

condition. 
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Figure 1. – Modified from Jeffery et al. (2002b: Fig. 2).  A depiction of the modes by 
which two elements may appear to switch position of relative timing in a sequence via 
heterochrony.  F, frontal; M, maxilla.
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Figure 2 – A representation of the four main patterns of temporal fenestration in 
amniotes.  A: anapsid; B: synapsid; C: euryapsid; D: diapsid.  (p, parietal; po, 
postorbital; sq, squamosal; j, jugal; qj, quadratojugal; q, quadrate; *, nares; **, orbit; ***, 
subtemporal fenestra; ****, supratemporal fenestra).
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Figure 3 – The three competing placements of turtles within Amniota.  Scenario 1) 
Sister to Diapsida representing an extant, anapsid parareptilian; Scenario 2) Sister to 
Archosauria representing a modified diapsid condition; Scenario 3) Sister to 
Lepidosauria representing a modified diapsid condition. † Extinct.
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Figure 4 – Phylogeny used for Scenario 1 (Turtles as sister to Diapsida) for the Continuous Analysis and PGi analysis of the 
Continuous Analysis dataset.  Branch lengths are equivalent to divergence dates.  Branch lengths are considered in Continuous 
Analysis but not yet in Parsimov-based Genetic inference.  Black circles indicate internode branches and white circles indicate nodes.  
Black circles reference Table 11 and white circles reference Table 5. 
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Figure 5 – Phylogeny used for Scenario 2 (Turtles as sister to Archosauria) for the Continuous Analysis and PGi analysis of the 
Continuous Analysis dataset.  Branch lengths are equivalent to divergence dates.  Branch lengths are considered in Continuous 
Analysis but not yet in Parsimov-based Genetic inference.  Black circles indicate internode branches and white circles indicate nodes.  
Black circles reference Table 11 and white circles reference Table 6. 
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Figure 6 – Phylogeny used for Scenario 3 (Turtles as sister to Lepidosauria) for the Continuous Analysis and PGi analysis of the 
Continuous Analysis dataset.  Branch lengths are equivalent to divergence dates.  Branch lengths are considered in Continuous 
Analysis but not yet in Parsimov-based Genetic inference.  Black circles indicate internode branches and white circles indicate nodes.  
Black circles reference Table 11 and white circles reference Table 7.
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Figure 7 – Phylogeny used for Scenario 1 (Turtles as sister to Diapsida) for the PGi 
analysis of the dataset containing missing data.  White circles indicate nodes and the 
numbers refer to Table 12, black circles indicate internodes and the numbers refer to 
Table 13. 
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Figure 8 – Phylogeny used for Scenario 2 (Turtles as sister to Archosauria) for the PGi 
analysis of the dataset containing missing data.  White circles indicate nodes and the 
numbers refer to Table 12, black circles indicate internodes and the numbers refer to 
Table 13. 
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Figure 9 – Phylogeny used for Scenario 3 (Turtles as sister to Lepidosauria) for the PGi 
analysis of the dataset containing missing data.  White circles indicate nodes and the 
numbers refer to Table 12, black circles indicate internodes and the numbers refer to 
Table 13.
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Table 1.  Ossification sequences collected from the citations listed below, for 52 bones 
across 73 species.  Resolution refers to the sequence resolution (i.e., the number of events 
in the sequence).  All data used in the analyses was taken from this set.  Ali, alisphenoid; 
Ang, angular/ectotympanic; Art, articular/malleus; Bo, basioccipital; Bps, 
basiparasphenoid; Bs, basisphenoid; Col, columella/stapes; Cor, 
coronoid/complementary; D, dentary; Ecpt, ectopterygoid; Epo, epiotic; Ept, 
epipterygoid; Ex, exoccipital; F, frontal; Fpa, frontoparietal; Ipar, interparietal; J, jugal; 
L, lacrimal; Ls, laterosphenoid; Ma, mastoid; Max, maxilla; Me, mesethmoid; N, nasal; 
Op, opisthotic; Os, orbitosphenoid; Pal, palatine; Par, parietal; Pat, prearticular; Pet, 
petrosal; Pf, postfrontal; Pm, premaxilla; Por, postorbital; Pot, periotic; Prf, prefrontal; 
Pr, prootic; Prs, presphenoid; Ps, parasphenoid; Pt, pterygoid; Pv, pre Parsimov-based 
Genetic Inference of the Complete Dataset; Q, quadrate/incus; Qj, quadratojugal; Sa, 
suprangular; Sco, scleral ossicles; Sm, septomaxilla; So, supraoccipital; Sp, splenial; 
Sq, squamosal; St, supratemporal; Sur, surangular; Tv, transversum; Tym, tympanic; V, 
vomer.  Homologies were assumed as follows, where R indicates Reptilia and M 
indicates Mammalia: Angular (R) and Ectotympanic Lamina (M), Articular (R) and 
Malleus (M), Columella (R) and Stapes (M), Coronoid (R) and Complementary (M), 
Gonial (R) and Prearticular (R) and Malleus Anterior Process (M), Pleuroccipital (R) and 
Exoccipital (R and M), Quadrate (R) and Incus (M) (Williston 1898; Shaner 1926; Luo 
2011). 
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Species Citation Resolution Ali Ang Art Bo Bps Bs Col 
Chelydra serpentina Sheil & Greenbaum 2005 6 - 6.5 - 25.5 20.5 20.5 20.5 
Macrochelys temminckii Sheil 2005 6 - 8 - 24.5 21.5 16 16 
Eretmochelys imbricata Sheil 2013 7 - 7 - 22 - 19 19 
Lepidochelys olivacea This study 7 - 13 25 20 - 18 17 
Apalone spinifera Sheil 2003 6 - 13.5 20.5 20.5 - 20.5 - 
Pelodiscus sinensis Sánchez-Villagra et al. 2009 9 - 9.5 26.5 22.5 - 9.5 13.5 
Trionyx spp. Fucik 1991 3 - - - - - - - 
Emys orbicularis (lutaria) Kunkel 1912; Fucik 1991 5 - 10.5 18.5 - - 22 2 
Chrysemys (picta) marginata Shaner 1926 3 - 11 23 23 - 23 23 
Aldabrachelys dussumieri Gerlach 2012 5 - - 22 18.5 - 14.5 14.5 
Testudo hermanni Fucik 1991 4 - - - - - - - 
Phyrnops hilarii Bona & Alcade 2009 6 - 7.5 30 23 - 17 17 
Emydura subglobossa Werneburg et al. 2009 6 - 8 25 18.5 - 18.5 18.5 
Ptychoglossus bicolor Hernández-Jaimes et al. 2012 3 - - - 13 - 13 - 
Tupinambis merianae Arias & Lobo 2006 4 - 10 29.5 10 - 27 29.5 
Mabuya (Trachylepis) capensis Skinner 1973 4 - 13 31.5 23.5 - 31.5 31.5 
Lacerta agilis exigua Rieppel 1994 7 - 15 15 23 - 23 30 
Lacerta agilis Fucik 1991 5 - - - - - - - 
Polychrus acutirostris Alvarez et al. 2005 9 - 12.5 23.5 27 - 23.5 - 
Liolaemus quilmes  Abdala et al. 1997 4 - 12 31.5 25.5 - 25.5 25.5 
Liolaemus scapularis Lobo et al. 1995 4 - 9.5 31 23.5 23.5 - 23.5 
Amphisbaena darwini heterozonata Montero et al. 1999 4 - 7.5 - 17.5 17.5 - 17.5 
Elgaria coerulea Good 1995 12 - 26.5 35 21 - 30.5 - 
Sphenodon punctatus Howes & Swinnerton 1901 4 - 5 - 24.5 - 24.5 24.5 
Gallus gallus Maxwell 2008; Maxwell et al. 2010 16 - 2.5 17 21 - 21 - 
Meleagris gallopavo Maxwell 2008; Maxwell et al. 2010 19 - 2 - 21 - 18 - 
Coturnix coturnix Maxwell 2008; Maxwell et al. 2010; Mitgutsch et al. 2011 9 - 4 - - - 17.5 - 
Taeniopygia guttata Mitgutsch et al. 2011 3 - 9.5 - 16 - - - 
Anas platyrhynchos Maxwell et al. 2010; Mitgutsch et al. 2011 14 - 2.5 27 24 - 21 - 
Cairina moschata Maxwell et al. 2010 14 - 1 26 21.5 - 18.5 - 
Larus argentatus Maxwell et al. 2010 5 - 1 - - - 18.5 - 
Dromaius novaehollandiae Maxwell et al. 2010 21 - 1 28 23 - 18 - 
Alligator mississippiensis Rieppel 1993b 6 - 3.5 - - - - - 
Caiman yacare Lima et al. 2011 5 - 11.5 28 11.5 - 11.5 - 
Crocodylus cataphractus Müller 1967 8 - - - - - - - 
Mus musculus Smith 1997; Nunn & Smith 1998 4 9.5 - - 5 - 9.5 - 
Mus (Rattus) norvegicus albinus Strong 1925 5 19 - - 7.5 - 16 - 
Meriones unguiculatus Sánchez-Villagra et al. 2008 5 12.5 - - 5 - 12.5 - 
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Species Cor D Ecpt Epo Ept Ex F Fpa Ipar J L Ls Ma Max Me N Op Os 
Chelydra serpentina 15.5 6.5 - - 25.5 20.5 6.5 - - 13 - - - 6.5 - - 28 - 
Macrochelys temminckii 10 5 - - 27 21.5 16 - - 16 - - - 1.5 - - 24.5 - 
