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ABSTRACT

With CMOS technology scaling reaching its limitations rigorous research of alternate and

competent technologies is paramount to push the boundaries of computing. Spintronic and resis-

tive memories have proven to be effective alternatives in terms of area, power and performance to

CMOS because of their non-volatility, ability for logic computing and easy integration with CMOS.

However, deeper investigations to understand their physical phenomenon and improve their prop-

erties such as writability, stability, reliability, endurance, uniformity with minimal device-device

variations is necessary for deployment as memories in commercial applications. Application of these

technologies beyond memory and logic are investigated in this thesis i.e. for security of integrated

circuits and systems and special purpose memories. We proposed a spintonic based special purpose

memory for search applications, present design analysis and techniques to improve the performance

for larger word lengths upto 256 bits. Salient characteristics of RRAM is studied and exploited in

the design of widely accepted hardware security primitives such as Physically Unclonable Function

(PUF) and True Random Number Generators (TRNG). Vulnerability of these circuits to adversary

attacks and countermeasures are proposed. Proposed PUF can be implemented within 1T-1R con-

ventional memory architecture which offers area advantages compared to RRAM memory and cross

bar array PUFs with huge number of challenge response pairs. Potential application of proposed

strong arbiter PUF in the Internet of things is proposed and performance is evaluated theoretically

with valid assumptions on the maturity of RRAM technology. Proposed TRNG effectively utilizes

the random telegraph noise in RRAM current to generate random bit stream. TRNG is evaluated

viii



for sufficient randomness in the random bit stream generated. Vulnerability and countermeasures

to adversary attacks are also studied. Finally, in thesis we investigated and extended the applica-

tion of emerging non-volatile memory technologies for search and security in integrated circuits and

systems.
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CHAPTER 1 : INTRODUCTION

CMOS technology has been workhorse of design in electronics industry because of electric

field controlled operation and lower power consumption of MOSFETS compared to other semicon-

ductor technologies such as Bipolar Junction Transistors. Constant scaling of CMOS devices has

been enabling the semiconductor industry to meet the consumer electronics product market require-

ments such as smaller size (miniaturization), light weight battery powered gadgets with enormous

computing capability comparable to a desktop [4]. Scaling of CMOS itself is driven by Moore’s

law. Moore’s law has been guiding semiconductor industry to push the boundaries of technology

and process since past several decades. However, the scaling dictated by Moore’s law is exponential

and doesn’t continue indefinitely due to several technology challenges and practical limitations [5]

such as precision in photo lithographic process, electrical limitations due to Short Channel Effects

(SCA), Narrow Channel Effects (NCA) and the ever changing needs by applications (memory in-

tensive and longer standby times). This chapter presents a review of technology scaling challenges

and the technologies beyond CMOS in exploration to address these challenges.

1.1 Conventional CMOS and Design Challenges

CMOS technology is benefited by the advantages of scaling in terms of performance, dynamic

power and area. However, scaling below 65nm leakage power increases exponentially offering new
1Portions of this chapter were reprinted from Ghosh, Swaroop. "Spintronics and Security: Prospects, Vulnerabil-

ities, Attack Models, and Preventions." Proceedings of the IEEE 104, no. 10 (2016): 1864-1893.
Permission is included in Appendix A.
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challenges to continuous scaling [6]. Increase in the leakage power due to the effects of short and

narrow channel which were not considered earlier become prominent in the feature size below 65nm.

Power consumption of a CMOS chip has two major components namely, dynamic and leakage power.

Total power in a CMOS circuit is modeled as P = fCV 2 +V Ileakage; f is the frequency of operation,

C is the total load capacitance, V is operating voltage and Ileakage is the leakage current in the

active/standby mode.

In addition to Drain Induced Barrier Lowering (DIBL) and increased subthreshold leakage

contributing to high leakage power, effects of Hot Carrier Injection (HCI), Time Dependent Dielec-

tric Breakdown (TDDB) and Bias temperature Instability (BTI), high power density, increased soft

error probability with scaling of threshold voltage [7],mobility degradation [8] and process variations

add the reliability concerns with submicron scaling.

Aside from limitations of CMOS for logics and circuit design CMOS based memories such

as Dynamic RAM (DRAM), Static RAM(SRAM) and flash memories have shown several design

challenges with technology scaling [9, 10, 11, 12, 13].Also, finding a single memory technology that

caters to the requirements at all levels of memory hierarchy with logic is another motivation to

research emerging memory technologies. Such memory is termed as ’Universal memory’ technology

[14, 15, 16]. STT-RAM and RRAM technology are potential candidates as Universal memory

achieved by tuning the characteristics of memory device [15, 17].

With the raising concerns for security the metrics of power, performance and area do not

suffice in the IC design for modern applications. In the era of Internet besides sophisticated IC

manufacturing process security at the root level in the IC manufacturing and supply chain becomes

essential [18]. Various CMOS based security primitives and countermeasures have been proposed
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in the literature [19]. However, CMOS based designs have demonstrated vulnerability to adversary

attacks such as side channel attacks[20, 21] and offer limited features for the design of security

primitive. This necessitates the search of emerging technologies for hardware security applications

[18].

1.2 Emerging Technologies - Beyond CMOS for Memory and Computing

In the wake of ever changing computing needs by modern applications [17] and to overcome

the challenges of CMOS technology scaling several non-classical CMOS devices, memory devices

and logic devices have been researched [22, 23]. Non-classical CMOS devices include ultra-thin

body SOI transistor, band-engineered transistors, FinFET, vertical transistors, high-k/metal gate

transistors, ballistic channel transistors [24], Double-gate transistor, and so on.Non Volatile Memory

(NVM) technologies explored for both storage and computing within memory include memristor,

spintric based memories such as spin valve, Magnetic RAM (MRAM), Spin-Transfer Torque RAM

(STT-RAM) using Magnetic Tunnel Junction (MTJ) device and Domain Wall Memory (DWM),

Restive Random Access Memory (RRAM) and variants, Phase Charge Memory (PCM), Nano Elec-

troMechanical (NEM) devices, and so on. MTJ and RRAM based memory cells have proven to

be competent and potential replacement candidates to DRAM and SRAM currently used in com-

puting devices [17]. Further, spintronic and RRAM devices can be fabricated in the via space of

CMOS layout with fewer additional mask layers in the manufacturing process. Therefore, they are

compatible with existing CMOS fabrication process technology.

Advantages of emerging NVM technologies have been exploited for various circuit and ar-

chitecture design.Computing within memory is an important development with NVM solving the
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problem of processor-memory communication delay. Adder circuit within memory is proposed and

implemented [25, 26]. Neuromorphic, quantum computing and bio-inspired computing have also

been realized with emerging NVM technologies. memristor ans spintronic memorie are widely re-

searched for logic and circuit design applications.

Memristor was discovered in 1971 and is perceived as a fourth fundamental circuit element,

resistor with memory. Resistance of a memristor depends on the history of the voltage applied across

its terminals.Since its discovery application of memristor for stateful logic, Boolean logic [27],[28]

and implicative circuits has been extensively researched [29].Memristor based multi-state registers,

non-volatile processors, memristor based neuron circuit, cross bar array circuits and neuromorphic

computing have been proposed [30, 31]. memristor only logic which enables computing within cross

bar memory array has been proposed in [32] [33]. These cross bar array based and memristor only

based logics lack the sharing of inputs between multiple gate limiting fanout and do not implement

XOR/XNOr gates. MAD memristor logic gates [34] implement XOR logic gates and can share the

inputs between multiple gates.

Spintronic is another emerging technology extensively researched for its applications for

computing [35]. Property of shift in DWM [36] and spin current based switching of MTJ have been

greatly exploited for computing. In-memory computing [37], associative computing [38, 39], Boolean

logic computing [40],reconfigurable logic based on shift based look-up table [36], big-data computing

[41],spin-neurons for non-boolean computation [42], STT-RAM based processor for general purpose

[43], MTJ based non-volatile logic computing [44, 45],realization of non-volatile flip flop like storage

elements [46, 47, 48], crossbar computing [49, 42, 28] are worth mentioning in this context. Emerging

technologies have also demonstrated enormous potential in various areas of computing.
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Vision of this work is to explore and extend the application of emerging Non-Volatile Memory

(NVM) technologies. We researched the application of spintronics based memories such as MTJ and

DWM, and resistive memory such as hafnium oxide (HfOx) based RRAM for associative memory

and hardware security applications.

1.3 Hardware Security

In today’s highly integrated circuits and systems, satisfying the functionality, frequency,

and Thermal Design Power (TDP) requirements are not adequate [19]. It is essential to ensure

the security and privacy of the overall system. The contemporary business model involves the

untrusted third party in every step of Integrated Circuit (IC) manufacturing process- from design,

synthesis, layout, and all the way to fabrication and packaging. The trend of integrating third-party

Intellectual Property (IP) blocks into the design makes the problem more complex. Broadly, the

attacks on hardware could fall under:

• Malicious modifications : The hardware Trojans can be inserted in the ICs which cause

malfunctioning of IC or leak information for instance.

• Cloning/Fake IC : The adversary can imitate the design, fabricate and sell at lower price

which lower the market of the genuine IC.

• Hacking/Eavesdropping : The adversary eavesdrops the communication channel to crack the

secret key for malicious intent.

• Side Channel Attacks : Side channels, e.g., current, voltage are monitored to extract the secret

information from the device.
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• Reverse Engineering : IC design details are revealed by peeling off the layers of fabrication

process using chemicals and mechanical methods, which reveals the secret design information.

• IC Recycling : Unused or barely use ICs are recycled from older PCBs and sold for reduced

price compared to genuine new ICs from original manufacturer.

Furthermore, it is worth mentioning that security, trust, and authentication of an electronic system

are intertwined with each other. Such an untrusted design environment results in infected hardware

that in turn necessitates the authentication of the ICs in the end product. Hardware security prim-

itives such as hardware encryption engine, Physically Unclonable Functions (PUFs), True Random

Number Generators (TRNGs), recycling sensors, tamper detection sensors are promising to pro-

vide security against the threats such as Hardware Trojan insertion, IC recycling, chip cloning, data

snooping and side channel attacks. Furthermore, these primitives are energy-efficient and incurs low

area/design overhead. Table 1.1 summarizes the key requirements of hardware security primitives

along with the respective features of emerging NVM technologies.

Table 1.1: Properties offered by emerging NVM technologies [1, 2].Hardware security primitives,
key requirements and properties offered by emerging NVM technologies.

Security Primitive Key Requirements Features Offered by NVM technologies

PUF high process variation
nonlinearity

RRAM device to device
switching variations

Nonlinearity in switching resistance

TRNG High entropy
Noise sensitivity of magnetization

stochastic dynamics
Telegraph noise in RRAM current

Encryption unique and unpredictable
identification key

Unique key generation from
RRAM device-device variations

Recycling Sensor Low process variation
High sensitivity to usage

DW nucleation
Cycles of endurance in RRAM and MTJ

It should be noted that CMOS based circuits in security applications have demonstrated the

problems of area and power overhead. Further, they are sensitive to environmental fluctuations and
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have limited randomness and entropy offered by the silicon substrate. The emerging technologies

such as magnetic, spintronic and resistive memories have shown promises in bringing an abundance

of entropy and physical randomness. Unique identification keys can be generated by extracting

spatial, temporal randomness and inherent entropy in a magnetic system and switching variations

using custom-designed harvesting circuits. Furthermore, these technologies have also demonstrated

robustness, speed and orders of magnitude energy-efficiency compared to their CMOS counterparts

[2, 50, 51].In this work, salient features of HfOx based RRAM are exploited for hardware security

applications.

Contributions of this dissertation to the literature are described below.

1. Design of an associative memory cell termed Ternary Content Addressable Memory (TCAM)

cell is proposed. Design selections and analysis including the selection of NMOS devices

and MTJ characteristics, effect of PVT variations are presented. Process variation tolerance

techniques for reliable search in longer words are also proposed [52, 53].

2. We propose an Arbiter Physically Unclonable Function (APUF) using cycle-to-cycle switching

variations in resistance states of RRAM. The proposed APUF is realized within one-Transistor

one-Resistor (1T-1R) conventional memory architecture with minimal invasive design changes.

Proposed APUF is studied for its vulnerability to adversary attacks and design technique to

improve the resiliency to machine learning based model building attacks is proposed.

3. Random Telegraph Noise (RTN) in the RRAM is exploited for designing a True random

Number Generator(TRNG) [54]. Proposed TRNG uses 1T-1R RRAM cell in the bias network

of Current Starved Ring Oscillator (CSRO) producing temporal variations in the frequency

of CSRO. The CSRO oscillations are sampled to generate true random numbers. In addition,
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proposed TRNG is configurable which can be utilized to recover from potential adversary

attacks.

1.4 Organization of Thesis

Rest of this thesis is organized as follows.

Chapter 2 discusses the basics of spintronic technology and the spintronic memory device

MTJ explored in this thesis.

Chapter 3 presents the fundamentals of RRAM memory and its functional operation. Spe-

cific features of RRAM exploited in hardware security applications and the details of RRAM device

models used for work are also discussed.

Chapter 4 demonstrates an application of MTJ in searchable memory termed as 6T-2MTJ

TCAM. Design analysis and techniques to improve the sense margin of proposed TCAM cell are

presented.

Chapter 5 presents the realization hardware security primitive TRNG using RRAM memory

in the CSRO.

Chapter 6 illustrates another security primitive APUF exploiting the switching variations of

RRAM. The chapter Discusses the feature of configurability and architectural changes to leverage

proposed APUF to be machine learning attack resilient.Also presents potential application of APUF

architecture for data attestation in the Internet of Things (IoTs).

Chapter 7 presents the conclusions and potential future works to extend and enhance the

application of NVMs to in the proposed areas.
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CHAPTER 2 : MAGNETIC TUNNEL JUNCTION DEVICE

This chapter discusses the basics of spintronic technology, device structure, physics and

operation of spintronic based Magnetic Tunnel Junction (MTJ) memory device.

2.1 Introduction

Spintronic technology is based on magnetic properties of electron where conventional CMOS

computing is based on charge of an electron. Basis of spin devices is magnet. Direction of spin

associated with electron is used to encode the logic states for storage and computation. Spintronic

devices retain the state due to stable magnetisation direction under the influence of no external

field. This property makes the memory based on spintronic non-volatile.

Spintronic devices are realised using magnetic properties of ferromagnetic materials. Three

extensively researched spintronic memories are spin valve, Spin Transfer Torque Magnetic Random-

Access Memory (STTRAM) and Magnetic Random Access Memory (MRAM). Spintronic device

consist of two ferromagnetic layers separated by a spacer layer [55]. The devices differentiate by

type of the spacer layer in the device structure and their switching mechanism. Non-magnetic

spacer layer between ferromagnetic layers create the effect of magnetoresistance termed as Giant

Magnetoresistance (GMR). GMR depends on the relative magnetization orientation of the two

ferromagnetic layers and the spacer material used between them (minimum of 3%-8% to maximum
2Portions of this chapter were reprinted from Ghosh, Swaroop. "Spintronics and Security: Prospects, Vulnerabil-

ities, Attack Models, and Preventions." Proceedings of the IEEE 104.10 (2016): 1864-1893.
Permission is included in Appendix A.
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of 50%). GMR determines the ratio of the currents in low resistance state to high resistance state

through spin device. Higher GMR is required for better readability of a spin device. A very

thin layer of insulating, dielectric material can increase the GMR to more than 100%. The new

magnetoresistance is termed as Tunnel Magneto Resistance (TMR). Details of the spintronic devices

used in this thesis are explained the coming sections.

This chapter presents the details of MTJ as a spintronic device and operation. Also presents

an overview of application of MTJ in memory and computing.

2.2 Magnetic Tunnel Junction

MTJ contains a free and a pinned magnetic layer separated by a thin tunneling oxide layer

(a schematic is shown in Fig. 2.1a). The equivalent resistance of the MTJ stack is high (low) if the

free layer magnetic orientation is anti-parallel (parallel) to that of the fixed layer. Conventionally,

the high equivalent resistance is considered as data ’1’ and low equivalent resistance is considered

as data ’0’. The magnetic orientation of the MTJ free layer can be changed from Parallel (P) to

Anti-Parallel (AP) (or vice versa) to that of fixed layer by either magnetic field-driven or current-

driven techniques. The magnetic field-driven MTJ is the basis for MRAM technology [56] which is

promising due to high-density, low standby power, and high-speed operation. On the other hand,

STTRAM [57] is an energy-efficient variant of MRAM where the switching of magnetization is based

on spin-polarized current.

In MRAM, MTJ lies between a pair of write lines named digit-line and bit-line (Fig. 2.1a).

These lines are arranged at right angles to each other, parallel to the cell plane, and one above

and one below the cell. An induced magnetic field is created by passing current through the lines.
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Figure 2.1: Schematic of (a) MRAM; (b) STTRAM [1].

The induced magnetic field exerts a torque on the free layer magnetic orientation causing it to flip.

Therefore, the direction of write current determines the polarity of the torque and thus determines

writing ’0’ or ’1’. The isolation (access) transistor is kept off during write. However, during read,

the access transistor is turned on, and a voltage is applied across the cell to sense the equivalent

resistance. It should be noted that the read current is unidirectional. Other variant of MRAM

is thermally Assisted MRAM (TA-MRAM). In TA-MRAM writing by a magnetic field pulse is

assisted by temporary heating of the cell produced by tunneling current through the selected cell.

