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Joint condition-based maintenance and condition-based production optimization

Michiel A. J. uit het Broek∗, Ruud H. Teunter, Bram de Jonge, Jasper Veldman

Department of Operations, Faculty of Economics and Business, University of Groningen, the Netherlands

Abstract
Developments in sensor equipment and the Internet of Things increasingly allow production facilities to be monitored
and controlled remotely and in real time. Organizations can exploit these opportunities to reduce costs by employing
condition-based maintenance (CBM) policies. Another recently proposed option is to adopt condition-based produc-
tion (CBP) policies which control the deterioration of equipment remotely and in real time by dynamically adapting
the production rate. This study compares their relative performance and introduces a fully dynamic condition-based
maintenance and production (CBMP) policy that integrates both policies. Numerical results show that the cost-
effectiveness of the policies strongly depends on system characteristics such as the planning time for maintenance,
the cost of corrective maintenance, and the rate and volatility of the deterioration process. Integrating condition-
based production decisions into a condition-based maintenance policy substantially reduces the failure risk, while
fewer maintenance actions are performed. Interestingly, in some situations, the combination of condition-dependent
production and maintenance even yields higher cost savings than the sum of their separate cost savings. Moreover,
particularly condition-based production is able to cope with incorrect specifications of the deterioration process.
Overall, there is much to be gained by making the production rate condition dependent, also, and sometimes even
more so, if maintenance is already condition-based. These insights provide managerial guidance in selecting CBM,
CBP, or the fully flexible CBMP policy.

Keywords: Production control, condition monitoring, adjustable production rate, production-dependent
deterioration, condition-based operations

1. Introduction

Maintenance activities are a major cost driver for modern production facilities. For instance, manufac-
turing firms typically face maintenance costs ranging between 15-40% of their total expenses (Wireman,
2014), and for power plants and offshore wind farms maintenance costs constitute up to 30% of the to-
tal costs (Blanco, 2009; Gräber, 2004). Consequently, efficient and effective operations and maintenance
strategies are of crucial importance for the profitability and competitiveness of firms. Various develop-
ments that provide opportunities to improve operational decision making are decreasing prices of moni-
toring equipment, advances in the Internet of Things (IoT), and improved machine learning techniques to
process large amounts of condition information (Feng and Shanthikumar, 2018; Choi et al., 2018). These
developments enable operators to monitor and control production facilities remotely and in real time.

In light of these developments, many studies aim to reduce maintenance costs by implementing flexible
maintenance policies that schedule maintenance based on condition information. Such policies try to
schedule maintenance just before imminent failure, thereby avoiding wastage of remaining useful life of
equipment and lowering the number of unexpected failures. The effectiveness of such condition-based
maintenance (CBM) policies, however, heavily depends on the characteristics of the deterioration process
and on logistical planning times (De Jonge et al., 2017).
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An alternative policy, that reduces operational costs but does not require a flexible maintenance sched-
ule, is to control the deterioration of equipment by dynamically adapting the production rate based on
condition information (Uit het Broek et al., 2019). This approach exploits the fact that machines typi-
cally deteriorate faster at higher production rates. Such condition-based production (CBP) policies can be
used in combination with static maintenance schedules (e.g., perform maintenance every year) and use the
adjustable production rate to better balance production revenues and maintenance costs.

Instead of implementing either a dynamic maintenance or a dynamic production policy, one can also
integrate both into a fully dynamic policy with condition-based maintenance and condition-based produc-
tion (CBMP). Surprisingly, despite the abundance of condition monitoring in practice and the fact that both
CBM and CBP are studied, CBMP policies have not been considered in the literature to the best of our
knowledge. An example of a real-life system where CBMP is expected to be valuable is an offshore wind
farm. Turbine components such as gearboxes and generators deteriorate over time and their condition is
closely monitored (e.g., by measuring noise, vibration, and temperature). As long as a turbine is in good
condition, it can produce at a high rate while the condition information is used to schedule maintenance.
However, initiating maintenance requires a considerable planning time to arrange spare parts, skilled tech-
nicians, and specialized vessels. During this planning time, the condition information cannot be used to
improve maintenance decisions anymore, but it can still be used in real time to dynamically adjust the
production rate of the turbine.

Our first contribution is to analyze the structure of the optimal CBMP policy, leading to insights on how
maintenance and production flexibility can best be jointly exploited. Our second contribution is to compare
the performance of the three policies (i.e., CBM, CBP, and CBMP), providing guidance on determining
when the combination is particularly beneficial. We also address whether a flexible production planning
(which is required for CBP) replaces the need for a flexible maintenance planning (which is required for
CBM).

As our research is exploratory, we consider a single-unit system with a perfectly observable single
deterioration parameter. The deterioration rate of the system is assumed to depend on the adjustable pro-
duction rate and thus the deterioration process can be controlled by adapting the production speed. We
obtain numerical results by formulating the problem as a Markov decision process. The results show that
the two dynamic decisions (partially) complement each other for a wide range of systems. Condition-based
maintenance aims to schedule maintenance just-in-time whereas condition-based production extends the
equipment lifetime by reducing the short-term failure risk if needed. CBMP combines both benefits by
reducing the failure risk for high deterioration levels, thereby creating the opportunity to apply a less con-
servative maintenance policy. All policies that use condition information result in reduced failure risks,
fewer maintenance interventions, and lower costs. Moreover, integrating the two dynamic decisions im-
proves the concept of just-in-time maintenance, since CBMP performs maintenance at higher deterioration
levels than CBM while realizing fewer failures. Furthermore, the two dynamic decisions can enhance each
other’s cost-effectiveness as for various systems CBMP realizes cost savings larger than the sum of the
cost savings obtained by implementing CBM and CBP in isolation. However, there are also systems for
which both CBM and CBP reduce cost while implementing them together does not result in further cost
benefits.

The remainder of this study is organized as follows. In Section 2, we discuss the relevant literature on
maintenance and production decisions. In Section 3, we formally introduce the problem that we consider.
The Markov decision processes that we use to determine optimal policies are described in Section 4. In
Section 5, we discuss the optimal policies and compare their effectiveness. We conclude and provide future
research suggestions in Section 6.

