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ABSTRACT

Two populations of Rivularia-like cyanobacteria were isolated from ecologically
diverse and biogeographically distant sites. One population was from an unpolluted
stream in the Kola Peninsula of Russia, whereas the other was from a wet wall in the
Grand Staircase-Escalante National Monument, a desert park-land in Utah. Though both
were virtually indistinguishable from Rivularia in field and cultured material, they were
both phylogenetically distant from Rivularia and the Rivulariaceae based on both 16S
rRNA and rbcLX phylogenies. The new putative cryptic genus Cyanomargarita, with
proposed type species C. melechinii sp. nov., and additional putative species C. calcarea
are described herein. A new family for these taxa, the Cyanomargaritaceae, is proposed
for this new genus.
INTRODUCTION

With the advent of molecular methods, many phycologists, including those who
study cyanobacteria, began to recognize the existence of cryptic species (Boyer et al.
2002, Casamatta et al. 2003, Erwin and Thacker 2008, Joyner et al. 2008, Premanandh et
al. 2009, Refie et al. 2013, Johansen et al. 2014, Patzelt et al. 2014, Mihlsteinova et al.
2014a, 2014b). However, though these papers suggest the existence of cryptic species,
the species were not formally recognized taxonomically. Subsequently, cryptic species
have been named in several algal groups, including euglenids (Marin et al. 2003,
Karnkowska-Ishikawa et al. 2010, Kim et al. 2010, 2013, Linton et al. 2010),
eustigmatophytes (Fawley et al. 2007, 2015), chlorophytes (Fawley et al. 2005, 2011,
Fucikova et al. 2014), and cyanobacteria (Osorio-Santos et al. 2014, Pietrasiak et al.

2014).



Some cyanobacterial systematists have suggested the existence of cryptic genera
as well (Komarek et al. 2014); however, very few cryptic genera have actually been
described. Pinocchia Dvorak, Jahodarova et Hasler, which is morphologically identical to
Pseudanabaena Lauterborn, has a phylogenetic position distant from Pseudanabaena,
and was consequently described as a cryptic genus (Dvorak et al. 2015). Kovacikia
Miscoe, Pietrasiak et Johansen, which is morphologically similar to Phormidesmis
Turicchia et al., but molecularly distinct, would also fit the definition of a cryptic genus,
although the authors did not label it as such (Miscoe et al. 2016). There are also a number
of pseudocryptic genera (genera defined by morphological traits that are minor or
phenotypically plastic, and therefore not always expressed in the population) as well,
such as Nodosilinea Perkerson et. Casamatta, Oculatella Zammit, Billi et Albertano,
Limnolyngbya X. Li et R. Li, Pantanalinema Vaz et al., and Alkalinema Vaz et al. All of
the above genera belong to the Synechococcales, an order containing taxa with few
morphological characteristics (simple filamentous forms, variations in trichome width
and sheath characteristics).

Outside of the Synechococcales, few cryptic genera have been recognized. In the
Chroococcales, Chalicogloea Roldan et al. is similar to Gloeocapsa Kiitzing, and could
be considered a cryptic genus (Roldan et al. 2013). There are likely more cryptic genera
in this order, but identifying them is more problematic because members of the genus are
difficult to grow in culture, and consequently, fewer sequences are available. In the
Oscillatoriales, Ammassolinea Hasler et al. is the sole cryptic genus described (Hasler et
al. 2014), being morphologically inseparable from Phormidium Kutzing ex Gomont, as it

is presently defined. Within the Nostocales, there is much greater morphological



complexity than the nonheterocytous orders. Some pseudocryptic genera have been
described, including Mojavia Rehakova et Johansen in Rehakova et al. (2007),
Dapisostemon Hentschke, Sant’ Anna et Johansen in Hentschke et al. (2016), and
Petalocladus Johansen et VVaccarino in Miscoe et al. (2016).

A population of tapering, heterocyte-bearing trichomes embedded in a
hemispherical to spherical mucilage investment in a small, spring-fed, unpolluted stream
was recently discovered near the town of Apatity in the Kola Peninsula, Russia. It was
completely consistent with the description of Rivularia, the type genus of Rivulariaceae,
which contains tapering, heterocytous taxa. This taxon fit no established species in
Rivularia, and upon sequencing was determined to be phylogenetically distant from all
members of that family. A second species belonging to the same clade as the Russian
material was found, and sequenced several years earlier from a wet wall in the Grand
Staircase-Escalante National Monument in Utah, USA. These two populations differ
morphologically and ecologically, and are described herein as two new species in a newly
proposed genus, Cyanomargarita. This genus cannot be placed in any family-level
grouping of taxa based on the phylogenetic analyses performed and will be placed in a

family new to science, the Cyanomargaritaceae.



