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Significant suppression of ferromagnetism by hydrostatic pressure in the
diluted magnetic semiconductor Sb,_,V,Te; with x<0.03

J. S. Dyck,? T. J. Mitchell, A. J. Luciana, and P. C. Quayle
Department of Physics, John Carroll University, University Heights, Ohio 44118, USA

C. Drasar and P. Lostak

Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic
(Received 30 July 2007; accepted 31 August 2007; published online 20 September 2007)

The authors report on the hydrostatic pressure dependence of the magnetotransport properties of
ferromagnetic Sb,_,V Te; single crystals with x=0.02—0.03. Pressure significantly increases the
free hole concentration in these compounds. In turn, the Curie temperature is suppressed by roughly
40%, which goes against many models that would predict an increase in Curie temperature with
increasing carrier concentration. These results indicate that the ferromagnetism in these materials is
carrier mediated and that a full Ruderman-Kittel-Kasuya-Yosida model that takes into account the
oscillatory nature of the indirect exchange interaction among localized spins is needed in order to
explain the data. © 2007 American Institute of Physics. [DOI: 10.1063/1.2787881]

The tetradymite-type, narrow-gap semiconductors doped
with small concentrations of transition metal ions have been
identified as diluted magnetic semiconductors (DMSS).lf4 In
Sb,_,TM,Te; single crystals with TM=V,Cr, ferromagnetic
order develops at low temperatures (up to ~25 K) with a
Curie temperature 7 that is proportional to x."? The origin
of the ferromagnetic order in these materials is so far not
established, but a carrier-mediated interaction among local-
ized transition metal (TM) moments is likely given the dilute
nature. Theoretical studies have been aimed at predicting 7
in DMS materials and understanding the details of the spin-
carrier interactions that give rise to long range ferromagnetic
order. (See Ref. 5 for a review.)

Unlike the traditional III-V based diluted magnetic semi-
conductors doped with manganese where Mn is an acceptor,6
providing both holes as well as localized spins, the TM ions
in Sb,Te; do not alter the background hole concentration p.
DMS systems that allow one to independently vary the mag-
netic ion and free carrier concentration independently are
attractive to help study the origin of ferromagnetism in these
compounds. Normally, one is faced with the complication of
codoping to alter p, introducing a fourth element such as in
(Ga,Be),_Mn,As (Ref. 7) or (Sb,Bi),_,V,Te; (Ref. 8) and
in such materials, it is difficult to control x and p simulta-
neously over a wide series of samples.

This paper is focused on studying the free hole concen-
tration dependence of the Curie temperature by varying p in
a single sample using pressure as an external variable. There
are very few experiments in the literature utilizing pressure
as a tool to investigate spin-carrier interactions in a ferro-
magnetic DMS. In one very recent example, it was observed
that application of high pressures increases T, from
7.0 to 8.8 K in In;_ Mn,Sb thin films.” Unlike in our experi-
ments, pressure did not affect the carrier concentration in
In;_Mn,Sb. Therefore, our material system provides a
unique opportunity to probe the impact that hole concentra-
tion has on the magnetic phase diagram.
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Pure Sb,Te; single crystals, the host structure of the
DMS considered here, typically have a background hole con-
centration of 1X10?° cm™ due to the presence of native
antisite defects. The valence band is sixfold degenerate, and
data from the Shubnikov—de Haas measurements suggest the
existence of a high mobility upper valence band and a lower
valence band with much lower mobility,10 though the lower
valence band is not well characterized. High pressure signifi-
cantly alters the electrical transport properties in Sb,Tes as
evidenced by a decrease in electrical resistivity, an effect
also seen in vanadium-doped variants to be presented here.
The origin of this change may be due to a modification of the
band structure, though recent band structure calculations pre-
dict very little change in the valence band near the Fermi
energy under hydrostatic pressure.12 Another possibility is an
increase in total hole concentration. First-principles calcula-
tions found that hydrostatic pressure lowers the formation
energy of antisite defects in szTe3,13 though the kinetics of
defect formation has not been studied. Regardless of the
mechanism, our high pressure studies demonstrate a clear
connection between hole concentration and Curie tempera-
ture in vanadium-doped Sb,Te;.