Eretmochelys imbricata 7 7 - - - 19 19 - - 7 - - - 7 - - 24.5 - 
Lepidochelys olivacea - 4 - - - 21 - 8.5 - 4 - - - 1 - - 23.5 - 
Apalone spinifera 13.5 4 - - - 20.5 7.5 - - 13.5 - - - 1.5 - - 24.5 - 
Pelodiscus sinensis 9.5 1.5 - - 26.5 22.5 17.5 - - 9.5 - - - 1.5 - - 22.5 - 
Trionyx spp. - - - - - - - - - 2.5 - - - - - - - - 
Emys orbicularis (lutaria) 18.5 10.5 - - - - 10.5 - - 10.5 - - - 2 - - - - 
Chrysemys (picta) marginata 11 2.5 - 23 23 23 11 - - 11 - - - 2.5 - - 23 - 
Aldabrachelys dussumieri - 6.5 - - - 14.5 6.5 - - 6.5 - - - 6.5 - - 18.5 - 
Testudo hermanni - - - - - - - - - 4.5 - - - - - - - - 
Phyrnops hilarii 23 7.5 - 28 - 17 7.5 - - 7.5 - - - 7.5 - 7.5 23 - 
Emydura subglobossa 18.5 1.5 - - - 18.5 8 - - 8 - - - 1.5 - 14 18.5 - 
Ptychoglossus bicolor - 3 13 - 13 13 13 - - 3 21.5 - - 3 - 13 13 21.5 
Tupinambis merianae 10 10 10 - 10 22.5 10 - - 10 22.5 - - 10 - 22.5 - - 
Mabuya (Trachylepis) capensis 13 4 23.5 - - 13 13 - - 13 23.5 - - 13 - 23.5 31.5 - 
Lacerta agilis exigua 15 5 15 - 23 23 5 - - 5 26 - - 5 - 15 28 - 
Lacerta agilis - - - - - - - - - 6 - - - - - - - - 
Polychrus acutirostris 12.5 3 12.5 - 12.5 12.5 12.5 - - 3 28.5 - - 12.5 - 21.5 25.5 - 
Liolaemus quilmes  12 2 12 - 25.5 12 12 - - 12 25.5 - - 12 - 12 25.5 31.5 
Liolaemus scapularis 9.5 9.5 9.5 - 23.5 23.5 9.5 - - 9.5 23.5 - - 9.5 - 23.5 23.5 31 
Amphisbaena darwini heterozonata 7.5 7.5 7.5 - - 7.5 7.5 - - - - - - 7.5 - 21 - - 
Elgaria coerulea 21 12 21 - 21 21 12 - - 3 28.5 - - 12 - 26.5 32.5 34 
Sphenodon punctatus 15 5 - - 24.5 24.5 15 - - 15 - - - 5 - 5 24.5 - 
Gallus gallus - 6.5 - 26 - 18.5 14 - - 6.5 11.5 - - 6.5 28 10 26 26 
Meleagris gallopavo - 9.5 - 25.5 - 19 16 - - 9.5 14 23 - 9.5 25.5 14 24 - 
Coturnix coturnix - 9 - - - 17.5 14 - - 3 9 - - 9 - 9 - - 
Taeniopygia guttata - 3 - - - 16 16 - - - - - - 9.5 - 9.5 - - 
Anas platyrhynchos - 12 - 30 - 21 16 - - 12 7.5 - - 7.5 28.5 7.5 25.5 28.5 
Cairina moschata - 10.5 - 28 - 21.5 16 - - 10.5 4 - - 4 29 4 25 27 
Larus argentatus - 10.5 - - - 18.5 18.5 - - 10.5 15 - - 4 - 10.5 - - 
Dromaius novaehollandiae - 3 - 26 - 21 18 - - 8.5 11.5 - - 13.5 24.5 15 27 22 
Alligator mississippiensis 14 3.5 - - - - 9.5 - - 9.5 9.5 - - 3.5 - 15 - - 
Caiman yacare 22 2.5 22 28 - 28 22 - - 2.5 11.5 22 - 2.5 - 11.5 28 - 
Crocodylus cataphractus - - - - - - 8 - - 3 11 - - 3 - 13.5 - - 
Mus musculus - 1.5 - - - 5 5 - - 9.5 - - - 5 - - - - 
Mus (Rattus) norvegicus albinus - 2 - - - 7.5 2 - 16 13 13 - - 2 - 13 - - 
Meriones unguiculatus - 2 - - - 8 2 - - 12.5 12.5 - - 5 - 8 - 16 
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Species Pal Par Pat Pet Pf Pm Por Pot Prf Pr Prs Ps Pt Pv Q Qj Sa Sco 
Chelydra serpentina 6.5 6.5 15.5 - - 6.5 6.5 - 6.5 25.5 - 20.5 6.5 - 20.5 15.5 - - 
Macrochelys temminckii 16 16 10 - - 10 1.5 - 5 24.5 - - 5 - 16 16 - - 
Eretmochelys imbricata 7 7 7 - - 15 7 - 7 24.5 - - 7 - 19 15 - - 
Lepidochelys olivacea 13 8.5 13 - - 4 13 - 8.5 23.5 - - 13 - 19 16 - - 
Apalone spinifera 7.5 7.5 13.5 - - 13.5 13.5 - 4 20.5 - - 7.5 - 13.5 13.5 - - 
Pelodiscus sinensis 9.5 4.5 17.5 - - 17.5 17.5 - 4.5 22.5 - - 9.5 - 13.5 17.5 - - 
Trionyx spp. - 5.5 - - - - 2.5 - - - - - 2.5 - 7.5 5.5 - - 
Emys orbicularis (lutaria) 10.5 10.5 10.5 - 10.5 10.5 - - 10.5 - - 18.5 10.5 - 22 18.5 10.5 - 
Chrysemys (picta) marginata 11 11 11 - 11 11 - - 2.5 - - 23 11 - 23 11 - - 
Aldabrachelys dussumieri 6.5 6.5 - - - 6.5 6.5 - 6.5 18.5 - - 6.5 - 21 14.5 - - 
Testudo hermanni - 4.5 - - - - 2 - - - - - 2 - 7.5 6 - - 
Phyrnops hilarii 7.5 17 23 - - 17 7.5 - 7.5 23 - 23 7.5 - 23 - - 28 
Emydura subglobossa 8 8 23.5 - - 8 8 - 8 - - - 8 - 18.5 - - - 
Ptychoglossus bicolor - 13 - - - 13 - - 3 13 - - 3 - 13 - - - 
Tupinambis merianae 10 10 - - 22.5 10 22.5 - 22.5 27 - - 10 - 10 - - - 
Mabuya (Trachylepis) capensis 4 4 4 - 13 13 23.5 - 4 31.5 - 23.5 4 - 23.5 - 4 - 
Lacerta agilis exigua 5 15 5 - 15 5 15 - 15 28 - - 5 - 23 - - - 
Lacerta agilis - 2.5 - - 6 - 4 - - - - - 1 - 8 - - - 
Polychrus acutirostris 3 12.5 - - - 12.5 12.5 - 21.5 25.5 - - 1 12.5 12.5 - 12.5 - 
Liolaemus quilmes  12 12 - - 25.5 12 12 - 12 25.5 - - 2 - 12 - - - 
Liolaemus scapularis 9.5 9.5 - - 23.5 9.5 9.5 - 9.5 23.5 - - 1 23.5 23.5 - - - 
Amphisbaena darwini heterozonata 7.5 7.5 - - - 7.5 - - 7.5 17.5 - - 7.5 - 17.5 - - - 
Elgaria coerulea 3 5 12 - 12 12 12 - 6.5 32.5 - 21 1 - 28.5 - - 21 
Sphenodon punctatus 5 15 - - 15 15 5 - 15 29 - 15 5 - 24.5 15 5 - 
Gallus gallus 6.5 18.5 - - - 14 - - - 23 - 11.5 6.5 - 16 1 6.5 - 
Meleagris gallopavo 5.5 17 27 - - 9.5 - - - 22 - 9.5 5.5 - 14 1 3.5 - 
Coturnix coturnix 9 16 - - - 9 - - - - - 9 9 - 15 1.5 9 - 
Taeniopygia guttata 9.5 16 - - - 3 - - - - - 3 3 - 16 9.5 3 - 
Anas platyrhynchos 7.5 14.5 23 - - 12 - - 7.5 25.5 - 18.5 7.5 - 14.5 2.5 2.5 - 
Cairina moschata 7.5 17 21.5 - - 10.5 - - - 24 - 14 7.5 - 18.5 4 10.5 - 
Larus argentatus 4 18.5 18.5 - - 10.5 - - - - - 10.5 4 - 18.5 10.5 4 - 
Dromaius novaehollandiae 6 20 16 - - 8.5 - - - 29 - 11.5 6 - 18 3 3 - 
Alligator mississippiensis - 16 - - - 3.5 9.5 - 9.5 - - - 1 - - 9.5 - - 
Caiman yacare 11.5 22 - - - 11.5 2.5 - 11.5 28 - - 11.5 - 22 11.5 11.5 - 
Crocodylus cataphractus 11 16 - - 5.5 8 - - 11 - - 15 1 - - 5.5 - - 
Mus musculus - 5 - - - 1.5 - 12 - - - - - - - - - - 
Mus (Rattus) norvegicus albinus 7.5 7.5 - - - 7.5 - - - - 19 - 7.5 - - - - - 
Meriones unguiculatus 8 12.5 - - - 2 - - - - - - 5 - - - - - 
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Species Sm So Sp Sq St Sur Tv Tym V 
Chelydra serpentina - 25.5 - 6.5 - 15.5 - - 6.5 
Macrochelys temminckii - 24.5 - 5 - 5 - - 16 
Eretmochelys imbricata - 23 - 7 - 7 - - 15 
Lepidochelys olivacea - 22 - 8.5 - 4 - - 4 
Apalone spinifera - 24.5 - 1.5 - 4 - - 20.5 
Pelodiscus sinensis - 25 - 4.5 - 4.5 - - 17.5 
Trionyx spp. - 7.5 - 2.5 - - - - - 
Emys orbicularis (lutaria) - 22 - 2 - - - - 4 
Chrysemys (picta) marginata - 23 - 2.5 - 11 - - 11 
Aldabrachelys dussumieri - 18.5 - 6.5 - - - - 6.5 
Testudo hermanni - 7.5 - 2 - - - - - 
Phyrnops hilarii - 28 7.5 7.5 - 7.5 - - 7.5 
Emydura subglobossa - 18.5 - 8 - 8 - - 23.5 
Ptychoglossus bicolor - 13 - 13 - - - - 13 
Tupinambis merianae - 27 10 10 10 10 - - 10 
Mabuya (Trachylepis) capensis 23.5 31.5 13 23.5 13 - 23.5 - 13 
Lacerta agilis exigua - 28 - 15 15 5 - - - 
Lacerta agilis - - - 6 2.5 - - - - 
Polychrus acutirostris - 28.5 12.5 12.5 12.5 - - - - 
Liolaemus quilmes  - 25.5 12 12 12 2 - - 25.5 
Liolaemus scapularis - 31 9.5 9.5 9.5 9.5 - - - 
Amphisbaena darwini heterozonata 7.5 17.5 - - - - - - 7.5 
Elgaria coerulea 6.5 30.5 12 21 21 3 - - 12 
Sphenodon punctatus - 24.5 15 5 - - - - 15 
Gallus gallus - 21 14 2.5 - - - - 24 
Meleagris gallopavo - 20 9.5 3.5 - - - - - 
Coturnix coturnix - - - 1.5 - - - - - 
Taeniopygia guttata - - 9.5 9.5 - - - - 9.5 
Anas platyrhynchos - 21 18.5 2.5 - - - - 17 
Cairina moschata - 21.5 14 4 - - - - 14 
Larus argentatus - - 10.5 4 - - - - 10.5 
Dromaius novaehollandiae - 24.5 13.5 6 - - - - 10 
Alligator mississippiensis - - 9.5 - - 9.5 - - - 
Caiman yacare - 22 11.5 11.5 - - - - 11.5 
Crocodylus cataphractus - - - 3 - - 13.5 - 8 
Mus musculus - - - 9.5 - - - - - 
Mus (Rattus) norvegicus albinus - 19 - 7.5 - - - 16 7.5 
Meriones unguiculatus - - - 12.5 - - - - - 
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Species Citation Resolution Ali Ang Art Bo Bps Bs Col Cor D Ecpt 
Rhabdomys pumilio Wilson et al. 2010 12 15 - - 8 - 12 - - 3 - 
Mesocricetus auratus Kanazawa & Mochizuki 1974 8 12 - - 12 - 6.5 - - 1 - 
Peromyscus melanophrys  Sánchez-Villagra et al. 2008 5 13 - - 6 - 9.5 - - 2 - 
Cavia porcellus Wilson et al. 2010 12 5 - - 10.5 - 15 - - 5 - 
Tupaia javanica Smith 1997; Nunn & Smith 1998 5 9 - - 9 - 11 - - 2 - 
Tarsius spectrum Nunn & Smith 1998 8 9 - - 10.5 - 10.5 - - 1 - 
Loris tardigradus Ramaswami 1957 7 17.5 - 24 6.5 - 17.5 24 - 1.5 - 
Homo sapiens Noback & Robertson 1951 11 - - 10 15.5 - 17 20 - 1 - 
Felis domesticus Smith 1997; Nunn & Smith 1998 7 9 - - 9 - 11 - - 2 - 
Sus scrofa Smith 1997; Nunn & Smith 1998 8 7 - - 10 - 11 - - 1 - 
Manis javanica Smith 1997; Nunn & Smith 1998 6 9 - - 9 - 11 - - 1 - 
