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Abstract 

 Atherosclerosis is a cardiovascular disease caused by a chronic inflammatory response in the 

cells lining blood vessels, vascular endothelial cells.  In these cells, a network of interacting proteins 

regulates inflammation.  One of these proteins, PRMT5, regulates the inflammatory response by 

methylating other proteins involved in inflammation.  For PRMT5 to carry out its function, it must first 

oligomerize with itself and various other proteins.  In this study, I determined whether mutations to 

specific PRMT5 methylation sites affect its ability to oligomerize.  By expressing PRMT5 in HEK293 cells 

and studying the effects of adding a chemical cross-linking agent, DMS, I was able to determine whether 

mutations to PRMT5 had an effect on cross-linking.  My results show that post-translational 

modifications are required at specific sites in PRMT5 in order for successful oligomerization to occur. 

Introduction 

Atherosclerosis is a major contributor to heart disease which is the leading cause of death in the 

United States (Heron, 2013).  Atherosclerosis is characterized by the build-up of plaque made of fat, 

cholesterol, and calcium in the blood vessels (Weber and Soehnlein, 2012).  This vascular disease, which 

can directly lead to stroke, heart attack, or death, is caused by an ongoing inflammatory response in the 

cells lining the blood vessels.   The longer the inflammation lasts in the blood vessels, the more likely a 

person will develop atherosclerosis (Libby, 2012). To find ways to prevent inflammation and therefore 

plaque build-up, researchers are focusing attention on the cells that make up the lining of blood vessels, 

endothelial cells (ECs).  Understanding the role of ECs in the maintenance of healthy blood vessels and 

their role in the development of vascular diseases could lead to treatment to prevent severe 

inflammation and ultimately atherosclerosis.     

 A variety of proteins on the surface of these ECs cooperate to produce a pro-inflammatory 

response.  These proteins include E-selectin and vascular cell adhesion molecule 1 (VCAM1) 
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(Bandyopadhyay, et  al., 2012).  E-selectin and VCAM1 are expressed on the outside of vascular 

endothelial cells when the cells are exposed to an inflammatory signal.  These inflammatory signals can 

be released when certain factors are present such as high cholesterol, diabetes, obesity, and smoking 

(de Maat, et al., 2002).  When leukocytes, white blood cells involved in the inflammatory and other 

immune responses, pass by the cells expressing E-selectin and VCAM1 the leukocytes attach to these 

proteins.  Once attached to the ECs, leukocytes release various molecules that elicit additional 

inflammation (Figure 1).  Among other responses, inflammation causes changes in gene activity 

mediated by proteins called transcription factors that either repress or activate gene expression.  One 

well studied protein, HOXA9, is a transcription factor that activates a variety of genes, including genes 

for VCAM1 and E-selectin (Bandyopadhyay, et  al., 2012).  Specifically, HOXA9 activates the E-selectin 

gene in ECs so that E-selectin can be expressed in these cells.   Because of HOXA9’s role in promoting 

gene expression in ECs, alteration of HOXA9 activity may change E-selectin and VCAM1 expression, 

leading to development of vascular defects and disease (Bandyopadhyay, et  al., 2007).   

 Not surprisingly, given that HOXA9 regulates the expression of proteins involved in the 

inflammatory response, HOXA9 itself is regulated to ensure that it is not constantly turning on genes.  A 

common mechanism used by cells to regulate the activity of proteins is by making chemical 

modifications to proteins.  These changes, known as post-translational modifications, include addition or 

removal of certain chemical groups on a protein that cause the protein to become more or less active 

(Snider, et al., 2014). Little is known about the chemical modifications that occur on HOXA9, however, it 

has been shown that HOXA9 interacts specifically with the enzyme PRMT5 in ECs that are currently 

expressing pro-inflammatory proteins (Bandyopadhyay, et al., 2012).  PRMT5 transfers methyl groups, 

methylation, to the amino acid arginine on target proteins, such as HOXA9 (Kanamaluru, et  al., 2011).  