Bulk, single crystals of Sb,_,V,Te; with 0.02<x
=<0.03 were prepared by a modified Bridgman method.
Crystal composition and stoichiometry were verified by
atomic absorption spectroscopy and electron probe mi-
croanalysis. Samples for magnetotransport measurements
under high pressure were cut using a spark erosion tech-
nique. The specimens were loaded into a liquid-clamp pres-
sure cell with 3M™ Fluorinert™ electronic liquid FC-77 as
pressure transmitting fluid, and pressures were determined in
situ using a calibrated InSb gauge. Temperature dependent
electrical resistivity, Hall effect, and magnetoresistance in a
standard six-probe configuration were performed in a 6 T
magnet cryostat system using a digital lock-in amplifier op-
erating at 16 Hz. Magnetic field was oriented parallel to the
crystallographic ¢ axis. The Hall coefficient was determined
from the slope of the Hall resistivity versus field curve,
which was linear above 0.5 T for all samples and tempera-
tures (near and below T, a small nonlinearity at low fields
results from the anomalous Hall effect).

© 2007 American Institute of Physics
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FIG. 1. Pressure dependence of the resistivity vs temperature for

Sb, 97V 03Tes single crystal. (Inset) Normalized resistivity at low tempera-
ture which shows that pressure decreases the Curie temperature.

A plot of resistivity p versus temperature for a single
crystal of Sb,_,V, Te; with x=0.03 is given in Fig. 1 for a
range of pressures up to 1.5 GPa. Over most of the tempera-
ture range, p increases with 7, characteristic of a degener-
ately doped semiconductor. As pressure is increased, the re-
sistance is reduced proportionally at all temperatures, which
indicates that the scattering mechanisms do not evolve with
pressure. At low temperatures (see inset), a peak develops
which signals a ferromagnetic transition. Qualitatively simi-
lar behavior was seen with other samples with lower x, with
the resistivity peak developing at a lower temperature. Ear-
lier experiments verified that this peak correlates directly
with the Curie temperature 7 as determined by magnetiza-
tion data.' As pressure is increased, this peak smoothly shifts
from 14 to 8.5 K at 1.5 GPa, corresponding to a 40% de-
crease in 7. Upon releasing the pressure, the original prop-
erties are obtained indicating reversibility.

Magnetoresistance (MR) data also illustrate a weakening
of the ferromagnetism with pressure. Figure 2(a) displays the
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FIG. 2. (a) Pressure dependence of normalized magnetoresistance vs mag-
netic field at 4.2 K for Sb; o;V3Te; single crystal. (b) Atmospheric pres-
sure magnetoresistance hysteresis loop; coercive field Hc is indicated by
dashed lines. (c) Pressure dependence of the coercive field at 4.2 K.
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FIG. 3. (a) Free hole concentration and (b) Hall mobility at 4.2 K and room
temperature as a function of pressure for Sb,_,V Te; single crystals.

resistivity normalized to the zero field value at 4.2 K for a
range of pressures in Sb; ¢,V 3Te;. Other samples showed
the same behavior. Applied field causes a reduction of the
spin disorder scattering resulting in a negative MR, which is
directly related to the sample magnetism. Increased pressure
moves T to lower temperatures, and hence the negative MR
is less prominent. The coercive field H- was determined
from the hysteresis in MR at low fields as displayed in Fig.
2(b). Lower vanadium concentration yields a lower H, and
Fig. 2(c) shows that pressure significantly reduces H - for all
values of x.

Hall effect measurements were carried out to uncover
the dual role that carrier concentration plays in affecting both
the resistivity and Curie temperature. Because the Hall coef-
ficient is independent of magnetic field, a single band model
with only one type of hole, rather than two, is favored here.
This enables a straightforward determination of hole concen-
tration from p=1/(eRy), where Ry is the Hall coefficient.
The influence of pressure on the carrier concentration in
Sb,_,V,Tes is illustrated in Fig. 3(a). Our data show a clear
increasing trend in p with applied pressure for all samples.
Further, the Hall mobility uy=R,/p is very insensitive to
pressure [see Fig. 3(b)]. By comparing to the pressure depen-
dence of the electrical resistivity in Fig. 1 and noting that
p=1/peu, one can clearly see that the reduction in p is
caused by an increase in p. The fact that mobility is roughly
constant with pressure also suggests that the hole effective
mass is not changing, further supporting a single band
picture.