Cryptotis parva Sánchez-Villagra et al. 2008; Koyabu et al. 2011 13 18 13.5 - 13.5 - 17 - - 2 - 
Chimarrogale platycephala  Koyabu et al. 2011 8 17.5 14 - 13 - 15 - - 1 - 
Suncus murinus Koyabu et al. 2011 11 17.5 16 - 7 - 15 - - 2.5 - 
Condylura cristata  Koyabu et al. 2011 9 20 14 - 6.5 - 15 - - 6.5 - 
Scapanus orarius  Koyabu et al. 2011 7 21 12.5 - 17.5 - 15 - - 5.5 - 
Urotrichus talpoides  Koyabu et al. 2011 8 19.5 19.5 - 10 - 12.5 - - 4.5 - 
Mogera wogura Koyabu et al. 2011 8 21 17.5 - 13 - 19 - - 2.5 - 
Talpa europaea Koyabu et al. 2011 7 21 17.5 - 10 - 15 - - 4 - 
Talpa occidentalis Koyabu et al. 2011 10 20 16 - 5 - 17 - - 5 - 
Rousettus amplexicaudatus  Sánchez-Villagra et al. 2008 7 14.5 - - 12 - 14.5 - - 1.5 - 
Erinaceus europaeus  Koyabu et al. 2011 7 14 18 - 14 - 9.5 - - 3 - 
Erinaceus amurensis Koyabu et al. 2011 9 10.5 18 - 10.5 - 10.5 - - 2.5 - 
Loxodonta africana Hautier et al. 2012 5 8.5 - - 14 - 16 - - 2 - 
Bradypus variegatus  Hautier et al. 2011 4 14 - - 11.5 - 16 - - 5 - 
Cyclopes didactylus  Hautier et al. 2011 2 13 - - 6 - - - - 6 - 
Tamandua tetardactyla  Hautier et al. 2011 4 7.5 - - 7.5 - 15 - - 7.5 - 
Dasypus novemcinctus  Hautier et al. 2011 8 13 - - 12 - 16 - - 5.5 - 
Monodelphis domestica Smith 1997; Nunn & Smith 1998 7 10 - - 8.5 - 11 - - 2 - 
Caluromys philander  Sánchez-Villagra et al. 2008 6 9 - - 13 - 13 - - 2 - 
Macropus eugenii Smith 1997; Nunn & Smith 1998 6 8.5 - - 10 - 11 - - 2 - 
Dasyurus viverrinus Smith 1997; Nunn & Smith 1998 8 8 - - 10 - 11.5 - - 2 - 
Perameles nasuta Smith 1997; Nunn & Smith 1998 6 9 - - 9 - 11 - - 2 - 
Trichosurus vulpecula Sánchez-Villagra et al. 2008 4 8.5 - - 14 - 14 - - - - 
Ornithorhynchus anatinus de Beer & Fell 1936 & de Beer 1937 4 17.5 - - 17.5 - 17.5 - - 7.5 - 
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Species Epo Ept Ex F Fpa Ipar J L Ls Ma Max Me N Op Os Pal Par Pat Pet 
Rhabdomys pumilio - - 9 3 - - 13 14 - - 6.5 - 10 - 16 3 3 - - 
Mesocricetus auratus - - 6.5 6.5 - 16 16 19 - - 2.5 - 12 - 20 6.5 6.5 - - 
Peromyscus melanophrys  - - 9.5 6 - - 13 13 - - 2 - 13 - 16.5 6 6 - - 
Cavia porcellus - - 13 5 - - 5 13 - - 5 - 10.5 - 16.5 5 5 - - 
Tupaia javanica - - 9 5.5 - - 5.5 - - - 2 - - - - - 5.5 - - 
Tarsius spectrum - - 8 5 - - 5 - - - 2.5 - - - - - 7 - - 
Loris tardigradus - - 13 6.5 - - 6.5 - - - 1.5 26 13 21 17.5 6.5 6.5 17.5 - 
Homo sapiens - - 13.5 - 6 11.5 6 15.5 - - 2 - 11.5 - - 6 13.5 - 18 
Felis domestica - - 9 4 - - 5.5 - - - 2 - - - - - 5.5 - - 
Sus scrofa - - 7 5 - - 9 - - - 3 - - - - - 7 - - 
Manis javanica - - 9 3.5 - - 3.5 - - - 3.5 - - - - - 6.5 - - 
Cryptotis parva - - 13.5 5 - - - 13.5 - 21 2 - 9 - 19 5 7.5 16 20 
Chimarrogale platycephala  - - 7 7 - - - 17.5 - 20.5 7 - 7 - 17.5 7 7 17.5 20.5 
Suncus murinus - - 10 5 - - - 13 - 21.5 2.5 - 13 - 19 7 2.5 17.5 20 
Condylura cristata  - - 6.5 6.5 - - - 17.5 - 16 6.5 - 6.5 - 19 6.5 6.5 17.5 21.5 
Scapanus orarius  - - 12.5 5.5 - - - 5.5 - 17.5 5.5 - 5.5 - 19 5.5 5.5 16 21 
Urotrichus talpoides  - - 11 4.5 - - - 19.5 - 14.5 4.5 - 14.5 - 16 4.5 4.5 19.5 19.5 
Mogera wogura - - 14.5 8.5 - - - 14.5 - 16 2.5 - 8.5 - 17.5 8.5 2.5 8.5 21 
Talpa europaea - - 13 4 - - - 15 - 15 4 - 10 - 19 4 4 17.5 21 
Talpa occidentalis - - 5 10.5 - - - 13 - 13 5 - 10.5 - 18.5 5 5 18.5 21 
Rousettus amplexicaudatus  - - 12 4.5 - - 4.5 8.5 - - 4.5 - 8.5 - 17 8.5 4.5 - - 
Erinaceus europaeus  - - 14 3 - - - 18 - 21 3 - 9.5 - 14 7 9.5 18 21 
Erinaceus amurensis - - 10.5 5 - - - 17 - 21.5 2.5 - 10.5 - 16 10.5 2.5 19 20 
Loxodonta africana - - 8.5 8.5 - - 8.5 8.5 - - 2 - 8.5 - 15 8.5 8.5 - - 
Bradypus variegatus  - - 11.5 5 - - 5 11.5 - - 5 - 5 - 16 11.5 5 - - 
Cyclopes didactylus  - - 6 6 - - - 6 - - 6 - 6 - 13 6 6 - - 
Tamandua tetardactyla  - - 7.5 7.5 - - 7.5 7.5 - - 7.5 - 7.5 - 16 7.5 7.5 - - 
Dasypus novemcinctus  - - 14 5.5 - - 5.5 5.5 - - 5.5 - 5.5 - 15 5.5 5.5 - - 
Monodelphis domestica - - 4.5 4.5 - - 6.5 - - - 2 - - - - - 8.5 - - 
Caluromys philander  - - 9 5 - - 5 13 - - 2 - 9 - 15.5 9 5 - - 
Macropus eugenii - - 5.5 5.5 - - 5.5 - - - 2 - - - - - 8.5 - - 
Dasyurus viverrinus - - 5.5 4 - - 5.5 - - - 2 - - - - - 8 - - 
Perameles nasuta - - 5 5 - - 5 - - - 2 - - - - - 9 - - 
Trichosurus vulpecula - - 8.5 4 - - 4 8.5 - - 1.5 - 8.5 - 14 8.5 14 - - 
Ornithorhynchus anatinus - - 17.5 7.5 - - 17.5 - - - 7.5 - 7.5 24 24 7.5 7.5 7.5 - 
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Species Pf Pm Por Pot Prf Pr Prs Ps Pt Pv Q Qj Sa Sco Sm So Sp Sq St 
Rhabdomys pumilio - 6.5 - 17 - - - - 3 - - - - - - - - 11 - 
Mesocricetus auratus - 2.5 - - - - 18 - - - - - - - - 12 - 6.5 - 
Peromyscus melanophrys  - 2 - 16.5 - - - - 6 - - - - - - - - 13 - 
Cavia porcellus - 5 - 16.5 - - - - 13 - - - - - - - - 5 - 
Tupaia javanica - 2 - 12 - - - - - - - - - - - - - 5.5 - 
Tarsius spectrum - 2.5 - 12 - - - - - - - - - - - - - 5 - 
Loris tardigradus - 6.5 - - - 21 21 - 13 13 24 - - - - 13 - 6.5 - 
Homo sapiens - 6 - - - - - - - - 19 - - - - 6 - 6 - 
Felis domestica - 2 - 12 - - - - - - - - - - - - - 7 - 
Sus scrofa - 3 - 12 - - - - - - - - - - - - - 3 - 
Manis javanica - 3.5 - 12 - - - - - - - - - - - - - 6.5 - 
Cryptotis parva - 2 - - - - 22 - 7.5 - - - - - - 10.5 - 10.5 - 
Chimarrogale platycephala  - 7 - - - - 22 - 7 - - - - - - 7 - 7 - 
Suncus murinus - 2.5 - - - - 21.5 - 10 - - - - - - 7 - 10 - 
Condylura cristata  - 6.5 - - - - 21.5 - 6.5 - - - - - - 6.5 - 13 - 
Scapanus orarius  - 5.5 - - - - 21 - 5.5 - - - - - - 12.5 - 12.5 - 
Urotrichus talpoides  - 4.5 - - - - 19.5 - 4.5 - - - - - - 12.5 - 9 - 
Mogera wogura - 2.5 - - - - 21 - 8.5 - - - - - - 8.5 - 8.5 - 
Talpa europaea - 4 - - - - 21 - 10 - - - - - - 10 - 10 - 
Talpa occidentalis - 5 - - - - 22 - 15 - - - - - - 5 - 13 - 
Rousettus amplexicaudatus  - 8.5 - 16 - - - - 12 - - - - - - - - 1.5 - 
Erinaceus europaeus  - 3 - - - - 21 - 3 - - - - - - 14 - 9.5 - 
Erinaceus amurensis - 2.5 - - - - 21.5 - 10.5 - - - - - - 10.5 - 10.5 - 
Loxodonta africana - 2 - 17 - - - - 8.5 - - - - - - - - 8.5 - 
Bradypus variegatus  - 5 - 16 - - - - 5 - - - - - - - - 5 - 
Cyclopes didactylus  - 6 - 13 - - - - - - - - - - - - - 6 - 
Tamandua tetardactyla  - 7.5 - 17 - - - - 7.5 - - - - - - - - 7.5 - 
Dasypus novemcinctus  - 5.5 - 17 - - - - 11 - - - - - - - - 5.5 - 
Monodelphis domestica - 2 - 12 - - - - - - - - - - - - - 6.5 - 
Caluromys philander  - 2 - 17 - - - - 15.5 - - - - - - - - 9 - 
Macropus eugenii - 2 - 12 - - - - - - - - - - - - - 5.5 - 
Dasyurus viverrinus - 2 - 11.5 - - - - - - - - - - - - - 8 - 
Perameles nasuta - 2 - 12 - - - - - - - - - - - - - 7 - 
Trichosurus vulpecula - 1.5 - 14 - - - - 8.5 - - - - - - - - 4 - 
Ornithorhynchus anatinus - 1 - 24 - 24 24 7.5 17.5 17.5 - - - - 7.5 17.5 - 7.5 - 
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Species Sur Tv Tym V 
Rhabdomys pumilio - - - - 
Mesocricetus auratus - - 16 12 
Peromyscus melanophrys  - - - - 
Cavia porcellus - - - - 
Tupaia javanica - - - - 
Tarsius spectrum - - - - 
Loris tardigradus - - 6.5 - 
Homo sapiens - - - 6 
Felis domestica - - - - 
Sus scrofa - - - - 
Manis javanica - - - - 
Cryptotis parva - - - 5 
Chimarrogale platycephala  - - - 7 
Suncus murinus - - - 13 
Condylura cristata  - - - 6.5 
Scapanus orarius  - - - 5.5 
Urotrichus talpoides  - - - 4.5 
Mogera wogura - - - 8.5 
Talpa europaea - - - 4 
Talpa occidentalis - - - 5 
Rousettus amplexicaudatus  - - - - 
Erinaceus europaeus  - - - 6 
Erinaceus amurensis - - - 10.5 
Loxodonta africana - - - - 
Bradypus variegatus  - - - - 
Cyclopes didactylus  - - - - 
Tamandua tetardactyla  - - - - 
Dasypus novemcinctus  - - - - 
Monodelphis domestica - - - - 
Caluromys philander  - - - - 
Macropus eugenii - - - - 
Dasyurus viverrinus - - - - 
Perameles nasuta - - - - 
Trichosurus vulpecula - - - - 
Ornithorhynchus anatinus - - 7.5 7.5 
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Table 2.  The sequence of cranial ossification for Lepidochelys olivacea as based on 53 
specimens ranging 10 stages (Appendix 1).  Tied bones in each stage are listed in 
alphabetical order.  Bones in bold are endochondral in origin, bones unbolded are dermal 
in origin. 
 