TA-MRAM writing consumes less power compared that in filed-written MRAM. In MRAM, de-

pending on the direction of magnetization of reference w.r.t. the plane in ferromagnetic electrodes

MTJ devices are classified as In-plane Magnetic Anisotropy (IMA) and Perpendicular Magnetic

Anisotropy (PMA) devices. PMA MTJ devices are preferred in the applications requiring longer

retention and stability of bit information. It’s noteworthy that it is difficult to grow Perpendicular-

to-plane magnetized materials than in-plane magnetized materials [58]. MRAM devices offer the

advantages of reliability, robustness, endurance and resistance to external radiation which are at-

tractive in space and automotive applications [58]. First commercial MRAM chips of 1, 4, 8 and
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16Mbit were developed by Everspin Technologies in 2006 followed by Thermally Assisted MRAM

(TA-MRAM) chips by Crocus Technology in 2011. Latest reported maturity of MTJ fabrication

technology has demonstrated TMR of upto 600% at room temperature with MgO tunnel barrier

layer. TMR of 190% has been achieved with flexible MgO-barrier MTJs can be bent to various

radii upto 5mm. These flexible MTJs find potential application in high performance and flexible

electronics [59].

In STTRAM, each cell has one MTJ and one access transistor in series. The write operation

is done by turning the access transistor ON and injecting current from the source-line to the bit-line

or vice versa (Fig. 2.1b). STT-writing improves the selectivity and better scalability of cell size

compared to MRAM devices. Of-plane STTRAMs require less write current than that in in-plane

STTRAMs but with a trade-ff of lesser retention than in-plane counterparts. Thermal assistance

can also be employed similar to MRAM. In STTRAM Joule heating produced by the write current

through tunnel barrier in MTJ assists the switching of magnetization[58] . However, the read

operation of STTRAM is similar to that of MRAM. The dynamics of free layer magnetization for

both MRAM and STTRAM is governed by LLG equation [60, 61, 62] as follows:

∂−→m
∂t

= −γ−→m × (Heff + hst︸︷︷︸
stochastic

)− αγ−→m × [−→m × (Heff + hst︸︷︷︸
stochastic

)]

+
Is~G(ψ)

2e
−→m × (−→m ×−→ep)︸ ︷︷ ︸
STT

(2.1)

where, −→m is unit vector representing local magnetic moment, α represents the Gilbert’s damping

parameter, γ is gyromagnetic ratio, hst is field due to stochastic noise, Is is spin current, G(ψ) is

the transmission co-efficient, ~ is reduced Plank’s constant, e is charge of electron and −→ep is the
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unit vector along fixed layer magnetization. In the above expression,
−−−→
Heff is effective field given by,

−−−→
Heff =

−→
Ha+

−→
Hk +

−→
Hd+

−−→
Hex ,where

−→
Ha is applied field,

−→
Hk is anisotropy field,

−→
Hd is demagnetization

field, and
−−→
Hex is exchange field. The retention time of the MTJ, i.e., the time between which the free

layer magnetization tends to flip is given by Tret = t0e
∆, where t0 attempt time (∼1ns), stability

factor, ∆ = KuV
kBT where Ku is the magneto-crystalline anisotropy, V is the volume of the MTJ free

layer, T is the operating temperature and kB is the Boltzmann constant. By injecting a current (I )

through the MTJ having a critical current of Ico (where the direction of the current flips the bit),

the retention time can be altered as follows [63]:

∆ =
KuV

kBT
(1− I

Ico
) (2.2)

The equations 2.1 and 2.2 are crucial to understanding the factors that can influence the magneti-

zation dynamics and retention time of MTJ.

Application of STTRAM cell is investigated in this thesis. The resistance of MTJ is high

when PL and FL are in antiparallel configuration whereas the resistance is low when they are parallel

to each other. The value written to the STTRAM bit depends on the direction and the strength

of the charge current. Minimum current required to flip the state of the MTJ in a STTRAM bit is

called critical current. Bit ’1’ is written by passing charge current from pinned layer to fixed layer

(Fig. 2.1b ) and bit ’0’ is written by the current opposite direction [64]. Tunnel Magneto Resistance

(TMR) is the ratio which determines the ratio of electrical resistances of the MTJ structure in

parallel and antiparallel polarization states of FL relative to PL magnetization. If RH (RL) is the

MTJ resistances in antiparallel (parallel) states, the TMR is defined as TMR = (RH−RL)
RL

. In this

thesis, MTJ and the transistors in series together is referred as STTRAM while MTJ referred to

13



the MTJ device in the memory cell. Table-2.1 summarizes the parameters of the MTJ device used

in this work.

Table 2.1: Parameters of MTJ used

Parameter Value
Saturation Magnetization (Ms) 800 Oe
Critical current density (Jco) 3.2MA/cm2

Uniaxial Anisotropy (Ku) 150150 erg/cc
Damping Constant 0.007
TMR 125%
Length and Width 60nmX60nm
Critical Current (Ico) 115µA

2.3 MTJ for Memory and Computing

Advent of TMR and STT write mechanisms has enabled application of MTJ device based

STTRAM to be potential universal memories. Researchers ventured to deploy spintronic devices

in logic computing such as in-memory Boolean computing [65], write spin-current based logic com-

puting [66], majority gates [67, 68] and in neural networks [69]. This section presents a review of

application of MTJ in computing.

Logic gates realization proposed in [66] is dependent on the switching critical current of

MTJ. Operation of NAND gate can be explained as follows. Inputs to the logic gate are stored in

to parallel MTJs in terms of MTJ resistance states. MTJ storing evaluated output is connected in

series with the input MTJ network. Output MTJ is initialised to a default low resistance state (RL).

When atleast one of the input MTJs are at low resistance state RL net current flowing through the

output MTJ switched it to RH . This evaluates the output of NAND gate to logic state ’1’ (RH).

When the input MTJs are in RH state net current through the output MTJ is less than the critical

current and state of output MTJ evaluates to logic ’0’ (RL). Similar technique is extended to realise
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NOR and inverter universal gates. All Spin Logic (ASL) is another technique of realising logic gates

with spintronic based devices.

Proposal of ASL in [65] uses a spin channel between input and output bits unlike in [66]

where the charge current was used to evaluate the output. The device used in ASL realization is

termed as asl-device. In ASL device input and output magnets are connected and interact via a

spin-coherent channel. Spin coherent channel composes of material with high spin flip length, thus

conserving the spin of in the channel to manipulate the output bit from the state of input bit. with

information storage, communications and evaluation in spin domain ASL is faster, energy and area

efficient designs for logic implementation. Also, ASL satisfies the essential characteristics for logic

realization and application [65]. Functional extension of ASL gates to realise majority gates, adders,

multipliers and complex logic function implementation with majority gates is proposed in [67].

A new type of spin logic device is proposed in [68] called spin torque majority gates (STMG)

uses complete spin domain to for logic evaluation. STMG device consists of nanopillars and mag-

netization of common output free layer is switched by the net current through these nanopillars.

Structure is similar to 3 terminal STTRAM. STMG can implement various complex logic functions

in terms of majority gates similar to implementation proposed in [67]. However, STMG suffer from

low switching speeds and high switching energy compared to ASL majority gates proposed.

Further, application of spintronic devices is explored in neural networks implementation.

Deep Neural Networks (DNN) use a large number of hidden layers. DNNs find numerous applications

in the fields requiring to learn complex data patterns and data prediction. Spike Neural Networks

use bio-inspired design to mimic the functioning of human brain. Spike Timing Dependent synaptic

Plasticity (STDP) is one of the desired properties in the synapse connecting the neurons in brain
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for learning. Programmability and stochastic switching of Spintronic devices by voltage pulse is

used to implement synaptic plasticity [69]. MTJ along with heavy metal layer to switch MTJ by

spin-Hall effect induced by the current through heavy metal structure provides separate path for

programming and spike transmission in neural networks. There are numerous publications exploring

the application of spintronic devices such as MTJ and DWM in neuromorphic computing and neural

network implementation [70, 71, 72, 73, 74, 42]. Exhaustive discussions on this topic is out of scope

of this thesis.

2.4 Summary

Basics of spintronic technology and devices researched in this thesis are discussed in this

chapter. Spintronic devices are attractive alternatives to CMOS memory because of their non-

volatility, scalability to sub-nm technology nodes, smaller area, low power consumption and com-

patibility with CMOS process technology. Further, features of spintronic devices can be exploited

to realize logic and special purpose memories competent with their CMOS counterparts. Spintronic

memories are potential candidates as universal memories because of their versatile and flexible

characteristics with selection of materials in the stack and feature size. Extensive research and

innovation is geared towards commercializing spintronic technology in computing.
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CHAPTER 3 : RESISTIVE RANDOM ACCESS MEMORY1

3.1 Introduction

RRAM is a disruptive memory device for future NVM applications and a strong memory

candidate to challenge flash memory currently used in commercial applications. RRAM based

memory cell size of 6F 2 is achieved (transistor selector device) and 4F 2 cell size is possible with

diode as memory selector device in cross-bar array structure. This offers high density memory

competitive to DRAM and SRAM. It is designed by sandwiching an oxide material between two

metal electrodes i.e., Top Electrode (TE) and Bottom Electrode (BE). RRAM resistive switching is

primarily due to the mechanism of oxide breakdown and reoxidation which modifies a Conduction

Filament (CF) in the oxide. Fig. 3.1 shows the voltage and current transfer characteristics during

the SET and RESET process cycles. The minimum resistance of the filament depends on the

current compliance used in the process of forming. The two states of the RRAM in low resistance

and high resistance are termed as Low Resistance State (LRS) and High Resistance State (HRS).

We have used the expressions from [75, 76, 77] as the basis to model the resistance of Hafnium oxide

based RRAM at different voltages applied at the top electrode. The resistance switching of RRAM

involves three elementary processes such as formation, SET and RESET.
3Portions of this chapter was reprinted from ’Govindaraj, R., & Ghosh, S. (2016, October). A strong arbiter PUF

using resistive RAM within 1T-1R memory architecture. In Computer Design (ICCD), 2016 IEEE 34th International
Conference on (pp. 141-148). IEEE.’, ’R. Govindaraj, S. Ghosh and S. Katkoori, "CSRO-Based Reconfigurable
True Random Number Generator Using RRAM," in IEEE Transactions on Very Large Scale Integration (VLSI)
Systems.doi: 10.1109/TVLSI.2018.2823274.’ and ’Puglisi, Francesco Maria, Paolo Pavan, Andrea Padovani, and
Luca Larcher. "A compact model of hafnium-oxide-based resistive random access memory." In Proceedings of 2013
International Conference on IC Design & Technology (ICICDT). 2013.’, with permission from IEEE
Permission is included in Appendix A.
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This chapter presents the overview of RRAM operation, device types and details of salient

features of RRAM exploited in hardware security applications.

3.2 Types of RRAM

RRAM devices are characterized by their switching mechanism, polarity of voltage across

electrodes for switching and the materials used in oxide sandwitch and electrodes. Based on polarity

of SET/RESET switching voltages RRAM is categorized as unipolar and bipolar. In unipolar type

RRAMs switching depends only on the magnitude of the applied voltage across electrodes and

independent of the polarity. Switching is interpreted to be due to Joule heating effect in the oxide

layer. In bipolar RRAM SET/RESET process is dependent on the polarity of the applied switching

voltage between top and bottom electrodes. The switching is due to electrochemical migration of ions

and redox reactions which depend on the polarity of operating voltage. Switching model of HfOx

based bipolar RRAM is used for our research. Details of switching mechanism is discussed below.

The forming voltage is applied across the electrodes to create an electric field in the oxide material.

Figure 3.1: RRAM memory device and resistance transfer characteristics.

18



Oxygen atoms are knocked out of oxide material forming oxygen vacancies under the influence of

high electric field, typically as high as 10MV/cm (Fig. 3.2). The conduction through the CF is

primarily due to the transportation mechanism of electrons in these oxygen vacancies termed as

Trap Assisted Tunneling (TAT). After the process of forming, the resistance of the RRAM is at the

lowest (LRS). The resistance in LRS depends on the current compliance as shown in characteristic

plot in Fig. 3.1. The SET process is same as forming except that only a part of CF is recovered

as compared to forming process (Fig. 3.2). Also, SET is performed following a RESET process

and SET voltage depends linearly on the RESET voltage [75, 78]. The process of setting state to

HRS state is called RESET process. During RESET the oxygen ions drifted to the anode return

to the bulk to combine with the oxygen vacancies or oxidize the metal precipitates. The rate of

reoxidation depends on the magnitude of the RESET voltage [75].

Figure 3.2: Forming, SET and RESET switching mechanism in RRAM.

RRAM is further classified as anion and cation type based on resistive switching mechanism.

SET process in anion type RRAM is due to formation of oxygen vacancies in the oxide layer

and RESET process is due to recombination of oxygen ions back in the oxide layer. Oxygen

active electrodes or thin films oxygen reservoirs are required anion type RRAM. Performance and

compatibility with CMOS fabrication technology are primary reasons for wide acceptance high-k

metal-oxide materials such as HfOx, TaOx, AlOx in the switching layer of anion type RRAM.
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Switching process in cation type RRAM is dominated by redox reaction and migration of

metal ions, formation of metallic filaments in switching layer. Conductive Bridge RAM (CBRAM)

is an example of cation type RRAM. CBRAM devices use Ag or Cu oxidized electrode and an inert

electrode. Switching mechanism in CBRAM can be explained as follows. First, Cu atoms oxidize

and Cu+ ions from copper electrode are injected into dielectric layer, then applied negative bias

attracts the Cu+ ions to the bottom electrode to establish a conductive path (low resistance state).

On application of positive bias voltage electrochemical reaction due to Joule heating ruptures the

conductive path at a maximum power dissipation point (high resistance state). High RON
ROFF

ratio,

longer retention (109) and small operating voltages are attractive features of CBRAM [79].

3.3 RRAM for Hardware Security

The resistance of the RRAM after SET and RESET follow probability distribution due

to defects in the CF and the thermal voltage fluctuations. The variability in the cycle-to-cycle

resistance switching which is a source of randomness can be exploited for security applications.

RRAM shows the intra-device temporal variations in switching process. HRS and LRS vary cycle-

to-cycle [75] and the resistance after switching depends on the generation and recombination of

oxygen vacancies. This is stochastic process induced by the electric field and the temperature of

the oxide under the applied switching voltage [75, 78]. The resistance switching model is based

on TiN/Ti/HfOx/TiN RRAM device having a physical oxide thickness tox of 5nm. Sources of

randomness in the RRAM device and models used in this work are discussed in this section.

Rset = ρHf,CF ×
tox
S

(3.1)
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Rreset = ρHf,CF ×
(tox − x)

S
+Rset × (exp

{x
k

}
− x

tox
) (3.2)

dx

dt
= Rset × Cxv × |V − Vreset| ifV > Vreset

dx

dt
= 0 otherwise

(3.3)

I(x, V ) = I0(x)× sinh(
V

V0
) (3.4)

I0(x) =
V0

R(x)
(3.5)

R(x, T ) = Rset ×
(tox − x)

tox
+Rset × e

x
k
−1 × e

Er
Kb×T (3.6)

where ρHf,CF is the resistivity of the CF, tox is the hafnium oxide thickness and S is the cross

section of the CF. ρHf,CF depends on the current compliance used during forming (Fig.3.1). It is

evident that higher current compliance induces a larger CF. Vreset is the function of time and ramp

voltage with the peak of 1.3V is applied for RESET. Cxv is the proportionality coefficient. V0 is

experimentally measured quantity.x is the barrier length created by reoxidation of CF by the reset

voltage. Er is the activation energy, Kb is Boltzmann constant and T is the temperature of the

device.

• Cycle-to-cycle variation: We have used the parameters and the equations to model cycle-to-

cycle switching variations in RRAM from [75] that are calibrated with experimental data.
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Current compliance of 100µA is used for modeling the SET resistance. Eqns. 3.1 to 3.6 are

used to model RRAM in Verilog-A. RESET process is performed by negative ramp voltage

and the differential barrier length with the voltage modeled by Eqn. 3.3. The current during

RESET and SET process is given by Eqn. 3.4. RESET is a thermally activated process. The

temperature increases with the electric power and overcomes the activation energy to switch

the state of the device. Switching of the device at an applied RESET voltage is probabilistic

activity [78, 80] model the variation in the resistance of the RRAM due to defects in the oxide

material (Fig. 3.3) we assume Gaussian distribution in the SET resistance of RRAM with the

variance of 0.08 [75]. The RESET resistance is calculated using Eqns. 3.4-3.6 by assuming

Gaussian distribution of the proportionality coefficient Cxv with variance of 0.034. Cxv models

the stochastic variation in the CF rupturing process due to recombination of oxygen vacancies

with the ions [75, 81] from cycle-to-cycle. Due to exponential dependence of RESET resistance

on the barrier length HRS exhibits lognormal distribution characteristics as shown in Fig. 3.3.