2



2. Literature review

Despite the growing interest in the interaction between maintenance and production decisions, both
fields are typically considered in isolation. Ding and Kamaruddin (2015) provide a general review on
maintenance, whereas Alaswad and Xiang (2017) focus on condition-based maintenance. The literature
on production decisions under uncertainty, such as uncertain machine failures, is reviewed by Mula et al.
(2006). The most recent review that focuses on the interaction between production and maintenance is
conducted by Sethi et al. (2002). In the remainder of this section, we first discuss studies on maintenance,
mainly focussing on those that compare dynamic maintenance policies (i.e., condition-based) with static
policies (i.e., block-based or age-based). Thereafter we discuss studies on production decisions that either
affect the failure behavior of equipment or that include condition monitoring.

The maintenance literature is extensive and various types of maintenance interventions are considered.
A first distinction that can be made is between preventive and corrective maintenance. Preventive main-
tenance actions can be time-based or condition-based, and policies of both types have been studied and
compared in many studies (Paté-Cornell et al., 1987; McKone and Weiss, 2002; Makis and Jiang, 2003;
Crowder and Lawless, 2007; Panagiotidou and Tagaras, 2010; Bouvard et al., 2011; Huynh et al., 2011;
Zio and Compare, 2013; Kim and Makis, 2013; Liu et al., 2013; De Jonge et al., 2017). These studies
show that condition-based maintenance policies reduce operational cost and improve system reliability.
The above studies address the value of dynamic maintenance policies, but, in contrast to our study, the
value of actively controlling the deterioration process is not studied.

The production literature shows a growing interest in the interaction between production decisions and
the failure behavior of systems. Within this area, we can distinguish three main research streams. The
first and largest stream assumes that failure risks only depend on the age of the system and the current
production rate (see, e.g., Hu et al., 1994; Boukas et al., 1995; Martinelli, 2005, 2007, 2010; Nourelfath
and Yalaoui, 2012; Francie et al., 2014; Lu et al., 2015). These studies assume that producing at higher
rates only increases the current failure risk, instead of resulting in permanent deterioration of the system.

The second stream takes into account production-dependent deterioration. Zied et al. (2011) model the
relation by accelerating aging as a linear function of the production rate. They consider inventory, backlog,
and maintenance cost, and sequentially optimize the production and the maintenance policy. Ayed et al.
(2012) extend this setting to multi-unit systems. Rivera-Gómez et al. (2018) study a similar setting and
incorporate the possibility that defective products are produced. The above studies consider production-
dependent deterioration, but estimate this by an operational age and do not monitor the actual deterioration
level of the system. Uit het Broek et al. (2019) do address the value of monitoring the deterioration process
for a single-unit system with production-dependent deterioration, but restrict their attention to condition-
based production decisions for a predetermined block-based maintenance policy.

The third stream incorporates condition information into policies that optimize both maintenance and
production decisions. However, in this stream the deterioration rate cannot be controlled by adjusting
the production rate. Boukas and Liu (2001) study a single-unit system with three functioning states and
include inventory, backlog, and maintenance costs. They use a continuous flow formulation to optimize
the production and maintenance rate. Iravani and Duenyas (2002) study a similar system, but use a semi-
Markov decision process formulation instead. The setting is extended with stochastic demand by Sloan
(2004). Although the above studies optimize the production rate under the presence of condition informa-
tion, the adjustable production rate has no effect on the deterioration rate. Sloan and Shanthikumar (2000)
study the use of condition monitoring for a single-unit system that can produce various items, where yields
are affected by the deterioration level. Their focus is to determine which item to produce next and when
to initiate maintenance. Batun and Maillart (2012) point out that the previous study overestimates the
cost savings for some settings and revise the model given by Sloan and Shanthikumar (2000). Extensions
including different production times per item are covered as well (Sloan and Shanthikumar, 2002; Kazaz
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and Sloan, 2008, 2013). Peng and Van Houtum (2016) determine optimal production lot-sizes and use
condition information to determine whether maintenance is initiated or a new lot is produced.

Summarizing, although there is a growing interest in the interaction between production and mainte-
nance, production rate decisions based on condition information are rarely considered. Existing studies
have mainly focused on the effect of production decisions on the failure rate, and not on how they af-
fect deterioration. The few studies that do take the permanent effect of the production rate into account,
generally model this by an operational age and do not consider monitoring of the actual deterioration
level. The limited number of studies that use condition information for production decisions either ignore
the relation between the production rate and the deterioration rate, or focus on systems that can produce
various products that are differently affected by the deterioration level. To the best of our knowledge,
no existing study compares condition-based maintenance to condition-based production for systems with
production-dependent deterioration. Furthermore, there is no study that jointly optimizes condition-based
maintenance and condition-based production rate decisions for such systems.

3. Problem description

We study a single-unit system whose condition can be described by a single deterioration param-
eter. The production rate of the system is adjustable over time, and the deterioration rate (i.e., the
average amount of additional deterioration per time period) depends on the production rate. The de-
terioration process is described by a nondecreasing continuous-time continuous-state stochastic process
X = {X(t) | t ≥ 0}. Deterioration level 0 indicates that the unit is as-good-as-new, whereas deterioration
levels exceeding L indicate that the unit has failed.

There are two maintenance actions that restore the system to the as-good-as-new state. Preventive
maintenance at a cost cpm can be performed as long as the unit is functioning, and more expensive cor-
rective maintenance at a cost ccm is required once the unit has failed. Both maintenance actions require a
negligible amount of time but do need a fixed planning time s. We let θ(t, x) ∈ {0, 1} be the decision vari-
able that denotes whether maintenance is initiated at time t (since the last system renewal) and condition
x. The complete maintenance policy is denoted as θ = {θ(t, x) | t ≥ 0, 0 ≤ x ≤ L}. We let c(X(t)) be the
maintenance cost as a function of deterioration level X(t), that is,

c(X(t)) =

cpm if X(t) < L,
ccm otherwise.

The system can produce at different production rates that range from 0 (idle) to 1 (maximum rate). The
possible production rates are given by the set U = [0, 1]. When the system has failed, it cannot produce
and the production rate is fixed at 0. When the system does not produce at its maximum rate, there is a
revenue loss that is proportional to the production rate u ∈ U, which equals (1 − u)π per time period. We
let u = {u(t, x) | t ≥ 0, 0 ≤ x ≤ L} denote the production policy.