Stage Bone 

22 Maxilla 
23 Dentary, Jugal, Premaxilla, Surangular, Vomer 
24 Frontal, Parietal, Prefrontal, Squamosal 
25 Angular, Coronoid, Palatine, Postorbital, Prearticular, Pterygoid 

26 early Quadratojugal 
26 Columella 

27 early Basisphenoid 
27 Quadrate 

27 late Basioccipital 
28 Exoccipital 
29 Supraoccipital 
30 Opisthotic, Prootic 
31 Articular 
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Table 3.  The ranked ossification sequence data for 15 bones and 20 taxa used in 
Continuous Analysis.  Taxa and bones were selected to maximize representation of 
taxonomic groups (Table 1). Bo: basioccipital; Bs: Basisphenoid; D: dentary; Ex: 
exoccipital; F: frontal; J: jugal; Max: maxilla; Op: opisthotic; Pal: palatine; Par: parietal; 
Pm: premaxilla; Pr: prootic; Pt: pterygoid;	So: supraoccipital; and Sq: squamosal.  
Citations for the ossification sequences are listed in Table 1. 
 

Species	 		 		 		 		 		 		 		 Bone	 		 		 		 		 		 		 		

	
Bo	 Bs	 D	 Ex	 F	 J	 Max	 Op	 Pal	 Par	 Pm	 Pr	 Pt	 So	 Sq	

Chelydra	 13	 10.5	 4.5	 10.5	 4.5	 9	 4.5	 15	 4.5	 4.5	 4.5	 13	 4.5	 13	 4.5	

Macrochelys	 13.5	 8	 3	 11	 8	 8	 1	 13.5	 8	 8	 5	 13.5	 3	 13.5	 3	

Eretmochelys	 12	 10	 4	 10	 10	 4	 4	 14.5	 4	 4	 8	 14.5	 4	 13	 4	

Lepidochelys	 11	 10	 5.5	 12	 5.5	 5.5	 1	 14.5	 5.5	 5.5	 5.5	 14.5	 5.5	 13	 5.5	

Apalone	 11.5	 11.5	 3	 11.5	 5.5	 8.5	 1.5	 14.5	 5.5	 5.5	 8.5	 11.5	 5.5	 14.5	 1.5	

Pelodiscus	 12.5	 6.5	 1.5	 12.5	 9.5	 6.5	 1.5	 12.5	 6.5	 3.5	 9.5	 12.5	 6.5	 15	 3.5	

Phyrnops	 13	 9.5	 4	 9.5	 4	 4	 4	 13	 4	 9.5	 9.5	 13	 4	 15	 4	

Lacerta	 11	 11	 4	 11	 4	 4	 4	 14	 4	 8.5	 4	 14	 4	 14	 8.5	

Polychrus	 14	 11	 3	 7.5	 7.5	 3	 7.5	 12.5	 3	 7.5	 7.5	 12.5	 1	 15	 7.5	

Elgaria	 10	 12.5	 6.5	 10	 6.5	 2.5	 6.5	 14.5	 2.5	 4	 6.5	 14.5	 1	 12.5	 10	

Sphenodon	 12	 12	 3	 12	 7.5	 7.5	 3	 12	 3	 7.5	 7.5	 15	 3	 12	 3	

Gallus	 12	 12	 4	 9.5	 7.5	 4	 4	 15	 4	 9.5	 7.5	 14	 4	 12	 1	

Meleagris	 13	 10	 5.5	 11	 8	 5.5	 5.5	 15	 2.5	 9	 5.5	 14	 2.5	 12	 1	

Coturnix	 11	 12.5	 4	 8	 9	 4	 4	 14	 4	 12.5	 4	 10	 4	 15	 4	

Anas	 13	 11	 6	 11	 9	 6	 3	 14.5	 3	 8	 6	 14.5	 3	 11	 1	

Cairina	 12	 10	 6	 12	 8	 6	 1.5	 15	 3.5	 9	 6	 14	 3.5	 12	 1.5	

Dromaius	 12	 8.5	 1	 11	 8.5	 5.5	 7	 14	 3	 10	 5.5	 15	 3	 13	 3	

Caiman	 6.5	 6.5	 2	 14	 11	 2	 2	 14	 6.5	 11	 6.5	 14	 6.5	 11	 6.5	

Loris	 6	 13	 1.5	 11	 6	 6	 1.5	 14.5	 6	 6	 6	 14.5	 11	 11	 6	

Ornithorhynchus	 10.5	 10.5	 4.5	 10.5	 4.5	 10.5	 4.5	 14.5	 4.5	 4.5	 1	 14.5	 10.5	 10.5	 4.5	
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Table 4.  The ranked ossification sequence data used in the PGi analysis to address 
temporal bone heterochrony. Z represents missing data. Bo: basioccipital; Bs: 
Basisphenoid; D: dentary; Ex: exoccipital; F: frontal; J: jugal; Max: maxilla; N: nasal; 
Pal: palatine; Par: parietal; Pm: premaxilla; Pt: pterygoid; So: supraoccipital; Sq: 
squamosal; and V: vomer. Citations for the ossification sequences are listed in Table 1.  

 
Species	 		 		 		 		 		 		 		 Bone	 		 		 		 		 		 		 		

	
Bo Bs D Ex F J Max N Pal Par Pm Pt So Sq V 

Chelydra	 13	 11	 1	 11	 1	 10	 1	 Z	 1	 1	 1	 1	 13	 1	 1	

Macrochelys	 13	 6	 2	 12	 6	 6	 1	 Z	 6	 6	 5	 2	 13	 2	 6	

Eretmochelys	 13	 10	 1	 10	 10	 1	 1	 Z	 1	 1	 8	 1	 14	 1	 8	

Lepidochelys	 12	 11	 2	 13	 6	 2	 1	 Z	 9	 6	 2	 9	 14	 6	 2	

Apalone	 10	 10	 3	 10	 4	 8	 1	 Z	 4	 4	 8	 4	 14	 1	 10	

Pelodiscus	 12	 5	 1	 12	 9	 5	 1	 Z	 5	 3	 9	 5	 14	 3	 9	

Emys	 Z	 11	 4	 Z	 4	 4	 1	 Z	 4	 4	 4	 4	 11	 1	 3	

Phrynops	 14	 10	 1	 10	 1	 1	 1	 1	 1	 10	 10	 1	 15	 1	 1	

Emydura	 11	 11	 1	 11	 3	 3	 1	 10	 3	 3	 3	 3	 11	 3	 15	

Lacerta	 11	 11	 1	 11	 1	 1	 1	 8	 1	 8	 1	 1	 14	 8	 Z	

Polychrus	 13	 12	 2	 5	 5	 2	 5	 11	 2	 5	 5	 1	 14	 5	 Z	

Elgaria	 10	 14	 5	 10	 5	 2	 5	 13	 2	 4	 5	 1	 14	 10	 5	

Sphenodon	 12	 12	 1	 12	 7	 7	 1	 1	 1	 7	 7	 1	 12	 1	 7	

Gallus	 12	 12	 2	 10	 8	 2	 2	 7	 2	 10	 8	 2	 12	 1	 15	

Meleagris	 14	 11	 4	 12	 9	 4	 4	 8	 2	 10	 4	 2	 13	 1	 Z	

Coturnix	 11	 12	 1	 9	 10	 1	 1	 1	 1	 12	 1	 1	 15	 1	 14	

Anas	 15	 12	 6	 12	 10	 6	 2	 2	 2	 9	 6	 2	 12	 1	 11	

Cairina	 13	 12	 6	 13	 10	 6	 1	 1	 4	 11	 6	 4	 13	 1	 9	

Dromaius	 14	 10	 1	 13	 10	 5	 8	 9	 2	 12	 5	 2	 15	 2	 7	

Caiman	 4	 4	 1	 15	 12	 1	 1	 4	 4	 12	 4	 4	 12	 4	 4	

Mus	 4	 14	 1	 4	 1	 12	 1	 12	 4	 4	 4	 4	 15	 4	 4	

Meriones	 4	 10	 1	 7	 1	 10	 4	 7	 7	 10	 1	 4	 Z	 10	 Z	

Rhabdomys	 8	 12	 1	 9	 1	 13	 6	 10	 1	 1	 6	 1	 Z	 11	 Z	

Mesocricetus	 10	 4	 1	 4	 4	 14	 2	 10	 4	 4	 2	 Z	 10	 4	 10	

Peromyscus	 4	 9	 1	 9	 4	 11	 1	 11	 4	 4	 1	 4	 Z	 11	 Z	

Cavia	 9	 13	 1	 11	 1	 1	 1	 9	 1	 1	 1	 11	 Z	 1	 Z	

Loris	 3	 14	 1	 10	 3	 3	 1	 10	 3	 3	 3	 10	 10	 3	 Z	

Cryptotis	 12	 14	 1	 12	 4	 15	 1	 9	 4	 7	 1	 7	 10	 10	 4	

Chimarrogale	 13	 14	 1	 2	 2	 Z	 2	 2	 2	 2	 2	 2	 2	 2	 2	

Suncus	 6	 14	 1	 9	 5	 Z	 1	 12	 6	 1	 1	 9	 6	 9	 12	

Scapanus	 14	 13	 1	 10	 1	 Z	 1	 1	 1	 1	 1	 1	 10	 10	 1	

Urotrichus	 10	 12	 1	 11	 1	 Z	 1	 14	 1	 1	 1	 1	 12	 9	 1	

Mogera	 12	 14	 1	 13	 5	 Z	 1	 5	 5	 1	 1	 5	 5	 5	 5	

Talpa	 1	 14	 1	 1	 10	 Z	 1	 10	 1	 1	 1	 13	 1	 12	 1	

Rousettus	 10	 13	 1	 10	 3	 3	 3	 7	 7	 3	 7	 10	 Z	 1	 Z	

Loxodonta	 12	 13	 1	 4	 4	 4	 1	 4	 4	 4	 1	 4	 Z	 4	 z	

Dasypus	 11	 13	 1	 12	 1	 1	 1	 1	 1	 1	 1	 10	 Z	 1	 Z	

Caluromys	 11	 11	 1	 7	 4	 4	 1	 7	 7	 4	 1	 13	 Z	 7	 Z	

Ornithorhynchus	 10	 10	 2	 10	 2	 10	 2	 2	 2	 2	 1	 10	 10	 2	 2	
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Table 5.  Ancestral sequences reconstructed with PGi and Continuous Analysis for Scenario 1 (Figure 3) using the dataset without 
missing data.  Bolded and highlighted bones represent a section of the sequence that is unique when compared with the other 
phylogenetic hypotheses.  Bo: basioccipital; Bs: Basisphenoid; D: dentary; Ex: exoccipital; F: frontal; J: jugal; Max: maxilla; Op: 
opisthotic; Pal: palatine; Par: parietal; Pm: premaxilla; Pr: prootic; Pt: pterygoid; So: supraoccipital; Sq: squamosal. 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Node	 Node	Name	 PGi	sequence	 CA	sequence	

	
Scenario	1	(T+D)	

