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ABSTRACT 

Two populations of Rivularia-like cyanobacteria were isolated from ecologically 

diverse and biogeographically distant sites. One population was from an unpolluted 

stream in the Kola Peninsula of Russia, whereas the other was from a wet wall in the 

Grand Staircase-Escalante National Monument, a desert park-land in Utah.  Though both 

were virtually indistinguishable from Rivularia in field and cultured material, they were 

both phylogenetically distant from Rivularia and the Rivulariaceae based on both 16S 

rRNA and rbcLX phylogenies. The new putative cryptic genus Cyanomargarita, with 

proposed type species C. melechinii sp. nov., and additional putative species C. calcarea 

are described herein. A new family for these taxa, the Cyanomargaritaceae, is proposed 

for this new genus. 

INTRODUCTION 

With the advent of molecular methods, many phycologists, including those who 

study cyanobacteria, began to recognize the existence of cryptic species (Boyer et al. 

2002, Casamatta et al. 2003, Erwin and Thacker 2008, Joyner et al. 2008, Premanandh et 

al. 2009, Reñé et al. 2013, Johansen et al. 2014, Patzelt et al. 2014, Mühlsteinová et al. 

2014a, 2014b). However, though these papers suggest the existence of cryptic species, 

the species were not formally recognized taxonomically. Subsequently, cryptic species 

have been named in several algal groups, including euglenids (Marin et al. 2003, 

Karnkowska-Ishikawa et al. 2010, Kim et al. 2010, 2013, Linton et al. 2010), 

eustigmatophytes (Fawley et al. 2007, 2015), chlorophytes (Fawley et al. 2005, 2011, 

Fučíková et al. 2014), and cyanobacteria (Osorio-Santos et al. 2014, Pietrasiak et al. 

2014).  
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Some cyanobacterial systematists have suggested the existence of cryptic genera 

as well (Komárek et al. 2014); however, very few cryptic genera have actually been 

described. Pinocchia Dvořák, Jahodárová et Hasler, which is morphologically identical to 

Pseudanabaena Lauterborn, has a phylogenetic position distant from Pseudanabaena, 

and was consequently described as a cryptic genus (Dvořák et al. 2015). Kovacikia 

Miscoe, Pietrasiak et Johansen, which is morphologically similar to Phormidesmis 

Turicchia et al., but molecularly distinct, would also fit the definition of a cryptic genus, 

although the authors did not label it as such (Miscoe et al. 2016). There are also a number 

of pseudocryptic genera (genera defined by morphological traits that are minor or 

phenotypically plastic, and therefore not always expressed in the population) as well, 

such as Nodosilinea Perkerson et. Casamatta, Oculatella Zammit, Billi et Albertano, 

Limnolyngbya X. Li et R. Li, Pantanalinema Vaz et al., and Alkalinema Vaz et al. All of 

the above genera belong to the Synechococcales, an order containing taxa with few 

morphological characteristics (simple filamentous forms, variations in trichome width 

and sheath characteristics). 

Outside of the Synechococcales, few cryptic genera have been recognized. In the 

Chroococcales, Chalicogloea Roldán et al. is similar to Gloeocapsa Kützing, and could 

be considered a cryptic genus (Roldán et al. 2013). There are likely more cryptic genera 

in this order, but identifying them is more problematic because members of the genus are 

difficult to grow in culture, and consequently, fewer sequences are available. In the 

Oscillatoriales, Ammassolinea Hasler et al. is the sole cryptic genus described (Hasler et 

al. 2014), being morphologically inseparable from Phormidium Kützing ex Gomont, as it 

is presently defined. Within the Nostocales, there is much greater morphological 
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complexity than the nonheterocytous orders.  Some pseudocryptic genera have been 

described, including Mojavia Reháková et Johansen in Reháková et al. (2007), 

Dapisostemon Hentschke, Sant’Anna et Johansen in Hentschke et al. (2016), and 

Petalocladus Johansen et Vaccarino in Miscoe et al. (2016). 