MATERIALS AND METHODS

Isolation and strain characterization. Both strains of Cyanomargarita were
isolated from natural populations into unialgal cultures using standard microbiological
methods, including enrichment plates and direct isolation from the original samples, in
Z8 medium (Kotai 1972, Carmichael 1986). Cultures were observed under a Zeiss
Axioskop photomicroscope with both bright field and DIC optics. All morphological
measurements were obtained using AxioVision 4.8 software provided by Zeiss. Living
cultures were deposited into the Cyanobacterial Culture Collection at John Carroll
University, Cleveland, USA. Natural populations of material from which the strain C.
melechinii APA-RS9 was derived were dried and deposited as an isotype in the
Herbarium of the Polar-Alpine Botanical Garden-Institute, Kola Scientific Centre of
RAS, Kirovsk-6, Murmansk Region, Russia, and information about habitat, coordinates
and locality can be found in the online database Cyanopro (Melechin et al. 2013). The
dried holotype material of this species was deposited in the Herbarium for Nonvascular
Cryptogams in the Monte L. Bean Museum, Provo, Utah, USA. Liquid materials of both
species fixed in 4% formaldehyde, as well as dried materials of C. calcarea, were also
deposited in the Herbarium for Nonvascular Cryptogams in the Monte L. Bean Museum,
Provo, Utah, USA.

Molecular methods. Genomic DNA was extracted following techniques described
in Pietrasiak et al. (2014). PCR amplification of the 16S rRNA gene was accomplished
following Osorio-Santos et al. (2014), with the exception that forward primer 8F was
used instead of forward primer VRF2, for amplification of a longer sequence, starting

near the beginning of the 16S rRNA gene (Perkerson et al. 2011). The 16S rRNA



amplicons were cloned to recover multiple rRNA operons (Siegesmund 2008). PCR
amplicons and sequences of rbcLX and rpoC1 genes were obtained according to Rudi et
al. (1998) and Seo and Y okota (2003), respectively. The nifD gene amplification was
completed using a protocol described in Roeselers et al. (2007). All three protein-
encoding genes (rbcLX, rpoC1, nifD) were directly sequenced, rather than cloned,
because they are single copy genes in the cyanobacterial genome. All sequences obtained
in this study were deposited in the NCBI Nucleotide database.

Phylogenetic analyses. All sequences chosen for alignment and phylogenetic
analyses were obtained from our internal set of sequences and relevant sequences (chosen
based on both BLAST searches and named taxon searches) from the NCBI Nucleotide
database before 1 September, 2016. Sequences were aligned using Mega v. 6.06 (Tamura
et al. 2013), and checked manually in Microsoft Word (Microsoft Corp., Redmond,
Washington, USA) to ensure that alignments supported preservation of secondary
structure (Luke$ova et al. 2009, Rehakova et al. 2014). A full list of the OTU’s used can
be found in the uncollapsed phylogeny in supplemental materials (Fig. S1).

The public software jModeltest2 (Darriba et al. 2012) was used to determine the
optimal Maximum Likelihood (ML) model, which was GTR+I1+G, and Bayesian analysis
was subsequently run using this model. Both analyses were run on CIPRES (Miller et al.
2012). Two runs of eight Markov chains were applied with 10 million generations with
default settings, sampling every 100 generations. P-distance values for all sequences were
calculated in PAUP v. 4.02b (Swofford 1998). Graphical representation of the ITS

structures were created in Adobe Illustrator CS5.1 (Adobe Systems Inc., San Jose,



California, USA) based upon secondary structure configurations given by Mfold (Zuker
2003).

Phylogenies utilizing 16S rRNA gene sequences can yield ambiguous or
unsupported trees, and in such cases a multiple loci approach is recommended (da Silva
Malone et al. 2015, Song et al. 2015). | treated protein coding gene sequences (rbcLX) as
codons (Fawley et al. 2015), using the Ny98 evolutionary model with equal mutation
rates (Miller et al. 2012). Baysian Analysis of the rbcLX alignment was conducted with
two runs of eight Markov chains with 20 million generations, sampling every 100
generations, also using the GTR+I1+G model (Miller et al. 2012, Darriba et al. 2012).

Line drawings. Drawings were made using stippling technique, completed
digitally with Wacom Cintiq 24HD Pen Display utilizing the original photos as

templates.



RESULTS

Phylogenetic analyses. The 16S rRNA gene phylogeny has “strong” support on
all nodes in the backbone, with the exception of four nodes at the base of the tree marked
with small light grey circles (Fig. 1). Overall topology of the tree is consistent with recent
studies of Nostocales (Berrendero et al. 2011, Kastovsky et al. 2014, Hauer et al. 2014,
Berrendero Gomez et al. 2016, Ledn-Tejera et al. 2016).

Cyanomargarita forms a cluster of two terminal OTUs corresponding to two new
species: C. melechinii and C. calcarea, with high support (Fig 1; Fig S1(A,B,C,D)).
Cyanomargarita is sister to a large clade containing Gloeotrichiaceae, Fortieaceae,
Aphanizomenonaceae, Nostocaceae, and Tolypothrichaceae. Additionally,
Cyanomargarita is also related to the Scytonema crispum group, which has an uncertain
taxonomic position (incertae familiae), falling outside of the Scytonemataceae clade
defined by the inclusion of the type species, Scytonema hofmannii (the basal clade in Fig.
1). Cyanomargarita is found outside of the Rivulariaceae, despite the convergent
morphology between Cyanomargarita and Rivularia. Another piece of evidence
supporting the independent origin of Cyanomargarita is that representatives of this new
genus have ITS regions with only one tRNA gene (tRNA'") across five different
ribosomal operons (Table 1), which is different from both the Nostocaceae (with two or
no tRNAs) and the Rivulariaceae (with two tRNAs only). We conclude that, based on
current phylogenetic evidence, Cyanomargarita requires its own family-level rank, and
propose the family Cyanomargaritaceae.