Figure 3.3: LRS and HRS distribution of RRAM. Defects in the CF, cumulative probability distri-
bution plot from [75] and simulated data.
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• Random Telegraph Noise: Conduction in the RRAM is explained by TAT of electrons in CF.

Due to random distribution in the TAT supporting defects, the current though the RRAM

shows stochastic variations with time. The phenomenon responsible for RTN is explained by

the researchers [82, 76, 83] as charging and discharging of the traps at or close to the surface

of the CF. Also, the frequency of trap charging increases with the bias voltage (voltage across

RRAM) and temperature due to local Joule heating of CF. The trapping/emission time of

the defects near the CF junction can be modeled as lognormal distribution [82, 83]. RTN

results in current fluctuations through the RRAM with time. However, the relation of the

trapping/emission times with the current fluctuation is still unclear and is determined to be

randomly distributed. Variation of RTN current directly related to the fluctuations of current

through RRAM [3]. Essentially, RTN is a multi-level low frequency noise in the RRAM of

kHz range. RTN can be characterized by Factorial Hidden Markov Model (FHMM) [84]

by superposing the multiple two-level RTNs. However, this doesn’t provide a deterministic

circuit model that could be adapted for circuit analysis. RTN being a truly random process in

RRAM leading to read current fluctuations, exhibits no deterministic behavior which could be

modeled without direct access to RRAM. Modeling RTN as normal distribution component

in RRAM current is the simplistic model for circuit analysis. It should also be noted that

the cycle-to-cycle switching parameter variations and RTN are uncorrelated but concurrent

in nature [76].

In this work, multi-level RTN in HRS state (RESET) is modeled as variable current source

(IRTN through RRAM with 20%-30% variation in the steady current in HRS state by fitting

in normal distribution curve shown in Fig. 3.4 [76, 83, 3]. This RTN model follows the RTN

current measurements in [3]. The frequency of current fluctuation is affected by the temper-
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Figure 3.4: RTN current distribution in HRS state of RRAM based on measurement data [3]. IRTN

with the frequency of 5kHz is shown in the inset.

ature which is due to longer trapping and emission periods of electron at lower temperature

compared to those at higher temperatures [83].

3.4 Summary

This chapter presented the basics of RRAM technology, types of RRAM devices. Also, vari-

ations in device characteristics that are prominent for application in hardware security are discussed.

RRAM is a viable component compatible with CMOS fabrication technology and competent with

CMOS DRAM in terms speed and area. However, to make RRAM practical for memory applica-

tions stability and uniformity in the switching characteristics for performance need to be improved.

Phenomenon of RTN and formation of traps in the oxide layer responsible for RTN need to be

completely understood and modeled accurately for study in hardware security applications.
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CHAPTER 4 : 6T-2MTJ TERNARY CAM2

4.1 Introduction

Content Addressable Memory (CAM) finds numerous applications in pattern matching, in-

ternet data processing, packet forwarding, tag bits storage in processor cache, and as associative

memory. The special functionality of the content search in CAM requires a comparison circuitry in-

tegrated with the memory cell [85]. The comparator in addition to a memory element adds area and

power overhead in CAMs. The need to store and match ’don’t care’ requires two storage bits which

further worsens the area overhead. CMOS CAM is power hungry due to power consumed in Match

Line (ML), search line and leakage of the bit cell. In nanometer technologies leakage power consti-

tutes a major fraction of the total power consumed in CAM memory [86]. Non-volatile technologies

which are more area efficient than a SRAM and also can provide zero leakage are attractive in such a

scenario [85, 87]. Area efficiency and, non-volatility of STTRAM-based ternary CAM is very useful

for on-chip CAM applications. Numerous works have demonstrated the realization of CAM using

non-volatile memory technologies like memristor [88],nano-electro-mechanical switch [89], Resistive

RAM (ReRAM) [90] and spintronic elements such as Domain Wall Memory (DWM), Magnetic Tun-

nel Junctions (MTJ) and Spin-Torque-Transfer RAM (STTRAM) [91, 92, 93, 94]. Memristor-based

NOR TCAM [88] uses a voltage divider network formed by the memristors to enable the discharging
4Portions of this chapter were reprinted from Govindaraj, R., & Ghosh, S. (2015, July). Design and analysis of

6-T 2-MTJ ternary content addressable memory. In Low Power Electronics and Design (ISLPED), 2015 IEEE/ACM
International Symposium on (pp. 309-314). IEEE. and Govindaraj, R., & Ghosh, S. (2017). Design and Analysis of
STTRAM-Based Ternary Content Addressable Memory Cell. ACM Journal on Emerging Technologies in Computing
Systems (JETC), 13(4), 52.
Permission is included in Appendix A.
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path to discharge the match line depending on match/miss. It incurs higher write delay of up to

800ns which hurts the table update performance in the network routers application. ReRAM-based

TCAM [90] employs a special clocked self-referenced sensing scheme which complicates the memory

system design due to additional reference ML required. An efficient integration of spintronic device

with CMOS technology motivates to employ them in TCAM cell design. Also, the principle of bit

storage and writing methodologies are different in memristor and ReRAM compared to spintronic

device such as MTJ and DWM. This limits the direct extension of memristive and ReRAM TCAMs

to design spintronic TCAMs.

Spintronic CAMs using MTJ and DWM suffer from issues such as larger area, unreliable

write operation, high search delay and high power consumption compared to CMOS CAMs [86]. The

MTJ based TCAM 4T-2MTJ design [95] is area and power efficient however it employs a technique

based proportional total current drawn from the ML by bit cells in word. Further, the circuit uses

both NMOS and PMOS transistors. In this technique sense margin (SM) decreases significantly as

number of bits increase in the worst case search of single bit miss. So, the design is not scalable

beyond a certain word length (till 144 bit is presented).DWM based TCAM [93] uses 12 transistors.

Therefore, deployment of non-volatile memory in CAM needs effort to achieve smaller footprint and

better performance in terms of search delay, write delay, write power and search power.

This chapter proposes a NOR type MTJ based TCAM [52] that can support wider CAM

words while being tolerant to voltage and temperature variations. However, it is susceptible to poor

sense margin due to process variations. Search Enable (SE) modulation to improve the sense margin

under inter-die process variation is proposed.Multi-VTH design to improve the sense margin and a

NAND type TCAM that exploits the NOR TCAM design are also proposed. The proposed NOR
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type TCAM employs only 6 transistors and 2 MTJs instead of 16 transistors in CMOS TCAM, and

NAND TCAM cell uses 9 transistors and 2 MTJs compared to NAND CMOS TCAM that uses 16

transistors. The following section provides overview of Content Addressable Memory(CAM).

4.2 Content Addressable Memory

CAMs can be divided into two categories depending on the number of states that can be

stored in the memory cell namely, Binary CAM (BCAM) and Ternary CAM (TCAM). BCAM

stores a binary bit i.e., ’0’ and ’1’ whereas TCAM can store three possible values namely, ’don’t

care’ (X), ’1’, and ’0’. CAMs can be further categorized into two topologies namely, NOR and

NAND type (Fig. 4.1). The stored bits are compared with the data on the Search Line (SL) and

its complement (S̄L) by XOR operation with the transistor network M1, M2, M3 and M4. To

store data in a TCAM cell of NOR type architecture data bit and the complement are stored in

two SRAM cells (Fig. 4.1a). Don’t care bit can be realized by storing ’1’ in both SRAM cells i.e.,

D = D̄ = 1. In case of match both SL-D and S̄L − D̄ paths are disconnected and the match line

remains precharged. In case of miss either of the SL-D or S̄L − D̄ connect ML to ground which

discharges the precharged ML. In a NAND type architecture TCAM cells are connected in series

(Fig. 4.1b). Data bit D and D̄ are derived from a single SRAM cell unlike two SRAM cells in NOR

type TCAM. The stored bit is masked by using a mask bit (M) in a parallel SRAM cell. In case of

match the precharged ML is connected to ground by series TCAM cells of the word by turning the

NMOS transistor M1 ON. Storing the mask bit as ’1’ enables transistor M2 despite match or miss

which implements don’t care functionality. CMOS TCAM uses two SRAM cells which doubles the

area overhead compared to conventional SRAM cell.
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(a) (b)

Figure 4.1: Conventional CMOS TCAM types. (a) NOR type TCAM; and, (b) Conventional NAND
type TCAM. Bit line access transistors are not shown in the figure for simplicity.

4.3 Proposed TCAM Cell

In this Section first we discuss the structure of the proposed TCAM. Next we present

qualitative analysis and describe read, write and search operations.

4.3.1 NOR TCAM Cell Circuit

Circuit diagram of the proposed TCAM is shown in Fig. 4.2. Two MTJs store D and D̄

respectively. Transistors M1 and M2 form ML discharge network depending on the result of data

comparison with the search lines SL and S̄L. During search transistors M3/M5 and M4/M5 along

with MTJ resistance due to TMR make a voltage divider network in which the drain voltages of

M3/M4 drive the gates of discharge transistors M1/M2. The cell is designed in such a way that

during match the voltage of node X1 and X2 is below the threshold voltage of M1 and M2, and

the ML stays precharged. However, during a mismatch the voltage of X1 and X2 rises above the

threshold voltage of M1 and M2 respectively discharging the ML. Transistor M3/M4 are the wordline

(WL) selection transistors and M6 is the write access transistor that turns ON only during write

(WR) operation. Transistor M6 is sized larger to allow sufficient write current. Transistor M5 is

driven by Search Enable (SE) signal and, sized to limit the current through STTRAM bit for read
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disturb free search operation. Don’t care bit can be stored in the cell by storing ’1’ in both D and

D̄ bits. The search bit can be masked by driving SL = S̄L = 0 on the search lines. The Source

Line (SrL) is used for two purposes namely, (a) write operation when the SrL is connected to 0 or

Vdd depending on the write data to the MTJs; and, (b) search operation when SrL is driven to 0

to allow voltage division.

Figure 4.2: Proposed NOR type TCAM cell.

4.3.2 Qualitative Analysis of the Cell Design

There are two match cases namely, (a) (D, D̄ = (SL, S̄L) = (1, 0); and, (b) (D, D̄) =

(SL, S̄L) = (0, 1). Since both cases are identical, we will only explain the first case. For (D, D̄) =

(1, 0) the left side MTJ is in high resistance (RH) state whereas the right side MTJ is in low

resistance (RL) state. Since (SL, S̄L) = (1, 0), the voltage at node X1 is

VX1 = VSL ×
r

(RH + r)
= VM (4.1)

and the voltage at node X2 is voltage drop due to current flow from node X1 to S̄L (detailed analysis

is given in Section 4.3.4). In this expression, r is the lumped ON resistance of transistors M3, M4
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and M5 (Fig.4.3), and, VSL is SL voltage. To keep transistor M1 OFF during match, ¯VX1 should be

lower than VTH0 (i.e., the threshold voltage of M1 and M2).

(a) (b)

Figure 4.3: Equivalent circuit during match and mismatch. (a) Match M1 and M2 are turned ON;
and, (b) Mismatch M1 and M2 are OFF as Vd1 < Vth0

For the mismatch, there are two cases namely, (a) (D, D̄) = (1, 0) and (SL, S̄L) = (0, 1);

and, (b) (D, D̄) = (0, 1) and (SL, S̄L) = (1, 0).For the first case the voltage at node X1 is

VX1 = VS̄L ×
r

(RH + reff )
= VMM1 (4.2)

where ¯reff is the effective resistance of RL, r3, r5, andr4 resistive network. Whereas, voltage at X2

is

VX2 = VS̄L ×
r

(RH + r)
= VMM2 (4.3)

where VS̄L is S̄L) voltage. To keep transistors M1, M2 ON during mismatch, VMM1andVMM2 should

be higher than VTH0. Similar analysis applies to case (b). From these equations VMMX > VMX for

the two cases as RH > RL. For the design to function properly (i.e., discharge ML during mismatch

30



at a higher speed compared to that of a match case) RH , RL and r should be selected such that

VMX < VTH0 < VMMX . The following analytical equations can be used to quantify the design

parameters.

VMM = Vdd − IMM ×RL = VS̄L × r/(RL + r) = Vth0 + ∆1
(4.4)

VM = Vdd − IM ×RH = VSL × r/(RH + r) = Vth0 −∆2
(4.5)

where IMM and IM are the currents drawn from SL and S̄L in case of mismatch and match

respectively, and, ∆1 and ∆2 are the offset voltages with respect to Vth0.

Subtracting 4.4 and 4.5 and using RH = RL × (1 + TMR), we obtain

VMM − VM = Vdd ×
r

RL + r
− r

RH + r
= ∆1 + ∆2 (4.6)

VM = Vdd ×
r ×RL × TMR

(RL + r)× (RL(1 + TMR) + r)
= ∆1 + ∆2 (4.7)

The optimization of the proposed TCAM revolves around three key requirements: (a) maximizing

the difference between mismatch and match voltages i.e., (∆1 + ∆2); (b) maximizing the absolute

values of offsets from VTH0 i.e., |∆1| and |∆2| to keep M1/M2 strongly ON or OFF as needed during

mismatch and match respectively; and, (c) lowering the search current below critical write current

of MTJ.

From 4.7, it can be concluded that higher TMR, higher RH and higher r can be employed

to enhance (∆1 + ∆2). Although higher r and RL is also good for maximizing ∆1, it minimizes ∆2.
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Figure 4.4: Vgs margin diagram illustrating best and worst VM and VMM with Vth0.

A lower ∆2 can turn M1/M2 ON during match degrading the sense margin. Fig.4.4 shows pictorial

representation of this situation with three operating points. The voltages VMM1, VMM3, VM1 and

VM3 provide poor sense margin compared to VMM2 and VM2 even with same magnitude of ∆1 +∆2.

The ideal margin is obtained when RH = ∞ and RL = 0 which gives VMM = Vdd and VM = 0.

However, a lower RL could be detrimental for read disturb due to high search current. High values

of RH and RL ensure the low search line currents. This in combination with high TMR can provide

better Vgs margin i.e., (∆1 + ∆2) with low search power consumption. The design optimization

conducted accounts for the above factors.

4.3.3 Write Operation

In the proposed TCAM the search lines SL and S̄L are used to write data to the STTRAM

bits. Table-4.1 summarizes the states of control signals in write operation. Writing ’1’ and ’0’

consume two cycles to write to the two STTRAMs while ’X’ can be written in a single cycle. During

write the ML precharge is disabled to avoid power consumption from the ML. This is achieved by

pulling the ’precharge’ signal high. NMOS transistor M6 is turned ON during write by WR signal.

Note that M6 is sized to provide the drain current greater than the critical write current of the

STTRAM. The state of search enable signal SE is ’Don’t care’ as M5 is connected parallel to M6.
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(a) (b)

Figure 4.5: Equivalent circuit during write and search operation. (a) Write operation, left side
STTRAM resistance is RH (D=’1’) and right side STTRAM resistance is RL(D̄ =’0’); and, (b)
search operation.

For the analysis, we assume that SE is pulled low. The WL is turned ON only for the selected word

so that the unselected cells are unaffected. The source line SrL is controlled appropriately to write

a ’1’ or ’0’. Fig. 4.5a shows the equivalent circuit of TCAM cell during write. The transistors are

replaced with equivalent ON resistances. Resistors r3, r4 and, r6 are equivalent resistors of M3, M4

and, M6 respectively. The write operation is described below. In the first cycle of write operation,

writing to D bit is enabled by pulling WL1 to Vdd and D̄ bit path is disabled by pulling WL2 to

ground. In the second cycle of write operation, writing to D̄ bit is enabled by pulling WL2 to Vdd

and D bit path is disabled by pulling WL1 to ground.

Table 4.1: States of control signals NOR TCAM memory write operations. WR=Vdd, SE=’X’

Write D-bit (WL1= Vdd, WL2=0) Write D̄-bit (WL1=0, WL2=Vdd)

SL S̄L SrL SL S̄L SrL

Write ’1’ 0 X Vdd X Vdd 0
Write ’0’ Vdd X 0 X 0 Vdd
Write ’X’ 0 0 Vdd WL1=WL2=Vdd
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• Writing ’1’: In the first cycle, SrL is pulled high and SL line is pulled to ground. The write

current flows from SL writing antiparallel state to the STTRAM storing bit D. There is no

current through the other STTRAM bit as the WL2 control signal is grounded. In the second

cycle the SrL is pulled low, S̄L is pulled to Vdd and WL2 is pulled high which programs the

other STTRAM storing D̄ to parallel state. There is no current through the other STTRAM

bit as WL1 is grounded.

• Writing ’0’: In the first cycle, the SL is pulled high and the SrL line is pulled low. This cycle

writes parallel magnetization state to STTRAM storing D bit. In the second cycle, the SrL

is pulled high while S̄L is at 0, which programs the D̄ bit to antiparallel state.

• Writing ’X’: The ’X’ state can be stored by writing logic 1 to both D and D̄. The SrL is

pulled to Vdd and the search lines SL and S̄L are pulled low. The current flows through both

the STTRAMs storing antiparallel states to D and D̄.