 A population of tapering, heterocyte-bearing trichomes embedded in a 

hemispherical to spherical mucilage investment in a small, spring-fed, unpolluted stream 

was recently discovered near the town of Apatity in the Kola Peninsula, Russia. It was 

completely consistent with the description of Rivularia, the type genus of Rivulariaceae, 

which contains tapering, heterocytous taxa. This taxon fit no established species in 

Rivularia, and upon sequencing was determined to be phylogenetically distant from all 

members of that family. A second species belonging to the same clade as the Russian 

material was found, and sequenced several years earlier from a wet wall in the Grand 

Staircase-Escalante National Monument in Utah, USA. These two populations differ 

morphologically and ecologically, and are described herein as two new species in a newly 

proposed genus, Cyanomargarita. This genus cannot be placed in any family-level 

grouping of taxa based on the phylogenetic analyses performed and will be placed in a 

family new to science, the Cyanomargaritaceae.  
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MATERIALS AND METHODS 

Isolation and strain characterization. Both strains of Cyanomargarita were 

isolated from natural populations into unialgal cultures using standard microbiological 

methods, including enrichment plates and direct isolation from the original samples, in 

Z8 medium (Kotai 1972, Carmichael 1986). Cultures were observed under a Zeiss 

Axioskop photomicroscope with both bright field and DIC optics. All morphological 

measurements were obtained using AxioVision 4.8 software provided by Zeiss. Living 

cultures were deposited into the Cyanobacterial Culture Collection at John Carroll 

University, Cleveland, USA. Natural populations of material from which the strain C. 

melechinii APA-RS9 was derived were dried and deposited as an isotype in the 

Herbarium of the Polar-Alpine Botanical Garden-Institute, Kola Scientific Centre of 

RAS, Kirovsk-6, Murmansk Region, Russia, and information about habitat, coordinates 

and locality can be found in the online database Cyanopro (Melechin et al. 2013). The 

dried holotype material of this species was deposited in the Herbarium for Nonvascular 

Cryptogams in the Monte L. Bean Museum, Provo, Utah, USA. Liquid materials of both 

species fixed in 4% formaldehyde, as well as dried materials of C. calcarea, were also 

deposited in the Herbarium for Nonvascular Cryptogams in the Monte L. Bean Museum, 

Provo, Utah, USA. 

Molecular methods. Genomic DNA was extracted following techniques described 

in Pietrasiak et al. (2014). PCR amplification of the 16S rRNA gene was accomplished 

following Osorio-Santos et al. (2014), with the exception that forward primer 8F was 

used instead of forward primer VRF2, for amplification of a longer sequence, starting 

near the beginning of the 16S rRNA gene (Perkerson et al. 2011). The 16S rRNA 
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amplicons were cloned to recover multiple rRNA operons (Siegesmund 2008). PCR 

amplicons and sequences of rbcLX and rpoC1 genes were obtained according to Rudi et 

al. (1998) and Seo and Yokota (2003), respectively. The nifD gene amplification was 

completed using a protocol described in Roeselers et al. (2007). All three protein-

encoding genes (rbcLX, rpoC1, nifD) were directly sequenced, rather than cloned, 

because they are single copy genes in the cyanobacterial genome. All sequences obtained 

in this study were deposited in the NCBI Nucleotide database.  

Phylogenetic analyses. All sequences chosen for alignment and phylogenetic 

analyses were obtained from our internal set of sequences and relevant sequences (chosen 

based on both BLAST searches and named taxon searches) from the NCBI Nucleotide 

database before 1 September, 2016. Sequences were aligned using Mega v. 6.06 (Tamura 

et al. 2013), and checked manually in Microsoft Word (Microsoft Corp., Redmond, 

Washington, USA) to ensure that alignments supported preservation of secondary 

structure (Lukešová et al. 2009, Řeháková et al. 2014). A full list of the OTU’s used can 

be found in the uncollapsed phylogeny in supplemental materials (Fig. S1). 

The public software jModeltest2 (Darriba et al. 2012) was used to determine the 

optimal Maximum Likelihood (ML) model, which was GTR+I+G, and Bayesian analysis 

was subsequently run using this model. Both analyses were run on CIPRES (Miller et al. 

2012). Two runs of eight Markov chains were applied with 10 million generations with 

default settings, sampling every 100 generations. P-distance values for all sequences were 

calculated in PAUP v. 4.02b (Swofford 1998). Graphical representation of the ITS 

structures were created in Adobe Illustrator CS5.1 (Adobe Systems Inc., San Jose, 
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California, USA) based upon secondary structure configurations given by Mfold (Zuker 

2003). 

Phylogenies utilizing 16S rRNA gene sequences can yield ambiguous or 

unsupported trees, and in such cases a multiple loci approach is recommended (da Silva 

Malone et al. 2015, Song et al. 2015). I treated protein coding gene sequences (rbcLX) as 

codons (Fawley et al. 2015), using the Ny98 evolutionary model with equal mutation 

rates (Miller et al. 2012). Baysian Analysis of the rbcLX alignment was conducted with 

two runs of eight Markov chains with 20 million generations, sampling every 100 

generations, also using the GTR+I+G model (Miller et al. 2012, Darriba et al. 2012).  