The deterioration rate depends on the production rate and is denoted by g(u). We refer to this function
as the production-deterioration relation (pd-relation for short). The pd-relation g is assumed to be increas-
ing because the system is assumed to deteriorate faster for higher production rates. We let µmin = g(0)
and µmax = g(1) denote the minimum and maximum deterioration rate, respectively. Moreover, for a given
production rate u, we consider a stationary deterioration process, i.e., the deterioration increments do not
depend on the current deterioration level.

It is left to express the costs as a function of a given maintenance policy θ and a given production
policy u. For a given maintenance policy θ and a given realization of the deterioration process X, we
can derive all moments τi, i ∈ N, at which maintenance is performed. Recall that maintenance requires a
fixed planning time s, and thus the first maintenance action is performed s time units after maintenance is
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initiated for the first time, that is, τ0 = inf{t ≥ 0 | θ(t, X(t)) = 1} + s. We find the subsequent maintenance
moments by τi = inf{t > τi−1 + s | θ(t, X(t)) = 1}, i ∈ N\{0}.

For a given θ and u, the total expected cost up to time t equals

J(θ,u, t) = E
[ ∞∑

i=0

I{τi≤t} · c(X(τi))
]

+ π · E
[ ∫ t

0
1 − u(s, X(s)) ds

]
,

where I{τi≤t} is the indicator function that equals one if τi ≤ t and zero otherwise. The first term represents
the expected maintenance costs and the second term the expected revenue losses. We define the long-run
average cost as

J(θ,u) = lim sup
t→∞

J(θ,u, t)
t

.

The minimal long-run average cost equals J∗ = infθ,u J(θ,u). Our aim is to determine a joint maintenance
and production policy (θ∗,u∗) that minimizes the long-run average costs, that is, to determine θ∗ and u∗
such that J(θ∗,u∗) = J∗.

3.1. Control strategies

We define a strategy as a combination of a production policy and a maintenance policy. The various
strategies that we consider differ in their flexibility regarding the maintenance and production decisions.
We consider two maintenance policies (referred to as block-based and condition-based) and two produc-
tion policies (referred to as max-rate and condition-based rate).

We remark that in our initial exploration we also considered a production policy with a fixed, but not
necessarily maximum production rate. However, in most considered situations the best fixed rate turned
out to be the maximum rate and so discussing this policy would have limited value.

In the remainder of this study, we let the fixed maintenance and production (FMP) strategy refer
to a block-based maintenance policy combined with the max-rate production policy. This strategy has
no flexibility and does not use condition information. The condition-based production (CBP) strategy
employs a block-based maintenance policy combined with an adjustable production rate. The condition-
based maintenance (CBM) strategy refers to a condition-based maintenance policy combined with the
max-rate production policy. The condition-based maintenance and production (CBMP) strategy combines
condition-based maintenance with condition-based production.

Maintenance policies
The block-based maintenance policy is a static maintenance policy that fixes all maintenance actions

in advance. Under this policy, the decision maker selects a block length T and maintenance is performed
every T time units. We refer to such a time interval of T time units as a block. If the unit is functioning at
the end of a block, preventive maintenance is performed; otherwise more expensive corrective maintenance
is required. Additional maintenance actions during a block are not possible. Thus, a system failure results
in production losses until the end of the current block. Notice that this maintenance policy is not affected
by the planning time since it fixes all maintenance actions in advance.

The condition-based maintenance policy is flexible and allows the decision maker to plan maintenance
interventions based on the condition information. Recall that there is a maintenance planning time s
between initiating and performing maintenance. The case s = 0 implies that maintenance can be carried
out instantaneously. At the end of the planning time, preventive maintenance is carried out if the system
is still functioning, whereas corrective maintenance is performed if the system has failed. System failure
before or during the planning time results in production losses until the end of the planning time.

5



Production policies
The production policies define a set of admissible production rates, denoted by A(x), as a function of

the current deterioration level x ∈ X. Under the max-rate policy, the system produces at its maximum rate
as long as it is functioning. Thus the set of admissible production rates equals

A(x) =

{1} if x < L,
{0} if x ≥ L.

The condition-based production policy is fully flexible and allows the decision maker to control the pro-
duction rate at any time, and so

A(x) =

U if x < L,
{0} if x ≥ L.

4. Markov decision process formulation

In this section, we provide the Markov decision process (MDP) formulations that we use to determine
optimal policies. Before introducing the MDP formulations, we discretize the state space, the time horizon,
and the set of admissible production rates (see Section 4.1). The structure of the resulting MDP formula-
tions depends on the maintenance policy that is used. For the block-based maintenance policy, the optimal
control policy can be determined by formulating an MDP with a finite time horizon (see Section 4.2). For
the condition-based maintenance policy, the optimal control policy can be determined by formulating an
MDP with an infinite time horizon (see Section 4.3).

4.1. Discretization

We partition the continuous deterioration interval [0, L] into m equally sized intervals of length ∆X =

L/m, and then discretize this to the ordered set of midpoints X̄ = {(i + 0.5)∆X | i = 0, . . . ,m − 1}. All
deterioration levels above L are merged into a single state with index m that indicates system failure. The
time horizon is discretized into periods with length ∆t, and there is a decision epoch at the start of each
period. The continuous set of production rates is discretized into n + 1 production rates that are uniformly
distributed between the minimum and maximum production rate, that is, Ū = {i/n | i = 0, . . . , n}. Note
that we can approximate a continuous system arbitrarily close by setting the step sizes sufficiently small,
although smaller step sizes also result in increased computation times.

We let F∆t,u denote the distribution function of the additional amount of deterioration during a time
period ∆t when producing at rate u. For ease of notation, we drop the subscript ∆t in the remainder of this
study. To obtain the transition probabilities in the discretized process, we set the probability of staying in
the same deterioration state to Fu(0.5∆X); the probability of moving from state k to state k + i, where i ≥ 1
and k + i < m, to Fu((i + 0.5)∆X)−Fu((i−0.5)∆X); and the probability of moving from state k to the failed
state m to 1 − Fu((i − 0.5)∆X) where i = m − k. Summarizing, the transition probabilities of the discrete
deterioration process are

Pu(k, k + i) =


0 if i < 0,
Fu(0.5∆X) if i = 0,
Fu((i + 0.5)∆X) − Fu((i − 0.5)∆X) if 0 < i < m − k,
1 − Fu((i − 0.5)∆X) if i = m − k.
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4.2. MDP for block-based maintenance
The block-based maintenance policy results in a renewal process in which the maintenance actions are

the renewal points. Each block starts at the as-good-as-new deterioration level, regardless of the actions
and deterioration realizations in previous blocks. As a result, for a given block length T , it is sufficient
to minimize the total expected costs during a single block. Thus, systems with a block-based mainte-
nance policy can be optimized based on an MDP with a finite horizon by using backward induction (see
Puterman, 1994, ch.4).

