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1 Introduction

In the late 1960s, Glebskii and colleagues proved that first-order logic without
function symbols satisfies a zero-one law: every formula is either almost always
true or almost always false in finite models [6]. More formally, let L be a
language of first-order logic and let An(L) be the set of all L-models with
universe {1, . . . , n}. Now let µn(σ) be the fraction of members of An(L) in
which σ is true:

µn(σ) =
|M ∈ An(L) : M |= σ |

| An(L) |
Then for every σ ∈ L, limn→∞ µn(σ) = 1 or limn→∞ µn(ϕ) = 0. This was also
proved later but independently by Fagin [5]; Carnap had already proved the
zero-one law for first-order languages with only unary predicate symbols [3].

The above zero-one laws and other limit laws have found applications in
database theory and AI.In this article, we are interested in zero-one laws for
some modal logics that impose structural restrictions on their models; all three
logics that we are interested in are sound and complete with respect to finite
partial orders, with different extra restrictions per logic. The zero-one law
for first-order logic also holds when restricted to partial orders, both reflexive
and irreflexive ones [4]. The proof uses a surprising combinatorial result by
Kleitman and Rothschild [9] on which we will also rely for our results.

1.1 Kleitman and Rothschild’s result on finite partial orders

Kleitman and Rothschild proved that with asymptotic probability 1, finite
partial orders have a very special structure: There are no chains u < v < w < z
of more than three objects and the structure can be divided into three levels:
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2 Zero-one laws with respect to models of provability logic and two Grzegorczyk logics

• L1, the set of minimal elements;
• L2, the set of elements immediately succeeding elements in L1;
• L3, the set of elements immediately succeeding elements in L2.

Moreover, in partial orders of size n, the sizes of these sets tend to n
4 for both

L1 and L3 while the size of L2 tends to n
2 . As n increases, each element

in L1 has as immediate successors asymptotically half of the elements of L2

and each element in L2 has as immediate successors asymptotically half of the
elements of L3 [9]. Kleitman and Rothschild’s theorem holds both for reflexive
(non-strict) and for irreflexive (strict) partial orders.

1.2 Zero-one laws for modal logics

Let Φ = {p1, . . . , pk} be a finite set of propositional atoms 2 and let L(Φ) be
the modal language over Φ, inductively defined as the smallest set closed under:

(i) If p ∈ Φ, then p ∈ L(Φ).

(ii) If A ∈ L(Φ) and B ∈ L(Φ), then also ¬A ∈ L(Φ), 2A ∈ L(Φ), 3(ϕ) ∈
L(Φ), (A ∧B) ∈ L(Φ), (A ∨B) ∈ L(Φ), and (A→ B) ∈ L(Φ).

Let Mn,Φ be the set of finite Kripke models over Φ with set of worlds W =
{1, . . . , n}. We take νn,Φ to be the uniform probability distribution on Mn,Φ.
Let νn,Φ(ϕ) be the measure in Mn,Φ of the set of Kripke models in which ϕ is
valid. Halpern and Kapron proved that every formula ϕ in L(Φ) is either valid
in almost all models or not valid in almost all models [8, Corollary 4.2]:

Either lim
n→∞

νn,Φ(ϕ) = 0 or lim
n→∞

νn,Φ(ϕ) = 1.

By the Kleitman-Rothschild theorem, this modal zero-one law can also be
restricted to finite models on reflexive or irreflexive partial orders, so that the
existence of zero-one laws for finite models of provability logic and Grzegorczyk
logic immediately follow. However, one would like to prove a stronger result
and axiomatize the set formulas ϕ for which limn→∞ νn,Φ(ϕ) = 1.

The result about GL was proved in my 1995 LMPS presentation [12], but
the proof was not published before. The 0-1 laws for Grz and WGrz are new.

2 Provability logic and two of its cousins

Here follow brief reminders about provability logic GL, Grzegorczyk logic Grz,
and weak Grzegorczyk logic wGrz.

2.1 Provability Logic

The most widely used provability logic is called GL after Gödel and Löb. As
axioms, it contains all axiom schemes from K and the extra scheme GL:

All (instances of) propositional tautologies (A1)

�(ϕ→ ψ) → (�ϕ→ �ψ) (A2)

�(�ϕ→ ϕ) → �ϕ (GL)

2 In the rest of this paper, we take Φ to be finite, although the results can be extended to
enumerably infinite Φ by the methods described in [8].
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The rules of inference of GL are modus ponens and necessitation (if GL ` ϕ,
then GL ` �ϕ). Note that GL ` �ϕ → ��ϕ, as first proved by De Jongh
and Sambin [1,13], but that the reflexivity axiom �ϕ → ϕ does not follow.
Indeed, Segerberg proved in 1971 that provability logic is sound and complete
with respect to all finite, transitive, irreflexive frames [11].

2.2 Grzegorczyk logic

Grzegorczyk Logic Grz, first introduced in [7], has the same axiom schemes
and inference rules as GL, except that axiom GL is replaced by Grz:

2(2(ϕ→ 2ϕ) → ϕ) → ϕ (Grz)

Grz is sound and complete with respect to the class of all finite transitive,
reflexive and anti-symmetric frames [1, Chapter 12].

2.3 Weak Grzegorczyk logic

Weak Grzegorczyk Logic Grz has the same axiom schemes and inference rules
as GL, except that axiom GL is replaced by wGrz, in which 2+ψ := 2ψ ∧ ψ:

2+(2(ϕ→ 2ϕ) → ϕ) → ϕ (wGrz)

wGrz is sound and complete with respect to the class of all finite transitive,
anti-symmetric frames (which need be neither irreflexive nor reflexive) [10].