Line drawings. Drawings were made using stippling technique, completed 

digitally with Wacom Cintiq 24HD Pen Display utilizing the original photos as 

templates. 
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RESULTS 

Phylogenetic analyses. The 16S rRNA gene phylogeny has “strong” support on 

all nodes in the backbone, with the exception of four nodes at the base of the tree marked 

with small light grey circles (Fig. 1). Overall topology of the tree is consistent with recent 

studies of Nostocales (Berrendero et al. 2011, Kaštovský et al. 2014, Hauer et al. 2014, 

Berrendero Gómez et al. 2016, León-Tejera et al. 2016).  

Cyanomargarita forms a cluster of two terminal OTUs corresponding to two new 

species: C. melechinii and C. calcarea, with high support (Fig 1; Fig S1(A,B,C,D)). 

Cyanomargarita is sister to a large clade containing Gloeotrichiaceae, Fortieaceae, 

Aphanizomenonaceae, Nostocaceae, and Tolypothrichaceae. Additionally, 

Cyanomargarita is also related to the Scytonema crispum group, which has an uncertain 

taxonomic position (incertae familiae), falling outside of the Scytonemataceae clade 

defined by the inclusion of the type species, Scytonema hofmannii (the basal clade in Fig. 

1). Cyanomargarita is found outside of the Rivulariaceae, despite the convergent 

morphology between Cyanomargarita and Rivularia. Another piece of evidence 

supporting the independent origin of Cyanomargarita is that representatives of this new 

genus have ITS regions with only one tRNA gene (tRNAIle) across five different 

ribosomal operons (Table 1), which is different from both the Nostocaceae (with two or 

no tRNAs) and the Rivulariaceae (with two tRNAs only). We conclude that, based on 

current phylogenetic evidence, Cyanomargarita requires its own family-level rank, and 

propose the family Cyanomargaritaceae. 

Cyanomargarita has low similarity in 16S rRNA gene sequence with most other 

Nostocalaean taxa (Table 2). The highest similarity was with Gloeotrichia pisum Thuret 
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ex Bornet et Flahault from an alkaline wetland in Ohio, USA (95.4%). However, our new 

taxon differs from members of Gloeotrichia based on the absence of paraheterocytic 

akinetes with well-developed exospore. Moreover, 16S rRNA gene similarity between 

our taxon and a Rivularia strain from Argentina is only about 92.3%.  Historically, less 

than 95% similarity among 16S rRNA gene sequences was considered good evidence for 

separation of prokaryotic genera (Stackebrandt and Goebel 1994), but within the 

heterocytous genera the cutoff is likely higher (<97-98%, see Flechtner et al. 2002, 

Patzelt et al. 2014, Berrendero Gómez et al. 2016). Therefore, the evidence is even 

stronger that Cyanomargarita is a new genus. 

Cyanomargarita is also outside of Rivulariaceae sensu stricto, according to our 

rbcLX phylogenetic analysis (Fig. 2). It is most closely related to the Tolypothrichaceae 

(containing the type species Tolypothrix distorta Kützing ex Bornet & Flahault) and 

diverse Calothrix strains. In contrast, Rivularia forms a well-supported clade with 

Kyrtuthrix, distant from Cyanomargarita (León-Tejera et al. 2016). The rbcLX 

phylogeny, with well supported separate clades of Rivularia and Cyanomargariata, is 

consistent with our conclusion based on the 16S rRNA gene phylogeny that 

Cyanomargarita is not congeneric with Rivularia, and, furthermore, is not in the 

Rivulariaceae. 

ITS analysis. The 16S–23S ITS sequences of C. calcarea are about 50 nucleotides 

longer than the ITS sequences of C. melechinii, likely as a result of insertions flanking 

the tRNAIle gene on the 3ʹ side of the gene (Table 1). In general, secondary structures of 

D1-D1ʹ, V3, and Box B helices show similar structures across both species with minor 

base substitutions in all three domains. Below, I compare the secondary structures of 



9 
 

conserved ITS domains for homologous operons in the two species (e.g. operon 1, two 

additional operons were recovered in C. melechinii that were not obtained from C. 

calcarea). The configuration of D1-D1ʹ helices for both species share features seen in 

most members of the Nostocales: a small terminal loop; a sub-terminal bilateral bulge; 

and a basal unilateral bulge on the 3ʹ side of the helix, with a highly conserved basal 

clamp of 5 base pairs (GACCU-AGGUC). Four substitutions across the two species in 

the upper part of the D1-D1ʹ helix were detected, with 3 of those located within the loop 

regions. Another substitution on D1-D1ʹ helix occurs within the basal 3ʹ unilateral bulge, 

a transition mutation from G to A (Fig. 3). The V3 helix was very similar in both species, 

but with some minor differences such as two substitutions in the apical loop and a 

compensatory change in a single base pair in the middle part of the stem (indicated by 

arrows). The V3 helix from operon 3 of C. melechinii has a short insertion (UAAU) 

within the terminal loop (Fig. 3). The Box B structure appears to be variable and 

informative, with a lager terminal loop in operon 1 of C. melechinii. The Box B of operon 