We let τ ∈ {0,∆t, 2∆t, . . . ,T } denote the remaining time until the end of the current block, i.e., mainte-
nance is performed when τ = 0. Let V(x, τ) denote the total expected cost in the remainder of the current
block given that the current deterioration level of the system is x ∈ X̄. At the end of the block, maintenance
is performed and thus

V(x, 0) =

cpm if x < m,
ccm if x = m.

In all other periods, a production rate u can be selected. This affects the production loss (1 − u)π∆t and the
expected future costs. Thus, for τ > 0 we get

V(x, τ) = min
u∈Ū(x)

(1 − u)π∆t +

m−x∑
i=0

Pu(x, x + i) V(x + i, τ − ∆t)

 ,
where Ū(x) is the discretized set of admissible production rates for a given production policy, as described
in Section 3.1 and 4.1.

The expected total costs during a single block of length T equals V(0,T ), and the long-run average
cost per time unit equals V(0,T )/T . We find the optimal block length T ∗ by solving the system up to a
sufficiently large value τmax and selecting T ∗ ∈ arg min0<T≤τmax{V(0,T )/T }.

4.3. MDP for condition-based maintenance
For systems with a condition-based maintenance policy, we consider an MDP with an infinite horizon

and we use value iteration to find ε-optimal policies. We first introduce some notation and show that the
assumptions required for value iteration are satisfied. Thereafter, we introduce the value functions used by
the value iteration algorithm (see Puterman, 1994, ch.8).

We let τ ∈ S := {0,∆t, 2∆t, . . . , s, ns} denote the remaining planning time until the next scheduled
maintenance intervention. For modeling purposes, we have added the additional element ‘ns’ to S that
indicates that maintenance is not scheduled yet.

The state of the system is described by the current deterioration level x ∈ X̄ and the remaining planning
time τ ∈ S . Both the state space and the action space are finite. Furthermore, the direct cost function per
time period is the sum of production loss (1 − u)π∆t and maintenance cost. Both parts are bounded and
thus the direct cost function itself is bounded. Furthermore, it can easily be seen that we have a unichain
model, that is, the transition matrix corresponding to every deterministic stationary policy consists of a
single recurrent class plus a possibly empty set of transient states (see Puterman, 1994, ch.8). It follows
that a stationary average optimal policy exists, which can be obtained by value iteration.

Let Vn(x, τ) denote the value function after n iterations of the value iteration algorithm. At the end of
the planning time (i.e., τ = 0), maintenance is performed and the deterioration level immediately jumps
to the as-good-as-new level. After maintenance is performed, the production decision is the same as if we
started the time period at deterioration level x = 0, and thus

Vn(x, 0) =

cpm + Vn(0, s) if x < m,
ccm + Vn(0, s) if x = m.
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During the planning time (i.e., 0 < τ ≤ s), the decision maker can only decide on the production rate u.
The remaining planning time is reduced by ∆t, regardless of the production decision. The value function
during the planning time equals

Vn(x, τ) = min
u∈Ū(x)

(1 − u)π∆t +

m−x∑
i=0

Pu(x, x + i) Vn−1(x + i, τ − ∆t)

 .
Before maintenance is scheduled (i.e., τ = ns), the decision maker can decide on the production rate and
whether or not to schedule maintenance. If maintenance is scheduled, the remaining planning time is set
to τ = s. Otherwise, the remaining planning time remains τ = ns. The value function before maintenance
is scheduled equals

Vn(x, ns) = min
τ∈{ns,s}, u∈Ū(x)

(1 − u)π∆t
m−x∑
i=0

Pu(x, x + i) Vn−1(x + i, τ)

 .
We initialize the value iteration algorithm by setting V0(x, τ) = 0 for all x ∈ X̄ and τ ∈ S . Let the span

of the value function be defined as sp(Vn) = maxx,τ Vn(x, τ) − minx,τ Vn(x, τ), and let Wn = Vn+1 − Vn.
The value iteration algorithm stops when sp(Wn) < ε. The ε-optimal policy is retrieved by performing one
more iteration while storing the arguments that minimize the value functions. The corresponding long-run
average cost g∗ is estimated as g′ = 0.5(min Wn + max Wn), for which we know that |g′ − g∗| < ε/2.

5. Numerical analysis

We continue by analyzing the effectiveness of the various strategies. Our approach is to first consider a
base case and then present a sensitivity analysis where we vary the different system parameters. The base
case is chosen somewhat arbitrarily, but in such a way that the effects are representative for a large set of
instances that we initially considered. Using the base case, we describe through what mechanisms CBP
reduces cost, how the performance of CBM compares to that of CBP, and how the two interact with each
other. A sensitivity analysis then continues to explore when CBP and CBM are particularly effective in
isolation or in combination (i.e., CBMP). Before discussing the results, we first introduce the deterioration
process and the base case parameter values that we consider.

5.1. Deterioration process

Various stochastic processes have been suggested in the literature to model deterioration, including
compound Poisson processes, Brownian motions with drift, and gamma processes. In this study, we use
stationary gamma processes since these are the most appropriate to model monotonically increasing de-
terioration such as erosion, wear, and fatigue (Van Noortwijk, 2009; Alaswad and Xiang, 2017). The
stationary gamma process is a flexible process for which the deterioration rate and volatility can be con-
trolled by two parameters. This enables us to study a wide scope of systems with different deterioration
characteristics. The gamma process is a continuous-time continuous-state process, and we will discretize
it as described in Section 4.1.

The increments of a gamma process are independently gamma distributed. Denoting the shape param-
eter by α > 0 and the scale parameter by β > 0, the gamma density function for the increment per time
unit is given by

fαβ(x) =
xα−1 exp(−x/β)

Γ(α) βα
,
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where Γ(α) =
∫ ∞

0 zα−1 exp(−z) dz is the gamma function. The deterioration increment Y per time unit has
mean E[Y] = αβ and variance Var(Y) = αβ2. The density function corresponding to increments per period
with length ∆t is obtained by scaling the shape parameter to α∆t.