4.3.4 Search Operation

Search is a single cycle operation in CAM. The ML is precharged to Vdd and WR is pulled

to ground. The SrL is pulled to ground throughout the search operation. Next SE and WL is pulled

high to enable the conducting path through M5 and M3/M4 (4.2). Either VMM or VM voltage is

developed depending on the match or mismatch respectively at the gate of M1/M2. The search

lines SL is pulled to Vdd and S̄L is pulled low to search a bit ’1’. Similarly, SL is pulled low and, S̄L

is pulled to Vdd to search for bit ’0’. Both SL and S̄L are pulled low to search ’X’. Circuit operation

in match and mismatch cases are discussed below. Fig. 4.5b shows the equivalent circuit during

search operation.
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• Match: Let (D,D̄) = (SL, D̄) = (1, 0). Voltages VX1 and VX2 at the nodes X1 and X2

(Fig.4.2) are given by,

VX1 = Vdh = Vdd ×
(r3 + (r5 ‖ (r4 +RL))

RH + r3 + (r5 ‖ (r4 +RL))
(4.8)

VX2 = Vdl = Vdd ×
((r5 ‖ (r4 +RL))×RL)

(RH + r3 + (r5 ‖ (r4 +RL)))(r4 +RL)
(4.9)

Note that VX2 is less than VX1 and appears due to the potential across r5 which results in a

current though RL even when S̄L=0 (Fig. 4.3a). The transistors M3 and M5 are sized such

that VX1 < Vth0. So M1/M2 are turned OFF and the ML remains precharged. The other

match case i.e., (D,D̄) = (SL,D̄ ) = (0, 1) is similar.

• Mismatch: Mismatch: Let (D,D̄) = (1, 0) and (SL,S̄L) = (0, 1). Then,

VX1 = Vdl = Vdd ×
(r4 + (r5 ‖ (r3 +RH))

RL + r4 + (r5 ‖ (r3 +RH))
(4.10)

VX2 = Vdh = Vdd ×
((r5 ‖ (r4 +RH))×RH)

(RL + r3 + (r5 ‖ (r4 +RH)))(r4 +RH)
(4.11)

Table 4.2: States of control signals NOR TCAM memory search operations. WL1=WL2=Vdd,
WR=0, SE=Vdd

Operation SL S̄L SrL
Search ’1’ Vdd 0 0
Search ’0’ 0 Vdd 0
Mask search 0 0 0

Vdl(miss) > Vth0 > Vdh(match). Under these conditions (Fig. 4.3b) both M1 and M2 are

turned ON to discharge the precharged ML which provides better sense margin. Fig.4.6

illustrates the ML voltages during search operation for TCAM of varied word sizes namely 1,
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16, 128 and 256-bit for match and mismatch. Predictive 22nm model is used for simulations

[96]. The waveforms correspond to the worst case sense margin i.e., single miss in the whole

word. The rate of discharge of ML line in match case increases with the word size due to the

more number of cells leaking the ML current through weakly driven M1/M2. This in turn

limits the sense margin for larger word sizes. The equations VX1 and VX2 can be also be

derived for the transistor device parameters by replacing the voltage across transistor by Vds

and drain current of the transistors by the current through MTJ as below. The objective is to

optimize the sense margin, search power and limit the drain current below the critical current

of the MTJ.Id3, Id4, Id5 are drain currents and Vds3, Vds4, Vds5 are the drain to source voltages

of transistors M3,M4,M5 respectively. Ic0 is the STTRAM critical current.

Figure 4.6: Waveform showing the search operation. Match line voltages during mismatch and
match cases for 1, 16, 128 and 256-bit word sizes are shown.
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• Match: Match: Let (D, D̄) = (SL, S̄L) = (1, 0). Voltages VX1 and VX2 at the nodes X1 and

X2 (Fig. 4.2) are given by,

VX1 = Vdh = Vdd − (Id3 ×RH);VX2 = Vdl = Id4 ×RL
(4.12)

Id3 = Id4 + Id5;Vds5 = Vds4 + Id4 ×RL; Id4 � Ic0 of the MTJs; VX1 > VX � VTH1, VTH2

• Mismatch: Let (D,D̄) = (1, 0) and (SL,S̄L) = (0, 1). Then,

VX1 = Vdh = Vdd − (RH ;VX2 = Vdl = Id3 ×RH
(4.13)

Id4 = Id3 +Id5;Vds5 = Vds3 +Id3 ∗RL; Id3 � Ic0 of the MTJs; VX1 > VX2 � VTH1, VTH2 Drain

currents and Vds of transistorsM3,M4,M5 are different in case 1 and case 2. However, deriving

analytical expressions for transistor parameters from above expressions is straightforward but

tedious with short channel transistor equations. We have adopted simulation based approach

to minimize such efforts.

4.4 Proposed NAND Type TCAM Cell

Two types of TCAM topology are traditionally investigated in the literature i.e. NAND

and NOR. Typically, NAND topology TCAM is faster compared to NOR topology TCAM in full

CMOS realization. We investigate NOR and NAND topology TCAM realization using STTRAM

which completes the study of STTRAM based TCAM design. In this section, we propose a NAND

type TCAM cell using STTRAM. Fig. 4.7 shows the circuit diagram of NAND type TCAM cell

along with the match line structure. The cell consists of 2 PMOS, 7 NMOS transistors and 2 MTJs.
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Figure 4.7: Proposed NAND configuration TCAM cell (Bit 0 stored).

We use the complementary method i.e., bit ’1’ is encoded by parallel magnetic spins and bit ’0’ is

encoded as antiparallel states of relative magnetic spins, to realize NAND type TCAM in this work.

Six NMOS transistors M1-M6 are sized for reliable search and write operation same as NOR type

TCAM explained earlier. In other words, the design analysis of NOR TCAM cell embedded in the

NAND type TCAM cell remain similar to that of a NOR type cell. For successful search operation

in NAND TCAM data bit ’1’ is encoded as parallel state and bit ’0’ as antiparallel state of the

MTJ respectively. Three additional transistors (M7, M8, M9) are added on the basic NOR TCAM

cell to realize the NAND type TCAM cell. These additional transistors are of minimum size. For

search operation, initially the match line is predischarged and the chain of PMOS transistors (M9

in Fig. 4.7) of individual TCAM cell connects the match line to Vdd only in case of a complete

match. Gates of PMOS transistors in the chain are precharged initially such that the chain is

completely disconnected from Vdd. The search data and search enable signals are asserted after

predischarging of the match line. In case of a match the respective gate voltage is pulled low by the
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NMOS transistors M1/M2 in the search circuit. Thus, the match line is pulled high to complete

Vdd in case of complete match of a word. Table-4.3 and Table-4.4 summarizes the control signals in

write and search operation of NAND TCAM respectively. Writing is performed by injecting current

more than the critical current from the search lines and source line (SrL). SE signal is ’X’ and Wr is

pulled high throughout the write operation. Transistor M6 is sized to carry the current higher than

the critical current of the MTJs for programmability. WL1 and WL2 are pulled to Vdd to enable

writing ’D’ bit and ’D̄’ bit respectively in the first and second cycles of write respectively.

Table 4.3: States of control signals NAND TCAM memory write operations. WR=Vdd, SE=’X’

Write D-bit (WL1= Vdd, WL2=0) Write D̄-bit (WL1=0, WL2=Vdd)

SL S̄L SrL SL S̄L SrL

Write ’1’ Vdd X 0 X 0 Vdd
Write ’0’ 0 X Vdd X Vdd 0
Write ’X’ Vdd Vdd 0 WL1=WL2=Vdd

Table 4.4: States of control signals NAND TCAM memory search operations. WL1=WL2=Vdd,
WR=0, SE=Vdd

Operation SL S̄L SrL
Search ’1’ Vdd 0 0
Search ’0’ 0 Vdd 0
Mask search 0 0 0

• Write ’1’: Bit ’1’ can be stored in two cycles of write i.e., by writing parallel state to the MTJ

storing D-bit and anti-parallel state to the MTJ storing D̄ bit. In the first cycle, WL1 and SL

are driven to Vdd and SrL, WL2 are pulled low which results in current flow from free layer to

fixed layer writing parallel state to the MTJ storing ’D’ bit. In the second cycle, WL2, SrL

are precharged to Vdd while WL1 and S̄L are pulled low. This results in the current flow from

the PL to FL storing antiparallel state in ’D̄’ bit.
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• Write ’0’ : Bit ’0’ is stored by writing antiparallel state in ’D’ bit and parallel state in ’D̄’ bit.

In the first cycle SrL and WL1 are precharged to Vdd while SL is pulled to ground to write

antiparallel state to ’D’. In the second cycle WL2 and S̄L are pulled to Vdd while SrL is pulled

low in order to write parallel state to the ’D̄’.

• Write ’X’: Don’t care bit is written by storing parallel state in both the MTJs ’D’ and ’D̄’

which results in match case for both search bits ’0’ and ’1’. Writing ’X’ can be performed in

a single cycle by pulling WL1, WL2, SrL to Vdd and SL, S̄L are pulled low to ground which

result in writing ’0’ (parallel state) simultaneously to both the MTJs.

Design analysis of NOR type cell design is presented in the next section. We analyse the

design parameter selections (MTJ resistance, TMR, search transistors sizing) for successful search

operation in TCAM. Design analysis for write operation remains same as in a conventional STTRAM

cell which we have excluded in our work.

4.5 NOR TCAM Cell Design Analysis

In this section, first we present the methodologies to determine the sizing and MTJ resistance

for reliable operation of the proposed NOR TCAM. We consider broad range of word sizes in the

analysis. In the proposed design, the parameters are optimized for sense margin and search power.

Parameters for write current transistor M6 is chosen to drive sufficient write current. All the other

parameters in the cell design are optimized for search operation.
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4.5.1 Selection of RL and NMOS Device

The low MTJ resistance and sizing of transistor M5 are chosen to keep the search current

below the critical current while providing a sufficient Vgs to drive M1/M2 in order to differentiate

the miss and match cases. Other than keeping the search current below critical current, limiting

the search current is crucial to keep the search power as low as possible while achieving reliable

sense margin. Moreover, ensuring the highest search current (through the lowest resistance) yields

reliable design parameters i.e. total search current in the TCAM cell is less than the critical current

under all PV conditions. The high MTJ resistance is determined by the TMR. The transistor M6

is sized to provide write current greater than critical current through the STTRAM during write

operation. We simulated a range of RL (5k to 9k) with fixed TMR of 100%. The trend is shown

in the Fig. 4.8 for a 16-bit word. It can be observed from the plot that high resistance values

with smaller NMOS widths provide good sense margin (close to Vdd
2 ) with lower STTRAM current

from the search line. Based on this, RL = 8kΩ is selected for the proposed design. The STTRAM

current during mismatch is also plotted. Note that mismatch current is always greater than the

match current therefore we consider it for estimating the worst case read disturb during search

operation.

Width of NMOS devices M3/M4 and M5 are important parameters to ensure low search

current and reduce the power dissipated from the search lines. Plot in the Fig. 4.8 shows the

distribution of STTRAM current for various widths of the NMOS device M5 with differentRL values.

Smaller width of NMOS offer high resistance, reduces search current (good for lower read disturb and

power) and improves the sense margin (following the discussion in Section 4.3.2). However minimum

sized transistor can be susceptible to manufacturing process variations. We selected 50nm for M5
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Figure 4.8: Width of M5 v/s SM and STTRAM current from SL for various RL.

width for the low search current. Further, two transistors of 100nm width in series can be used to

minimize the process tolerance. It can be observed from the plot that miss case current is highly

dependent on width of M5 NMOS device and remains almost same for different RL values. High

RL is selected to keep the TMR within practical limits 100-150% [97]. To determine the optimal

size of transistors M3/M4 we swept the size and observed the sense margin and sense current for

50nm M5 width (Fig. 4.9). It is evident from the plot that the sense margin increases sharply from

50nm till 200nm. After 200nm improvement in the sense margin saturates. Also, the search current

increases by approximately 10X with increase in the width by 25nm. Therefore, we selected the

width of M3/M4 to be 200nm.

4.5.2 Impact of TMR on Sense Margin

Fig. 4.10 shows the trend of match current and sense margin versus width of NMOS M5 for

different TMR values. The RL of MTJ is fixed to 8K (as decided in Section 4.5.1) for this analysis,
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Figure 4.9: Width of M3/M4 v/s sense margin and search current for various RL.

TMR and RH are selected for low match case search current and higher sense margin. It can be seen

that higher TMR ensures better sense margin and low STTRAM match current with fixed RL. It

can be seen from the plot that the NMOS width does not affect the STTRAM current compared to

that in the miss case because the MTJ high resistance RH dominates the effective NMOS resistance

of M3/M4-M5. This also results in low drain voltage at M3/M4 compared to that in the mismatch

case. So, the width of NMOS is selected based on the mismatch current drawn from the SL while

the TMR is chosen to satisfy the match case conditions. It can be noted that the sense margin

benefit of TMR greater than 125% saturates. Hence, we have used TMR=125% that provides less

than 45µA of match current with a sense margin close to 500mV.

Resistance of MTJ is shown to depend on oxide thickness and surface area of free layer

[87]. Therefore, by tuning these parameters it is possible to obtain MTJ resistance of RL = 8kΩ.

Similarly, it has been experimentally shown that TMR could be improved up to 236% [87]. This

ensures the realization of TMR=125% in the design.
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Figure 4.10: ML sense margin and search current with width of NMOS M5 and TMR.

4.6 Simulation Results of NOR TCAM Cell

In this section, we present analysis of the proposed TCAM with respect to temperature,

voltage and process-variations. We also propose modulating search enable signal and threshold

voltage to improve robustness.

4.6.1 Setup

We used TMR=125% with RL = 8kΩ, 50nm M5 transistor and 200nm M3/M4 transistors

(as discussed in Section 4.5). MTJ models from [64] is used with 60nmx60nmx3nm free layer

dimension and 0.876nm oxide (MgO) thickness for design simulations. Word size of 16, 32, 64, 128,

and 256-bit is simulated to analyze the design with respect to process, temperature and voltage

variations.

4.6.2 Temperature Variation Analysis

Thermal fluctuations result in the critical current and switching time variations in the MTJ

which is modeled in the effective magnetic field in LLG equations [98]. The worst-case sense margin,
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search delay (for 50mV sense margin development) and the Power Delay Product (PDP) per bit

search from 10oC to 90oC are shown in Fig. 4.11 for different word sizes.

(a) (b)

(c)

Figure 4.11: (a) Sense margin; (b) Search delay; and, (c) PDP v/s temperature.

A single bit mismatch is considered for sense margin and search delay as it is the worst-

case condition. The search delay increases proportionally as the word size due to increment in ML

interconnect capacitance. As the temperature increases, the rate of ML discharge increases due

to lowering of threshold voltage of the discharge transistors M1/M2. Sense margin decreases with

temperature due to ML discharge through subthreshold leakage current of discharge transistors in

the match case. Therefore, the search delay (for 50mV sense margin) increases with the temperature.

The PDP is proportional to the change in search delay while the operating voltage and the search
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line current are similar across different temperatures. From Fig. 4.11a it is evident that we obtain

a reliable sense margin of greater than 50mV across the range of temperature till 256-bit word size.

4.6.3 Voltage Scaling

(a) (b)

(c)

Figure 4.12: Voltage scaling from 0.7V to 1.2V. (a) Sense margin; (b) search delay in logarithmic
scale; and, (c) PDP.

For this study, the operating voltage is varied from 0.7V to 1.2V to observe the sensitivity of

sense margin, search delay and PDP per bit search (Fig. 4.12). A 50mV sense margin development

time is used to measure the search delay. Below 0.7V the sense margin of 256-bit CAM word is

less than 50mV. Sense margin and search delay are sensitive to Vdd due to lowering of gate voltage

of M1/M2 while their threshold voltages remain fixed. At lower voltages, the M1/M2 transistors
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fail to turn ON or weakly conduct even during mismatch degrading the sense margin (especially

for wider words). Search delay for a 256-bit TCAM word varies from 124ps at 1.2V to 2.098ns at

of 0.7V (search delay is plotted in log10 scale). The increase in the search delay results in sharp

increase in the PDP at 0.7V.

4.6.4 Process Variation Analysis

For process variation analysis, we have considered FF, SS and TT corners. We have modeled

the process variation in transistors by widely accepted technique of lumping the variation in channel

length, oxide thickness, flat band conditions etc. into threshold voltage of the transistor [99]. The

SS (FF) is simulated by adding (subtracting) 150mV from nominal threshold voltage. Process

variation in the MTJ device is modeled by considering the effects of variation in the MTJ surface

area and oxide thickness [98]. We have considered process variability in MTJ by varying the MTJ

set resistance RL as normal distribution with mean of 8kΩ and sigma ±500Ω and TMR variation

of 0.1% (variation in surface area and oxide thickness). The worst-case sense margin is plotted for

different supply voltages at TT, SS and FF corners (Fig. 4.13). It can be observed that the design

can provide a reliable sense margin of above 50mV at all corners till 0.75V for 128-bit words or less.

The poor sense margin at lower voltages is linked with poor Vgs across M1/M2 that keeps the ML

precharged even in mismatch conditions.