1 in C. calcarea is actually more similar to the Box B of operon 2 of C. melechinii. It is 

not possible to determine whether this is a convergent mutation or gene conversion. In 

this particular case, differences in ITS structures across different operons inside one 

lineage can be more significant than differences detected between homologous operons 

of different species. The overall differences between the ITS sequences from homologous 

operons of the two species exceeds the differences used in the past to justify species 

separation (Osorio-Santos 2014, Pietrasiak 2014, Miscoe 2016).  

Morphology and taxonomy. Based on morphology, ecology, distribution, 16S 

rRNA gene phylogeny, p-distance analyses of 16S rRNA gene, rbcLX phylogeny, 
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analysis of the secondary structure of the 16S–23S ITS region, and p-distance analysis of 

the 16S–23S ITS region, I conclude that the two strains of the Cyanomargarita clade 

appear to be evolutionarily independent lineages distant from representatives of 

Rivulariaceae, with the genus Cyanomargarita gen. nov. belonging to a monogeneric 

family, Cyanomargaritaceae. These taxa will be formally published in a peer-reviewed 

journal as required by the International Code of Nomenclature for Algae, Fungi and 

Plants (McNeill et al. 2012).  The descriptions below are not valid under the code, but 

indicate the provisional taxonomy until the time of publication.  

Cyanomargaritaceae Shalygin, Shalygina et Johansen fam. prov. 

Diagnosis: Morphologically similar to the members of the Rivulariaceae, but 

phylogenetically distinct from that family.  Phylogenetically closest to Gloeotrichaceae, 

with which it bears morphological similarity, but separated from that family by 

phylogeny and the absence of paraheterocytic, elongated akinetes. Molecularly similar to 

the “Scytonema crispum” clade, which is phylogenetically distant from Scytonema sensu 

stricto, but differing from that group by tapering, copious mucilage formation, and 

hemispherical to spherical colony formation. 

Etymology: named for the single genus in the family, Cyanomargarita. 

Type genus: Cyanomargarita Shalygin, Shalygina et Johansen gen. et sp. prov. 

Cyanomargarita Shalygin, Shalygina et Johansen gen. prov. 

Diagnosis: Morphologically similar to Rivularia, but phylogenetically close to the 

clade containing Nostocaceae, Tolypothricaceae, and Aphanizomenonaceae, and 
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phylogenetically distant from all members of the Rivulariaceae, distinct from most other 

Nostocales by the occurrence of only one tRNA gene (tRNAIle) in the 16S–23S 

ITSregion. 

Description: Macroscopic colonies in nature hemispherical to spherical to 

irregularly globular, with tapering trichomes embedded in the colonial mucilage but 

extending outside of the mucilage to impart a fuzzy appearance to the colony. Filaments 

with distinct lamellated sheath, which is often funnel- or collar-like at the distal ends. 

Trichomes typically largest at the base and tapering to a thin hair distally, arranged in 

parallel, singly- or doubly-false branched, sometimes forming concentric layers in large 

colonies. Heterocytes basal or rarely intercalary. Akinetes absent, but large swollen 

arthrospores present in some species. 

Etymology: named for the pearl-like appearance of blue-green colonies growing 

on mosses; cyaneus (L) = greenish-blue; margarita (L) = pearl. 

Type species: Cyanomargarita melechinii 

Cyanomargarita melechinii Shalygin, Shalygina et Johansen sp. prov.  

Description: Natural Populations (Figs 4, 5)  ̶  Macroscopic colonies slimy, 

spherical or hemispherical, with appearance of small blue-green pearls attached to 

mosses, less commonly irregularly shaped, greyish blue-green to blue-green, attached to 

the substrate (in type locality on the submersed moss Fontinalis sp. and on stones), 

growing up to 5 mm in diameter. Filaments more or less radially arranged, sometimes 

arranged in concentric layers in the colony, attenuated towards the ends, densely arranged 

in parallel orientation, abundantly single false branched, with young, short filaments 
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having geminate branching, 12.5 ̶ 18 (21) µm wide near base, rarely with basal parts 

onion-like swollen. Sheaths thin to thick, 1 ̶ 8 µm wide, often strongly lamellated with 3 ̶ 