We relate the shape and scale parameters to the pd-relation g such that the deterioration increment per
time unit has the following three properties. First, the deterioration increments have mean E[Y | u] = g(u).
Second, if the system produces at the maximum rate, the variance of the deterioration increments equals
Var(Y | u = 1) = σ2

max. Third, the coefficient of variation (i.e., the standard deviation divided by the
mean) of the deterioration increments is not affected by the production rate. It can easily be verified that
this is accomplished by setting the shape parameter equal to α = µ2

max/σ
2
max and the scale parameter, as a

function of the production rate, equal to β(u) = g(u) · σ2
max/µ

2
max (recall that g(1) = µmax).

5.2. Base case system
The base case parameter values are listed in Table 1. The preventive maintenance cost is cpm = 20 and

the corrective maintenance cost is ccm = 100. For real-life systems, for instance wind turbines, corrective
maintenance is often much more costly than preventive maintenance, because of collateral damage and the
lower salvage value of failed components. The revenue when producing at the maximum rate is normalized
to π = 1 per time unit. The system fails at deterioration level L = 100, and maintenance requires a planning
time of s = 5 time units.

For the pd-relation we consider the same parametric form as Uit het Broek et al. (2019), that is, g(u) =

µmin + (µmax − µmin)uγ, which is concave for 0 < γ < 1, linear for γ = 1, and convex for γ > 1. The
parameter µmin = 0.1 describes the deterioration rate when the system is idle, and µmax = 1.5 is the
deterioration rate when the system produces at the maximum rate. For the base case we set γ = 1.5, and
also in the sensitivity study we mainly focus on convex pd-relations as those are conceivably most likely
to be encountered in real-life systems.

The expected time until failure when producing at the maximum rate equals approximately L/µmax ≈

67 time units. The system only has to produce cpm/π = 20 time units at the maximum rate to compensate
for the preventive maintenance cost and thus the system is expected to be profitable. However, an expensive
failure is expected to result in a loss-making cycle because producing at the maximum rate for ccm/π = 100
time units is required to compensate for this.

To closely approximate the continuous deterioration process, we partition the time horizon and the
deterioration levels into small intervals with respective lengths ∆t = 1.0 and ∆X = 0.05. Note that ∆X
should be small compared to the expected deterioration increment per time period, that is, ∆X � ∆t ·µmax.
The continuous action space is discretized into n = 50 non-idle production rates.

5.3. Cost savings for the base case system
We examine the effectiveness of flexible production and flexible maintenance decisions by comparing

the four control strategies introduced in Section 3.1. Table 2 compares the performance of the four consid-
ered strategies when applied to the base case. Overall, we observe that the fixed strategy is by far the worst,
that CBM is slightly more effective than CBP considering expected costs, and that introducing a flexible
production policy has the positive side-effect of lowering the cost variance. We also see that having both
a flexible maintenance and a flexible production policy reduces the expected cost even further. Next, we
will explain these results by studying the optimal policies more closely.

Condition-based production
Because CBM has been studied much more extensively than CBP, we start by discussing the optimal

structure of the CBP strategy. With an adjustable production rate, the optimal block length turns out to
be T = 60. The results for this policy are largely in line with the findings of Uit het Broek et al. (2019),
although they predetermined rather than optimized the block length. We therefore keep this discussion
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Table 1: Base case system used in the numerical analysis

Parameter Value Interpretation

cpm 20.00 Preventive maintenance cost
ccm 100.00 Corrective maintenance cost
π 1.00 Production revenue at maximum rate
L 100 Failure level
s 5 Planning time for maintenance
γ 1.50 Shape pd-relation
µmin 0.10 Mean of increments when idle
µmax 1.50 Mean of increments at maximum rate
σmax 3.00 Standard deviation increments
n 50 Number of non-idle production rates
∆t 1.00 Time discretization
∆X 0.05 Discretization size deterioration

Table 2: Performance statistics for the four strategies when applied to the base case

Fixed CBP CBM CBMP

PM threshold T or M T = 42 T = 60 M = 70.20 M = 78.80
Mean cost per time unit 0.562 0.424 0.409 0.379
St.dev. cost per time unit 4.343 2.834 3.353 2.957

Mean production per time unit 0.995 0.922 0.999 0.977
Mean time to maintenance 42.00 60.00 53.31 59.19
Mean time between failures 995.12 6365.37 2456.39 4525.96
Mean deterioration at maintenance 62.46 81.43 79.75 86.11

fairly short and refer to their study for a further discussion of the CBP policy structure for a predetermined
block length. Figure 1 shows the production rate in grey scale, ranging from black (no production) to white
(maximum rate). The solid line indicates the expected deterioration trajectory, whereas the dashed lines
indicate a region that contains the deterioration level with 95% certainty for a given point in time.

Three areas can be distinguished in Figure 1. Firstly, for low deterioration levels compared to the re-
maining time until maintenance (white lower triangular area), a failure is unlikely and the system produces
at the maximum rate. Secondly, for intermediate to high deterioration levels (grey area), the production
rate is gradually reduced in order to reduce the deterioration rate and thereby the likelihood of failure.
Additionally, producing at a lower rate reduces the volatility of the deterioration process, thereby also re-
ducing the risk of a sudden failure caused by an extreme deterioration increment. Thirdly, for extremely
high deterioration levels compared to the remaining time to maintenance (small white upper triangular
area), failure is almost certain, and production is maximized by producing at the maximum rate. It has to
be noted, however, that the effect of this third area on the long-run average cost is negligible as its states
are almost never reached.

We also note from the upper dashed line in Figure 1 that CBP does not immediately slow down produc-
tion when the system deteriorates faster than expected. As long as there is sufficient time to prevent failure
at a later stage, it is better to continue producing at the maximum rate, since it is possible that deterioration
in the remainder of the block is lower than expected. If this does not happen, then production can still be
slowed down, whereas lost production cannot be made up for.