Methylation is an important regulatory step in many cellular processes including the cell cycle and DNA 

replication (Lee, et al., 2005).   
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PRMT5 is a regulator of not only inflammatory responses but also other important cellular 

processes such as transcriptional regulation, RNA processing, signal transduction, and DNA repair (Figure 

2). Since PRMT5 itself is involved in such important processes, its activity must be regulated (Karkhanis, 

et al., 2011). Methylosome protein 50, MEP50, interacts with PRMT5 to regulate its activity.  MEP50 may 

regulate PRMT5’s activity either by directly binding to PRMT5 or by directing PRMT5 to specific targets 

that need to be methylated (Wang, et al., 2013).  Recently, it was found that MEP50 binds to PRMT5 

complexes in order to regulate PRMT5 activity (Figure 3).  Like PRMT5, MEP50 itself can modify and 

methylate specific arginine residues in target proteins (Ho, et al., 2013).   

 With respect to PRMT5’s role in atherosclerosis, studies are underway to understand how 

PRMT5 controls the inflammatory response in ECs lining the blood vessels.  Recent experiments suggest 

that PRMT5 directly regulates the pro-inflammatory response in ECs by interacting with and methylating 

the HOXA9 protein, which in turn changes the activity of specific genes including inflammatory response 

genes (Bandyopadhyay, et al, 2012). For PRMT5 to methylate its targets, the protein undergoes 

oligomerization, the formation of a complex containing multiple PRMT5 molecules and other proteins 

(Rho, et al., 2001).  One study has shown that when PRMT5 forms multimers, MEP50 becomes part of 

the complex, allowing for full PRMT5 methylation activity (Antonysamy, et al., 2012).  This observation 

suggests that oligomerization is necessary for PRMT5 function and regulation of inflammation in ECs.  If 

PRMT5 is mutated in a way that does not allow proper oligomerization, MEP50 cannot bind to the 

complex and PRMT5 function is compromised (Figure 4).   

 These data suggest that oligomerization of PRMT5, MEP50, and other proteins is critical for 

proper PRMT5 function and regulation of inflammation.  Therefore, understanding the factors that 

contribute to successful PRMT5 oligomerization may provide insight into chronic inflammation. Previous 

work has shown that severe inflammation results when PRMT5 is methylated (Bandyopadhyay, et al., 
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2012).  Mass spectrometry analysis of PRMT5 has revealed that the protein is methylated at three amino 

acid residues: lysine at position 200 (K200), lysine at position 240 (K240), and arginine at position 492 

(R492), (Figure 5, S. Bandyopadhyay, personal communication).  I hypothesized that the addition of 

methyl groups to these specific amino acids plays a role in PRMT5 oligomerization and formation of the 

activated complex responsible for regulating the inflammatory response.  To investigate this hypothesis, 

I examined the effect of mutations that alter the methylation of these sites in PRMT5.  

Methods 

PRMT5 cDNAs 

 PRMT5 cDNA was purchased from Origene Technologies (Rockville, MD).  PRMT5 was subcloned 

into pcDNA3 and a Myc epitope was introduced upstream of the initiating codon by PCR.  PRMT5 

mutant cDNAs were created by direct site mutagenesis (S. Bandyopadhyay, personal communication).   

Cell Culture and Transfection 

 Human embryonic kidney 293 (HEK293) cells were cultured in DMEM medium supplemented 

with 15% fetal bovine serum (FBS) at 37 °C with a CO2 concentration of 5%.  Transfections were carried 

out with Lipofectin 2000 according to manufacturer’s protocol (Life Technologies, Inc.).  Briefly, 10 µg of 

PRMT5 expression vectors were added to cultured cells at 80% to 90% confluence for 5 hours using 

OptiMEM (Life Technologies, Inc.).  Cells were allowed to recover for 16 to 20 hours before harvesting.  

Transfection efficiency was assessed in an independent experiment using a GFP expression pcDNA3 

vector.  Typically, at least half of the cells were transfected (data not shown). 

Immunoprecipitation Assays 

 Immunoprecipitation was used to detect PRMT5 expression in transfected cells.  Lysates from 

cells expressing wild-type and mutant PRMT5 were prepared in RIPA buffer (25 mM Tris•HCl pH 7.6, 150 

mM NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% SDS) and phosphatase and protease inhibitor 
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cocktails (Life Technologies, Inc.).  Lysates were incubated overnight at 4°C with rabbit monoclonal anti-

Myc antibody (Santa Cruz).   Protein A/G agarose beads (Santa Cruz) were added to the lysates, and the 

mixtures were rotated overnight at 4°C.  The A/G beads were washed four times with RIPA buffer.  