The 256-bit word fails to provide adequate sense margin in FF corner at 1V. This is primarily

due to poor ∆2 (as shown in Fig. 4.4) when VTH0 moves down coupled with leakage from the match

bits. Therefore, match bits leak in case of mismatch degrade the sense margin. We propose threshold

voltage modulation and Search Enable (SE) voltage boosting or underdrive to improve sense margin

for 256-bit word. Furthermore, these techniques will not worsen the reliability of the NMOS device
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since thicker oxide (associated with high Vth) and lower gate voltage are expected to be better for

reliability such as hot-carrier degradation, NBTI and TDDB.

(a) (b)

(c)

Figure 4.13: Distribution of sense margin in (a) TT; (b) SS; and, (c) FF corners.

4.7 VTH and SE Modulation for Sense Margin Improvement

In order to solve the poor sense margin, we propose to modulate VTH0 , ∆1 and ∆2 by

exploring threshold voltage modulation of transistor M1/M2 (to tune VTH0) and SE voltage mod-

ulation (to tune ∆1 and ∆2 ). Fig. 4.14a shows the results at 1V for the three PV corners for

256-bit word at different SE signal voltages, and, 0mV, 50mV and 100mV higher VTH . Change in

the gate drive of M3/M4 changes their ON resistance and results in corresponding change in ∆1
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and ∆2. It can be noted that optimum choice of SE can improve the sense margin. Moreover,

repositioning of VTH0 can improve the sense margin further. Fig. 4.14b illustrates the sense margin

across three PV corners with VTH implants at 850mV supply voltage. It can be noted that VTH

modulation can improve the worst-case sense margin significantly (FF and SS in this case) even

though the sense margin in TT corner is degraded. The improvement results from decreased match

case current through M1/M2 at SS and the reverse effect in miss case at FF. At the same time,

lower SE increases the resistance of M3/M4 which in turn increases ∆2. As expected, the sense

margin in FF with VTH implant is comparable to TT corner without implant. With 100mV VTH

implant the design can provide a reliable sense margin of above 40mV in all the PV corners even

without SE modulation. A 150mV SE under-drive can improve the sense margin at TT to more

than 120mV and a 250mV SE under-drive can improve the sense margin at FF to more than 50mV.

So, we employ positive VTH implant of 100mV and gate control signal SE under drive by 150mV

to improve performance across all the PV corners. Positive VTH implant is realized by thicker ox-

ide and gate under drive below highest Vg of technology node improves the device reliability while

improving the performance.

4.8 NAND Type TCAM Cell Simulation Results

We simulated single bit, 8-bits, 16-bits, 32-bits and 64-bits NAND type TCAM words and

the waveform illustrating the match and miss case states of the match line is shown in the Fig. 4.15.

It can be seen from the figure that NAND type TCAM can provide up to 500mV of sense margin

from 1-bit TCAM simulation. It is also observed that the sense margin decreases as the number

of bits in the word increase due to the charge sharing of the match line from intermediate nodes

between the bits of a word. We have measured the miss case match line voltage with the miss on

49



(a) (b)

Figure 4.14: Maximum SM variation with VTH implant. VTH implant of 0mV, 50mV and, 100mV
at (a) Vdd = 1V ; and, (b) Vdd = 850mV .

the farthest bit from the sense amplifiers end to consider the worst-case scenario. The sense margin

measured for 16, 32 and 64 bits TCAM words are 147mV, 90.5mV and 33.4mV under nominal

conditions. The search delay measured for a minimum SM of 50mV for 16 and 32 bit TCAM words

are 1.83ns, 2.72ns respectively. 64-bits word has search delay of 5.45ns for 30mV SM. Search delay

is measured as the time required to develop required sense margin on the matchline from the time

WL crosses 0.5×Vdd. The sense margin can be improved by adding a capacitor to the match line

which makes it harder for the match line to get charged by the intermediate node voltages with

stray charges in case of a miss. This technique increases the match line power due to increase in

match line capacitance.

The search power in a NAND type TCAM cell at 0.8V and 1V supply voltage are tabulated

in Table-4.5. The power consumption in NAND TCAM is higher than the proposed NOR TCAM.

This is due to additional logic around the NOR type TCAM cell in the design realization. The

search delay and sense margin plot for different word length of NAND type TCAM is as shown in

the Fig.4.16. It can be concluded from the plot that the search delay increases by two-fold with the
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Figure 4.15: Match and miss case match line voltages.

number of bits in the TCAM word (word length). The maximum sense margin decreases greatly for

larger word length beyond 64 bits. Maximum sense margin for 64-bit word is 33.4mV with search

delay of 5.8ns which is due to larger resistance offered by the PMOS transistor chain in the match

line. We have retained the size of PMOS in the match line same for different word lengths for

simplicity of analysis and also to alleviate the area overhead in larger words.

Figure 4.16: Search delay and maximum SM of NAND type TCAM v/s word length.
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4.9 Comparative Analysis

In this section, we present the comparative analysis of the proposed NOR and NAND TCAM

with respect to CMOS CAM and other spintronic CAMs from literature.

4.9.1 Comparison with CMOS TCAM

Conventional TCAM cell consists of 16 transistors while the proposed NOR type TCAM

consists of only 6 NMOS transistors and 2 MTJ bits which 63.5% reduction in the number of

transistors. For power comparison, we implemented the CMOS TCAM and simulated using 22nm

predictive model. The leakage power of the proposed TCAM is zero as the power supply can be

completely shut off during the sleep while SRAM TCAM consumes a considerable amount of standby

power. In the mostly OFF applications such as Internet-of-Things and smartphone the proposed

TCAM could be very attractive compared to CMOS CAM. The search power consumption of the

proposed TCAM is higher compared to conventional CMOS because of the search line current

(∼51µA in case of a mismatch at 1V) drawn to generate a secondary voltage at the drain terminals

of M3/M4 which enables the discharge transistors of ML. The search line current can be reduced

by selecting MTJ with high RL and high TMR. The power consumption during search operation

of ’1’ and ’0’ bits at 0.8V in STTRAM based TCAM is observed to be up to 8% higher in the

worst case (successful search of ’1’) compared to NOR type CMOS TCAM. The power consumption

of NOR type CMOS TCAM and the proposed spintronic TCAM are tabulated in Table-4.6. The

NAND type TCAM consumes 2-3% more power and 50% more number of transistors (6T v/s 9T)

compared to the proposed NOR type TCAM.
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Table 4.5: Power (in µW) comparison of CMOS and proposed TCAMs

Vdd(V) Match Miss Search ’X’ from Sl=S̄L=0 Search ’X’ with D=D̄=1
CMOS 0.8 0.3 2.03 1.03 0.2403
Proposed NOR 0.8 24.84 23.8 0.6 22.39
Proposed NOR 1 43.07 53.3 1.02 41.25
Proposed NAND 0.8 24.5 25.08 20.26 29.08
Proposed NAND 1 54.5 43.75 46.4 (SL=S̄L=1) 63.9

4.9.2 Comparison with Spintronic CAMs

We compared the proposed TCAM cell performance with the other spintronic TCAM struc-

tures proposed so far (Table-4.6). The proposed NOR type TCAM draws 51µA (39µA) from the

search line during mismatch (match) which is significantly energy-efficient than domain wall mem-

ory (DWM) CAM [93]. NOR type TCAM is 33.3% less number of transistors compared to the

MTJ TCAM [91] and 50% (25%) less number of transistors than DWM TCAMs [92, 93]. The

proposed NAND type TCAM has 12.5% additional transistors compared to the MTJ TCAM [91]

and 33.3% (44.4%) less number of transistors than DWM TCAM [92, 93]. The BCAM proposed

in [91] requires additional circuitry (NMOS transistor and a MTJ) to configure as a TCAM. In the

proposed TCAM data can be written to the bit cell by conventional current induced magnetization

technique [64] and controlling the source line. Therefore, it eliminates the need of external writing

circuitry. The NMOS transistor M6 (driven by ’WR’ signal) provides the additional current required

for write. This is unlike in [91] which does not provide methods for memory write. The TCAM

cells [91, 94] both MTJs are integrated into search circuit in series which makes the write operation

more complex and erroneous. DWM CAMs [92, 93] use domain wall motion based write and MTJ

sense circuit based search which adds area overhead and complexity in memory design. MTJ based

CAM proposed in [95] also uses 4 transistors (NMOS and PMOS) and 2 MTJs, sensing is based

on the amount of current drawn from the match line by different low and high state resistance
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offered by the MTJ. The technique fails as the number of bits in a word increases (up to 144-bit

word). The memory cell has low tolerance to variations in temperature and low VTH process corners

due to leakage in the diode connected NMOS transistor. With larger word capacitance of the ML

increases while the differential current remains the same and thus affecting the ML sense margin

available. The situation becomes worse with process variation of diode connected NMOS transistor.

Also, 2T-2MTJ [95], accumulator to store segmented search results and segment activation. The

additional circuits incur delay and power overhead in the scheme. Overall the technique is not

efficient in terms of delay and power compared to other spintronic CAMs. Though search delay is

mentioned in Table-4.6 for different word lengths, the search delay reported for proposed TCAM is

for larger word (256- bits). Also, it is only 7.5 times the search delay in a single bit search of [94].

The proposed TCAM search delay differentiates by its smaller value for a larger word. Network IP

address is 128 bits in IPv6 protocol [100]. For 128-bits search delay is less than 250ps which can

theoretically support 3GHz-4GHz search speed for application in routers.

Table 4.6: Comparison with other spintronic CAMs

Parameter MTJ-based CAM [91] DWM CAM [92]) DWM CAM [93] MTJ-based CAM[94] Proposed NOR CAM Proposed NAND CAM
Technology 180nm 90nm 65nm 32nm 22nm 22nm
CAM type BCAM/TCAM TCAM TCAM BCAM TCAM TCAM
CAM topology NOR NOR NOR NOR and NAND NOR NAND
Search energy/bit NA 2.9fJ 12fJ 2.82fJ 4.7fJ 6.39fJ

Area 6T-2MTJ(BCAM)
8T-2MTJ(TCAM) 12T-2MTJ 12T-2MTJ 6T-2MTJ (NOR)

5T-2MTJ(NAND) 6T-2MTJ 9T-2MTJ

Search delay 3.3ns (32-bit) 5ns (128-bits) 2ns (8-bit) 34.4ps (1-bit) 263ps (256-bit) 2.72ns (64-bit)
Ext. write circuit NA Yes Yes No No No

We have used 60nmX60nm IMA MTJ model which shows the write latency of 4ns with write

energy 0.69pJbit.
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4.10 Summary

The chapter proposed a spintronic TCAM which is promising for zero standby leakage and

uses less number of transistors. We conducted detailed analysis in the presence of process, voltage

and temperature variations for wide range of word sizes. The proposed design operates with reliable

sense margin up to 128-bit word size till 0.7V. We also propose threshold voltage modulation and

search enable underdrive to improve sense margin for 256-bit word. The proposed TCAM has 62.5%

reduced number of transistors compared to conventional CMOS TCAM and 33-50% lesser number

of transistors compared to other spintronic CAMs. The worst case active leakage power of the NOR

TCAM cell is measured to be 0.38nW. We also propose 9T-2MTJ NAND type TCAM cell which

has 43.75% reduction in number of transistors compared to conventional TCAM cell. Proposed

NOR TCAM cell has better performance and power metrics compared to NAND TCAM cell. Our

study revealed that NOR TCAM using the proposed approach is better than the NAND TCAM in

area, delay and power. Therefore, it makes practical sense to employ the NOR TCAM in search

applications.
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CHAPTER 5 : CSRO BASED TRUE RANDOM NUMBER GENERATOR

5.1 Introduction

Information security is one of the primary concerns with the growth of internet and cloud

storage. Data encryption and cryptography are reliable techniques for protecting the data over

communication channel (network and storage). Random Number Generator (RNG) is an integral

part of cryptography algorithms in encryption engines [101]. Data and system security depends

on the randomness of the bit stream generated by RNG [102, 103]. Entropy of the source is

instrumental in ensuring the security of the encrypted data. RNGs also find numerous applications

other than cryptography such as gaming, gambling, industrial testing and labeling, Monte Carlo

simulations, password generation and so on. Software based encryption engines depend on the

random number generated by the computer which is only pseudo random due to deterministic

algorithms used for generating random number from an initial seed value. Hardware RNG exploit

the randomness in physical processes such as, electronic noise, quantum processes, chaotic light

emission etc. to generate a continuous stream of random numbers. Although CMOS-based solutions

[101, 104, 105] are promising they offer limited security-specific properties such as process variations,

noise and chaos. Emerging technologies such as, spintronics [106, 107], memristor [108], and RRAM

[109, 110, 111] have demonstrated significant promise because in addition to low-power, high-density
6Portions of this chapter were reprinted from R. Govindaraj, S. Ghosh and S. Katkoori, "CSRO-Based Recon-

figurable True Random Number Generator Using RRAM," in IEEE Transactions on Very Large Scale Integration
(VLSI) Systems.doi: 10.1109/TVLSI.2018.2823274.
Permission is included in Appendix A.
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and high speed they also offer new sources of randomness, and easy integration with CMOS [112].

We exploit inherent noise sources of RRAM to design a TRNG.

In this chapter, we explore RRAM technology and features such as, cycle-to-cycle variations

and Random Telegraph Noise (RTN) for TRNG design. We make following contributions in this

work:

• We propose a high speed (kHz-MHz) Current Starved Ring Oscillator (CSRO) based TRNG

using RRAM [54]. We evaluate the proposed TRNG using NIST test suite.

• We propose a methodology to reconfigure the TRNG when entropy reduces over time, and

to recover from non-invasive adversary attacks such as exploiting temperature sensitivity of

RTN.

• We discuss the security vulnerabilities of RRAM based TRNGs and potential countermeasures

in the proposed TRNG.

The remainder of the chapter is organized as follows. Section 5.2 provides the background

of TRNG, and RRAM-based TRNG. Section 5.3 and Section 5.4 describe the design and simulation

of the proposed TRNG. Section 5.5 discusses potential adversary attacks on RRAM based TRNG

and countermeasures. The chapter is summarized in Section 5.6.

5.2 Background and Related Work

In this section we discuss the background of TRNG, and RRAM based designs from the

literature in this section.
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RNGs are broadly categorized into two basic types based on the quality (in terms of ran-

domness) and the method of bit stream generation, namely, Pseudo RNG (PRNG) and TRNG. In

PRNGs, bit stream is not completely random as the algorithm is deterministic except the seed value

[[101]. More secure data encryption algorithms require fully random and non-deterministic method

of generation. Such streams are generated using TRNGs. Several TRNGs have been proposed in the

literature [101, 104, 105, 106, 107, 108] based on randomness in electrical noise, thermal noise, and

oscillator based RNGs such as, Free-Running Oscillator, Fibonacci RO (FIRO), Galois RO (GARO)

and so on. Noise based RNGs (Fig. 5.1) post-process the noise from the analog source (resistance,

voltage source, temperature) to generate random numbers for a digital system. Amplifying tiny

noise voltage or converting noise from physical environment to a digital signal often requires multi-

ple stages of processing [101, 104] which depreciates the randomness from the source. Furthermore,

the TRNGs which employ the analog parts are weak due to their vulnerability to various adversary

attacks.

Figure 5.1: Noise based RNG.

Emerging technologies such as spintronics and RRAM [106, 107, 108, 109, 81, 54] which are

compatible with CMOS technology [112] and provide rich sources of entropy on-chip are attractive in

such scenario. However, the resistance range of spintronic device is limited and the speed of RRAM
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based TRNGs is as low as few kHz due to their dependency on programming speed of RRAM. A

high-speed TRNG is proposed in [110] which employs the RRAM RTN noise. The principle is to

utilize the differential change in the bias voltage to modify the sampling frequency. The distinction

between [110] and proposed work are as follows:

• RTN of RRAM in the cell of a memory array modulates the bias voltage of a Voltage Controlled

Oscillator (VCO). However, the bitline interconnect noise could be large enough to suppress

the effect of RTN on voltage differential eventually affecting the available entropy. Further-

more, on-chip noise from pseudorandom source such as power supply, temperature, crosstalk

[104] can overpower RTN noise of RRAM which is as small as in the range of nanoampere when

bias voltage is generated from a cell in large memory array. The proposed design incorporates

a dedicated RRAM in TRNG circuit which preserves the entropy of RRAM RTN.

• Once the adversary can predict stable frequency of the faster clock (by the method of frequency

injection when memory and digital supply rails are accessible) [113], random number samples

could be predicted for various sampling frequencies under such weak frequency modulation

method. In the proposed design power supply of the TRNG can be isolated and placed such

that it is not accessible externally. This prevents from the possibility of frequency injection

attack.

• TRNG in [110] employs multiplexers to drive each of the inverters in the VCO for frequency

trimming which adds considerable area overhead.

• The peak-to-peak (p-p) amplitude of current variations due to RTN is a Figure of Merit (FoM)

for a RRAM in storage application. Considering the FoM of RRAM to be used in memory
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array, it is not feasible to use the RTN of RRAM from a memory cell as source of entropy

[3] because of their contrary FoM requirements. RO is placed as boundary circuit in the

memory architecture. RTN being a noise voltage of less than 100nA, the method uses a bias

current of greater than 50µA to generate bias voltage differential of ∼200mV. The proposed

TRNG can operate with bias voltage differential as low as 0.7mV without any current source

for biasing. Further, having a µA range of current source in the bias circuit also increases

the power dissipated in the bias circuit compared to the proposed TRNG. Reconfiguration

of the faster clock oscillator and using a dedicated RRAM cell within bias voltage circuit

is essential for a robust design under these circumstances. The proposed method provides

two levels of recovery from external adversary attacks by configuring the TRNG through

programming RRAM (SET/RESET), and by tuning the sampling frequency to obtain good

statistical properties of the generated bit stream.