5 distinct layers, colorless to slightly blackish in old filaments, funnel-like widened at the 

distal ends and near site of branching, rarely firm, compacted to give wavy or transverse 

striations. Trichomes usually gradually widened at base, rarely onion-like swollen, 

sometimes narrowing towards base, gradually tapering towards distal ends, 

unconstructed, slightly constricted to distinctly constricted at cross walls, typically 

constricted in basal part, becoming unconstructed in middle of long, mature trichomes, 

7.5 ̶ 12.5 µm wide near base, distally elongated into long, thin hairs, as narrow as 1 µm 

wide. Cells usually granulated, rarely with large, spherical, clear vesicular spaces devoid 

of thylakoids, bright blue-green to blue-green; when actively dividing as short as 2 µm 

long, near the base shorter than wide to isodiametric, usually longer than wide in middle 

of long mature trichomes, up to 10 µm long, towards ends less intensely pigmented or 

colorless, 8 ̶ 20 (27) µm long. Heterocytes often solitary, rarely in pairs or up to 3 in a 

row, olive-brown in color, usually with enlarged, single polar nodule, spherical, 

hemispherical, slightly conical, oval or cylindrical, elongated, flattened, within or outside 

of sheath, 10 ̶ 15 (16) µm wide, 9 ̶ 18 (20) µm long. Necridia and intercalary involution 

cells present. 

Cultures (Fig. 6) – Macroscopic colonies dark-green to blue-green, spreading far 

from center, with several filaments upright from agar. Filaments entangled, long, in liquid 

Z8 medium forming huge, abundant nodules (20-60 µm wide), on solid medium, 

frequently having single- and double-false branching as well as geminate loops prior to 

branch formation, when young forming Tapinothrix clintonii-like stages with one 
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isopolar filament tapered at both ends fragmenting to produce two heteropolar filaments 

with widened base and tapered ends, rarely, on nitrogen-free medium arranged in parallel 

like representatives of Coleodesmium, (8.1) 10 ̶ 16 µm wide. Sheaths always colorless, 

slightly lamellated, with 2 ̶ 4 layers, usually straight, 1 ̶ 6 µm wide. Trichomes in young 

stages taper, at basal part always clearly constricted, rarely forming long unconstricted 

hairs, 1 ̶ 2 µm wide, in mature stages also distinctly constricted, often slightly tapering or 

untapered but forming conical apical cells, usually long and entangled, releasing small 

tapered hormogonia, or with pairs of cells with zig-zag arrangement at the middle of the 

trichomes, also forming abruptly-conical apical cells on nitrogen-free medium, 3 ̶ 10 µm 

wide. Cells often granulated, bright blue-green to olive-green, when actively dividing 

short, 2 µm long, in middle of long trichomes, 5 ̶ 10 µm long, in the hair 3 ̶ 15 (17) µm 

long, in nitrogen-free medium dividing parallel to filament axis to form a pair of cells 

(preheterocytes?) at the basal end of the trichome. Heterocytes forming only in nitrogen-

free medium, basal, slightly brownish or colorless, of different shapes, from oval or 

spherical to hemispherical, flattened or irregular, often solitary, rarely two in a row or 

two side by side, within or outside of sheath, 5 ̶ 7 µm wide, 4  ̶6 µm long. Necridia, 

intercalary involution cells, and dark-olive resting cells present. 

Etymology: Named in honor of Aleksey Melechin, the lichenologist who 

originally found Cyanomargarita in its type locality and informed the author of its 

existence. 

Holotype to be designated: BRY37764, Monte L. Bean Museum, Provo, Utah. 
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Isotypes to be designated: KPABG(C):3804, Herbarium of the PABGI under 

Rivularia sp., Kirovsk-6, Russia; BRY37765, BRY37766, BRY37767, Monte L. Bean 

Museum, Provo, Utah. 

Type locality: Russia, Kola Peninsula, Murmansk province, Apatity District, 

vicinity of the Apatity town, 67°32'38.4"N; 33°30'14"E, from cold, small, spring-fed, 

unpolluted, flowing stream in young secondary forest with coniferous and deciduous 

trees, below the water surface on the mosses and stones (–10 cm), pH 8.4. 

Reference Strain: Cyanomargarita melechinii APA-RS9, deposited in the 

Cyanobacterial Culture Collection at John Carroll University. 

Notes: According to morphology, most similar to the poorly known taxon, 

Rivularia compacta Collins in Collins et al. 1898, described from Northern America, 

from which it differs by larger size of the filaments and trichomes, as well as geminate 

branching and character of the sheath (Komárek 2013). 

Cyanomargarita calcarea Shalygin, Shalygina et Bohunicka sp. prov.  