	 	1	 Amniota	 [D,F,Max,Pm],[Pal,Par,Sq],[Bo,Bs,Ex,J,Pt,So],[Op,Pr]	 Pt,Pal,J,D,Max,Pm,F,Par,Sq,Ex,Bs,Bo,So,Op,Pr	

2	 Mammalia	 [D,Max,Pm],[Bo,F,Pal,Par,Sq],[Bs,Ex,J,Pt,So],[Op,Pr]	 Pt,Pal,D,J,Max,Pm,F,Sq,Par,Ex,Bs,Bo,So,Op,Pr	

3	 Reptilia	 [D,F,J,Max,Pm],[Pal,Pt,Sq],Par,[Bs,Ex,So],[Bo,Op,Pr]	 D,Pal,Pt,Max,J,Sq,Pm,F,Par,Bs,Ex,Bo,So,Op,Pr	

4	 Testudines	 Max,[D,F,J,Pal,Pt,Sq],[Bs,Ex,Par,Pm],[Bo,Op,Pr],So	 Max,D,Sq,Pt,Pm,Pal,Par,F,J,Bs,Ex,Bo,So,Pr,Op	

5	 Cryptodira	 Max,Sq,[Bs,D,J,Pal,Par,Pt],[F,Pm],Ex,[Bo,Pr],[Op,So]	 Max,D,Sq,Pt,Pal,Par,J,Pm,F,Bs,Ex,Bo,So,Pr,Op	

6	 Trionychidae	 Max,[D,Sq],[Bs,J,Pal,Par,Pt],[F,Pm],[Bo,Ex,Pr],[Op,So]	 Max,D,Sq,Pt,Pal,Par,Pm,J,F,Bs,Ex,Bo,So,Pr,Op	

7	 Chelonioidea	 Max,Sq,[Bs,D,J,Pal,Par,Pm,Pt],[Ex,F],Bo,[Op,Pr,So]	 Max,D,Sq,Pt,Par,Pal,J,F,Pm,Bs,Ex,Bo,Pr,Op,So	

8	 Cheloniidae	 Max,[D,J,Pal,Par,Pm,Pt,Sq],[Bs,Ex,F],Bo,So,[Op,Pr]	 Max,D,Sq,Pt,Pal,Par,J,F,Pm,Bs,Ex,Bo,Pr,So,Op	

9	 Chelydridae	 Max,Sq,[Bs,D,F,J,Pal,Par,Pm,Pt],Ex,[Bo,Op,Pr,So]	 Max,D,Sq,Pal,Pt,J,F,Par,Pm,Bs,Ex,Bo,Pr,So,Op	

10	 Diapsida	 [D,F,J,Max,Pm],[Pal,Pt,Sq],Par,[Bs,Ex,Op,So],Bo,Pr	 Sq,Max,Pal,Pt,D,J,Pm,F,Par,Bs,Ex,So,Bo,Pr,Op	

11	 Archosauria	 [D,J,Max],[Bs,Pal,Pm,Pt,Sq],[F,Par],Ex,Bo,[Op,Pr],So	 Sq,Pal,Pt,D,Max,J,Pm,F,Ex,Par,Bs,Bo,Pr,So,Op	

12	 Aves	 D,[Pal,Pt,Sq],[J,Pm],Max,F,Par,Bs,Ex,Bo,Op,[Pr,So]	 Sq,Pal,Pt,D,Max,J,Pm,F,Ex,Par,Bs,Bo,Pr,So,Op	

13	 Neognathae	 Sq,[Pal,Pt],[J,Pm],D,Max,[Ex,F],Par,[Bo,Bs],Pr,Op,So	 Sq,Pal,Pt,D,Max,J,Pm,F,Par,Bs,Ex,Bo,So,Pr,Op	

14	 Anseriformes	 [Max,Sq],[Pal,Pt],[J,Pm],D,F,Par,Bs,[Ex,So],Bo,Pr,Op	 Sq,Pal,Pt,D,Max,J,Pm,F,Par,Bs,Ex,Bo,So,Pr,Op	

15	 Galliformes	 Sq,[Pal,Pt],[D,J,Max,Pm],Ex,F,Par,Bo,[Bs,Pr],Op,So	 D,Max,Pal,Pt,Sq,J,Pm,F,Par,Bs,Bo,Ex,So,Pr,Op	

16	 Gallus	+	Coturnix	 Sq,[D,J,Max,Pal,Pm,Pt],Ex,F,Par,Pr,Bo,Bs,Op,So	 D,Max,Pal,Pt,Sq,J,Pm,F,Par,Bs,Bo,Ex,So,Op,Pr	

17	 Lepidosauria	 Pt,[D,F,J,Max,Pal,Par,Pm],Sq,[Bs,Ex,So],Bo,[Op,Pr]	 D,Max,Pm,Pal,Sq,F,Par,J,Pt,Bo,Ex,Bs,So,Op,Pr	

18	 Squamata	 Pt,[D,F,J,Max,Pal,Pm],[Par,Sq],[Bs,Ex],[Bo,Op,Pr],So	 D,Max,Pal,Sq,J,Pt,Pm,F,Par,Bs,Bo,Ex,So,Op,Pr	

19	 Iguania	+	Anguimorpha	 Pt,[D,J,Pal],[Ex,F,Max,Par,Pm,Sq],Bs,[Op,Pr],Bo,So	 D,Max,Pal,Pt,Sq,J,Pm,F,Par,Bs,Bo,Ex,So,Op,Pr	



 

  

89 

Table 6.  Ancestral sequences reconstructed with PGi and Continuous Analysis for Scenario 2 (Figure 3) using the dataset without 
missing data.  Bo: basioccipital; Bs: Basisphenoid; D: dentary; Ex: exoccipital; F: frontal; J: jugal; Max: maxilla; Op: opisthotic; Pal: 
palatine; Par: parietal; Pm: premaxilla; Pr: prootic; Pt: pterygoid; So: supraoccipital; Sq: squamosal. 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Node	 Node	Name	 	PGi	sequence	 CA	sequence	

		 Scenario	2	(T+A)	 		 		

1	 Mammalia	 [D,Max],[Pal,Par,Pm,Pt,Sq],[Bo,F],[Ex,J],[Bs,So],[Op,Pr]	 Pt,Pal,J,D,Max,Pm,F,Par,Sq,Ex,Bs,Bo,So,Op,Pr	

2	 Amniota	 [D,Max],[F,Pal,Par,Pm,Sq],[Bo,Bs,Ex,J,Pt,So],[Op,Pr]	 Pt,Pal,D,J,Max,Pm,F,Sq,Par,Ex,Bs,Bo,So,Op,Pr	

3	 Archosauromorpha	 [Bo,Bs,D],[Max,Pal,Pm,Pt,Sq],[F,J,Par],Ex,[Op,Pr,So]	 D,Pal,Pt,Max,J,Sq,Pm,F,Par,Bs,Ex,Bo,So,Op,Pr	

4	 Testudines	 D,Bs,[F,J,Max,Pal,Par,Pt,Sq],Pm,[Bo,Ex,Pr],[Op,So]	 Max,D,Sq,Pt,Pm,Pal,Par,F,J,Bs,Ex,Bo,So,Pr,Op	

5	 Cryptodira	 Sq,[D,Par],[Bs,F,Max,Pal,Pt],[J,Pm],Ex,[Bo,Pr],[Op,So]	 Max,D,Sq,Pt,Pal,Par,J,Pm,F,Bs,Ex,Bo,So,Pr,Op	

6	 Trionychidae	 [Max,Sq],[D,Par],[Bs,F,Pal,Pt],[J,Pm],[Bo,Ex,Pr],[Op,So]	 Max,D,Sq,Pt,Pal,Par,Pm,J,F,Bs,Ex,Bo,So,Pr,Op	

7	 Chelonioidea	 [D,F,Max,Pal,Par,Pm,Pt,Sq],[Bs,J],Ex,[Bo,Pr,So],Op	 Max,D,Sq,Pt,Par,Pal,J,F,Pm,Bs,Ex,Bo,Pr,Op,So	

8	 Cheloniidae	 [D,F,J,Max,Pal,Par,Pm,Pt,Sq],Bs,Bo,Ex,So,[Op,Pr]	 Max,D,Sq,Pt,Pal,Par,J,F,Pm,Bs,Ex,Bo,Pr,So,Op	

9	 Chelydridae	 [D,F,Max,Pal,Par,Pm,Pt,Sq],[Bs,J],Ex,[Bo,Pr,So],Op	 Max,D,Sq,Pal,Pt,J,F,Pm,Par,Bs,Ex,Bo,Pr,So,Op	

10	 Diapsida	 Bo,D,[Max,Pal,Pm,Pt,Sq],[F,J,Par],[Bs,Ex],[Op,Pr,So]	 Sq,Max,Pal,Pt,D,J,Pm,F,Par,Bs,Ex,So,Bo,Pr,Op	

11	 Archosauria	 Bo,D,[Bs,Pal,Pm,Pt,Sq],[J,Max],[F,Par,So],Ex,[Op,Pr]	 Sq,Pal,Pt,D,Max,J,Pm,F,Ex,Par,Bs,Bo,Pr,So,Op	

12	 Aves	 D,[Pal,Pm,Pt,Sq],J,Max,F,Par,Bs,Ex,Bo,So,[Op,Pr]	 Sq,Pal,Pt,D,Max,J,Pm,F,Ex,Par,Bs,Bo,Pr,So,Op	

13	 Neognathae	 [Max,Pal,Pm,Pt,Sq],D,Ex,F,Par,[Bs,J],Bo,[Op,Pr],So	 Sq,Pal,Pt,D,Max,J,Pm,F,Par,Bs,Ex,Bo,So,Pr,Op	

14	 Anseriformes	 [Max,Pt,Sq],Pal,[D,Pm],F,Par,[Bs,Ex,J,So],Bo,[Op,Pr]	 Sq,Pal,Pt,D,Max,J,Pm,F,Par,Bs,Ex,Bo,So,Pr,Op	

15	 Galliformes	 [D,J,Max,Pal,Pm,Pt,Sq],Ex,F,Par,Pr,Bs,Bo,Op,So	 D,Max,Pal,Sq,Pt,J,Pm,F,Par,Bs,Bo,Ex,So,Pr,Op	

16	 Gallus	+	Coturnix	 [D,J,Max,Pal,Pm,Pt,Sq],Ex,F,Pr,[Bs,Par],Bo,Op,So	 D,Max,Pal,Pt,Sq,J,Pm,F,Par,Bs,Bo,Ex,So,Op,Pr	

17	 Lepidosauria	 [Bo,D,J,Max,Pal,Pt,Sq],[F,Par,Pm],[Bs,Ex],[Op,Pr,So]	 D,Max,Pm,Pal,Sq,F,Par,J,Pt,Bo,Ex,Bs,So,Op,Pr	

18	 Squamata	 Pt,[D,J,Pal],[Bo,F,Max,Par,Pm,Sq],[Bs,Ex],[Op,Pr,So]	 D,Max,Pal,Sq,J,Pt,Pm,F,Par,Bo,Bs,Ex,So,Op,Pr	

19	 Iguania	+	Anguimorpha	 Pt,[D,J,Pal],[F,Max,Par,Pm,Sq],Ex,Bs,[Op,Pr],Bo,So	 D,Max,Pal,Pt,Sq,J,Pm,F,Par,Bs,Bo,Ex,So,Pr,Op	
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Table 7.  Ancestral sequences reconstructed with PGi and Continuous Analysis for Scenario 3 (Figure 3) using the dataset without 
missing data.  Bolded and highlighted bones represent a section of the sequence that is unique when compared with the other 
phylogenetic hypotheses.  Bo: basioccipital; Bs: Basisphenoid; D: dentary; Ex: exoccipital; F: frontal; J: jugal; Max: maxilla; Op: 
opisthotic; Pal: palatine; Par: parietal; Pm: premaxilla; Pr: prootic; Pt: pterygoid; So: supraoccipital; Sq: squamosal. 
 

Node	 Node	Name	 	PGi	sequence	 CA	sequence	

		 Scenario	3	(T+L)	 		 		