Cyanomargarita has low similarity in 16S rRNA gene sequence with most other

Nostocalaean taxa (Table 2). The highest similarity was with Gloeotrichia pisum Thuret



ex Bornet et Flahault from an alkaline wetland in Ohio, USA (95.4%). However, our new
taxon differs from members of Gloeotrichia based on the absence of paraheterocytic
akinetes with well-developed exospore. Moreover, 16S rRNA gene similarity between
our taxon and a Rivularia strain from Argentina is only about 92.3%. Historically, less
than 95% similarity among 16S rRNA gene sequences was considered good evidence for
separation of prokaryotic genera (Stackebrandt and Goebel 1994), but within the
heterocytous genera the cutoff is likely higher (<97-98%, see Flechtner et al. 2002,
Patzelt et al. 2014, Berrendero Gomez et al. 2016). Therefore, the evidence is even
stronger that Cyanomargarita is a new genus.

Cyanomargarita is also outside of Rivulariaceae sensu stricto, according to our
rbcLX phylogenetic analysis (Fig. 2). It is most closely related to the Tolypothrichaceae
(containing the type species Tolypothrix distorta Kiitzing ex Bornet & Flahault) and
diverse Calothrix strains. In contrast, Rivularia forms a well-supported clade with
Kyrtuthrix, distant from Cyanomargarita (Ledn-Tejera et al. 2016). The rbcLX
phylogeny, with well supported separate clades of Rivularia and Cyanomargariata, is
consistent with our conclusion based on the 16S rRNA gene phylogeny that
Cyanomargarita is not congeneric with Rivularia, and, furthermore, is not in the

Rivulariaceae.

ITS analysis. The 16S-23S ITS sequences of C. calcarea are about 50 nucleotides
longer than the ITS sequences of C. melechinii, likely as a result of insertions flanking
the tRNA'"® gene on the 3’ side of the gene (Table 1). In general, secondary structures of
D1-D1’, V3, and Box B helices show similar structures across both species with minor

base substitutions in all three domains. Below, | compare the secondary structures of



conserved ITS domains for homologous operons in the two species (e.g. operon 1, two
additional operons were recovered in C. melechinii that were not obtained from C.
calcarea). The configuration of D1-D1’ helices for both species share features seen in
most members of the Nostocales: a small terminal loop; a sub-terminal bilateral bulge;
and a basal unilateral bulge on the 3’ side of the helix, with a highly conserved basal
clamp of 5 base pairs (GACCU-AGGUC). Four substitutions across the two species in
the upper part of the D1-D1’ helix were detected, with 3 of those located within the loop
regions. Another substitution on D1-D1’ helix occurs within the basal 3" unilateral bulge,
a transition mutation from G to A (Fig. 3). The V3 helix was very similar in both species,
but with some minor differences such as two substitutions in the apical loop and a
compensatory change in a single base pair in the middle part of the stem (indicated by
arrows). The V3 helix from operon 3 of C. melechinii has a short insertion (UAAU)
within the terminal loop (Fig. 3). The Box B structure appears to be variable and
informative, with a lager terminal loop in operon 1 of C. melechinii. The Box B of operon
1in C. calcarea is actually more similar to the Box B of operon 2 of C. melechinii. It is
not possible to determine whether this is a convergent mutation or gene conversion. In
this particular case, differences in ITS structures across different operons inside one
lineage can be more significant than differences detected between homologous operons
of different species. The overall differences between the ITS sequences from homologous
operons of the two species exceeds the differences used in the past to justify species

separation (Osorio-Santos 2014, Pietrasiak 2014, Miscoe 2016).

Morphology and taxonomy. Based on morphology, ecology, distribution, 16S

rRNA gene phylogeny, p-distance analyses of 16S rRNA gene, rbcLX phylogeny,



analysis of the secondary structure of the 16S-23S ITS region, and p-distance analysis of
the 16S-23S ITS region, | conclude that the two strains of the Cyanomargarita clade
appear to be evolutionarily independent lineages distant from representatives of
Rivulariaceae, with the genus Cyanomargarita gen. nov. belonging to a monogeneric
family, Cyanomargaritaceae. These taxa will be formally published in a peer-reviewed
journal as required by the International Code of Nomenclature for Algae, Fungi and
Plants (McNeill et al. 2012). The descriptions below are not valid under the code, but

indicate the provisional taxonomy until the time of publication.

Cyanomargaritaceae Shalygin, Shalygina et Johansen fam. prov.

Diagnosis: Morphologically similar to the members of the Rivulariaceae, but
phylogenetically distinct from that family. Phylogenetically closest to Gloeotrichaceae,
with which it bears morphological similarity, but separated from that family by
phylogeny and the absence of paraheterocytic, elongated akinetes. Molecularly similar to
the “Scytonema crispum” clade, which is phylogenetically distant from Scytonema sensu
stricto, but differing from that group by tapering, copious mucilage formation, and

hemispherical to spherical colony formation.

Etymology: named for the single genus in the family, Cyanomargarita.