Diagnosis: Akin to C. melechinii, but differing by possession of brownish sheaths 

closely attached to the trichomes, with longer hairs, with arthrospores, and with longer 

spacer regions flanking the tRNAIle region in the 16S-23S ITS, with percent similarity 

between ITS sequences of both species > 90.00%.  

Description: Cultures (Figs 7, 8)  ̶  Macroscopic colonies dark-green to olive-

green when old, radiating far from colony center, with several filaments erect from agar, 

in liquid medium forming hemispherical colonies with parallel and radial arranged 
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filaments. Filaments relatively long, entangled, sometimes irregularly coiled or screw-

like coiled, frequently with single- and double-false branching as well as with geminate 

loops prior to branch formation, gradually tapering from the base, 7 ̶ 12 (16) µm wide, 

rarely with basal parts of filaments onion-like swollen. Sheath in the juvenile stages 

usually colorless, soft, thin, always attached to trichomes, maximally with 2 layers, 2 µm 

wide; in senescent cultures brown to slightly reddish, firm, as a rule covering only basal 

parts of trichomes, up to 5 µm wide, sometimes forming collars. Trichomes gradually 

attenuated, constricted at the cross walls when young, unconstricted when mature, 6 ̶ 10 

µm wide, tapering to a colorless hair many cells long, (2) 2.5 ̶ 3 µm wide. Cells 

granulated, usually barrel-shaped or distinctly constricted, apical cells sometimes 

widened in comparison to adjacent subterminal cells but abruptly narrowing to a conical 

end, blue-green, bright blue-green to dark olive-green, longer than wide, isodiametric, or 

shorter than wide, longer than wide towards the ends, 2 ̶ 3.5 µm wide, 9  ̶16 µm long. 

Heterocytes basal or intercalary, 2 or 3 in a row, flattened, quadratic, or elongated oval, 

with shape spherical, hemispherical, conical, or irregular, rarely with two heterocytes side 

by side, within or outside sheath, bright brown to olive in color, 6 ̶ 12 µm wide, 9 ̶ 12 µm 

long. Arthrospores variable in shape, spherical to barrel-shaped, also irregular and 

rhomboid, typically distinctly granulated, with thin walls, blue-green, 7  ̶10 µm wide, 7 ̶ 

12 (17) µm long. Necridia present.  

Etymology: Named for its occurrence on limestone; calcareus (L) = calcareous. 

Holotype to be designated: BRY37768, Monte L. Bean Museum, Provo, Utah. 

Isotype to be designated: BRY37769, Monte L. Bean Museum, Provo, Utah. 
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Type locality: Wet limestone wall in the Sheep Creek Drainage, in the Carmel 

Formation, pH 7.9, Grand Staircase-Escalante National Monument, Utah, USA, 

37°29'06.30"N; 112°03'47.36"W. 

Reference Strain: Cyanomargarita calcarea GSE-NOS12-04C, deposited in the 

Cyanobacterial Culture Collection at John Carroll University. 

DISCUSSION 

 Originally, tapering cyanobacteria capable of producing heterocytes were placed 

either in the Rivulariaceae (Rivularia, Isactis, Brachytrichia and Gloeotrichia) or the 

Mastichotricheae (Calothrix, Dichothrix, Gardnerula (as Polythrix), and Sacconema) 

(Bornet et Flahault 1886). In the early part of the 20th century, these taxa, as well as other 

tapering taxa, including non-heterocytous forms, such as Leptochaete and Tapinothrix, 

were all placed in a single family, Rivulariaceae (Fremy 1929, Geitler 1932). The non-

heterocytous forms were removed from the family in the revision of the Nostocales 

completed by Komárek and Anagnostidis (1989) – this system continued in both 

Komárek (2013) and Komárek et al. (2014). Morphologically, these taxa are well-

defined, although the colonial morphology and production of hairs is typically lost in 

culture. The type species for Calothrix, C. confervicola Agardh ex Bornet et Flahault, has 

not yet been sequenced, and is marine in origin. The accepted type species for Rivularia, 

R. dura Roth ex Bornet et Flahualt, has also not been sequenced, and is freshwater in 

origin.  

 Confusion regarding the diagnosis of Calothrix from Rivularia clearly exists in 

the modern literature. In Bergey’s Manual of Systematic Bacteriology (Second Edition), 

the reference strains for Calothrix are all freshwater in origin (Rippka et al. 2001a), 
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whereas the three reference strains for Rivularia are all from saline habitats (Rippka et al. 