1	 Mammalia	 Pm,[D,Max],Sq,[F,J,Pal,Par],[Bo,Ex,Pt],[Bs,So],[Op,Pr]	 Pt,Pal,J,D,Max,Pm,F,Par,Sq,Ex,Bs,Bo,So,Op,Pr	

2	 Amniota	 Pm,[D,Max],[F,J,Pal,Par,Sq],[Bo,Ex,Pt,So],Bs,[Op,Pr]	 Pt,Pal,D,J,Max,Pm,F,Sq,Par,Ex,Bs,Bo,So,Op,Pr	

3	 Lepidosauromorpha	 D,[F,J,Max,Pal,Pm,Sq],Par,[Bo,Bs,Ex,Pt],So,[Op,Pr]	 D,Pal,Max,Pt,J,Sq,Pm,F,Par,Bs,Ex,Bo,So,Op,Pr	

4	 Testudines	 D,[F,J,Max,Pal,Pt],[Bs,Ex,Par,Pm],Sq,[Bo,So],[Op,Pr]	 Max,D,Sq,Pt,Pm,Pal,Par,F,J,Bs,Ex,Bo,So,Pr,Op	

5	 Cryptodira	 [Max,Sq],D,[F,J,Pal,Par,Pt],[Bs,Pm],Ex,[Bo,So],[Op,Pr]	 Max,D,Sq,Pt,Pal,Par,J,Pm,F,Bs,Ex,Bo,So,Pr,Op	

6	 Trionychidae	 [Max,Sq],D,[Bs,F,J,Pal,Par,Pt],Pm,[Bo,Ex,Pr],[Op,So]	 Max,D,Sq,Pt,Pal,Par,Pm,J,F,Bs,Ex,Bo,So,Pr,Op	

7	 Chelonioidea	 Pal,[Max,Sq],[D,F,J,Par,Pt],Pm,Bs,Ex,So,[Bo,Op,Pr]	 Max,D,Sq,Pt,Par,Pal,J,F,Pm,Bs,Ex,Bo,Pr,Op,So	

8	 Cheloniidae	 [D,F,J,Max,Pal,Par,Pt,Sq],Pm,Bs,Bo,Ex,So,[Op,Pr]	 Max,D,Sq,Pt,Pal,Par,J,F,Pm,Bs,Ex,Bo,Pr,So,Op	

9	 Chelydridae	 [Max,Pal],[D,F,Par,Pm,Pt,Sq],J,Bs,[Ex,So],[Bo,Op,Pr]	 Max,D,Sq,Pt,Pal,J,F,Pm,Par,Bs,Ex,Bo,Pr,So,Op	

10	 Diapsida	 [D,J],[Bs,Pal,Pm,Pt,Sq],Max,F,Par,[Bo,Ex],So,[Op,Pr]	 Sq,Max,Pal,Pt,D,J,Pm,F,Par,Bs,Ex,So,Bo,Pr,Op	

11	 Archosauria	 [D,J],[Bo,Bs,Pal,Pt,Sq],[Max,Pm],F,Par,Ex,So,[Op,Pr]	 Sq,Pal,Pt,D,Max,J,Pm,F,Ex,Par,Bs,Bo,Pr,So,Op	

12	 Aves	 D,[Pal,Pm,Pt,Sq],J,Max,F,Par,Bs,Ex,So,Bo,Op,Pr	 Sq,Pal,Pt,D,Max,J,Pm,F,Ex,Par,Bs,Bo,Pr,So,Op	

13	 Neognathae	 [D,Max,Pal,Pm,Pt],[Ex,J],F,Par,Bs,[Op,Sq,So],Bo,Pr	 Sq,Pal,Pt,D,Max,J,Pm,F,Par,Bs,Ex,Bo,So,Pr,Op	

14	 Anseriformes	 Sq,[Max,Pal,Pt],[D,J,Pm],F,Par,[Bs,Pr,So],[Bo,Ex],Op	 Sq,Pal,Pt,D,Max,J,Pm,F,Par,Bs,Ex,Bo,So,Pr,Op	

15	 Galliformes	 [D,J,Max,Pal,Pm,Pt,Sq],Ex,F,Par,Bs,So,Bo,Pr,Op	 D,Max,Pal,Sq,Pt,J,Pm,F,Par,Bs,Bo,Ex,So,Pr,Op	

16	 Gallus	+	Coturnix	 [D,J,Max,Pal,Pm,Pt,Sq],Ex,F,Par,Bs,Pr,Bo,Op,So	 D,Max,Pal,Pt,Sq,J,Pm,F,Par,Bs,Bo,Ex,So,Op,Pr	

17	 Lepidosauria	 [D,F,J,Max,Pal,Pm,Pt,Sq],Par,[Bo,Bs,Ex],[Op,Pr],So	 D,Max,Pm,Pal,Sq,F,Par,J,Pt,Bo,Ex,Bs,So,Op,Pr	

18	 Squamata	 [D,F,J,Max,Pal,Pm,Pt],[Par,Sq],[Bo,Bs,Ex],[Op,Pr],So	 D,Max,Pal,Sq,J,Pm,Pt,F,Par,Bo,Bs,Ex,So,Op,Pr	

19	 Iguania	+	Anguimorpha	 Pt,[D,J,Pal],[Max,Op,Par],[Ex,F,Pm],Sq,[Bo,Bs,],Pr,So	 D,Max,Pal,Pt,Sq,J,Pm,F,Par,Bs,Ex,Bo,So,Op,Pr	
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Table 8.  Heterochronies inferred with Continuous Analysis between turtles and their three hypothetical ancestors (associated with 
Scenarios 1, 2, and 3, respectively), indicating shifts to “earlier” (early) or “later” (late) positions in a particular reconstructed 
sequence.  *heterochronies that are unique to a specific reconstruction; highlighted heterochronies were reconstructed in two of the 
three scenarios.  Bo: basioccipital; Bs: Basisphenoid; D: dentary; Ex: exoccipital; F: frontal; J: jugal; Op: opisthotic; Pal: palatine; Par: 
parietal; Pm: premaxilla; Pt: pterygoid; So: supraoccipital; Sq: squamosal.  No significant heterochronies were reconstructed for the 
maxilla and prootic. 

 

Species Reptilia-to-Turtles Archosauromorpha-to-Turtles Lepidosauromorpha-to-Turtles 

Chelydra serpentina Early: F, Par, Pm, Pt*, Sq 
 

Early: F, Par, Pm, Sq 
 

Early: F, Par, Pm, Sq 
 

Macrochelys temminckii  
Late: Bo, J, Pal, So Late: Bo, J, Pal, So Late: Bo, J, Pal, So 

Eretmochelys imbricata Early: Par, Pt*, Sq 
 

Early: J, Par, Sq 
 

Early: J, Par, Sq 
 

Lepidochelys olivacea  
 Late: D Late: D 

Apalone spinifera Early: Sq 
Late: So 

Early: Sq 
Late: J, So 

Early: Sq 
Late: J, So 

Pelodiscus sinensis Early: Bs, Op 
Late: So 

Early: Bs, Op, Par 
Late: Pm, So 

Early: Bs, Op, Par 
Late: Pm, So 

Phrynops hilarii Early: F, Op, Pt*, Sq 
Late: So 

Early: Ex, F, J, Op, Sq 
Late: So 

Early: Bs*, Ex, F, J, Op, Sq 
Late: So 
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Table 9.  Heterochronies inferred with Continuous Analysis between the root node and 
the terminal taxa following the methods of Germain and Laurin (2009).  Bo: basioccipital; 
Bs: Basisphenoid; D: dentary; Ex: exoccipital; F: frontal; J: jugal; Op: opisthotic; Pal: 
palatine; Par: parietal; Pm: premaxilla; Pt: pterygoid; So: supraoccipital; Sq: squamosal. 
 

Species	 Early	Shifts	 Late	Shifts	
Chelydra	serpentina	 F,	Par,	Pt	

	Macrochelys	temminckii	
	

Bo,	Pal,	So	
Eretmochelys	imbricata	 Par,	Pt	

	Lepidochelys	olivacea	
	 	Apalone	spinifera	
	

So	
Pelodiscus	sinensis	 Bs,	Op	 So	
Phrynops	hilarii	 F,	Op,	Pt	 So	
Lacerta	agilis	 F,	Pt	 So	
Polychrus	acutirostris	 Op,	Pt	 Bo,	Max,	So	
Elgaria	coerulea	 Pt	 D,	Max,	Sq	
Sphenodon	punctatus	 Op,	Pt	

	Gallus	gallus	
	 	Meleagris	gallopavo	
	 	Coturnix	coturnix	 Ex,	Pr,	Pt	 Par,	So	

Anas	platyrhynchos	
	

Bo	
Cairina	moschata	

	 	Dromaius	novaehollandiae	
	

Max	
Caiman	yacare	 Bo,	Bs	 Ex,	F,	Par	
Loris	tardigradus	 Bo	 Bs,	Pt	
Ornithorhynchus	anatinus	 		 J,	Pt	
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Table 10.  Heterochronies inferred with Continuous Analysis between the Testudines 
ancestor and its terminal taxa following the methods of Germain and Laurin (2009).  Bo: 
basioccipital; Bs: Basisphenoid; D: dentary; Ex: exoccipital; F: frontal; J: jugal; Op: 
opisthotic; Pal: palatine; Par: parietal; Pm: premaxilla; Pt: pterygoid; So: supraoccipital; 
Sq: squamosal. 
 

Species	 Early	Shifts	 Late	Shifts	
Chelydra	serpentina	 F,	Par,	Pm	

	Macrochelys	temminckii	
	

Bo,	J,	Pal	
Eretmochelys	imbricata	 Par	

	Lepidochelys	olivacea	
	

D	
Apalone	spinifera	

	
J	

Pelodiscus	sinensis	 Bs,	Op	
	Phrynops	hilarii	 F,	Op	 		
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Table 11.  Shifts reconstructed with PGi of the complete dataset without missing data.  Internode numbers refer to Figures 4–6. 
 
 

 

		 		 Scenario	1	 Scenario	2	 Scenario	3	

Internode	#	 Internode	Name	 Early	 Late	 Early	 Late	 Early	 Late	

1	 Mammalia	
	

F	 F	 Pt	 So	
	2	 Loris	 J	 Bs,Pm	 Bo,J	 Bs	 Bo	 Pm	

3	 Ornithorhynchus	
	

Bo,D,Max	 Pm	 D,Max	 Bs	 D,J,Max	

4	 Reptilia	 J	 Bo,Par	 Bo,J	 Max,Par,So	 Bs,J,Pt	
	5	 Testudines	

	
D,F,J,Par,Pm,So	 F,Pr	 Bo,Pm	 Pt	 Bo,Par,Pm,Sq	

6	 Phrynops	
	

Max	 Ex,J,Op	 Bs,D	 Sq	 D,So	

7	 Cryptodira	 Bs,Par,Sq	 Ex,F,Op	 Par,Sq	
	

Max,Par,Sq	 Ex	

8	 Trionychidae	 D	 Ex	 Max	
	

Bs,Pr	
	9	 Pelodiscus	 D,Op,Par	

	
D,J,Max,Op	 F	 D,Max,Op,Par	 F	

10	 Apalone	 F	 Bs,J	
	

Bs,Par	
	

Bs,J	

11	 Chelonioidea	 Pm	 Pr	 Ex,Pm,So	 Bs,D,Par,Sq	
	

D	

12	 Cheloniidae	 So	 Bs,Sq	 Bo,J	 Pr	 Bo	 Max,Pal,Sq	

13	 Lepidochelys	 F	 Ex	 Max	
	

Max,Pm	
	14	 Eretmochelys	

	
Max,Pm	 Ex	 F,Pm	 Ex	 F	

15	 Chelydridae	 F	 Bo	
	 	 	

J,Sq,So	

16	 Macrochelys	 D,Pm,Pt	
	

Max,Op	 F,Pal,Par,Pm	
	

F,Pal,Par	

17	 Chelydra	
	

Bs,J,Max,Op,Sq	
	

Bs	 Pm	 Bs,Max,Op,Pal	

18	 "Diapsida"/-Morpha	 Bo,Op	
	

Bs	 J	 F,Max	 Bs,J,Pt	

19	 Archosauria	 Bs	 F,Op,Pm,So	 J,So	 Max	 Bo	
	20	 Aves	 F	 Bs,J,Max,Pm,Pr	

	
Bo,Bs,So	 Op	 Bo,Bs,J	

21	 Neognathae	 Ex,Pr,Sq	 D	 Ex,Max	 D,J,So	 Ex,Max,Op	 D,Sq	

22	 Anseriformes	 Bs,Max,So	 Ex	 So	 Ex,Pal,Pm	 Sq	 Bs,D,Ex,Pm	

23	 Cairina	 Bo,D	
	

Bo,Bs,J	 Op,Pt	 Max	 Op,So	

24	 Anas	 D,Op	 Bs,F,Max	 J	 F,Max,Pt	 Ex	 F	

25	 Galliformes	 D,Max	
	

D,J,Pr	
	

J,Sq	
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		 		 Scenario	1	 Scenario	2	 Scenario	3	

Internode	#	 Internode	Name	 Early	 Late	 Early	 Late	 Early	 Late	

26	 Gallus+Coturnix	 Pr	 Pal,Pt	
	 	 	

Bo,So	

27	 Coturnix	
	

Par,Sq	 Bo	
	 	

Bs,Par	

28	 Gallus	 So	 Bo,Ex,Pm,Pr	 Sq,So	 Bs,Ex,Pm,Pr	 Bo,Sq,So	 Ex,Pm	

29	 Meleagris	 Bs,So	 Ex	 Pal,Pt,Sq,So	 Ex,Pr	 Pal,Pt,Sq	 Ex	

30	 Dromaius	 Bs,So	
	

Bs,Op	 Pm	 Bo,Bs	 Pm	

31	 Caiman	 Bo,So	 Ex	 J,Max	 Bo,Ex	 Max	 Ex,F,Par	

32	 Lepidosauria	 Pal,Par,Pt	 Op	
	

D,Pm	 Pt	 D,So	

33	 Sphenodon	 Bo,D,Max,Op,Pal,Sq	
	

Op,Sq,So	 Bo,J	 Op,So	 F,J,Pm	

34	 Squamata	 Bo	 Par,So	
	

Max	
	 	35	 Polychrus	

	 	
Ex	

	
Sq	 Bo,Max,Op,Par	

36	 Iguania+Anguimorpha	 Ex	 Bo,F,Max,Pm	 Pt	 Bo,So	 Ex,Op,Pt	 F,Pm	

37	 Elgaria	 Bo,Par,So	 D,Ex,Sq	 Bo,Par,So	 D,Sq	 So	 D,Ex,Max,Op	

38	 Lacerta	 So	 Pt	 F,Max,Pm	 		 So	 Par	
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Table 12.  Ancestral sequences reconstructed with PGi. Node numbers reference Figures 4-6. Bo: basioccipital; Bs: Basisphenoid; D: 
dentary; Ex: exoccipital; F: frontal; J: jugal; Max: maxilla; N: nasal; Pal: palatine; Par: parietal; Pm: premaxilla; Pt: pterygoid; Sq: 
squamosal; So: supraoccipital; V: vomer. 
 