Another observation from Figure 1 is that towards the end of the block, the expected deterioration
trajectory (solid line) enters the area where the production rate is reduced. Thus, even under the expected
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Figure 1: The optimal production rate for the CBP strategy in grey scale, ranging from black (no production) to white (maximum
rate). The solid line indicates the expected deterioration trajectory, and the dashed lines indicate a region that contains the
deterioration level with 95% certainty at a given point in time.

0 20 40 60 80

0.0

0.5

1.0

1.5

Block length

C
o
s
t

0 20 40 60 80

0.00

0.02

0.04

0.06

0.08

0.10

Block length

F
a
ilu

re
 r

is
k

0 20 40 60 80

0.80

0.85

0.90

0.95

1.00

Block length

M
e
a
n
 p

ro
d
u
c
ti
o
n

Figure 2: Effect of block length T on the costs per period, the failure risk per block, and the mean production per period for the
fixed strategy (dashed blue) and the CBP strategy (solid red). The dots indicate the optimal block length for both strategies.

deterioration path, production is slowed down towards the end of the block. This reduces the volatility
of the deterioration process, and thereby reducing the risk of an instant failure by a large deterioration
increment.

Figure 2 shows the effect of the block length on the average cost per time period, the probability that
the system fails during a block, and the mean production per period for both the fixed strategy (dashed)
and the CBP strategy (solid). For block lengths exceeding 40, the failure risk under the fixed strategy
rapidly increases and therefore this strategy cannot permit to schedule longer blocks. The CBP strategy
controls the failure risk by reducing the production rate if and when needed. This allows CBP to be less
conservative and schedule considerably longer blocks (T ∗ = 60 instead of T ∗ = 42), while simultaneously
increasing the expected time between two consecutive failures from 995 to 6365 periods, reducing the
average cost per time period by 25% compared to the fixed strategy (0.424 instead of 0.562).

Besides the cost reduction, CBP also achieves a significantly lower cost standard deviation (2.83 in-
stead of 4.34) by reducing the number of expensive failures. Note that in terms of cost, the CBP strategy
is also less sensitive to small changes in the block length, which offers a practical advantage as in real-life
systems the exact maintenance moment may be uncertain.
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Condition-based maintenance and production
We continue with the two strategies with condition-based maintenance (i.e., CBM and CBMP) and

compare their performance to the strategies with a static maintenance policy (i.e., FMF and CBP). Intro-
ducing only a flexible maintenance policy (CBM) reduces the cost by 27% compared to the fixed strategy
(from 0.562 to 0.409), and is thus slightly more cost effective than CBP for the base case. The main
advantage of CBM over CBP is its higher production output, as it does not slow down production to con-
trol deterioration. On the other hand, CBM performs more maintenance actions than CBP (mean time to
maintenance of 53 instead of 60), and still fails around 2.6 times as often. This is partially caused by the
inability of CBM to respond to large deterioration increments during the planning time, whereas CBP can
lower the production speed at any time. Failures imply high maintenance cost and thus the higher number
of failures also explains the higher standard deviation of the cost for CBM compared to CBP.

The cost reduction by introducing both an adjustable production rate and a flexible maintenance policy
(i.e., CBMP) is 33% (from 0.562 to 0.378), implying that condition-based production and condition-based
maintenance partially complement each other. The adjustable production rate improves the condition-
based maintenance policy in three ways. First, the failure risk during the planning time is lower because
the operator can respond to the actual deterioration. This clearly reduces the expected maintenance cost per
cycle. Second, exploiting this benefit, a less conservative preventive maintenance threshold is used (78.8
instead of 70.2), resulting in fewer maintenance actions. Third, if during the planning time the system
deteriorates so fast that a failure becomes (almost) unavoidable, then the expected production losses are
minimized by producing at a more efficient rate until failure occurs.

Recall that CBP lowers the production rate towards the end of a block in order to reduce the risk of a
failure even if deterioration is as expected. A similar observation applies to the CBMP strategy, but now
production is slowed down towards the end of the planning period, unless deterioration is much lower than
expected. Moreover, for various systems, production is even already slowed down before maintenance
is scheduled. We conclude that the ability to vary the production rate is exploited in a wide range of
scenarios.

5.4. Parameter sensitivity
In the previous section, we have seen that both CBM and CBP realize considerable cost savings in the

base case, and applying them together is even more effective. However, the joint cost savings are less than
the sum of the separate savings, showing that CBM and CBP only partly complement each other for the
base case. In this section, we perform a sensitivity study to obtain further insights into the comparative
performance of CBM and CBP and into whether the two can enhance each other’s performance. Besides
cost savings, we also consider other performance measures such as expected production, mean time be-
tween maintenance, and probability of a failure. The results are obtained by studying the base case system
while deviating various parameters one by one.

Planning time
We first consider the planning time s required to carry out maintenance, see Figure 3. The fixed

strategy and the CBP strategy use block-based maintenance policies that are not affected by the planning
time, and we indeed see that the costs for these strategies are independent of s. CBP realizes a cost saving
of 25% compared to the fixed strategy, regardless of the planning time. CBM realizes a cost saving of 34%
when there is no planning time, and its effectiveness obviously decreases in the length of the planning
time. If the planning time equals the optimal block length under the fixed strategy (i.e., T = 42), then
CBM immediately schedules maintenance upon each maintenance action and is not able to realize a cost
saving compared to the fixed strategy.

CBMP utilizes the condition information to both schedule maintenance and adapt the production rate.
However, similar to the CBM policy, the value of condition information for the maintenance planning
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Figure 3: Effect of planning time s on the total average cost and on the relative cost saving compared to the fixed strategy. The
results are given for the fixed strategy (dotted blue), CBM (dot dashed orange), CBP (dashed red), and CBMP (solid black).

decreases if the planning time increases. As a result, CBMP converges to CBP as s increases. For short
planning times, the major part of the cost saving is due to the condition-based maintenance decisions and
we indeed see that CBM and CBMP result in almost the same cost if there is no planning time (0.374
versus 0.371). A marginal cost difference exists because CBMP can use a slightly higher maintenance
threshold (83.80 versus 81.65) by reducing the production rate already before maintenance is scheduled,
thereby reducing the volatility of the deterioration increments and thus reducing the risk of an instant
failure.

We observe that for planning times of at least 37 periods, the cost saving of CBMP is larger than
the sum of cost savings of CBM and CBP. Thus, the two dynamic decisions can enhance each other’s
performance.