2001b). This ecological niche is the opposite of what one would expect based on the type 

ecology of the species. Subsequent to Rippka et al.’s (2001a, 2001b) work, more 

sequences in the tapering group were found (Sihvonen et al. 2007), yielding a phylogeny 

with four groups: 1) Rivularia, mostly from marine habitats, including the Bergey’s 

Manual reference strain Rivularia PCC 7716 (Rippka et al. 2001b), 2) Calothrix marine 

clade I, 3) Calothrix marine clade II, 4) Calothrix freshwater clade, and 5) Gloeotrichia 

clade. Berrendero et al. (2008) confirmed this result (although Gloeotrichia was not in 

their phylogeny), but showed that all three marine clades had at least some strains 

assigned to Calothrix and some strains assigned to Rivularia. In subsequent papers 

(Berrendero Gómez et al. 2016, León-Tejera et al. 2016), the five clades noted by 

Sihvonen et al. (2007) persisted in the phylogenetic analyses based on larger taxon sets. 

Our 16S rRNA phylogeny has the most taxa, and these five clades persist in our 

phylogeny as well (Fig. 1; Fig S1(A,B,C,D)). 

Although some confusion persists in the names assigned to strains in culture 

collections, the identity of these five clades is fairly stable. We suspect that the type for 

Calothrix, when it is isolated and sequenced, will fall within one of the marine Calothrix 

clades (Clade I or Clade II); Rivularia dura, when sequenced, will fall in the Rivularia 

clade defined in Berrendero Gómez et al. (2016) and León-Tejera et al. 2016. 

Gloeotrichia has already been moved to another family, the Gloeotrichaceae (Komárek et 

al. 2014). We anticipate that Calothrix-like taxa (Freshwater, Marine I, Marine II) likely 

will be revised and separated into three genera and placed in their own families, separate 

from the Rivulariaceae (Fig. 1). Based on either morphology or phylogeny, 
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Cyanomargarita does not fall into any previously described families, and will be placed 

in the Cyanomargaritaceae.  

 Much of the confusion in cyanobacterial taxonomy today is the result of the 

assumptions by earlier authors that a number of morphological features evolved within 

the phylum only once, or at best only a few times. Tapering trichomes inhabiting soft 

mucilage to form adherent colonies, false branching, and true branching were all 

characteristics that were thought to be significant and sufficient to group taxa into 

relatively few higher level taxa. We now know that these derived characters have arisen 

multiple times through the process of convergent evolution. Tapering trichomes occur in 

very phylogenetically distant and diverse groups: Rivularia, Isactis, Kyrtuthrix, 

Scytonematopsis, and Brachytrichia, in the Rivulariaceae; Calothrix, Dichothrix and 

Macrochaete in the Mastichotricheae (which will need renaming), Roholtiella and 

Calochaete in the Fortiaceae, Gloeotrichia in the Gloeotrichaceae, Goleter in the 

Nostocaceae, and Cyanomargarita in the Cyanomargaritaceae, indicating that tapering 

likely arose independently in the Nostocales at least six times. 

 True-branching was similarly considered to have been a unique feature that arose 

only once in the heterocytous cyanobacteria, and all true-branching forms were at one 

time in the Stigonematales. Based on molecular data, we now know that true branching 

occurs in the Scytonemataceae (Symphyonemopsis and Iphinoe), Stigonemataceae 

(Stigonema), Tolypothricaceae (Rexia), and Hapalosiphonaceae (Hapalosiphon, 

Fischerella, Westiellopsis and Nostochopsis, etc.), indicating this character arose at least 

four times. Indeed, in the Cyanomargaritaceae, cell division in two planes is present in 
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both species, and this is a prerequisite character to true-branching, although at present we 

have only seen the phenomenon in the basal cells of the trichomes in culture material. 

Polyphyly in cyanobacterial genera should not be a surprise.  Given that relatively 

few characters were given inordinate weight by early taxonomists, thinking that these 

characters could arise independently did not seem parsimonious or likely.  However, with 

a molecular understanding, we realize that many supposed synapomorphies in 

cyanobacteria are actually not homologous characters. It seems apparent that they are 

useful in the definition of genera, where they appear to be consistent across the entire 

group, but they fail in the definition of higher-level taxa. The exception appears to be the 

formation of heterocytes and akinetes, which are restricted to the Nostocales and 

therefore likely arose only once.  