Type genus: Cyanomargarita Shalygin, Shalygina et Johansen gen. et sp. prov.

Cyanomargarita Shalygin, Shalygina et Johansen gen. prov.

Diagnosis: Morphologically similar to Rivularia, but phylogenetically close to the

clade containing Nostocaceae, Tolypothricaceae, and Aphanizomenonaceae, and
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phylogenetically distant from all members of the Rivulariaceae, distinct from most other
Nostocales by the occurrence of only one tRNA gene (tRNA'"®) in the 165-23S

ITSregion.

Description: Macroscopic colonies in nature hemispherical to spherical to
irregularly globular, with tapering trichomes embedded in the colonial mucilage but
extending outside of the mucilage to impart a fuzzy appearance to the colony. Filaments
with distinct lamellated sheath, which is often funnel- or collar-like at the distal ends.
Trichomes typically largest at the base and tapering to a thin hair distally, arranged in
parallel, singly- or doubly-false branched, sometimes forming concentric layers in large
colonies. Heterocytes basal or rarely intercalary. Akinetes absent, but large swollen

arthrospores present in some species.

Etymology: named for the pearl-like appearance of blue-green colonies growing

on mosses; cyaneus (L) = greenish-blue; margarita (L) = pearl.
Type species: Cyanomargarita melechinii
Cyanomargarita melechinii Shalygin, Shalygina et Johansen sp. prov.

Description: Natural Populations (Figs 4, 5) — Macroscopic colonies slimy,
spherical or hemispherical, with appearance of small blue-green pearls attached to
mosses, less commonly irregularly shaped, greyish blue-green to blue-green, attached to
the substrate (in type locality on the submersed moss Fontinalis sp. and on stones),
growing up to 5 mm in diameter. Filaments more or less radially arranged, sometimes
arranged in concentric layers in the colony, attenuated towards the ends, densely arranged

in parallel orientation, abundantly single false branched, with young, short filaments
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having geminate branching, 12.5-18 (21) um wide near base, rarely with basal parts
onion-like swollen. Sheaths thin to thick, 1-8 um wide, often strongly lamellated with 3—
5 distinct layers, colorless to slightly blackish in old filaments, funnel-like widened at the
distal ends and near site of branching, rarely firm, compacted to give wavy or transverse
striations. Trichomes usually gradually widened at base, rarely onion-like swollen,
sometimes narrowing towards base, gradually tapering towards distal ends,
unconstructed, slightly constricted to distinctly constricted at cross walls, typically
constricted in basal part, becoming unconstructed in middle of long, mature trichomes,
7.5-12.5 um wide near base, distally elongated into long, thin hairs, as narrow as 1 um
wide. Cells usually granulated, rarely with large, spherical, clear vesicular spaces devoid
of thylakoids, bright blue-green to blue-green; when actively dividing as short as 2 um
long, near the base shorter than wide to isodiametric, usually longer than wide in middle
of long mature trichomes, up to 10 um long, towards ends less intensely pigmented or
colorless, 8-20 (27) um long. Heterocytes often solitary, rarely in pairs or upto 3 in a
row, olive-brown in color, usually with enlarged, single polar nodule, spherical,
hemispherical, slightly conical, oval or cylindrical, elongated, flattened, within or outside
of sheath, 10-15 (16) um wide, 9-18 (20) um long. Necridia and intercalary involution

cells present.

Cultures (Fig. 6) — Macroscopic colonies dark-green to blue-green, spreading far
from center, with several filaments upright from agar. Filaments entangled, long, in liquid
Z8 medium forming huge, abundant nodules (20-60 um wide), on solid medium,
frequently having single- and double-false branching as well as geminate loops prior to

branch formation, when young forming Tapinothrix clintonii-like stages with one
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isopolar filament tapered at both ends fragmenting to produce two heteropolar filaments
with widened base and tapered ends, rarely, on nitrogen-free medium arranged in parallel
like representatives of Coleodesmium, (8.1) 10—16 um wide. Sheaths always colorless,
slightly lamellated, with 2—4 layers, usually straight, 1-6 pm wide. Trichomes in young
stages taper, at basal part always clearly constricted, rarely forming long unconstricted
hairs, 1-2 um wide, in mature stages also distinctly constricted, often slightly tapering or
untapered but forming conical apical cells, usually long and entangled, releasing small
tapered hormogonia, or with pairs of cells with zig-zag arrangement at the middle of the
trichomes, also forming abruptly-conical apical cells on nitrogen-free medium, 3—10 um
wide. Cells often granulated, bright blue-green to olive-green, when actively dividing
short, 2 um long, in middle of long trichomes, 5-10 um long, in the hair 3—15 (17) pum
long, in nitrogen-free medium dividing parallel to filament axis to form a pair of cells
(preheterocytes?) at the basal end of the trichome. Heterocytes forming only in nitrogen-
free medium, basal, slightly brownish or colorless, of different shapes, from oval or
spherical to hemispherical, flattened or irregular, often solitary, rarely two in a row or
two side by side, within or outside of sheath, 57 um wide, 4—6 um long. Necridia,

intercalary involution cells, and dark-olive resting cells present.

Etymology: Named in honor of Aleksey Melechin, the lichenologist who
originally found Cyanomargarita in its type locality and informed the author of its

existence.