Washed beads containing immunoprecipitates were boiled with 2X Laemmli protein sample buffer 

(Sigma), and proteins were subjected to SDS-PAGE followed by Western blot analysis. 

Western Blot Analysis 

 Expression of Myc-tagged wild-type and mutant PRMT5 proteins was confirmed by Western 

blotting.  Briefly, protein extracts was separated on a 10% SDS-PAGE gel and blotted to a membrane.  

Anti-PRMT5 antibody (Millipore) was used to detect proteins. 

Immunoprecipitated proteins  were separated on 6%, 8%, or 10% SDS-PAGE gels and then 

transferred electrophoretically onto Immobilon-P membrane as previously described (Bandyopadhyay, 

2007).  The membranes were incubated with protein-specific primary antibodies including anti-PRMT5 

and anti-Myc for 5-24 hours followed by incubation with horseradish peroxidase (HRP) – conjugated 

specific secondary antibodies (Millipore) for 2-3 hours.  Immunocomplexes were detected by 

chemiluminescence (ECL; Amersham Pharmacia Biotech).   

Chemical Cross-linking of Immunoprecipitates 

 After PRMT5 was pulled down with A/G agarose beads, immunoprecipitated proteins were 

chemically cross-linked using dimethyl suberimidate (DMS, Thermo Scientific).  An equal volume of DMS 

(2 mg/mL in 20 mM HEPES, pH 8.5) was added to each immunoprecipitate .  Reactions were incubated 

for 2 hours at room temperature.  Following incubation, 4X Laemmli buffer was added to the reactions, 

which were then boiled to remove beads and anti-Myc antibodies in preparation for SDS-PAGE and 

Western blot analysis. 
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Results 

Expression of wild-type and mutant PRMT5 in HEK293 cells 

 We first wanted to determine if wild-type and mutant PRMT5 could be expressed in HEK293 

cells which are commonly used for expressing a variety of different proteins.   Cells were transfected 

with expression vectors containing Myc-tagged PRMT5 wild-type or mutant cDNAs including K200A1, 

K200R1, K240R1, R492A1, and R492K1 (Table 1). The Myc-tag was used to separate PRMT5 from other 

proteins present in the cells. Cells were harvested 18-24 hours after transfection and lysed.  Following 

immunoprecipitation, proteins were analyzed by Western blot.  Wild-type and mutant PRMT5 

expression was highly variable (Figure 6).  The level of expression of mutant PRMT5 was much higher 

than the level of expression for the wild-type PRMT5 (Figure 6, compare lanes 2-8).  Therefore, we 

determined that wild-type and mutant PRMT5 could be successfully expressed in HEK293 cells and that 

there appears to be a higher expression level of the mutant protein as compared to the wild-type 

PRMT5. 

Oligomerization of PRMT5 and mutants 

 Next, we wanted to determine if certain mutations in PRMT5 would affect its ability to 

oligomerize. The mechanism behind PRMT5 oligomerization is thought to involve amino acid 

methylation.  Since the amino acid residue K200 in the PRMT5 protein is known to be methylated (S. 

Bandyopadhyay, personal communication), we wanted to determine if mutating this lysine would affect 

the methylation process and therefore affect PRMT5’s ability to oligomerize.  

To do this, HEK293 cells were transfected with wild-type and mutant PRMT5 Myc-tag expression 

vectors, and cells were harvested and lysed 18-24 hours after transfection.  After separation of the Myc-

tagged PRMT5 proteins from lysates, wild-type and mutant PRMT5 were aliquoted into two groups.  
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One aliquot was a non-cross-linked control and the other aliquot was treated with DMS.  All samples 

were analyzed by Western blot with anti-Myc or anti-PRMT5 primary antibodies (Figures 7 and 8).   

There is evidence of chemical cross-linking when DMS is applied to wild-type PRMT5 as opposed 

to when DMS is absent and no cross-linking occurs (Figures 7, compare lanes 1 and 2).    Cross-linking is 

seen in the multiple higher molecular weight bands seen in lane 2 that are not visible in lane 1.  This is 

evidence that PRMT5 is present in oligomers under these conditions.  From this data, however, we are 

unable to determine whether other proteins comprise the oligomers besides PRMT5 and what the 

stoichiometry of these proteins is.  The bands that are present below the PRMT5 band are probably 

PRMT5 degradation products (Figure 7, lane 1). 