Node	 Node	Name	 Scenario	1	(T+D)	 Sscenario	2	(T+A)	 Scenario	3	(T+L)	

1	 Amniota	 [D,J,Pm],Max,[F,Pal],[Bo,Pt,Sq],[N,Par],[Bs,Ex],So,V	 [Max,N],Par,[J,Pal,Pm],[D,F,Sq],Ex,Bo,[Bs,Pt,So],V	 Ex,D,[J,Max,Pm],N,[F,Pal,Par,Sq],Pt,[Bo,Bs],So,V	

2	 Mammalia	 Pm,[D,Max],J,[F,Par],[N,Pal,Sq],Bo,[Bs,Pt],Ex,[So,V]	 Max,Pm,[D,F,N,Pal,Par,Sq],Ex,Bo,[Bs,J,Pt,So],V	 D,[J,Max,Pm],[Ex,F,N,Pal,Par,Sq],[Bo,Bs,Pt],So,V	

3	 Monotremes+Eutheria	 [D,Max,Pm],[F,J],Par,[N,Pal,Sq],[Bo,Ex],Bs,Pt,[So,V]	 [D,Max],[F,J,Pal,Par,Pm],[Ex,N,Sq],[Bo,Bs,Pt],V	 [D,Max],J,[Ex,F,N,Pal,Par,Pm,Sq],[Bo,Bs],[Pt,So],V	

4	 Eutheria	 [D,Max,Pm],Sq,[F,Par],[Ex,N,Pal],[Bo,J,Pt,V],[Bs,So]	 [D,Max],[F,J,N,Pal,Par,Pm,Pt,Sq],Bo,Ex,Bs,V	 [D,Max],[F,J,N,Pal,Par,Pm,Sq],[Pt,So],[Bo,Bs,Ex,V]	

5	 Eutheria-Dasypus	 [D,Max,Pm],[F,J,Par,Sq],Ex,[N,Pal],V,Pt,Bo,[Bs,So]	 [D,Max,Pm,Sq],[F,J,N,Pal,Par,Pt],Bo,Ex,[Bs,So],V	 [D,F,J,Max],N,[Pal,Par,Pm,Sq],[Pt,So],Ex,V,Bo,Bs	

6	 Laurasia.+Euarch.	 D,[F,Max],[J,Par,Sq],[Pal,Pm],N,[Bo,Ex,Pt,V],[Bs,So]	 [D,Max,Pm,Sq],[Bo,F,J,N,Pal,Par],[Ex,Pt],[Bs,So],V	 [D,F,J,Max],[Bo,N],[Pal,Par,Pm],[Pt,So],Sq,Ex,V,Bs	
7	 Laurasiatheria	 [D,Sq],[Max,Par],J,[F,Pm],N,[Pal,V],[Ex,Pt],Bo,[Bs,So]	 [D,Max,Pm,Pt,Sq],[F,J],[Bo,N,Pal],[Ex,Par],[Bs,So],V	 [D,F,J,Max],[N,Pal,Pm],So,Par,[Pt,Sq],Bo,Ex,V,Bs	

8	 Talpidae+Soricidae	 D,Max,J,[Par,Pm],F,[N,V],Pal,[Ex,Sq],Bo,Pt,[Bs,So]	 [D,Max,Pm,Pt],F,[Bo,Pal],[Ex,Par,Sq],[Bs,So],V,N,J	 [D,F,Max,Pm],[J,Pal],So,Par,[Pt,Sq],Bo,Ex,[N,V],Bs	

9	 Soricidae	 [D,Max],J,[Par,Pm],F,V,Pal,N,[Bo,Pt,Sq],[Ex,So],Bs	 [D,Max,Pm],F,[Bo,Pal,V],[Ex,Par,Pt,Sq],N,[Bs,So],J	 [D,Max,Pm],[F,Pal],[Bo,So],Par,[Pt,Sq],Ex,[N,V],Bs,J	

10	 Chimarrogale	+	Cryptotis	 [D,Max],[Par,Pm,V],[F,Pal],Pt,N,Sq,So,[Bo,Ex],Bs	 Bs,[D,Max,Pm],[F,Pal,V],[Par,Pt],N,[Sq,So],[Bo,Ex,J]	 [D,Max],[F,Pal,V],Par,N,[Pm,Pt,Sq,So],[Bo,Ex],Bs,J	

11	 Talpidae	 [D,F,Max,Pal,Par,Pm],N,V,[Ex,Pt,Sq],Bo,[Bs,So]	 [D,Max,Pal,Par,Pm,Pt,V],F,Bo,[Ex,Sq],[Bs,So],N,J	 [D,F,Max,Pal,Par],[J,N],[Bs,Pm,Pt,So],Sq,Bo,Ex,V	

12	 Talpinae	 [D,Max,Pal,Par,Pm],F,[Bo,N],Sq,[Pt,V],Ex,[Bs,So]	 [D,Max,Pal,Par,Pm,Pt,V],[F,Sq],[Bo,Ex],[Bs,So],N	 [D,F,Max,Pal,Par],J,[Pt,So],Sq,[Bo,Bs,N],[Ex,Pm],V	
13	 Talpa	+	Mogera	 [D,Max,Par,Pm,So],Pal,[Bo,F,N],Sq,V,Ex,Pt,Bs	 [D,Max,Pal,Par,Pm],F,[N,Sq],[Pt,V],[Bo,So],Ex,Bs	 [D,Max,Pal,Par],J,[F,N,So],Sq,[Bo,Pt],[Ex,Pm],Bs,V	

14	 Euarchontoglires	 [D,Max],F,[J,Pal,Par,Pm,Sq],Bo,N,[Ex,Pt],V,Bs	 [D,Max,Pm,Sq],[Bo,F,J,Pal,Par],[Ex,Pt],[Bs,N,So,V]	 [D,J,Max],[Bo,N],[F,Pal,Par,Pm],[Pt,So],[Bs,Ex,Sq],V	

15	 Rodentia	 [D,F,Max,Pm],Pal,[Bo,N,Par,Sq],J,[Ex,Pt],V,Bs	 [D,F,Max,Pm,Sq],[Bo,J,Pal,Par],[Ex,Pt],[Bs,N,So,V]	 [D,F,J,Max,Pm],[Bo,N],[Pal,Par],[Ex,Pt],Sq,Bs,V	

16	 Muridae+Cricetidae	 [D,F,Pm],[Max,Pal],Bo,[Ex,J],[Par,Sq],V,Bs,So,N	 [D,F,Max,Pm],[Bo,Pal,Par,Pt,Sq],Ex,[Bs,J,N,So,V]	 [D,F,Max,Pm],Bo,[Pal,Par,Pt],Ex,N,[J,Sq],Bs,So,V	

17	 Cricetidae	 [D,Max,Pm],[Bo,F,Pal],[Par,Sq],Ex,Bs,[So,V],[J,N]	 [D,Max,Pm],[F,Pal,Par,Sq],[Bo,Bs,Ex],[J,N,So,V]	 [D,Max,Pm],[F,Pal,Par],Ex,[Bo,N,Pt,So],Bs,[J,Sq],V	

18	 Muridae	 [D,F,Pm],[Max,Pal,Pt],Bo,Ex,N,[Par,Sq],J,Bs	 [D,F,Pm],[Bo,Max,Par,Pt,Sq],[N,Pal],Ex,[Bs,J,V],So	 [D,F],[Bo,Max,Pm],[Ex,Pal,Pt],N,[J,Sq],[Bs,Par],[So,V]	
19	 Mus	+	Rhabdomys	 [D,F,Pal,Par,Pt],Max,[Bo,Pm],Ex,N,Sq,J,Bs	 [D,F,Max],Pm,[Bo,Ex,Pal,Par,Pt,Sq,V],N,Bs,[J,So]	 [D,F,Par],Max,[Bo,Ex,Pal,Pm,Pt],[J,N],Sq,Bs,[So,V]	

20	 "Diapsida"	 Bo,D,[J,Pt],Max,[F,Pal,Pm],Sq,N,Par,Ex,Bs,So,V	 [D,J,Max,N],Par,[Pal,Pm,Sq],[F,Pt],Ex,Bo,[Bs,V],So	 Ex,D,[J,Pm],Max,N,F,Par,Pt,[Bs,Sq],[Bo,V],Pal,So	

21	 Testudines	 [D,Max],[F,Pal,Pt,Sq],Bo,[J,N,Par],Pm,[Bs,Ex],So,V	 [D,Max,N,Sq],Par,[Bs,F,J,Pal,Pm,Pt],Ex,[Bo,So],V	 [D,Max],Par,Pt,Sq,[F,J,N,Pal],[Bs,Ex,Pm,V],[Bo,So]	

22	 Pleurodira	 D,[F,J,Max,Pal,Pt,Sq],[N,Par],Pm,[Bs,Ex],Bo,So,V	 [D,Max,N,Pal,Pt,Sq],[Bs,Ex,F,J,Par,Pm],Bo,[So,V]	 [D,Max],[F,J,N,Pal,Pt],[Bs,Ex,Par,Pm,Sq],[Bo,V],So	

23	 Cryptodira	 Max,Sq,[D,Par],[F,Pal,Pt],J,Pm,[Bs,Ex],N,So,V	 [D,Max,Sq],Par,[Bs,J,Pal,Pm,Pt],[Ex,F,V],[Bo,So]	 [D,Max],Par,Pt,Sq,V,[F,J,N,Pal,Pm],[Bs,Ex],[Bo,So]	

24	 Trionychidae	 Max,[D,Sq],[Bo,Par],[Bs,F,Pal,Pt],J,Pm,V,Ex,So	 [D,Max,Sq],Par,[Bs,J,Pal,Pm,Pt],F,[Bo,Ex,V],So	 Sq,[D,Max],Par,[F,Pal,Pt],[J,N,Pm],[Bs,Ex,V],[Bo,So]	
25	 Durocryptodira	 Max,D,J,[Par,Pm,Sq,V],[Pal,Pt],F,Ex,Bs,So	 [D,Max,Sq],[Par,V],[J,Pal,Pm,Pt],[Ex,F],[Bo,Bs,So]	 Max,[D,Pt],Sq,V,[F,J,Pal,Par,Pm],Bs,[Bo,So],N	

26	 Chelonioidea	 Max,D,[Par,Sq,V],[Pm,Pt],[F,J],Pal,Bs,[Bo,Ex],So	 [D,J,Max,Pt],[Par,Sq,V],Pm,[Bs,F,Pal],Ex,[Bo,So]	 Max,[D,Pt,V],Sq,Pm,[F,J,Pal,Par],[Bs,Ex],[Bo,So],N	

27	 Cheloniidae	 [D,Max],J,[Par,Sq],[Pal,Pm,V],F,[Bs,Pt],Bo,Ex,So	 [D,J,Max,Pt],[Pm,V],[Par,Sq],Pal,[Bs,F],Bo,Ex,So	 Max,[D,J,Par,Pt],[F,Sq],[Pal,Pm],[Bs,V],[Bo,Ex],N,So	

28	 Chelydridae	 Max,[D,Sq],[F,Par,Pt,V],Pm,[J,Pal],[Bs,Ex],[Bo,So]	 Max,[D,Pt,Sq,V],[N,Par,Pm],[F,J,Pal],[Bs,Ex],[Bo,So]	 Max,[D,Pt,Sq,V],Pm,[F,J,Pal,Par],[Bs,Ex],[Bo,So],N	

29	 SCENARIOS	 D,[J,Max,Pt],[Bo,Pm],Pal,[N,Sq],F,Par,Ex,[Bs,So],V	 [D,Max,N],[Par,Sq],[Bs,Pal,Pm,Pt],F,J,Ex,Bo,V,So	 [Bs,D],J,Ex,[F,Max,Pm],Par,[N,Pt],Sq,[Bo,V],Pal,So	

30	 Archosauria	 [D,Max],[J,Pal,Pt],Pm,F,[Par,Sq],N,Ex,Bs,[Bo,So],V	 [D,Max],[Bs,N,Pal,Pm,Pt,Sq],F,J,[Ex,Par],Bo,V,So	 D,Ex,Pal,[Bo,J,Pm,Pt],Max,[N,Sq],F,Par,Bs,V,So	
31	 Aves	 D,[Max,Pal,Pt],Pm,J,[N,Sq],[Ex,F],Par,Bs,Bo,[So,V]	 [D,Max],[Ex,Pal,Pt,Sq],N,F,[J,Pm],Par,[Bo,Bs],V,So	 Ex,[D,Sq],[Pal,Pt],[J,Pm],[Bo,Max],N,[Bs,F],Par,V,So	
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32	 Neognathae	 Sq,[Max,Pal,Pt],[D,Pm],[J,N],[Ex,F],Par,Bs,So,Bo,V	 [Max,Sq],[D,Ex,Pal,Pt],N,[J,Pm],Par,F,[Bo,Bs,So],V	 Ex,Sq,[Pal,Pt],[D,J,Max],N,F,[Par,Pm],Bs,[Bo,V],So	

33	 Anseriformes	 Sq,Max,[N,Pal,Pt],[D,J,Pm],F,Par,V,Bs,[Ex,So],Bo	 Sq,[Max,N,Pal,Pt],[D,J,Pm],[Par,V],F,[Bo,Bs,Ex,So]	 Ex,Sq,[Max,N,Pal,Pt],[D,J,Pm],F,[Par,V],Bs,[Bo,So]	