Holotype to be designated: BRY 37764, Monte L. Bean Museum, Provo, Utah.

13



Isotypes to be designated: KPABG(C):3804, Herbarium of the PABGI under
Rivularia sp., Kirovsk-6, Russia; BRY 37765, BRY37766, BRY37767, Monte L. Bean

Museum, Provo, Utah.

Type locality: Russia, Kola Peninsula, Murmansk province, Apatity District,
vicinity of the Apatity town, 67°32'38.4"N; 33°30'14"E, from cold, small, spring-fed,
unpolluted, flowing stream in young secondary forest with coniferous and deciduous

trees, below the water surface on the mosses and stones (—10 cm), pH 8.4.

Reference Strain: Cyanomargarita melechinii APA-RS9, deposited in the

Cyanobacterial Culture Collection at John Carroll University.

Notes: According to morphology, most similar to the poorly known taxon,
Rivularia compacta Collins in Collins et al. 1898, described from Northern America,
from which it differs by larger size of the filaments and trichomes, as well as geminate

branching and character of the sheath (Komarek 2013).
Cyanomargarita calcarea Shalygin, Shalygina et Bohunicka sp. prov.

Diagnosis: Akin to C. melechinii, but differing by possession of brownish sheaths
closely attached to the trichomes, with longer hairs, with arthrospores, and with longer
spacer regions flanking the tRNA'" region in the 16S-23S ITS, with percent similarity

between ITS sequences of both species > 90.00%.

Description: Cultures (Figs 7, 8) — Macroscopic colonies dark-green to olive-
green when old, radiating far from colony center, with several filaments erect from agar,

in liquid medium forming hemispherical colonies with parallel and radial arranged
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filaments. Filaments relatively long, entangled, sometimes irregularly coiled or screw-
like coiled, frequently with single- and double-false branching as well as with geminate
loops prior to branch formation, gradually tapering from the base, 7-12 (16) um wide,
rarely with basal parts of filaments onion-like swollen. Sheath in the juvenile stages
usually colorless, soft, thin, always attached to trichomes, maximally with 2 layers, 2 um
wide; in senescent cultures brown to slightly reddish, firm, as a rule covering only basal
parts of trichomes, up to 5 um wide, sometimes forming collars. Trichomes gradually
attenuated, constricted at the cross walls when young, unconstricted when mature, 6—10
pUm wide, tapering to a colorless hair many cells long, (2) 2.5-3 um wide. Cells
granulated, usually barrel-shaped or distinctly constricted, apical cells sometimes
widened in comparison to adjacent subterminal cells but abruptly narrowing to a conical
end, blue-green, bright blue-green to dark olive-green, longer than wide, isodiametric, or
shorter than wide, longer than wide towards the ends, 2—3.5 um wide, 9-16 um long.
Heterocytes basal or intercalary, 2 or 3 in a row, flattened, quadratic, or elongated oval,
with shape spherical, hemispherical, conical, or irregular, rarely with two heterocytes side
by side, within or outside sheath, bright brown to olive in color, 6-12 um wide, 9-12 pum
long. Arthrospores variable in shape, spherical to barrel-shaped, also irregular and
rhomboid, typically distinctly granulated, with thin walls, blue-green, 7-10 um wide, 7—

12 (17) pm long. Necridia present.

Etymology: Named for its occurrence on limestone; calcareus (L) = calcareous.
Holotype to be designated: BRY 37768, Monte L. Bean Museum, Provo, Utah.

Isotype to be designated: BRY 37769, Monte L. Bean Museum, Provo, Utah.
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Type locality: Wet limestone wall in the Sheep Creek Drainage, in the Carmel
Formation, pH 7.9, Grand Staircase-Escalante National Monument, Utah, USA,
37°29'06.30"N; 112°03'47.36"W.

Reference Strain: Cyanomargarita calcarea GSE-NOS12-04C, deposited in the

Cyanobacterial Culture Collection at John Carroll University.

DISCUSSION

Originally, tapering cyanobacteria capable of producing heterocytes were placed
either in the Rivulariaceae (Rivularia, Isactis, Brachytrichia and Gloeotrichia) or the
Mastichotricheae (Calothrix, Dichothrix, Gardnerula (as Polythrix), and Sacconema)
(Bornet et Flahault 1886). In the early part of the 20™ century, these taxa, as well as other
tapering taxa, including non-heterocytous forms, such as Leptochaete and Tapinothrix,
were all placed in a single family, Rivulariaceae (Fremy 1929, Geitler 1932). The non-
heterocytous forms were removed from the family in the revision of the Nostocales
completed by Komarek and Anagnostidis (1989) — this system continued in both
Komarek (2013) and Komarek et al. (2014). Morphologically, these taxa are well-
defined, although the colonial morphology and production of hairs is typically lost in
culture. The type species for Calothrix, C. confervicola Agardh ex Bornet et Flahault, has
not yet been sequenced, and is marine in origin. The accepted type species for Rivularia,
R. dura Roth ex Bornet et Flahualt, has also not been sequenced, and is freshwater in

origin.