All PRMT5 mutants tested show evidence of oligomerization when DMS was applied, but to 

varying degrees.  In the K240R1 mutant, a smaller amount of cross-linked protein is seen as compared to 

the cross-linked wild-type PRMT5 (compare lanes 2 and 4, Figure 8).  There is an even smaller amount of 

chemically cross-linked proteins in the R492A1 mutant as compared to the wild-type PRMT5 (compare 

lanes 2 and 6, Figure 8).  The K240R1 mutant had a smaller effect on PRMT5 oligomerization than the 

R492A1 mutant did.  The mutant R492K1 cross-linking results show about the same amount of protein is 

cross-linked as compared to the wild-type PRMT5. This suggests that the mutation from an arginine to a 

lysine at position 492 has little or no effect on PRMT5 oligomerization (compare lanes 2 and 8, Figure 8).  

 From these results, I concluded that although mutations to PRMT5 methylation sites do not 

completely prevent oligomerization of PRMT5, some mutations such as K240R1 and R492A1 reduce the 

degree of PRMT5 oligomerization.  However, in some cases, such as the R492K1 mutant, oligomerization 

is only slightly affected.  This may indicate that each site examined in this study may have a distinct role 

in forming oligomers.  
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Discussion 

In this project, I showed that certain mutations in PRMT5 can affect its ability to oligomerize 

while other mutations seem to have little effect on oligomerization.  For example, the PRMT5 mutants 

K240R1 and R492A1 show less oligomerization than the wild-type PRMT5 (lanes 2, 4 and 6, Figure 8).  

On the other hand, the R492K1 mutant shows about the same amount of oligomerization as the wild-

type PRMT5 (lanes 2 and 8, Figure 8).  This similarity raises the possibility that lysine can substitute for 

arginine and that lysine can be methylated to allow PRMT5 oligomerization.  However, different amino 

acid residues undergo distinct post-translational modifications which may account for differences seen 

in PRMT5 oligomerization.  For example, the lysine residue normally found at position 240 in PRMT5 can 

be acetylated or methylated (S. Bandyopadhyay, personal communication).  When changing this residue 

to an arginine, less PRMT5 oligomerization is seen.  Even though arginine can be methylated, as can 

lysine, arginine can only be dimethylated while lysine can be trimethylated, and the trimethylation at 

this specific site may be necessary for full PRMT5 oligomerization.  The fact that an arginine mutation at 

this site causes a lower level of PRMT5 oligomerization suggests that trimethylation at this site may be 

critical for full oligomerization of PRMT5. 

An alanine substitution at position 492 in PRMT5 has the most detrimental effect on PRMT5 

oligomerization (Figure 8, lane 6).  Alanine cannot be methylated like arginine and lysine can (S. 

Bandyopadhyay, personal communication).   Therefore, methylation at this specific site may be 

necessary for PRMT5 oligomerization, and without an amino acid residue that can be methylated at this 

site, a significant decrease in PRMT5 oligomerization is seen.   

Although the data show that there is a decrease in oligomerization in mutant PRMT5 proteins 

possibly related to the methylation sites, experiments with more mutations to PRMT5 methylation sites 

need to be conducted.  Such mutations should include neutral and negatively charged amino acid 
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residues in order to determine if positively charged amino acid residues are critical for PRMT5 

oligomerization.  For example, the arginine at position 492 could be changed to glutamic acid to 

determine the effect of a negatively charged amino acid at this site.  At the same time, it would be 

helpful to determine the methylation status of each of the mutated residues by mass spectrometry. This 

may give some indication whether the residue is essential for oligomerization by methylation. 

MEP50 is known to form a complex with PRMT5 during oligomerization, but we did not know if 

MEP50 is present in the PRMT5 oligomers.  To test the effect of PRMT5 mutations on MEP50’s ability to 

oligomerize with PRMT5, Myc-tagged PRMT5 oligomers could be isolated by immunoprecipitation, 

chemically cross-linked and analyzed by Western blotting with an anti-MEP50 antibody.  This would 

reveal if mutations in PRMT5 affect MEP50’s ability to oligomerize with PRMT5.  Another experiment 

that would be helpful is to determine if the mutated PRMT5 proteins contain any catalytic activity, and if 

so, to compare that catalytic activity to the wild-type PRMT5 activity.  By determining the mutant 

PRMT5’s activity, the mutation that inhibits PRMT5 from regulating proteins involved in inflammation 

can be determined.  