We conclude that the planning time strongly affects the effectiveness of the various policies. For short
planning times, CBM outperforms CBP, whereas for longer planning times CBP is preferred. Although
CBM is preferred when the planning time is short, CBP realizes a considerable cost saving as well and can
thus be a viable alternative for CBM based on factors not considered in this study. On the other hand, for
long planning times, CBM does not reduce costs and is thus not a viable alternative for CBP in that case.
Moreover, CBMP is by far the most beneficial for intermediate planning times.

Maintenance cost and revenue
Figure 4 shows how the cost savings of the condition-based strategies are affected by the other system

parameters. We first assess the effect of the corrective maintenance cost. If ccm equals cpm, CBP only
marginally reduces cost compared to the fixed strategy by 1% while CBM realizes a considerable cost
saving of 18%. The small cost saving realized by CBP is because the total production can be increased
in the rare case a failure is virtually inevitable. Thus, if failures do not induce additional costs on top of
the preventive maintenance cost, then CBM is clearly more effective than CBP. This is intuitive as it is
not beneficial to avoid a failure by slowing down production, which is the main benefit of an adjustable
production rate.

For increasing corrective maintenance costs, avoiding failures becomes more important. CBM can
only achieve this by being conservative and initiating maintenance at a lower deterioration threshold, i.e.,
the maintenance policy has to be robust for above average deterioration. CBP, on the other hand, can use a
more optimistic maintenance policy and predominantly uses the adjustable production rate to avoid failure
which only causes additional costs when above average deterioration is observed. For instance, if ccm
increases from 25 to 250, CBM decreases the maintenance threshold from 86.2 to 63.9 while CBP only
reduces the block length from 62 to 60. Moreover, for extremely high corrective maintenance costs (say
ccm ≥ 400), CBP becomes insensitive to changes in the corrective maintenance costs as the failure risk
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Figure 4: Effect of various parameters on the relative cost savings of CBP (dashed red), CBM (dot dashed orange), and CBMP
(solid black) compared to the fixed strategy.

becomes negligible while costs under CBM continue to increase. Finally, as long as corrective maintenance
is more expensive than preventive maintenance, the adjustable production rate complements the condition-
based maintenance policy by reducing the failure risk during the planning time.

Considering the effect of the production revenue π, we observe that CBM becomes slightly more cost-
effective when the production revenue increases, while CBP becomes significantly less effective. CBP
reduces the maintenance cost by decelerating the production rate, which is more expensive for high values
of π. For extremely high production revenues, it is optimal to only focus on maximizing production and
avoid failures by scheduling very short blocks, thus CBP converges to the fixed strategy.

Volatility deterioration increments
The third graph shows the effect of the volatility of the deterioration increments. For standard devi-

ations close to zero, the deterioration process is stable, implying that condition information has limited
value. When the volatility starts to increase, all condition-based strategies effectively use the condition
information and considerably outperform the fixed strategy. CBP reduces the failure risk during a block
by decreasing the production rate when the deterioration level is high relative to the remaining time to
maintenance. Doing so allows this strategy to be less conservative and schedule longer blocks than the
fixed strategy (e.g., T = 62 versus T = 47 for σmax = 2). However, the flexible production rate comes with
revenue losses, while the flexibility of CBM does not induce additional costs. As a result, CBP is slightly
less effective than CBM for small volatilies.

For intermediate volatilities, the uncertainty during the planning time becomes considerable, and CBM
has to significantly lower the threshold at which maintenance is initiated to cope with this uncertainty.
However, the volatility is still low enough to be handled by adjusting the production rate. As a result,
combining both dynamic decisions is most advantageous for an intermediate volatility.

For high volatilities, the system does not gradually deteriorate but failures are likely to be caused by
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a single extreme deterioration increment. Such shocks arrive suddenly and condition monitoring does not
provide any information on the arrival of these shocks. CBP reduces their magnitude by producing at a
lower rate, such that the system is not expected to fail from a single shock, and immediately switches to
the idle mode after a shock occurred. For extremely high volatilities, reducing the size of the shocks does
not outweigh the induced production losses and we indeed observe that the cost savings of CBP diminish
if the volatility continues to increase. CBM and CBMP, on the other hand, produce at the maximum rate
until the system fails and then schedule maintenance, thereby even reducing costs for extremely volatile
processes.

Parameters pd-relation
We continue with the effect of the pd-relation parameters γ, µmin, and µmax, see the bottom three graphs

of Figure 4. Recall that γ describes whether the pd-relation is concave (0 < γ < 1) or convex (γ > 1). The
minimum deterioration rate ranges from no deterioration when idle (µmin = 0) to maximum deterioration
when idle (µmin = µmax = 1.5), in which case the production rate does not affect the deterioration rate.
The major insights are that (1) all strategies realize a significant cost saving for all values of γ, (2) for
concave pd-relations CBM is preferred while CBP is better for ‘more convex’ pd-relations, (3) CBM and
CBP complement each other for all values for γ, and (4) condition-based production decisions improve
the CBM policy even if µmin is high compared to µmax. Finally, the cost savings of CBM decrease as µmax
increases, whereas the cost savings of CBP actually increase. Higher values for µmax imply that the system
deteriorates faster and, as a result, both the fixed strategy and CBM have to schedule more maintenance
interventions, thereby considerably increasing costs. CBP overcomes this by slightly reducing the pro-
duction rate. For very high values of µmax, CBP already reduces the production rate for low deterioration
levels in order to produce at a more efficient rate. Note that, similar to the planning time parameter s, CBM
converges to the fixed strategy if µmax continues to increase.

5.5. Parameter estimation errors

So far we have assumed that all system parameters are known with certainty, whereas in practice vari-
ous parameters must be estimated. In this section, we compare the robustness of the considered strategies
with respect to incorrect estimations of the parameters of the deterioration process. Although all system
parameters are uncertain to some extent, we focus on the mean and the standard deviation of the deteri-
oration increments per time unit as they are crucial for maintenance and production decisions. We vary
the estimated mean µ̂max from 0.2 (almost no deterioration) to 3.0 (twice as fast as the base system), while
the coefficient of variation is kept constant. The estimated standard deviation σ̂max ranges from 0.2 (very
stable deterioration) to 6.0 (twice as volatile as the base system).