Confusion regarding the diagnosis of Calothrix from Rivularia clearly exists in
the modern literature. In Bergey’s Manual of Systematic Bacteriology (Second Edition),

the reference strains for Calothrix are all freshwater in origin (Rippka et al. 2001a),
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whereas the three reference strains for Rivularia are all from saline habitats (Rippka et al.
2001b). This ecological niche is the opposite of what one would expect based on the type
ecology of the species. Subsequent to Rippka et al.’s (2001a, 2001b) work, more
sequences in the tapering group were found (Sihvonen et al. 2007), yielding a phylogeny
with four groups: 1) Rivularia, mostly from marine habitats, including the Bergey’s
Manual reference strain Rivularia PCC 7716 (Rippka et al. 2001b), 2) Calothrix marine
clade 1, 3) Calothrix marine clade 11, 4) Calothrix freshwater clade, and 5) Gloeotrichia
clade. Berrendero et al. (2008) confirmed this result (although Gloeotrichia was not in
their phylogeny), but showed that all three marine clades had at least some strains
assigned to Calothrix and some strains assigned to Rivularia. In subsequent papers
(Berrendero Gémez et al. 2016, Ledn-Tejera et al. 2016), the five clades noted by
Sihvonen et al. (2007) persisted in the phylogenetic analyses based on larger taxon sets.
Our 16S rRNA phylogeny has the most taxa, and these five clades persist in our

phylogeny as well (Fig. 1; Fig S1(A,B,C,D)).

Although some confusion persists in the names assigned to strains in culture
collections, the identity of these five clades is fairly stable. We suspect that the type for
Calothrix, when it is isolated and sequenced, will fall within one of the marine Calothrix
clades (Clade I or Clade I1); Rivularia dura, when sequenced, will fall in the Rivularia
clade defined in Berrendero Gomez et al. (2016) and Leon-Tejera et al. 2016.
Gloeotrichia has already been moved to another family, the Gloeotrichaceae (Komarek et
al. 2014). We anticipate that Calothrix-like taxa (Freshwater, Marine I, Marine I1) likely
will be revised and separated into three genera and placed in their own families, separate

from the Rivulariaceae (Fig. 1). Based on either morphology or phylogeny,
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Cyanomargarita does not fall into any previously described families, and will be placed

in the Cyanomargaritaceae.

Much of the confusion in cyanobacterial taxonomy today is the result of the
assumptions by earlier authors that a number of morphological features evolved within
the phylum only once, or at best only a few times. Tapering trichomes inhabiting soft
mucilage to form adherent colonies, false branching, and true branching were all
characteristics that were thought to be significant and sufficient to group taxa into
relatively few higher level taxa. We now know that these derived characters have arisen
multiple times through the process of convergent evolution. Tapering trichomes occur in
very phylogenetically distant and diverse groups: Rivularia, Isactis, Kyrtuthrix,
Scytonematopsis, and Brachytrichia, in the Rivulariaceae; Calothrix, Dichothrix and
Macrochaete in the Mastichotricheae (which will need renaming), Roholtiella and
Calochaete in the Fortiaceae, Gloeotrichia in the Gloeotrichaceae, Goleter in the
Nostocaceae, and Cyanomargarita in the Cyanomargaritaceae, indicating that tapering

likely arose independently in the Nostocales at least six times.

True-branching was similarly considered to have been a unique feature that arose
only once in the heterocytous cyanobacteria, and all true-branching forms were at one
time in the Stigonematales. Based on molecular data, we now know that true branching
occurs in the Scytonemataceae (Symphyonemopsis and Iphinoe), Stigonemataceae
(Stigonema), Tolypothricaceae (Rexia), and Hapalosiphonaceae (Hapalosiphon,
Fischerella, Westiellopsis and Nostochopsis, etc.), indicating this character arose at least

four times. Indeed, in the Cyanomargaritaceae, cell division in two planes is present in
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both species, and this is a prerequisite character to true-branching, although at present we

have only seen the phenomenon in the basal cells of the trichomes in culture material.

Polyphyly in cyanobacterial genera should not be a surprise. Given that relatively
few characters were given inordinate weight by early taxonomists, thinking that these
characters could arise independently did not seem parsimonious or likely. However, with
a molecular understanding, we realize that many supposed synapomorphies in
cyanobacteria are actually not homologous characters. It seems apparent that they are
useful in the definition of genera, where they appear to be consistent across the entire
group, but they fail in the definition of higher-level taxa. The exception appears to be the
formation of heterocytes and akinetes, which are restricted to the Nostocales and

therefore likely arose only once.

Given the convergence of morphological traits in evolutionarily-distant lineages,
the use of molecular sequence data to define family- and order-level taxa is likely going
to increase. The morphological definition of families will likely be replaced by a
phylogenetic definition (a monophyletic cluster of genera). This is already happening in
other algal groups, such as the Sphaeropleales (Fuc¢ikova et al. 2014). We anticipate that
as more molecular sequence data become available for more genera, the difficulty in
using existing family-level taxonomy will increase in many algal groups, including
cyanobacteria, and more families will be described and recognized in order to maintain
monophyly and to stabilize taxonomy. These families will, unfortunately, often be

difficult to characterize morphologically, and so will lose their meaning and value to the
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taxonomic novice. However, a taxonomic system consistent with evolutionary history has

long been the goal of taxonomists.
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FIGURE LEGENDS

Fig. 1. Bayesian phylogeny for Cyanomararita spp. within Nostocales based on a
maximum of 1495 nucleotides from the 16S rRNA gene (254 OTUs). Branch support
values are shown as Bayesian posterior probability. Two species of Cyanomargarita are
highlighted in bold, the Rivulariaceae and Cyanomargaritaceae clades are highlighted in
dark gray boxes; remaining family-level clades are highlighted with light grey boxes.
Drawings of the spherical colonies in the right part of the boxes indicates tapering

filaments showing similar morphology between Cyanomargarita and Rivularia.