In conclusion, the results from this preliminary study suggest that specific amino acids are 

important in PRMT5 oligomer formation and potentially regulation of inflammation.  Future research is 

needed to understand the role of specific modifications to specific amino acids in order to clarify how 

PRMT5 oligomerizes.  Because of PRMT5’s role in regulating inflammation, PRMT5 could potentially be a 

drug target for treating atherosclerosis and other heart diseases.  
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Figure 1. Role of E-selectin and VCAM1 in vascular inflammation.  E-selectin and VCAM1 recruit 

leukocytes to vascular endothelial cells. Binding of leukocytes to VCAM1 and E-selectins triggers release 

of cytokines, leading to inflammation.  

Figure 2. Regulatory roles of PRMT5 (S. Bandyopadhyay, personal communication).  A) PRMT5 is a 

cofactor for various proteins involved in regulation of gene expression. B) PRMT5 is a component of 

multiple protein complexes that are involved in RNA transport and splicing. C) PRMT5 influences 

pathways that regulate the cell cycle. D) PRMT5 is involved in DNA repair.  

Figure 3. Three-dimensional structure of PRMT5-MEP50 (Ho, 2013). A) Space filling model of PRMT5 

and MEP50 hetero-octamer with 4 molecules each of PRMT5 and MEP50. B) Ribbon model of PRMT5 

and MEP50 hetero-octamer.  

Figure 4.   PRMT5 oligomer formation. A) Oligomer formation is dependent on methylation of wild-type 

PRMT5. B) Mutation of methylation sites renders PRMT5 unable to oligomerize and form a PRMT5-

MEP50 complex. 

Figure 5. Schematic diagram of locations of PRMT5 mutations examined in this study. 

Figure 6.  Expression of wild-type and mutant PRMT5 in HEK293 cells.  HEK293 cells transfected with 

wild-type and mutant Myc-tagged PRMT5 expression vectors were harvested 18-24 hours after 

transfection.  The proteins were extracted and PRMT5 was isolated by immunoprecipitation with anti-

Myc antibody. Immunoprecipitates were analyzed on a 10% SDS-PAGE gel followed blotting and 

detection with anti-PRMT5 primary antibody.  The arrow indicates the PRMT5 protein at approximately 

75 kDa. 

Figure 7. Analysis of chemical cross-linking of wild-type PRMT5 immunoprecipitates.  HEK293 cells 

were transfected with wild-type Myc-tagged PRMT5 expression vectors and the cells were harvested 18-
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24 hours after transfection.  The proteins were extracted by immunoprecipitation with anti-Myc 

antibody followed by cross-linking with DMS.  Proteins were analyzed using a 8% SDS-PAGE gel and 

immunoblotting using anti-Myc primary antibody.  The arrow indicates the monomer PRMT5 at 

approximately 75kDa; -, no DMS; +, DMS added. 

Figure 8. Analysis of chemical cross-linking of wild-type and mutant PRMT5.  HEK293 cells were 

transfected with wild-type and mutant Myc-tagged PRMT5 expression vectors and the cells were 

harvested 18-24 hours after transfection.  The proteins were extracted by immunoprecipitation with 

anti-Myc antibody followed by cross-linking with DMS.  The results were analyzed using a 8% SDS-PAGE 

gel and immunoblotting with anti-PRMT5 primary antibody.  The arrow indicate the monomers of 

PRMT5 at approximately 75kDa; -, no DMS; +, DMS added. 
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Table 1: PRMT5 Mutants Examined in this Study 

Abbreviation Position Wild-type Amino Acid Mutant Amino Acid 

K200A1 200 Lysine ( K ) Alanine ( A ) 

K200R1 200 Lysine ( K ) Arginine ( R ) 

K240R1 240 Lysine ( K ) Arginine ( R ) 

R492A1 492 Arginine ( R ) Alanine ( A ) 

R492K1 492 Arginine ( R ) Lysine ( K ) 
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