Figure 5 shows the average costs of all four strategies when they are optimized based on the estimated
values µ̂max (top) and σ̂max (bottom) but are applied to our base system with µmax = 1.5 and σmax = 3.0.
For the base system (left panels), the three main observations are that the fixed strategy is significantly more
sensitive to estimation errors in the mean than the condition-based strategies, that the three condition-based
strategies are similarly affected by estimation errors for both the mean and the standard deviation, and that
underestimating parameters is often worse than overestimating them. Note that for large underestimations
of the deterioration rate, the cost of the fixed strategy actually decreases if the estimation error increases
further. This is because for large underestimations, the fixed strategy schedules too long blocks and the
system is likely to fail every block, resulting in very high maintenance costs. The production revenues
do not outweigh the corrective maintenance costs and it is better to schedule even fewer maintenance
interventions, which happens if the estimated value decreases further.

We also consider different values of the system parameters compared to the base case to obtain further
insights. This confirms that the fixed strategy is most sensitive to estimation errors, but also that CBM
is often considerably more sensitive for incorrect estimating of the deterioration rate than CBP. This is
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Figure 5: Effect of mis-estimating the deterioration rate µmax = 1.5 (top) and the standard deviation σmax = 3.0 (bottom) on the
costs realized by FMP (dotted blue), CBM (dot dashed orange), CBP (dashed red), and CBMP (solid black). The left panels show
the results for the base system, the middle panels increase the corrective maintenance cost from 100 to 300, and the right panels
also increase the planning time from 5 to 20.

especially the case for more expensive corrective maintenance and for longer maintenance planning times.
The middle panels (with the corrective maintenance cost increased from 100 to 300) and the right panels
(with also the planning time increased from 5 to 20) illustrate this. Observe that higher corrective main-
tenance cost makes CBM more sensitive to underestimating the rate, while longer planning times makes
CBM sensitive to overestimations.

The agility of CBP compared to that of CBM explains its more robust performance with regard to
estimations errors. CBP can quickly react to the actual deterioration level if this differs from what was
expected. This particularly allows, in case of underestimation of the deterioration rate, to better prevent
expensive corrective maintenance actions by continuously adjusting the production rate based on the ac-
tual deterioration level. Furthermore, overestimating the mean deterioration rate leads to unnecessarily
early maintenance interventions under CBM, which are relatively costly compared to the slightly reduced
production rates under CBP.

Summarizing, the fixed strategy is very sensitive to estimation errors, as it plans maintenance without
condition information and is not able to adapt. CBM does adapt by planning maintenance based on the ob-
served level of deterioration, but can no longer react after maintenance has been planned. As a result, CBM
is more robust than the fixed strategy but still quite sensitive to estimation errors if the planning time is
long and/or corrective maintenance is expensive. Under such conditions, CBP and CBMP achieve a much
lower cost when the deterioration process is mis-estimated, by adjusting the production rate according the
the actual deterioration level.
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6. Conclusion

Ongoing developments in the fields of online condition monitoring and real-time decision making
create opportunities to operate industrial systems more efficiently by implementing condition-based main-
tenance (CBM) or condition-based production (CBP). The latter controls the deterioration of equipment by
dynamically adjusting the production rate, thereby better balancing production revenues and maintenance
costs. We have compared the effectiveness of employing the two condition-based policies in isolation and
assessed the benefits of integrating them into a fully flexible policy (CBMP).

We considered a single-unit system that gradually deteriorates and for which the condition is continu-
ously monitored. Exact numerical results were obtained by formulating the system as a Markov decision
process. Varying the system parameters revealed a number of valuable insights. First, for almost all
considered settings, all three dynamic strategies clearly outperform the simpler strategy that combines
block-based maintenance with a fixed production rate. Second, the cost reduction mechanisms of CBM
and CBP are quite different. CBP typically reduces the failure risk significantly at the expense of lower
expected production, whereas CBM policies are characterized by higher expected production but substan-
tially more failures too. This also explains why CBM is more effective for very high production revenues,
and CBP is more effective for large corrective maintenance costs. The comparative performance of CBM
and CBP depends on what effect dominates. Moreover, CBMP improves the trade-off between production
and maintenance costs further, resulting in more production than CBP and fewer failures than CBM. In
many settings, the two cost reducing effects are best combined by employing the CBMP strategy. In fact,
sometimes the savings of the combined strategy are more than the sum of the savings of CBM and CBP.

We also examined how the various policies perform under wrongly estimated parameter values for
the deterioration process, as these are often uncertain for real-life systems. This showed once more that
condition information should be taken into account when available, since all dynamic strategies were con-
siderably more robust to estimation errors of the deterioration rate than the fixed strategy. We also found
that CBM is much less robust for large estimation errors than CBP if the planning time is long or corrective
maintenance is expensive, as the latter can dynamically correct for wrong decisions. It follows that it is
also beneficial to adopt the dynamic strategies if there is uncertainty of the deterioration parameters.

There are numerous research opportunities within this direction. One direction is to include unreliable
condition information or uncertain parameter values for the deterioration process directly into the opti-
mization. It is expected that condition-based production decisions can better cope with such uncertainties
compared to condition-based maintenance as the effect of a wrong production decision is less severe than
a wrong maintenance decision. After a production rate is set, this can be revised when more condition
information becomes available whereas an expensive maintenance action cannot be made undone.

Moreover, incorporating condition-based production rates into multi-unit systems seems a promising
direction. Production facilities often face contracts with considerable penalties if a minimum total produc-
tion target is not met. For systems with many units (e.g., offshore wind farms), some units may be idle,
but if too many fail simultaneously then penalties are incurred. For such systems, condition-based produc-
tion decisions can be used to desynchronize the deterioration levels of various units in order to minimize
the risk that multiple units fail shortly after each other. Similarly, adjustable production rates can also be
applied to do the opposite, namely synchronizing the deterioration level of (a subset of) the units such that
their maintenance can be clustered, thereby reducing setup costs. Clearly, the optimal policy is situation
dependent and deserves attention.

Another direction is to study multi-unit systems with limited maintenance capacity, for instance, due to
the need for specialized equipment or the limited availability of skilled technicians. When multiple units
require maintenance around the same time this can result in long downtimes due to the limited maintenance
capacity. With a dynamic production planning, units can produce at different rates such that their preferred
maintenance moments can be spread, thereby reducing peak demand for scarce maintenance equipment.
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