Given the convergence of morphological traits in evolutionarily-distant lineages, 

the use of molecular sequence data to define family- and order-level taxa is likely going 

to increase. The morphological definition of families will likely be replaced by a 

phylogenetic definition (a monophyletic cluster of genera). This is already happening in 

other algal groups, such as the Sphaeropleales (Fučíková et al. 2014). We anticipate that 

as more molecular sequence data become available for more genera, the difficulty in 

using existing family-level taxonomy will increase in many algal groups, including 

cyanobacteria, and more families will be described and recognized in order to maintain 

monophyly and to stabilize taxonomy. These families will, unfortunately, often be 

difficult to characterize morphologically, and so will lose their meaning and value to the 
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taxonomic novice. However, a taxonomic system consistent with evolutionary history has 

long been the goal of taxonomists. 
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FIGURE LEGENDS 

Fig. 1. Bayesian phylogeny for Cyanomararita spp. within Nostocales based on a 

maximum of 1495 nucleotides from the 16S rRNA gene (254 OTUs). Branch support 

values are shown as Bayesian posterior probability. Two species of Cyanomargarita are 

highlighted in bold, the Rivulariaceae and Cyanomargaritaceae clades are highlighted in 

dark gray boxes; remaining family-level clades are highlighted with light grey boxes. 

Drawings of the spherical colonies in the right part of the boxes indicates tapering 

filaments showing similar morphology between Cyanomargarita and Rivularia. 

Fig. 2. Bayesian phylogeny for Cyanomararita spp. within Nostocales based on a 

maximum of 600 nucleotides from the rbcLX region (86 OTUs). Branch support values 

are shown as Bayesian posterior probability. Branch support values are shown as 

Bayesian posterior probability. Two species of Cyanomargarita are highlighted in bold, 

the Rivulariaceae and Cyanomargaritaceae clades are highlighted with dark gray boxes. 

Drawings of the spherical colonies in the right part of the boxes indicates tapering 

filaments showing similar morphology between Cyanomargarita and Rivularia. 

Fig. 3. Secondary structures of the 16S–23S ITSregion from both species. OP stands for 

different operons, with three operons recovered from C. melechinii and one operon from 

C. calcarea. Arrows on C. calcarea structures indicate base changes from the 

homologous operon 1 for C. melechinii. 

Fig. 4. Photographs and light micrographs of C. melechinii from natural populations (A) 

Habitat. (B) Underwater spherical and hemi-spherical macrocolonies on the Fontinalis 

sp. stems. (C) Colonial growth of radially arranged filaments. (D and E) Multiple 
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filaments with funnel-like widened sheaths and variably-shaped heterocytes. (F) 

Distinctly lamellated sheath and clear constrictions at branching trichome.  

Fig.5. Line drawings of C. melechinii from natural populations. (A) Underwater colonies 

on stones and mosses. (B) Spherical macrocolonies on mosses leaf. (C and D) Filaments 

forming tufts within colony. (E) Single filaments with false branching, firm sheath, and 

constrictions at crosswalls. (F) Variably-shaped heterocytes. Numerals indicate 

diagnostic characteristics used in species description: 1, Filament without constrictions; 

2, sheath with wavy striations; 3, funnel-like widened sheaths; 4, two heterocytes in the 

row; 5, intercalary involution cells; 6, juvenile single trichome without individual sheath; 

7, geminate branching on juvenile single trichome; 8, two necridia in a row; 9, different 

shaped heterocytes; 10, thin apical hairs. 

Fig. 6. Light micrographs of C. melechinii from cultures. (A) Tapinothrix clintonii like 

stages. (B) Spiraled and very entangled filaments. (C) Huge nodule from liquid medium. 

(D) Single, double and geminate branching types. (E) Unusual cell division in the 

perpendicular plane, dark-olive resting cells and strange endings of trichomes. (F) 

Variably-shaped heterocytes. 

Fig. 7. Line drawings of C. calcarea from cultures. (A) Initial stages with hormogonium 

(arrow) and single filaments without sheaths. (B) An isopolar filament divided by 

intercalary heterocyte formation into two heteropolar filaments within a common sheath. 

(C) Entangled filaments in stationary phase, with separation of arthrospores indicated by 

arrows (that will grow into new filaments, D). (D) Arthrospores, germinating to form 

juvenile filaments. (E) Variably-shaped heterocytes. 
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Fig. 8. Light micrographs of C. calcarea from cultures. (A) Macrocolonies on agar 

surface. (B) Entangled filaments with single and double false branching. (C) Individual 

filaments with variably-shaped arthospores (arrows). (D) Mature filaments with intensely 

brown sheath. (E and F). Variably-shaped heterocytes on well granulated trichomes.  

Fig. S1 (In 4 parts :A, B, C, D). Uncollapsed Bayesian phylogeny for Cyanomararita spp. 

within Nostocales based on maximum of 1495 nucleotides from the 16S rRNA gene (254 

OTUs). Level of support (Bayesian posterior probabilities) indicated with different 

colors.  
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Fig.5. 



 
 

41 

 

 

 

 

Fig.6. 
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Fig. S1A. 
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Fig. S1B. 
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Fig. S1C. 
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Fig. S1D. 
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