Fig. 2. Bayesian phylogeny for Cyanomararita spp. within Nostocales based on a
maximum of 600 nucleotides from the rbcLX region (86 OTUs). Branch support values
are shown as Bayesian posterior probability. Branch support values are shown as
Bayesian posterior probability. Two species of Cyanomargarita are highlighted in bold,
the Rivulariaceae and Cyanomargaritaceae clades are highlighted with dark gray boxes.
Drawings of the spherical colonies in the right part of the boxes indicates tapering

filaments showing similar morphology between Cyanomargarita and Rivularia.

Fig. 3. Secondary structures of the 165-23S ITSregion from both species. OP stands for
different operons, with three operons recovered from C. melechinii and one operon from
C. calcarea. Arrows on C. calcarea structures indicate base changes from the

homologous operon 1 for C. melechinii.

Fig. 4. Photographs and light micrographs of C. melechinii from natural populations (A)
Habitat. (B) Underwater spherical and hemi-spherical macrocolonies on the Fontinalis

sp. stems. (C) Colonial growth of radially arranged filaments. (D and E) Multiple
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filaments with funnel-like widened sheaths and variably-shaped heterocytes. (F)

Distinctly lamellated sheath and clear constrictions at branching trichome.

Fig.5. Line drawings of C. melechinii from natural populations. (A) Underwater colonies
on stones and mosses. (B) Spherical macrocolonies on mosses leaf. (C and D) Filaments
forming tufts within colony. (E) Single filaments with false branching, firm sheath, and
constrictions at crosswalls. (F) Variably-shaped heterocytes. Numerals indicate
diagnostic characteristics used in species description: 1, Filament without constrictions;
2, sheath with wavy striations; 3, funnel-like widened sheaths; 4, two heterocytes in the
row; 5, intercalary involution cells; 6, juvenile single trichome without individual sheath;
7, geminate branching on juvenile single trichome; 8, two necridia in a row; 9, different

shaped heterocytes; 10, thin apical hairs.

Fig. 6. Light micrographs of C. melechinii from cultures. (A) Tapinothrix clintonii like
stages. (B) Spiraled and very entangled filaments. (C) Huge nodule from liquid medium.
(D) Single, double and geminate branching types. (E) Unusual cell division in the
perpendicular plane, dark-olive resting cells and strange endings of trichomes. (F)

Variably-shaped heterocytes.

Fig. 7. Line drawings of C. calcarea from cultures. (A) Initial stages with hormogonium
(arrow) and single filaments without sheaths. (B) An isopolar filament divided by
intercalary heterocyte formation into two heteropolar filaments within a common sheath.
(C) Entangled filaments in stationary phase, with separation of arthrospores indicated by
arrows (that will grow into new filaments, D). (D) Arthrospores, germinating to form

juvenile filaments. (E) Variably-shaped heterocytes.
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Fig. 8. Light micrographs of C. calcarea from cultures. (A) Macrocolonies on agar
surface. (B) Entangled filaments with single and double false branching. (C) Individual
filaments with variably-shaped arthospores (arrows). (D) Mature filaments with intensely

brown sheath. (E and F). Variably-shaped heterocytes on well granulated trichomes.

Fig. S1 (In 4 parts :A, B, C, D). Uncollapsed Bayesian phylogeny for Cyanomararita spp.
within Nostocales based on maximum of 1495 nucleotides from the 16S rRNA gene (254
OTUs). Level of support (Bayesian posterior probabilities) indicated with different

colors.
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Gloeotrichia echinulata PYH6 AM230703
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Cyanomargadta calcarea GS
cytonema crispum UCFS17 JN565277
cytonemo crispum UCFS21 INS65278
Scytonema crispum UCFS15 INS65279
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Rivularia sp. XP25A AM230665
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Rivularia sp. XP27A AM230667
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Rivularia sp. PCI186A PUNA NP4
Rivulario sp. LEGE0O7159 KC989702
Microchaete grisea CCAP1445/1 HE79
Rivularia sp. PCC7116 AM230677

Scytonema sp. CMT-1BRIN-NPC30 KF934152

Chroococcidiopsis thermalis PCC7203 FI805841

0.1

Fig.1.