34	 Galliformes	 Sq,[Pal,Pt],[D,J,Max],Pm,N,Ex,F,Par,Bs,So,Bo,V	 [D,J,Max,Pal,Sq],Ex,[N,Pt],[F,Pm],[Bs,Par],[Bo,So],V	 Sq,[J,Pal,Pt],[D,Max],Pm,N,F,[Bs,Par],Ex,V,So,Bo	

35	 Gallus+Coturnix	 [D,J,Max,Pt],Ex,Pm,[N,Pal,Sq],F,Bo,[Bs,Par],So,V	 [D,J,Max,Pal,Pt,Sq],Ex,[F,N,Pm],[Bs,Par],[Bo,So],V	 Sq,[D,J,Max,Pal,Pt],Ex,N,[F,Pm],Par,[Bo,Bs],V,So	

36	 Lepidosauria	 [D,Max,Pt],[J,Pal],[N,Pm,Sq],[Bo,F,Par],[Bs,Ex,So,V]	 [D,J,Max,N,Pal,Pt],[Ex,F,Par,Pm,Sq],Bs,[Bo,V],So	 [Bs,Pt],[D,Ex],[J,Pal],[F,Max,Par,Pm,V],[N,Sq],[Bo,So]	
37	 Squamata	 Pm,J,[D,Max,Pt],[F,Pal],[N,Par,Sq],[Bs,Ex],Bo,V,So	 [D,F,J,Max,Pal,Pm,Pt,V],[N,Par,Sq],[Bs,Ex],Bo,So	 Pt,J,[D,F,Pal,Par],[Max,Pm,V],[Bs,N],[Bo,Ex,Sq],So	

38	 Iguania+Anguimorpha	 Pt,J,D,[F,Pal,Par,Pm],Max,N,Sq,Bs,[Bo,Ex],V,So	 Pt,[D,F,J,Max,Pal,Pm,V],[Ex,Par,Sq],N,Bs,Bo,So	 Pt,[J,Pal],Par,[D,F,Max,Pm,V],N,[Bo,Ex,Sq],[Bs,So]	
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Table 13.  Heterochronies reconstructed using PGi and the dataset with missing data. Internode numbers match to Figures 5A-C.  
Bones across a row in red indicate a heterochrony that reconstructs in all scenarios, bones across a row in bold indicate a heterochrony 
that reconstructs in two of the three scenarios. 
 

		 		 Scenario	1	(T+D)	 		 Scenario	2	(T+A)	 		 Scenario	3	(T+L)	 		
Internode	

#	 Internode	Name	 Early	 Late	 Early	 Late	 Early	 Late	

1	 Mammalia	
	

J,Pt	
	

J,N,Pal,Par	 Bs	 Ex,N	

2	 Monotremata+Eutheria	
	

Pt	 D,J,Pt	 Pm	
	

Pm,Pt	

3	 Caluromys	
	 	

Pm	 Pal	 F,Par,Pm	
	

4	 Eutheria	
	

J	 Bo,N,Pt,Sq	
	 	

Bo,Ex	

5	 Dasypus	
	

Ex	
	

D,Max,Pt	
	

D,Max	

6	 Eutheria-Dasypus	
	 	

Pm,Sq	
	

Ex,F	
	

7	 Loxodonta	 Pt	
	

Ex	 Sq	 Ex,Pm,Pt	 F,J,N	

8	 Laurasia.+Euarch.	
	

Pm	 Bo	 Pt	 Bo	 Sq	

9	 Laurasiatheria	
	

F,Pal	 F,J,Pt	 Par	
	

Bo,N,Par,Pt	

10	 Soricidae+Talpidae	
	

Sq	
	

J,N,Sq	 Pm	 J,N	

11	 Soricidae	
	 	

N,V	 Pt	 Bo	 F,J	

12	 Chimarrogale+Cryptotis	 Pt	
	

Bs	 Bo,Ex,F,Sq	 N,V	 Bo,Pm,So	

13	 Chimmarrogale	 Ex,N,Sq,So	 F,Max	 Ex,N,Par,Pt,Sq,So	 Bs,Max,Pm	 Ex	 F,Max,N,Pal,Par,V	

14	 Cryptotis	
	

J	
	

Bs,J	 Pm,Pt	
	

15	 Suncus	
	 	

Par,So	 V	 Ex,Par	 Pal	

16	 Talpidae	
	 	

Pal,Par,V	
	

Bs,N,Par	
	

17	 Talpinae	
	

N	 Sq	
	

Pal	 Pm	

18	 Talpa+Mogera	 So	 F,Pal	 N,So	 Pt	
	

F	

19	 Talpa	 Ex,Pal	
	

Bo,Ex,N,So	
	

Bo,Ex,Pm,So,V	
	

20	 Mogera	 Pt	 So	 Pt	 F,Pal,V	 Pm,Pt,Sq,V	 Pal	

21	 Urotrichus	
	

N	
	 	

Pm,Pt,V	 N,So	
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22	 Scapanus	 So	
	

F,N,So	 Bo	 Ex,N,Pal,Pm,Pt,Sq,V	 Bs	

23	 Rousettus	
	

Max	 Par	 Bo,Max,Pm,Pt	 Bo,D,Ex,Par,Sq	
	

24	 Euarchontoglires	
	 	

V	 N	 Bs	
	

25	 Rodentia	
	 	

F	
	

Pm	
	

26	 Cricetidae	+	Muridae	
	

Max,N	 Pt	 Sq	 Pt	 J,N	

27	 Cricetidae	 Max	 F	 Bs	 F	 Bs,So	 Bo,F,Pt	

28	 Mesocricetus	 D	 Bo	 Bs,D,Ex	 Bo,J	 Bs,D,Ex,Sq,V	
	

29	 Peromyscus	
	

Sq	
	

Sq	 Bo,Bs,Pt	 N	

30	 Muridae	 N	
	

N	 Max,So	 Ex	 J,Max,Par	

31	 Meriones	 Bs	 Pal	 Ex	 Pal,Par,Sq	 N,Pt	 Sq	

32	 Mus	+	Rhabdomys	 Par,Pt	 Pm	 Ex,Max,V	 J,Pm	 J,Par	 Bo,Pm	

33	 Mus	 J,Max,Sq	 Pal,Par,Pt	 J	 Pm	 Max,Sq,V	 Bo,Par	

34	 Rhabdomys	
	 	

Bo,Pal,Par,Pt	 Max,Sq	 Pal,Pm,Pt	 J	

35	 Cavia	
	 	

N,Pal,Par	
	

Pal,Par,Sq	
	

36	 Loris	
	 	

So	 Pm,Sq	 So,V	 D,Ex,J,Max	

37	 Ornithorhynchus	 V	 Bo,D,J,Max	 V	 Bo,Ex,Max	 Sq	 Bo,J,N	

38	 Reptilia	
	 	

Bs,D,Sq,V	
	

F	 Pal,Sq,So	

39	 Testudines	 Par	 J,Pm,So	 F,J,Sq,So	
	

Pal	 Bs,D,Ex,F,J,N,Pm	

40	 Pleurodira	
	 	

Ex,Pal,Pt	 Par,So	 Bo	 Par,Pt,Sq	

41	 Emydura	 Max,Pm,So	
	

So	 Bs,Ex,N,Pal,Pt,Sq	 Bo,Par,Pm,So	 N	

42	 Phrynops	 N,V	
	

F,J,V	
	

V	 D,Max	

43	 Cryptodira	 Max,Par	 N	 V	
	

Pm,V	
	

44	 Trionychidae	 Bs,N,Sq,V	 Bo	 Bo	
	

F,Pal,Sq	 V	

45	 Pelodiscus	 D,Par	 F	 V	 Pm,Sq	 Bo,Bs,J,V	 F,Sq	

46	 Apalone	
	

Bs	 F,Pal,Pt	 Bs,D	 Bo,Max	 Par	

47	 Durocryptodira	 Pm,V	
	

V	 Bs	
	

D,N,Par	

48	 Emys	
	 	 	

D,Par	
	

Bs,D,Max,Pt	

49	 Chelonioidea	
	 	

Bs,J,Pt	 Sq	 Pm,V	
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50	 Cheloniidae	 J,Pal	 Pt	 Bo,Pal,Pm,V	
	

F,J,Pal,Par	 So,V	

51	 Lepidochelys	
	

D,J	 F	 D,J,Pt	 Pm,V	 Ex,Par,Pt	

52	 Eretmochelys	 Ex,Pt	
	

Ex,Pal,Par,Sq	
	

Pal,Sq	 F,Max	

53	 Chelydridae	
	 	 	

Bs,J,Pt	 Sq	
	

54	 Macrochelys	 Bs	
	

Bs	 D,V	 Bs	 V	

55	 Chelydra	
	

Max	 F,Pal,Par,Pm	 D,Max	 F,Pal,Par,Pm	 Max	

56	 Hypotheses	1,	2,	or	3	
	

Bo	 Bs,Pt	 J	 Bs,F	 Bo,Ex,N,Pm	

57	 Archosauria	 Bs	 Bo	
	

N,Par	 Pal,Pt,Sq	
	

58	 Aves	 N	 J	 Ex	 Bs,N,Pm	 Sq	
	

59	 Neognathae	 Sq	
	

Sq,So	 F	
	

Bo,Bs,D,Pm	

60	 Anseriformes	 V	 Ex	 V	 D,Ex,Max	 Max,N,Pm,V	
	

61	 Cairina	 N,V	
	

Bs,Max,N	 Par	 Max,N,V	 Ex	

62	 Anas	
	

Bs,F	
	

Bo,V	 Par,So	 Ex	

63	 Galliformes	
	 	

Bs,F,J,Pal	
	

D,J,Pm	 Ex	

64	 Coturnix	+	Gallus	 Bo	 Bs	 Pt	
	

Bo,Ex,Max	 Pm	

65	 Coturnix	 Bs,N	 So	 Bo,N,Pm	 So	 Bo,Bs,N,Pm	 Sq	

66	 Gallus	 Sq	 Bo,Ex	 Sq	 Bs,Ex	 So	 Ex	

67	 Meleagris	
	

Ex	 Pal,Pm,Pt,Sq	 Bo,Bs,Ex	
	

J	

68	 Dromaius	 Bs,V	 Max	 Bs,V	 Ex,F,Max,N	 V	 Bo,Ex,Sq	

69	 Caiman	 V	 F	 Bo,J,Par,So,V	
	

Bs,J,Max,N,Pm,V	 Bo,Ex,F,Par	

70	 Lepidosauria	 Pm	 Bo,D	 Bs,F,Pal,Pt	 Par	 Pal,Par,Pt,V	 Bo,D	

71	 Sphenodon	 N,V	 Bs,J,Pm	 Sq,V	 Bo,Bs,Ex,J	 D,Max,N,Pal,Sq	 Bs,Ex,J	

72	 Squamata	 F,J	 So	 F,Pm,V	 Ex,N	 Bo,Par	 Bs,Ex	

73	 Iguania	+	Anguimorpha	 Pt	 Pm	 Ex,Pt	 N	
	 	

74	 Polychrus	 Ex	
	 	

F,Max,Pm	 Bs,D,Ex,Sq	 Par	

75	 Elgaria	
	

Bs,N	 Bo,J,Pal,Par	 Bs	
	

N	

76	 Lacerta	 		 		 Bo	 		 Bs,Sq	 J,Par,Pt	
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Appendix 1.  Stages of the 53 specimens of Lepidochelys olivacea used to infer the 
ossification sequence for cranial bones.  Specimens were obtained from the Carnegie 
Museum of Natural History.  Staging was based on Miller (1985) with reference to Crastz 
(1982). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  

Stage CMNH Specimen Numbers 
20 108800 

20/21 108901A 
22 108901B 
23 108832, 108854A 

Late 23 108943A 
Early 24 108943B 

24 108854B, 108859 
Late 24 108942 
Early 25 108860 

25 108831, 108893, 108919 
Early 26 108876 

26 108855, 108875, 108877, 108878, 108879, 108952 
Early 27 108844, 108880 

27 108792, 108794, 108795, 108864, 108881, 108926, 108950 
Late 27 108872, 108930, 108939 

28 108809, 108810, 108830, 108975 
Late 28 108850, 108923, 108924, 108936 

29 108803, 108851, 108886, 108912, 108970 
30 108903, 108905, 108962 
31 108838, 108921, 108954, 108963 
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