Therefore, the proposed design is more effective in exploiting the entropy of the RRAM device for

TRNG application. We discuss various potential adversary attacks on TRNG in Section 5.5.

5.3 Proposed RRAM TRNG

In this section, we describe the proposed TRNG and perform qualitative and quantitative

analysis.

5.3.1 Details of the Proposed TRNG

The proposed TRNG based on CSRO is as shown in Fig. 5.2a. Delay of the inverters in

CSRO can be controlled to adjust the frequency of oscillations. Principle of delay control is based on
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current starving of the inverters by controlling the gate voltage of the additional control transistors

[114] stacked in NMOS and PMOS network respectively (Fig. 5.2a). Gate voltages of these two series

transistors is derived from a bias circuit. In the proposed TRNG, we embed RRAM in the bias circuit

to control the gate bias voltages randomly as dictated by the RTN and cycle-to-cycle switching

variations of RRAM. The bias circuit is shown in the inset of Fig. 5.2a . It consists of RRAM and

(a) (b)

Figure 5.2: (a) Proposed TRNG based on CSRO; and, (b) Illustration of N-bit TRNG.

access transistor (1T-1R structure) for programming the RRAM as required. NMOS is sized to carry

the compliance current of RRAM. Vctrl of the access transistor can be connected to constant voltage

greater than threshold voltage of NMOS device during normal TRNG operation. Frequency of

programming depends on the quality of bit stream generated with time and RRAM switching speed.

In 22nm technology, the width of the diode connected transistors (Wp = 400nm,Wn = 200nm) in

the bias network are chosen to keep the voltage across the RRAM below 300mV under the highest

HRS of the RRAM (3MΩ). The operating voltage of the TRNG is 1V. We assume worst case

conditions for voltage drop estimation across RRAM for process variation tolerance. The bias

voltages Vnbias vary in proportion to current through the RRAM. Vpbias varies in complementary

slope with respect to RRAM current and Vnbias i.e.Vpbias = Vdd − (VRRAM + Vds(Vctrl) + Vnbias).
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Variation of CSRO frequency with the current through RRAM is explained as follows. When the

RTN current increases the current though the bias network, Vds of diode connected NMOS increases

proportionally increasing Vpbias node voltage. At the same time Vnbias decreases proportionally.

Because of increasing the PMOS gate voltage and decreasing NMOS gate voltage in the inverter

stack, delay of the inverters increase. Consequently, the frequency of the oscillator decreases. Thus,

current variations in RRAM due to RTN induce respective differential change in Vpbias and Vnbias.

Differential change in bias voltages in turn change the delay of the inverter chain and thus, the

frequency of the CSRO. It should be noted that the direction of inverter delay differential depends

on the net effect of strength of PMOS and NMOS delay control transistors and bias voltages. In

this work, we have used 2:1 ratio for PMOS to NMOS sizing. The speed of inverters varies in the

direction of Vpbias. These variations are stochastic in nature and, thus data sampled by the sampling

clock is random due to stochastic variations in operation of CSRO. The output of multiple ROs are

provided to D-Flip Flops which sample the outputs using a sampling clock as shown in Fig. 5.2b.

5.3.2 Sampling Frequency

Sampling frequency determines the rate of generation of random numbers. Minimum sam-

pling frequency is dictated by the frequency of oscillations generated by CSRO. Sampling frequency

must be selected at least half of that of CSRO oscillations to avoid the duplication of the bits in the

random bit stream. Theoretically, sampling frequency upto several MHz can be selected for CSRO

oscillations greater than 10MHz. We have selected 6MHz of sampling frequency for the CSRO os-

cillations in ∼60MHz-70MHz range. Sampling frequency can be selected during the time of design

by estimating the frequency of CSRO from the initial delay of the inverters. Sampling frequency

can also be selected dynamically to improve the statistical properties of the bit stream [115]. A
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technique based on Built In Self Test (BIST) is proposed to measure the statistical properties of RO

based TRNGs in [115]. However, it requires on chip clock generator with dynamically adjustable

frequency and BIST with logic for testing statistical properties which adds to the design complexity

and additional cost. Frequency of random bit stream is theoretically limited by the number of

inverter stages in the CSRO and frequency of the various sources of entropy in the TRNG. Circuit

and device noise depends on bias voltage, temperature, junction capacitance of MOS devices and

scales proportionally with the number of stages in a single ended CSRO [116]. To achieve synergistic

effect of circuit noise and RTN (Fig. 5.3a) and high speed generation of random numbers we limit

the sampling frequency in the range of MHz.

(a) (b)

Figure 5.3: RTN current ∆I and reconfiguration of TRNG.(a)∆I through RRAM due to RTN with
5kHz of frequency; and, (b) reconfiguration of TRNG.

5.3.3 Configurability

Frequency of CSRO can be dynamically configured by altering the parameters in the bias

circuit, which varies the current starved by the delay inverters. For this purpose, we embed 1T-1R

cell in the bias circuit. Due to exponential dependency of HRS current on the barrier length, a

small change in the barrier length manifests as significant change in the resistance unlike in LRS

where current is linearly dependent on the barrier length. HRS exhibits the higher cycle to cycle
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variability and RTN compared to LRS [76, 83] .Therefore, in the design we RESET the RRAM for

reconfiguration. It should be noted that the cycle-to-cycle switching parameter variations and RTN

are uncorrelated but concurrent in nature [76].

Table 5.1: Comparative analysis of TRNG

Methodology Source of entropy Speed Advantages Drawbacks

Spin Dice [106]
Perturb and tracking [107]

RESET and probabilistic switching voltage for
programming. And [107] eliminates reset every

cycle conditionally from the previous o/p sample.
3 phases: RESET, perturb and read

Probabilistic switching
of MTJ MHz Ultra-low voltage

switching operation of MTJ.

Speed is limited by RESET [103],
probabilistic switching time; Delay, area

and power overhead of tracking system [105].

Balatti et al.[109] Stochastic SET process by a random pulse
with median of SET voltage distribution Stochastic switching process kHz-MHz Broader Resistance distri-

bution compared to MTJ.
Accurate switching voltage control,
and Slow switching limits the speed.

Balatti et al. [81]
Probabilistic switching of

a pair of RRAM (series/parallel).
3 phases: set, reset and read.

RRAM probabilistic switching ∼0.16kHz No biasing of random bit Slow switching speed.
Requires analog parts: Comparator

Yang et al.[110] RRAM cell in bias circuit
of sampling frequency oscillator. RTN of RRAM MHz-GHz

Sample frequency generator based
TRNG. Biasing circuit uses a current
source of >50µA. Requires ∼200mV

of bias voltage differential.

FoM of RRAM requirements are in contrary
for storage and TRNG applications.

Interface noise and routing congestions
would mitigate the effect of RRAM RTN.

Proposed TRNG
RRAM current makes the current through
the bias network of CSRO which in turn

generates phase noise and jitter in the oscillations.

RTN, electronic noise in RO and
cycle-cycle reset switching variations MHz-GHz

High speed not limited by RRAM
switching speed.Simple CSRO based design.

No analog parts

Requires power gating; and larger area
compared other RRAM based TRNGs.

For programming the RRAM (Fig. 5.3b), we halt the operation of CSRO by power gating

PMOS transistor connected to power supply. Power gating transistor is driven by a pulse with pulse

of width equal to the write time. The NMOS transistor controlled by Vctrl in the regular operation is

connected to Vdd or a constant voltage. RRAM is RESET by applying Vreset ramp voltage of -1.3V

across the electrodes from SL and BL signals. RRAM demonstrates switching time of ∼10ns which

adds penalty of one cycle with CSRO frequency of upto 100MHz in the worst possible scenario of

write conditions. The primary advantage of the proposed TRNG over other RRAM based TRNGs

is high speed generation [109, 81] of random bit stream and the frequency of TRNG is independent

of the write time of RRAM [81].Table-5.1 presents the comparative analysis of the proposed TRNG

with other spintronic and RRAM TRNGs. By choosing a reset voltage at probabilistic switching

voltage and using probability switching model of RRAM, the entropy can be further improved. The

reconfiguration feature can also be exploited to recover from adversary attacks by generating new

random numbers. However, this requires additional circuitry to detect the adversary attacks and
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(a) (b)

Figure 5.4: Variations CSRO parameters (configurability) with RRAM current. (a) Frequency; and,
(b) inverter delay over 25 reset cycles.

activate the write operation of RRAM. The TRNG is reconfigured in regular intervals under default

conditions without any assistance to detect adversary attacks for simplicity of the solution.

By applying the probabilistic switching voltage instead of RESET voltage -1.3V the RRAM

undergoes probabilistic switching. The RRAM remains RESET or changes to SET state by the

applied switching voltage [77, 80]. This kind of switching could improve the randomness in the

oscillator frequency further after configuration. This is out of the scope of this work and, will be

explored in our future work.

(a) scale=0.4 (b) scale=0.4

Figure 5.5: Variations of voltage across NMOS and PMOS with RRAM current.
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Frequency of programming pulse is at least few 1000 times slower than frequency of CSRO

oscillations. Typically, TRNG is configured after generating a few sets of random numbers. Within

a single configuration cycle circuit noise and RTN acts as source of randomness to generate jitter

in oscillations. Between different configuration cycles RRAM switching parameters’ variation and

respective RTN synergistically contribute to entropy in the TRNG system.

5.4 Simulation Results

(a) (b)

(c)

Figure 5.6: Differential changes due to change in RRAM current with configuration. (a) bias
voltages; (b) delay of inverter; (c) frequency of oscillations.

We present the simulation results of proposed TRNG using 22nm PTM models of MOS

transistors and Verilog-A model of RRAM (Chapter 3). Fig. 5.4a shows the frequency of a CSRO
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and RRAM current at different RESET cycles reconfiguring the resistance of RRAM. Frequency

of CSRO changes in the range of 62MHz-67MHz over 25 cycles of configuration in unpredictable

random steps. Also, frequency of CSRO varies in complementary slope (± and vice versa) with

respect to current through RRAM. NMOS and PMOS bias voltages (Fig. 5.5a, and Fig. 5.5b)

undergo differential change in each of the configuration. The current through the RRAM in different

RESET cycles which varies from ∼83nA to ∼112nA in random steps which induces respective

differential change in the delay of inverter. Delay of the inverter varies in tandem with the current

though the RRAM/bias network (Fig. 5.4b).

(a) (b)

(c)

Figure 5.7: Differential changes due to RTN at 30oC. RTN though RRAM resulting differential
change in (a) bias voltages; (b) delay of inverters; and, (c) jitter (∆T) in oscillations.
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It can also be observed that the PMOS and NMOS bias voltage differentials vary in com-

plementary slopes (± and vice-versa) with each other. PMOS bias voltage varies proportional to

current through the RRAM (Fig. 5.6a). The bias voltages demonstrate a differential change of few

mV (21mV and 16mV) which induce a proportional change in the delay of the inverters and fre-

quency of CSRO. Fig. 5.6b illustrate the cycle to cycle differential change in the delay of inverters,

and it varies in the direction of Vpbias. Fig. 5.6c shows the frequency of CSRO varying with current

through the RRAM. As the current through RRAM decreases frequency of CSRO increases and

vice-versa. RTN in the RRAM induces jitter in the oscillations which leads to randomness in the

Figure 5.8: NIST test results on bit stream from 4-bit TRNG.

bit stream sampled from the CSRO oscillations. To illustrate the effect of RTN on jitter in CSRO

oscillations, we have plotted the differential in current through the RRAM and bias voltages with

time (Fig. 5.7a) time period of the oscillations with time. Also, differential change in delay of the

inverter is plotted due to respective change in the current through RRAM (Fig. 5.7b). Delay of

inverter changes in the range of ±10fs to ±200fs exhibiting a maximum differential change of 200fs.

Jitter in the range as low as 3ps to as high as 60ps is observed (Fig. 5.7c). This additional jitter

due to RTN in the RRAM acts as source of randomness to produce the random bit stream when
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CSRO oscillation is sampled by a clock of stable frequency. We present NIST test results of a 4-bit

TRNG with 2500 random data samples (10000 bits in a stream) to validate the randomness of the

data generated. From the Fig.5.8 it can be noted that the p-value in the NIST tests is greater than

0.01 which indicates sufficient randomness in the generated bit stream.

5.5 Adversary Attacks on TRNGs

In this section, we discuss the adversary attacks on the RO based TRNGs and RRAM based

TRNGs. We also discuss the robustness of the proposed design against these attacks.

(a) (b)

(c)

Figure 5.9: Differential change due to RTN at 5oC. RTN though RRAM resulting differential change
in: (a) bias voltages;(b) delay of inverters; and, (c) frequency (∆f) in oscillations.
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5.5.1 Background of Attacks and Prevention

Several adversary attacks like frequency injection attack, attack over the network [117],

electromagnetic waves emission based [118, 119], fault attacks [113, 118, 119, 120, 121] have been

investigated in the literature. Researchers have also proposed techniques such as error correction,

induction of non-linearity in the response [118], attacks detection from frequency, bit stream mon-

itoring and recovery using RC filters closer to the power supply [120, 121] to safeguard against

these adversary attacks. Attacks such as frequency injection attacks from the power rails could be

avoided by keeping the power rails not accessible to the adversary externally. This can be achieved

by deriving the voltage from a dedicated on-chip power supply [122]. In this chapter, we focus our

discussion on potential attacks on RRAM based TRNGs.

5.5.2 Vulnerabilities of RRAM-based Design

RRAM based TRNGs are vulnerable to the adversary attacks due to the sensitivity of

RRAM characteristics to temperature and voltage. RTN of RRAM is associated with the charge

and discharge time of traps in the CF. The frequency of charge and discharge is dependent on the

joule heating of the CF and the ambient temperature. Fig. 5.9 illustrates the simulation results

for the effect of RTN at 5oC. At cooler temperature, the charge and discharge time of the electrons

in the traps are longer which reduces the rate of change of RRAM current [83]. Hence, change in

the RRAM current varies at the rate of few Hz (1-4 times/second). Very few traps available are

responsible for RTN decreasing the variation range of RRAM current in few nA (∆I of RRAM is

0.5nA-1nA) as shown in Fig. 5.9. Differential change in the bias voltages, delay and frequency is

reduced by ∼25X, ∼10X and ∼40X respectively compared to the variations at 30oC. There are flat
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regions in the frequency plot where the differential change in the frequency is almost zero due to

degradation in the entropy available at cooler temperature. Attack model is discussed in the next

subsection.

5.5.3 Attack Model: Colling and Model Building

Entropy decreases (due to RTN) considerably at low temperature [83] which affects the

quality of random numbers generated. This makes the underlying cryptographic system vulnerable

to adversary attacks [123, 102, 103]. Adversary can cool the chip by nitrous oxide and control the

temperature of the chip which would eventually affect the entropy of the RRAM based TRNGs.

Although the vulnerability to Machine Learning (ML) based model building attacks on TRNGs is

still unproven, TRNGs could be vulnerable to model based attacks similar to Physically Unclonable

Functions (PUF) [124].

5.5.4 Countermeasures: Temperature Sensing and Configurability

Figure 5.10: NIST tests on 4-bit TRNG within RESET cycle with zero RTN. Von Neumann cor-
rection is applied to TRNG stream.
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By using an on-chip temperature sensor to sense the ambient temperature and configur-

ing the TRNG at an adaptive frequency depending on the temperature could safeguard against

temperature-based attacks. Diode temperature sensor proposed in [125] can be employed for on

chip temperature sensing. It should also be noted that RRAM demonstrates lower durability of few

million cycles compared to other non-volatile memories [81] which affects the productive lifetime of

TRNG in the security chip. Reconfiguration at regular intervals after generating a few random bit

streams makes it almost impossible for the adversary to predict the new CSRO frequency. This can

be used to safeguard against the model building attacks. Further, RRAM switching speed adds to

speed overhead in such scenario. In the applications where the speed of TRNG renders it useless,

Von Neumann correction technique [126] is employed within RESET cycle to compensate for the

reduction in the entropy with configuration frequency of kHz. We applied Von Neuman correction

on the bit stream generated after setting the effect of RTN to zero (no RTN current source) in

current fluctuations of RRAM on 4-bit TRNG of 2500 length (Fig. 5.10).

5.6 Summary

The chapter proposed a high speed (kHz-MHz), reconfigurable CSRO based TRNG for on

chip applications. It exploits the RTN low frequency noise in RRAM and cycle to cycle switching

parameter variations as the source of entropy. We propose a technique to reconfigure the system to

recover against adversary attacks. Configurability makes the model building and ML attacks harder.