Gloeobacter violaceus NC005125
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Fig. S1A.
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Hassallia antarctica CCALA 956 FR
Scytonemay/Tolypothrix PAL MKAO
 Hassallia byssoidea CCALAB23 AM305327
Tolypothrix sp. CNP3-B1-C1 P12C JQ083658
1¥" Tolypothrix sp. CNP3-B1-C1 P12A JQ083657
Scytonema/Tolypothrix PAL-MK41
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Tolypothrix distorta ACOI731 HG970652
Scytonema sp. SICILIE CAVA Mares
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Tolypothrix sp. Preslic8 HG970654
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~Tolypothrix tenuis CCALA197 HGS70655

Tolypothrix sp. 158113 TOLYPOTH »
Scytonema/Tolypothrix T3 Mares
L1 Tolypothrix sp. STONE FOREST
Spirirestis rafaelensis WIT-71-NPBG6 JQ083655
Rolypothrix sp. ATA2-1CV29
Spirirestis rafaelensis 143-2B + 159-1 AF334691
Rpirirestis rofaelensis 143-2C + 159-1 AF334692
Tolypothrix distorta 163-58 + 163-8 AF334694
~ Tolypothrix tenuis f. terrestris UFS-BI-NPMV-1A2-F06
- Microchaetaceae cyanobacterium CMT-1BRIN-NPC34
Tolypothrix distorta CCALA194
Scytonema/Tolypothrix JOH20C
Tolypothrix campylonemoides FI5-MK38 JQ083654
Tolypothrix sp. CXA109-3-BZ KF934130
o8 élblo.smc punctiforme PCC73102 NR07431\
Nostoc sp. PCC73102 AFO27655
Nostoc sp. 8963 AY742449

7

62

Nostoc calcicola Il AJ630447
I— Nostoc sp. PCC9709 AFD27654
Nostoc flagelliforme IMGAO408 EU178143

Nostoc sp. PCC9229 AY742451
Microchaete violacea ACOI3057 HE797734
- Calochaete cimrmanii CCALA1012 HF912386
—— Roholtiella mojoviensis W)T36-NPBG10 KM268891
1 . Roholtiella fluviotilis UAM332 HM751847
53 Roholtiella fluviatilis UAM337 HM751851

Roholtiella bashkiriorum RU6 KM268883

- Roholtiella edaphica LG-511 KM268888
- Roholtiella edaphica RU1 KM268880

Nostoc muscorum Lukesova291 AM711524

Nostoc muscorum Il AJ630452

Nostoc calcicola SAG14531 KM019926

Nostoc sp. UAM307 HM623782

. Desmonostoc sp. PCC8306 HGOO4584

. Nostoc sp. HA4355-MV2 HQ847576
Microchaete diplosiphon CCALAB11 HE797729

Tolypothrix sp. PCC7504 AM230669

Tolypothrix sp. IAM M-259 AB093486
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UPPER PART OF TREE PART B

Microchaete tenera ACOI 1451 HE797732
Microchaete tenera ACOI 630 HET97733 §
_s0..Anabaenopsis abijatae AB2002/18 AMM

Cyanospira rippkae BNR8 FR774771
Cyanospira rippkae NMBCI FR774768
Anaboenopsis cf. AB2002/25 AM773302
capsulata CCAX FR774777
Cyanospira capsulata CC87E FR7T74775
Cyanospira capsulata SNAT FR774776

. Nodularia spumigena UTEX-B2092 AF268022
Nodularia sphoerocarpa BECID36 AJ781147
Nodularia harveyana PCC7804 AF268019
Nodularia sp. Lukesoval/91 AM711553
Nodularia harveyanastra UTEX-B2093 AF268021
Anabaena bergii AF160256
Aphanizomenon ovalisporum 2LT27512 FM177484
Aphanizomenon ovalisporum ILC-186 AY335547
12 Anabaena bergii 09-02 10237772
‘Anaboena bergil CHAB1000 GU197661

L——Doﬂchospemwnmmmwmﬁslsos
.| LOWER PART OF TREE

Fig. S1B.
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Fig. S1C.
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UPPER PART OF TREE PART C

& e&oeomehhednmm PYH14 AM230704
" YGloeotrichia echinulato PYHE AM220702
oeotrichia echinulata URA3 AM230705
L Gloeotrichia pistm SL6-1-1 CYANOMARGARITA CLADE
Cyanomargarita melechinii APA-RS9 OP1 cons568
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é 99 ] Hapalosiphon delicatulus 1AM M-266 ABD33484

Scy cf. crispum UCFS15 IN565279
- Scytonema sp, UCFS10 HM629428
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—r i :
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&
t Fischereila sp. IAM-M263 ABO93491
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Stigenema sp. WI53 J0435860
Calothrix sp. PCCT714 AJ133164
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Calothrix elsteri CCALA953 NR117190
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Fig. S1D.

UPPER PART OF TREE - PART D
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Rivufario sp. LEGEO7159 KC989702 ,

= L microchaete grisea CCAP1445/1 HE797730

mmcsmnumm7

-,—wmmm NR115807
Brayifonema sp, CENA114 EF11T7246

Scytonemo sp. 00557 00001 €CESL780 o

p.CMT- 1BRIN-NPC30 KF334152

Ch idheypsis thermads POCTRO3 FISDS3A1

o1

Glorob: POCT421 NCOOS12S

47



	John Carroll University
	Carroll Collected
	Winter 2016

	CYANOMARGARITA GEN. NOV. (NOSTOCALES, CYANOBACTERIA): CONVERGENT EVOLUTION RESULTING IN A CRYPTIC GENUS
	Sergey Shalygin
	Recommended Citation