3 Zero-one laws over relevant classes of finite models

3.1 GL: 0-1 law in finite irreflexive transitive models

We provide an axiomatization for almost sure model validity with respect to the
relevant finite models corresponding to GL, namely the irreflexive transitive
ones. The axiom system AXΦ,M

GL has the same axioms and rules as GL plus:
222⊥ (T3)

3> → 3A (C1)

33> → 3(B ∧3C) (C2)

In the axiom schemes C1 and C2, the formulas A, B and C all stand for
consistent conjunctions of literals over Φ. 3 Note that AXΦ,M

GL is not a normal
modal logic, because one cannot substitute just any formula for A,B,C. 4

Definition 3.1 Define MΦ
GL = (W,R, V ), the canonical asymptotic Kripke

model over Φ, with W,R, V as follows (see Fig. 1):
W = {bv,mv, uv | v a propositional valuation on Φ};
R = {〈bv,mv′〉 | v, v′ propositional valuations on Φ} ∪

{〈mv, uv′〉 | v, v′ propositional valuations on Φ} ∪
{〈dv, uv′〉 | v, v′ propositional valuations on Φ}; and

for all pi ∈ Φ, the valuation V is defined by Vbv (pi) = 1 iff v(pi) = 1; Vmv
(pi) =

1 iff v(pi) = 1; Vuv
(pi) = 1 iff v(pi) = 1.

3 C1 and C2 have been inspired by Carnap’s consistency axiom: 3ϕ for any ϕ that is a
consistent propositional formula [2], and used by Halpern and Kapron [8] for axiomatizing
almost sure model validities for K-models.
4 For example, substituting ⊥ for A in C1 would make C1 equivalent to 2⊥.
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bv1
p1, p2

bv2
p1

bv3
p2

bv4

mv1p1, p2 mv2p1 mv3 p2 mv4

uv1
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Fig. 1. The canonical asymptotic Kripke model MΦ
GL = (W,R, V ) for Φ = {p1, p2},

defined in Definition 3.1. The accessibility relation is the transitive closure of the one
drawn in the picture. The figure shows only propositional atoms true at each world.

The zero-one law for model validity now follows:
Theorem 3.2 For every formula ϕ ∈ L(Φ), the following are equivalent:

(i) MΦ
GL |= ϕ;

(ii) AXΦ,M
GL ` ϕ;

(iii) limn→∞ νn,Φ(ϕ) = 1;

(iv) limn→∞ νn,Φ(ϕ) 6= 0.

3.2 Grz: 0-1 law in finite reflexive transitive anti-symmetric
models

Define axiom system AXΦ,M
Grz as Grz plus the following axioms:

¬(ϕ ∧3(¬ϕ ∧ ψ ∧3(¬ψ ∧ χ ∧3¬χ))) (D3)

(ϕ ∧3¬ϕ) → 3A (C3)

(ϕ ∧3(¬ϕ ∧ ψ ∧3¬ψ) → 3(B ∧3C) (C4)

In the axiom schemes above, ϕ, ψ, χ stand for any formulas in L(Φ), while
A,B and C stand for consistent conjunctions of literals over Φ. 5

Definition 3.3 Define the canonical asymptotic Kripke model MΦ
Grz =

(W,R, V ), where:
W = {bv,mv, uv | v a propositional valuation on Φ};
R = {〈w,w〉 | w ∈W} ∪

{〈bv,mv′〉 | v, v′ propositional valuations on Φ} ∪
{〈mv, uv′〉 | v, v′ propositional valuations on Φ} ∪
{〈dv, uv′〉 | v, v′ propositional valuations on Φ}; and

Vbv (p) = 1 iff v(p) = 1; Vmv
(p) = 1 iff v(p) = 1; Vuv

(p) = 1 iff v(p) = 1.

5 The axioms D3, C3 and C4 have been inspired by the axioms proposed in [8, Theorem
4.16] for the almost sure validities in finite S4 models.
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Note that MΦ
Grz is just the reflexive closure of MΦ

GL (Definition 3.1).

Theorem 3.4 For every ϕ ∈ L(Φ), the following are equivalent: (i) MΦ
Grz |=

ϕ; (ii) AXΦ,M
Grz ` ϕ; (iii) limn→∞ νn,Φ(ϕ) = 1; (iv) limn→∞ νn,Φ(ϕ) 6= 0.

3.3 wGRz: 0-1 law in finite transitive anti-symmetric models

Define the axiom system AXΦ,M
wGrz as wGrz plus axioms D3, C3 and C4.

Definition 3.5 The canonical asymptotic Kripke model MΦ
wGrz is a com-

bination of the irreflexive transitive MΦ
GL and the reflexive transitive anti-

symmetric MΦ
Grz (Def. 3.1 and 3.3), having a reflexive and irreflexive copy

of each valuation-related world in each layer; it is transitive and antisymmetric
and has direct accessibility from all states in the bottom layer to all states in
the middle layer and all states in the middle layer to all states in the top layer.

Theorem 3.6 For every ϕ ∈ L(Φ), the following are equivalent: (i) MΦ
wGrz |=

ϕ; (ii) AXΦ,M
wGrz ` ϕ; (iii) limn→∞ νn(ϕ) = 1; (iv) limn→∞ νn(ϕ) 6= 0.

Conclusion

We have formulated zero-one laws for provability logic, Grzegorczyk logic and
weak Grzegorczyk logic, with respect to model validity. On the way, we have
axiomatized validity in almost all relevant finite models, leading to three axiom
systems. 6 Many questions are left open for future research, most notably, those
about almost sure frame validity.
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