The 4-bit random data stream is validated successfully for sufficient randomness using NIST test

suite. The speed of the designed TRNG is 6MHz. Energy/bit for random bit generation is 22.8fJ.
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CHAPTER 6 : RRAM ARBITER PUF WITHIN 1T-1R MEMORY

ARCHITECTURE

6.1 Introduction

PUF is one of the widely accepted hardware security primitives that finds application in

authentication as well as random number generation. It generates a secured key by the physical

nature of an electronic system. Physical structure of every electronic system is unique due to

inherent differences during manufacturing by the same process technology [127]. Several PUFs

based on CMOS [128, 127, 129], memristor [130] and spintronic technologies [131, 50, 51] have been

proposed in the literature. The CMOS PUFs include SRAM based memory PUF, arbiter PUF

and ring oscillator based PUFs [128]. Resistive Random Access Memory (RRAM) is another non-

volatile memory technology [132, 80] based on binary metal electrodes that have been explored for

memory and cross-bar array based PUFs [80, 133, 134, 135, 136] . The responses are generated by

comparing the resistance of memory bits from two symmetric columns of an array. The existing

RRAM PUFs are weak due to linear number of CRPs. Extension to strong PUFs (such as arbiter

PUF) while staying within the array structure is a non-trivial problem due to requirements such as

arbiter circuits and multiplexers.
5Portions of this chapter were reprinted from Govindaraj, R., & Ghosh, S. (2016, October). A strong arbiter PUF

using resistive RAM within 1T-1R memory architecture. In Computer Design (ICCD), 2016 IEEE 34th International
Conference on (pp. 141-148). IEEE.
Permission is included in Appendix A.
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In this chapter, we propose design and application of RRAM based arbiter PUF for the first

time. We make following contributions in our work:

• We propose a strong arbiter PUF architecture with low area overhead.

• We employ sense amplifier in the RRAM subarray as arbiter in the proposed architecture.

• We implement the proposed arbiter PUF with minimally invasive changes in the pre-existing

RRAM memory subarray which can potentially reduce the design time significantly.

• We evaluate the proposed Arbiter PUF (APUF) characteristics in terms of inter- and intra-HD

for various number of stages.

• We propose an APUF architecture resilient to Machine Learning (ML) based model building

attacks with few additional modifications.

• We also investigate the application of proposed PUF architecture in data attestation and

signature in IoT devices.

The remainder of this chapter is organized as follows. Section 6.2 provides the background

of PUF, and RRAM-based PUF. Section 6.3 describes the proposed PUF architecture and Section

6.4 presents simulation results. Section 6.5 discusses the potential adversary attacks on proposed

APUF with results of ML based model building and side channel attack based on power information.

In Section 6.6, the proposed APUF architecture is leveraged for ML attack resilient design. Section

6.7 presents the application of APUF for data attestation in IoTs when integrated with a Logic in

Memory (LiM) encryption platform. Finally, Section 6.8 summarizes the chapter.

74



6.2 Background

6.2.1 Background of PUFs

PUFs are promising security primitives that find applications in authentication and key

generation for secure operation. PUFs can be categorized based on the circuit topologies and the

characteristics such as CRPs. Based on circuit topology, PUFs can be categorized as memory PUFs

and delay based PUFs [128, 127, 129] whereas based on the characteristic property PUFs can be

categorized as weak and strong PUFs.

Memory PUFs exploit the random initialization of the SRAM bits in an array due to process

variations in CMOS memory cell. The address bits are used as challenge and the bits read from

the SRAM array with the address is the response of the PUF. The number of CRPs are limited by

the number of address bits of the memory. APUF (Fig. 6.1) comprises of two symmetric electrical

paths and the delay difference between the paths is digitized by an arbiter. The arbiter output is the

response of an APUF. The symmetric paths consist of gates and multiplexer circuits. Multiplexer

select lines are used as challenge bits. At every stage multiplexer select lines connect the two

incoming paths to one of the outputs. The randomness in the path delay due to process variation

makes the delay parameters unclonable which makes an APUF stronger. Further, with exponential

increase in the number of CRPs and multiple delay paths while employing XOR gate as arbiter

makes APUF more secure and resilient against potential adversary attacks such model building.

6.2.2 Background of RRAM PUFs

The resistance of the RRAM after SET and RESET follow probability distribution due

to defects in the CF and the thermal voltage fluctuations. The variability in the cycle-to-cycle
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Figure 6.1: CMOS Arbiter PUF.

resistance switching which is a source of randomness can be exploited for security applications.

RRAM PUFs are proposed based on 1T-1R bit cell and crossbar array. In the 1T-1R architecture,

the input to the row decoder and column multiplexer is used as a challenge to select and read two

cells of a row randomly. The response is generated by a current sense amplifier by comparing the

resistance of two cells. This forms a weaker PUF for array size of N × N , with N × N × log2N

number of CRPs [135]. Cross bar array PUFs become unreliable as the technology node shifts below

50nm due to interconnect resistance of crossbar array.

6.3 Proposed PUF Architecture

In this section, we propose an APUF using regular 1T-1R RRAM array architecture. This

is a stronger PUF with exponential number of CRPs. The motivation for the proposed architecture

is to achieve desirable PUF characteristics for hardware security while improving the area efficiency

of APUF staying with 1T-1R memory architecture. We provide the details of the PUF architecture

and performance analysis as well for various number of stages and reconfigurability.
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6.3.1 Summary of Proposed PUF Architecture

Fig.6.2 shows the proposed the architecture of 1T-1R bit cell based APUF. The design is

obtained by making minimally invasive changes to the existing RRAM memory array. The column

circuitry is modified by including two 2:1 multiplexers (inset in Fig. 6.2). The MUXes connect two

selected bit cells from a global column (GC2) to the other bit cells selected from another global

column (GC1). Two bit cells selected in a GC are from two different sectors by Word Line (WL), and

column select (Y_sel) signal selects one of the local columns in each of the sectors. Source Lines

(SL) from GC2 and Bit Lines (BL) from GC1 of the selected bit cells are selectively connected

through the MUXs. Select signal to the set of MUXs in each of the GC forms challenge bit in

association with the address bits (i.e., sector select and Y_sel) used for bit addressing in every

global column. The scheme effectively pairs up any two bit cells of GC1 with other bit cells of GC2

and the connecting path is controlled by the challenge bits (which could be address bits and MUX

selects). This type of architecture provides an exponential increase in the number of CRPs with

size of memory array.

Figure 6.2: High level architecture of proposed APUF.
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Figure 6.3: Conceptual schematic of the proposed APUF.

We repurpose sense amplifier as arbiter in the architecture. Two symmetric paths of APUF

are connected as two inputs of a differential sense amplifier. This is evident from conceptual

schematic of the PUF shown in Fig. 6.3. Instead of measuring delay between signals racing in

two paths to determine the response we measure the voltage difference at a given sense time. This

enables the implementation of the PUF architecture from a conventional RRAM memory array

minimally invasive. Multiplexers of the arbiter path are placed in the column area of the memory

subarray (Figs. 6.2 and 6.3). The variability in sense amplifier adds another source of entropy in

the PUF response.

6.3.2 Implementation of APUF

Fig. 6.2 illustrates the implementation of APUF and Fig. 6.3 depicts the conceptual view

of RRAM APUF. RRAM bit cells are connected in daisy chain fashion selectively between two

symmetric paths. Inset in the right-hand side of Fig. 6.2 shows the MUX circuit placed in the

column area of PUF architecture. The state of select signals controls the selected bit cell connection
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between the two symmetric paths. An arbiter is used to produce final response depending on the

delay difference between the signals arriving from these two paths. Process variations in the access

transistor, MUX circuit and RRAM bit cell are the sources of entropy in such an APUF. We use

the access transistors of minimum size. MUX circuit transistors are chosen for optimal speed of

the delay paths and smaller ON resistance. Smaller ON resistance ensures that process variation in

RRAM RESET resistance is not suppressed in path delay contribution.

6.3.3 Implementation of Challenges

Fig. 6.2 demonstrates the APUF implementation along with the challenge bits. Bit cell

addressing from the row decoder (WL) and column decoder (Y_sel) along with MUX select lines

are used as challenge bits. Such an implementation offers an exponential growth in the number

of CRPs with the size of memory array and arbiter stages. Number of arbiter stages should be

optimized for larger number of CRPs.

6.3.4 Implementation of Arbiter

We repurpose sense amplifier present in a conventional memory architecture as arbiter. The

implementation is minimally invasive in the memory architecture. Sense amplifier is designed to

measure the available sense margin between the two symmetric paths. The method is based on the

fact that the delay difference between the signals on two symmetric paths is proportional to the

voltage difference at any instant of time before settling. Multiple sense amplifiers are connected in

parallel to suppress the effect of noise on sense margin.
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6.3.5 Number of CRPs

The number of MUXes in the paths of APUF varies proportionally on the number of global

columns in the memory subarray. For N number of global columns, ’M’ number of local columns

for a memory of word length ’W’, the number of CRPs are (2N )× (2M )× (2W ). The combination

synthesizes a delay path with ’N’ 1T-1R bit cells and MUXes in two symmetric delay paths. The

area overhead of the proposed PUF is very minimal due the addition of only two MUXes and a single

select line in each of the GCs. APUF architecture with large number of CRPs yields a stronger

PUF compared to RRAM memory PUFs proposed in the literature. By choosing ’X’ number of

GCs out of ’N’ number of GCs in each arbiter path one can have ’NX ’ number of symmetric paths.

The number of CRPs in such a case would be 2
N
X × 2X × 2M × 2W for a memory of word length

’W’ with ’M’ number of local columns. The number of CRPs grow exponentially with the size of

memory subarray and number of bit cells in an arbiter path.

6.3.6 Configurability

The number of multiplexer stages in each path of APUF can be dynamically configured.

This is accomplished by using DEMUX at every stage of MUX. 2:1 DEMUX is used to selects one

of the two paths, either to generate final response with sense amplifier or direct it next stage of

APUF. Fig. 6.4 shows the DeMUX stage integrated with the multiplexer stages in the architecture

to facilitate configurability. DeMUX_sel signal is used for configuration at each stage. When

DeMUX_sel is ’0’ the path breaks bypassing the further stages. A1 and A2 are connected to the

arbiter. When DeMUX_sel is ’1’ outputs from the MUX is connected to on-coming path. It should

be noted that A1, A2 inputs of the arbiter should be multiplexed at the input of single arbiter
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or exclusive arbiters should be employed after each of DeMUX stage. However, sense amplifiers

in each of the GCs are utilized to generate response by connecting to DeMUX in respective GC.

Therefore, arbiter is readily available at every stage of MUX and DeMUX. Further, configurability

also increases the number of CRPs as discussed in the next subsection.

Figure 6.4: Configurability for the number of stages in proposed APUF.

6.3.7 CRPs with Configurability

Configurability in the proposed architecture offers various advantages along with the ability

to dynamically select the number of APUF stages. To completely exploit the rich features in the

proposed architecture, DeMUXs can be utilized to increase the number of CRPs exponentially

yielding a much stronger APUF. For instance, ’N’ bit arbiter with DeMUX in each of the GCs,

CRPs available from the configuration for ’N-1’, ’N-2’..... 5,4.. so on could be combined together

to obtain 2N + 2N−1 + 2N−2 + 24 number of CRPs. The total number of bits in a challenge in

such case is ’MN + DN ’ where MN is the number of multiplexers in the arbiter and DN is the

number of DeMUXs. DN bits remain constant while MN bits follow regular binary number pattern
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for a fixed configuration. For example, in a 16-stage APUF for up to 8-stage configuration total

number of CRPs is ’28 +29 +210 + .....216’. DN bits in the first configuration are ’1111111100000000’

likewise in the last configuration for all 16-stages in the APUF DN bits are ’1111111111111111’.

By approximating summation in the equation, we get 2GC × 2LC ×
∑N

K=4 2K . Number of CRPs

is twice compared to 2GC × 2LC × 2N with non-configurable PUF stages. Total number of CRPs

with minimum of 4 stages in APUF configuration with 8 GCs and 8 LCs in the memory array are

as tabulated in Table 6.1.

Table 6.1: Number of CRPs with and without configurability.

Number of PUF Stages
’N’

No. of CRPs with
Configurable Stages

(2GC × 2LC ×
∑N

K=4 2K)

No. of CRPs with
Non-configurable PUF Stages

(2GC × 2LC × 2N )
8 32505856 16777216
12 535822336 268435456
16 8588886016 4.295× 109

20 1.37438× 1011 6.872× 1010

32 5.6295× 1014 2.815× 1014

40 1.44115× 1017 7.206× 1016

52 5.90296× 1020 2.951× 1020

64 2.41785× 1024 1.209× 1024

6.4 Simulation Results

We present simulation results of the proposed APUF with 8 GCs. We have used 65nm

predictive technology models [96] and Verilog-A model of RRAM for simulations. All bit cells are

initially set by forming process. Then a RESET voltage of -1.3V is applied at the BL of RRAM

while the SLs are connected to ground. HRS and LRS are modeled as explained in Chapter 3.

The LRS is assumed to have gaussian distribution with mean 3.65kΩ and variance of 0.034 [75].

Cxv is a model parameter and is assumed to have gaussian distribution with variance of 0.08 in

compliance with experimental results [75] of hafnium oxide based RRAM. We evaluate PUF for
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three metrics namely, uniqueness, reliability, and uniformity. It should be noted that the responses

are not uniformly distributed unlike in a RRAM based memory PUFs proposed so far [136]. This is

because the delay is used as response in a path composed of multiple 1T-1R bit cells and MUXes.

The address bits used to select the bit cells in each of the global columns and subarrays is used as

challenge along with the multiplexer select line inputs.

Figure 6.5: Race firing and sense margin development at differential SA.

Fig. 6.5 shows the firing of race and the race signals from two paths in the simulation

waveform. Race signals from paths are fed to the differential sense amplifier which resolves to

generate a response. The sense margin is the voltage difference between the race signals is also

shown in the diagram. A peak sense margin of 14.5mV is developed when the sense amplifier can

be fired. Approximately 10mV of continuous difference between the signals of the race is due to

potential drop difference across the resistance of RRAMs in the path.

• Uniqueness: Uniqueness in the PUF response enables the identification of different chips

uniquely. Uniqueness is measured by inter-die HD. 50% of inter-die HD indicates better

uniqueness of PUF response [137]. Fig. 6.6a shows the plot of percentage inter-HD of the
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proposed APUF. We have measured inter-die HD by varying the threshold voltage of access

transistor by ±10% and process variation in RRAM array as explained in Chapter 3. It is

evident from the graph that inter-HD is close to 50% with the mean of 51.3% which indicates

desired quantity of uniqueness for practical applications. Fig. 6.6c shows the mean and SD of

inter-die HD for APUF with various APUF, which demonstrates desirable inter-die properties

with mean in the range of 49%-53% and SD range of 3.45%-7.23%.

(a) (b)

(c) (d)

Figure 6.6: Histogram of the PUF responses such as inter-die HD and intra-die HD. (a) & (b)
Inter-die HD and intra-die HD for 8 stage APUF;and, (c) & (d) Inter-HD and intra-HD of APUF
with various number of stages mean and standard deviation.

• Reliability : : Reliability is the measure of the dependency of PUF response to the intra

chip parameter variations such as voltage and temperature. The reliability of a PUF can be

measured by its intra-die HD which should be close to 0% for all the possible challenges of a

PUF for all responses [137]. Intra-die HD is measured by ’XOR’ing the responses of the PUF
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at various conditions of voltage (±10% variations) and temperature (-10oC to 90oC). In our

measurements HD is close to 0% for most of the challenges and is less than 2% with the mean

of 0.13% (Fig. 6.6b). Fig. 6.6d illustrates the intra-die HD of APUF with various stages. It

can be observed that most of the responses have zero intra-die HD with mean in the range of

0.05%-0.24% and SD in the range of 0.12%-0.42% for all the responses.

(a) (b)

Figure 6.7: NIST results of eight: (a) 4-stage; and (b) 16-stage APUFs. Passed all the tests with
P-value > 0.01.

• Uniformity : For uniformity in the PUF response, the probability of 1s and 0s in the response

for possible challenges should be 50%. We evaluate the uniformity by the frequency metric

in the NIST benchmark for all the possible 256 CRPS of 8 RRAM bits in an APUF. The

test showed 50-53% of probability of 1s and 0s with block frequency test, which guarantees

a desired uniformity in the PUF responses. NIST test results for eight different 4-stage and

16-stage PUFs are shown in the graph Fig. 6.6. Entropy test on the responses show p-value

greater than 0.01 which ensures randomness. 16-stage PUF is chosen to have sufficient length

of bitstream to apply all the tests in NIST test suite [137].
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Number of CRPs with respect to the number of PUF stages is shown in Fig. 6.8. It

can be observed that exponential number of CRPs can be obtained from the proposed PUF by

altering the number of global columns employed in the path. Number of CRPs in the proposed

grow exponentially with the number of stages in APUF (Fig. 6.8a) and can be increased further by

exploiting the feature of configurability. The number of CRPs with minimum of 4 stages in APUF

configuration with 8 GCs and 8 LCs in the memory array is shown in Fig. 6.8b.

(a) (b)

Figure 6.8: Number of CRPs with and without configurability. (a) Number of CRPs with respect to
number of stages; and, (b) Two-fold increase in the number of CRPs with configurable PUF stages.