It is clear that pressure is suppressing the Curie tempera-
ture in Sb,_,V,Tes single crystals with x<0.03, and we pos-
tulate that the primary cause is an increase in the hole con-
centration. A mean-field model is often invoked to describe
T of DMS and predicts that T S(S+ 1)mn;p'?, where S is
the vanadium spin (S=1), m is the hole effective mass, and n;
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FIG. 4. Dependence of RKKY oscillatory function F(2kzr) as a function
ion—ion separation r for two values of the carrier concentration. The dashed
line represents the average separation between vanadium ions for x=0.03.
(Inset) Sign of the magnetic interaction (ferromagnetic is positive) as a
function of carrier concentration. The impact of pressure on carrier concen-
tration leads to a suppression of ferromagnetism within this model.

is the concentration of magnetic ion impurities.”’15 Our
transport results above suggest a single band model with p
increasing by roughly a factor of 2 at the highest pressures,
while m stays constant, implying that 7 should increase.
However, this model is not valid unless p/n;<1 (Refs. 16
and 17) and carrier mobility is small ensuring that the sign of
the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction is
only ferromagnetic because the first zero in the oscillating
RKKY term (see below) occurs at a distance much longer
than the mean free path.18 Adopting a model of a sixfold
degenerate valence band (i.e., total hole concentration di-
vided among six equivalent carrier pockets), p/n; increases
from ~0.1 to ~0.2 with increasing pressure. In this case
RKKY oscillations could lead to frustrated indirect coupling
between local moments and to a suppression of ferromag-
netism with increased p.

The RKKY exchange Hamiltonian between the vana-
dium spins at sites i and j is expressed by H
=3, J(r)S;-S;, with J(r) cmJgkF(2kpr)e™C. Here, r; is
the distance between i and j, ¢ is the mean free path of
carriers, J is the local Zener coupling between vanadium
local moments and hole spins, kz=(37°p)'" is the Fermi
wave number in a parabolic band approximation, and F(x)
=x"*sin(x)-x cos(x)]. In Fig. 4, we plot F(2kgr) for a
single carrier pocket versus r; for p of 1.5% 10" and
2.8 X 10%° cm™, representing the range of hole concentra-
tions accessed by tuning pressure. The average separation
between vanadium spins r,,=(n;)""* for x=0.03 is shown
with a dashed line, illustrating that the first zero in F ap-
proaches r,, as p increases. Further, we note that mean free
paths calculated from the carrier mobilities at 4 K had values
of 8+1 nm, encompassing several sign changes in J(r).
While a full calculation of the Curie temperature is beyond
the scope of this paper, we explore a simplified model. Curie
temperature  will be proportional to kpS,a,F(2kpr)e™",
where a, is the number of rth nearest vanadium ion neigh-
bors. A calculation based on vanadium ion concentration dis-
tributed uniformly over a simple cubic lattice including
terms out to r;;>12 nm is shown in the inset of Fig. 4. The

Appl. Phys. Lett. 91, 122506 (2007)

sum is positive at a hole concentration per carrier pocket of
1.5% 10" ¢cm™, indicating that ferromagnetism is predicted,
and increase to 2.8 X 10'” cm™ results in a roughly 30%
decrease—a notable agreement with our reduction in 7 ob-
served experimentally. The pressure dependence of J, is
taken to be constant here but is expected to increase mod-
estly as has been seen in Inl_anbe.9 More detailed calcu-
lations are warranted for this system, as was recently done
for Ga,;_,Mn,As taking into account the discrete nature of the
underlying lattice and disorder in the ion distribution.'® We
note that our data are in qualitative agreement with this
work, which predicts that ferromagnetism is suppressed for
p/n; in the range 0.1-0.25.

In conclusion, we have measured the transport properties
as a function of magnetic field and pressure on Sb,_,V, Tes
single crystals over a range of ion concentration
x=0.02-0.03. Electrical resistivity and Curie temperature
decrease significantly with applied pressure. Our Hall data
indicate that the reduction in p is due to an increase in free
hole concentration, and effective mass and scattering mecha-
nisms are unaffected. Further, transport data are consistent
with a single valence band picture, greatly simplifying com-
parisons to free-carrier-mediated models of ferromagnetism.
Our data strongly suggest that the ferromagnetic order in this
material is hole mediated and that a full RKKY theory which
includes the oscillatory nature of the indirect ion—ion inter-
action is needed in order to explain the data.

We wish to acknowledge financial support from Re-
search Corporation Award CC6035 (J.S.D.) and Ministry of
Education Youth and sports of Czech Republic under the
project MSM 0021627501 (C.D. and PL.).
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