6.5 Attacks on Proposed APUF

In this section, we discuss the adversary attacks on APUF and present the results of vulnera-

bility analysis on the proposed APUF architecture. Model building attacks based on ML algorithms,

side channel attack, hybrid ML and side channel attacks [124, 138, 21, 139, 140] have been proposed

in the literature. We investigate ML algorithms for model building and side channel attack based

on power information of the APUF in this chapter.
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6.5.1 ML Based Model Building Attacks

ML attacks are based on using computer algorithms to model the behavior of PUF. Output

of PUF is a binary response for a given challenge which is solved as a classification problem in

ML. ML algorithms for PUF modeling use the classifiers with supervised learning. A percentage

of CRPs are used to train the ML classifier and the model developed on the training data set is

used to predict the remaining responses of PUF [124]. Logistic Regression (LR) and Support Vector

Machine are two machine learning frameworks investigated extensively in PUF modeling attacks.

We investigate LR based ML attacks using data mining tool from the University of Waikato

[141, 142], Waikato Environment for Knowledge Analysis (WEKA). We use WEKA to model the

proposed APUF using ML algorithms. We also investigate Multi-Layer Perceptron (MLP) which

is another LR classifier for ML attack on the proposed PUF. The ability of MLP neural network

algorithm to model non-linear behavior is the motivating factor for this study [143]. Performance

of ML attack is measured as percentage of correctly predicted instances with given percentage of

training samples, termed as success rate in the rest of this chapter.

Fig. 6.9 shows the results of using Simple Logistic Regression (SLR), LR and MLP data

mining algorithms for model building of the APUF with 8, 10, 16 and 24 stages. SLR is a simple

variant of LR algorithm where the predicted variable takes only two values (0/1, TRUE/FALSE in

PUF) [144]. We measure success rate with various percentage of test instances from 10% to 99%.

success rate of various ML attacks is compared at 75% of test instances to establish comparison

with other APUFs in the literature. SLR algorithm performed better than LR algorithm for smaller

training samples. With 75% training set the correctly predicted instances were as low as 46.87%

in LR while in SLR and MLP the correctly predicted instances 57.81% and 82.81% respectively
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(Fig. 6.9a). Percentage of correctly predicted instances in 8-stage APUF using LR (46.87%) is

smaller than that in SRAM (65.6%) and DWM PUFs (48.4%) proposed in literature [50]. Also, the

percentage of instances correctly predicted vary in non-linear fashion with the percentage of training

samples (Fig. 6.9) which could be associated with the non-linear behavior of proposed APUF.

(a) (b)

(c) (d)

Figure 6.9: Performance of regression classifiers on proposed APUF. SLR, LR, and MLP classifiers
for machine learning attack on RRAM APUF: (a) 8-stage; (b) 10-stage; (c) 16-stage; and, (d)
24-stage.

Observing the performance of LR and SLR algorithms motivates us to use MLP which can

be used to build models predicting non-linearity. MLP is a logistic regression based multi-layer

neural network algorithm with non-linear activation functions used in the hidden layers [143]. MLP

performed well in predicting non-linear behavior of RRAM APUF and yields more than 72% of

correctly predicted instances in most of the percentage splits of training and test samples from 30-

85% which demonstrates the weakness of APUF to model building attacks by choosing a suitable
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ML algorithm [124]. However, to get 100% of correct instances using MLP we had to use training

set size of 92%. ML attacks SLR, LR and MLP performed well on 10-stage APUF (Fig. 6.9b).

With 75% of training set 56.64%, 55.47% and 67.19% of test instances were predicted correctly with

SLR, LR and MLP regression classifiers respectively.

For 16-stage and 24-stage even with MLP only 52.64% and 36% of the instances were

correctly predicted with 75% training and test sample split (Figs. 6.9c and 6.9d). The improvement

in the resilience of APUF is due to increased number of samples with non-linearity to be predicted

with fewer training samples. Given millions (224) of CRPs with 24-stage APUF, adversary will

be able to efficiently observe only smaller percentage of samples for training. Therefore, limiting

the training samples to less than 50% at most 35% of the test samples were predicted correct

with LR, SLR and MLP. With longer paths and larger CRPs proposed APUF is robust to ML

attacks compared to SRAM and, DWM PUFs. CMOS APUFs are vulnerable to ML attacks;

with <20% training set in 64-stage APUF Support Vector Machine and Artificial Neural Network

(with multilevel hidden layer suitable to binary classification problem in non-linear data set) provide

success rate of greater than 65% successfully [138]. We leverage the proposed architecture to improve

the resilience of RRAM APUF with fewer stages against ML attacks (Section 6.6).

6.5.2 Analysis of Side Channel Attacks

APUF is a strong PUF with large number of CRPs. APUFs can be designed to safeguard

against the ML attacks [128] which can be achieved by selection of an arbiter function to minimize

the correlation between the CRPs and path delay. Side channel attacks [21] are based on analyzing

correlation between the dynamic powers consumed by the PUF with respective CRPs. The correla-

tion coefficient indicates vulnerability of the circuit to power analysis attacks such as side channel
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attack [139]. We calculate the correlation coefficient by calculating the power consumed for each of

256 CRPs in an 8-stage APUF. correlation coefficient between the logic values (R) and power (P)

is calculated by using the equation:

Correlation− Coefficient(R,P ) =
E[(R− µR)(P − µP )]

σR × σP
(6.1)

where, µR and µP are the mean of R and P, σR and σP are the standard deviation of R and

P respectively. The correlation coefficient between CRPs and power gets closer to zero with the

(a) (b)

Figure 6.10: Correlation coefficient with number of CRPs. CC decreases with the larger number of
CRPs.

number of CRPs (Fig. 6.10a) which indicates that there exists no strong correlation exists between

the response bits and the power drawn by the APUF circuit. The correlation coefficient decreases

with number of CRPs examined in the proposed PUF. The proposed APUF is resilient against the

side channel attack. We also calculate the correlation coefficient between the sense margin of all the

CRPs and the power for generating the PUF response for 8-stage APUF. The correlation coefficient

plot is shown in Fig. 6.10b. This indicates no strong correlation between the challenges and sense
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margin which is amplified by the sense amplifier to generate the response. Hence, it is not feasible

to model the PUF response from a known set of CRPs by the method of side channel attack. Next

section proposes an APUF architecture resilient to ML attacks based on classic XOR arbiter circuit.

6.6 Proposed Architecture for Resiliency to ML Attacks

Figure 6.11: RRAM APUF architecture resilient to ML attacks. Two local columns are selected
simultaneously from two sectors.

To improve the resilience against ML based model building attacks we employ the classic

approach of using XOR operation to generate final PUF response. XOR APUFs are simplest

realization of ML attack resilient design of APUFs [128, 145]. We leverage the proposed architecture

to generate APUF response by ’XOR’ing the responses from multiple APUFs. RRAM cells in the

paths of multiple APUFs are selected simultaneously by shorting their ’Y_sel’ signals. Fig. 6.11

shows the architecture of RRAM APUF leveraged for ML attack resilience with XOR of responses

from two APUFs. We select two cells from same row and different local columns of a GC to

establish four paths for two APUFs. Responses from the two APUFs are XOR’ed to generate final

response. MUX selects for the two MUXes are generated from a single MUX (Data[n]) select signal
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by complementing it. This minimizes the routing complexity of interface signals and simplifies

implementation from a conventional 1T-1R memory architecture.

The technique can be extended by using different Y_sel lines to select more than two local

columns simultaneously. ’XOR’ of all the responses (more than 2 APUFs) is calculated at the final

stage to generate the PUF response. However, it adds the overhead of additional interconnects and

input ports in the 1T-1R array. This is due to separate MUX selects and Y_sel signals required for

each of the APUFs.

(a) (b)

(c) (d)

Figure 6.12: ML attack on proposed ML resilient architecture. Performance of regression classifiers
SLR, LR and MLP for ML attack on proposed ML resilient architecture with (a) 8-stage; (b)
10-stage; (c) 16-stage; and, (d) 24-stage.

Fig. 6.12 presents the results of regression classifiers SLR, LR and MLP for ML attack

on the proposed ML resilient architecture for 8-stage, 10-stage, 16-stage and 24-stage APUF. PUF

response is produced by XORing the response from two APUFs. Significant reduction in the number
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of correctly predicted instances is observed from the plots. With 75% of the test vectors only less

than 50% of the instances were predicted correctly in 10-stage PUF. In 8-stage APUF less than

60% with (less compared to SRAM PUFs 65.6%) of instances were predicted correctly using LR

and SLR classifiers. In ten or more number of stages of APUF success rate of ML algorithms

including MLP lowers below that in DWM PUF using LR (48.4%) with 75% of training data. This

demonstrates appreciable improvement in resilience to ML attacks with the proposed ’XOR’ based

APUF architecture.

The proposed APUF is strong and can be leveraged to be ML attack resilient with minimal

implementation, and area overhead from 1T-1R memory architecture. Table-6.2 summarizes the

comparative analysis of the proposed PUF with other RRAM based PUFs in the literature. We

present an application of the proposed APUF for data attestation in the IoTs in the next section

along with the qualitative analysis of the proposed attestation technique.

Table 6.2: Comparison of RRAM based PUFs

[133] [134] [135] Proposed APUF
Topology 1T-1R Memory PUF 1T-1R Memory PUF Cross bar array APUF with 1T-1R memory

No. of CRPs Quadratic:
N ×N × log2N

Quadratic:
N ×N × log2N

Linear:
C2
n ×N × log2N
Cn: No. of cols.

Exponential: 2GC × 2LC × 2N

GC: No. of GCs, LC: No. of LCs
N: No. of MUX stages

% Inter HD 50% with SD=3.2% NA 49-50% 51.3% mean; SD=0.33%
% Intra HD 0% NA 1.7-2.3% 0.13% mean; SD=0.33%

ML attack success rate NA NA NA <=36% without XOR; <28% with XOR
given 75% training set

6.7 Application in Hardware Attestation

6.7.1 Basics of Hardware Attestation

IoT is a system consisting of various computing and non-computing, living and non-living

things connected to interact with each other. In such an environment, establishing the integrity of
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each of the connected objects is a challenge [146]. Attestation is a method of establishing the trust

and integrity of a remote device. Attestation ensures the security by establishing trust in operations

performed on remote device. Various techniques based on software, hardware and hybrid have been

proposed in the literature [146, 147, 148, 149, 150, 151, 152]. Sensor nodes in an IoT system are

light weight with minimal or almost no software application layer. Integrity of the sensor hardware

is an important requirement for establishing trust in its data. The sensor nodes in IoT system

where hardware plays vital role in sensing and sending the data to the base station, hardware

implementation of attestation algorithm is viable. Unlike in a computing device running various

software applications in which software needs attestation, in an IoT system data sent from the

sensor node should be attested by its hardware.

Figure 6.13: Sensor nodes and server node in IoT network.

Proposed APUF demonstrates good statistical properties and resilience to adversary attacks.

We propose a method of attestation using the proposed PUF architecture. This is achieved by

integrating a data encryption algorithm that uses the key generated from the APUF. A light weight

attestation module implementation is proposed. Attestation in light weight sensor nodes consist of

a sensor which is registered with the base station prior to its deployment. Therefore, base station

is aware of hardware and in specific PUF CRPs of a registered sensor node. The proposed PUF
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has large number of CRPs, only a few CRPs for each of the registered sensor nodes are used for

attestation. Challenge is a public key and respective response is the secret key used for encryption

(Fig. 6.13). We will discuss the implementation of encryption hardware and data attestation in the

coming subsections.

6.7.2 Implementation of Encryption Hardware

Design for data attestation uses a Programmable Logic in Memory (PLiM) computer [153].

In [153], a technique is proposed where the computation is done within RRAM memory. It employs

a light weight finite state machine for instruction execution on the data stored in memory. The

principle of computation within memory is based on the RESET and SET operation of RRAM.

With ’1’ stored in the RRAM, it switches to ’0’ or remains ’1’ depending on the polarity of the

voltage applied across its terminals. SET state is read as ’1’ and RESET state is read as ’0’.

Combining the operations in the two cases: a) switching when ’1’ is stored; and b) switching when

’0’ is stored, operation on memory location can be written as Zn = A.Z + B′.Z + B′.A. Where,

Z is the initial value stored in the memory. Zn is the value stored in the memory location after

operation with A and B are the signals applied to top and bottom electrodes respectively. A’ and

B’ are complement of A and B respectively. For the computation A, B and Z are stored in memory

locations initially. Instructions are executed in terms of read and write operations initiated from an

external Finite State Machine (FSM) based light weight processor. Implementation of PRESENT

encryption algorithm in the PLiM computer is also presented in [153]. Data is encrypted with the

response as key stored in the user register using PRESENT or by simple XOR operation.
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6.7.3 Data Attestation Sensor Node

Sensor node is registered with the base station during installation. The base station selects

a set of CRPs to be used for data attestation from the sensor node. Likewise, each of the sensor

nodes in the network are registered with a selected number of CRPs for attestation of the data sent.

Sensor nodes encrypt using the attestation algorithm with Response of its registered challenge and

records the challenge. While sending the data, the sensor node sends challenge along with encrypted

data. Different challenges are used in random order to encrypt different data blocks. Base station

when it receives the encrypted data with the challenge, it looks up for the respective response from

its database and decrypt with response as secret key to read the data transferred.

6.7.4 Performance Analysis of Proposed Attestation Technique

The write time of 1ns and write energy of 0.1fJ/bit is assumed for the write performance of

RRAM with maturity of RRAM technology [153]. We measure energy/bit of key generation from

PUF. Proposed APUF can generate a bit of response every 0.8us. Speed of 80-bit key generation

is 156.25kbps by using 10 APUFs to generate 8-bits of 80-bit key in parallel. Each of the ten

PUFs generate 8-bit response. The responses are appended to form an 80-bit key for attestation.

Energy/bit generation of APUF response is 50fJ. For 80bit key generation 4pJ of energy is consumed.

Attesting a 64-bits block of data with 80-bit key consumes ∼5.88pJ of energy. Total energy for

attestation of a block of data is 9.88pJ for 64-bits data block. Proposed architecture with PRESENT

encryption together can offer a speed of 120.7kbps [153].
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6.8 Summary

Thew chapter presented a 1T-1R RRAM APUF using a hafnium oxide based RRAM. Mul-

tiplexers in the symmetric paths of APUF could be placed in the column area of the memory

subarray. Sense circuits in the conventional memory architecture is employed as arbiter. Overall,

the implementation of the proposed PUF is minimally invasive from a 1T-1R memory subarray.

The proposed PUF response is evaluated by systematic PUF evaluation methodology demonstrates

0% intra HD for most of CRPs with the mean of 0.13% and inter HD of mean 51.3% with sufficient

randomness in the response. Number of CRPs in proposed APUF increase exponentially with the

array size and number of global columns in the subarray. The proposed APUF is strong and resilient

against possible adversary attacks compared to RRAM memory PUFs proposed in the literature.

A potential application for data attestation in IoTs is also presented. Speed of 120.7kbps can be

achieved with 9.88pJ of total energy for 64-bits block data attestation.
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CHAPTER 7 : SUMMARY

A crucial and interesting topic of broadening the application of emerging NVM technologies

is researched in this thesis. MTJ device is proposed for applications as associative memory. Inter-

esting features of RRAM that are concerning in employing technology as a conventional memory

are studied and exploited effectively in the design of hardware security primitives such as TRNG

and APUF.Study of potential applications and design trade-offs using emerging NVM outside con-

ventional application as storage is the primary contribution in this thesis.

Associative memory cell 6T-2MTJ TCAM proposed finds numerous applications in the areas

computing and communication (network routers and search engines). Proposed TCAM cell is viable

compared to its silicon and other NVM (DWM and memristor) counterparts in terms of area,speed

and negligible standby power. Proposed TCAM is appropriate in the applications requiring longer

standby times and longer word lengths upto 256 bits with fewer memory updates.

Another NVM technology RRAM is explored for its applications in hardware security.

Salient features of RRAM such as switching variation and RTN are extremely important in de-

signing hardware security primitives. Compatibility with CMOS, high switching speed and low

power operation of RRAM enables chip architecture for application in IoTs with CMOS processor

controlling the computation within memory. Within memory encryption and attestation is a vi-

able solution due to enhanced security against invasive and non-invasive attacks, area and power

efficiency.
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Future work that extends the application of NVM technologies:

1. Crypto processor within 1T-1R memory architecture

Implementation of APUF within 1T-1R RRAM memory architecture is proposed and eval-

uated in 6. Also, an application for data attestation is presented. The architectural design

technique can be extended to realise advanced cryptographic and encryption algorithms with

an on-chip encryption key and random seed value generation. The proposed architecture

employs a light weight processor external to memory for instruction execution in terms of

memory read and write cycles. Architectural optimization by reducing the number read/write

cycles can be explored in future work.

2. RRAM APUF against ML attacks

In this work, we have leveraged the proposed APUF within 1T-1R memory architecture to

be ML attack resilient using a classical technique of ’XOR’ operation on PUF responses.

However, ML techniques are in extensive research and have proven promising in predicting

complex data patterns. Advanced architectural and APUF design techniques with different

types of arbiters and RRAM memory architectures should be investigated in future work.

Effects of RRAM aging on PUF response, characteristics and compensation techniques are of

future scope in APUF design.
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