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Organ sparing potential and inter-fraction robustness of adaptive intensity
modulated proton therapy for lung cancer

Hans Paul van der Laan, R. Melissa Anakotta, Erik W. Korevaar, Margriet Dieters, J. Fred Ubbels, Robin Wijsman,
Nanna M. Sijtsema, Stefan Both, Johannes A. Langendijk, Christina T. Muijs and Antje C. Knopf

Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands

ABSTRACT

Background: The aim of this study was to compare adaptive intensity modulated proton therapy
(IMPT) robustness and organ sparing capabilities with that of adaptive volumetric arc photon ther-
apy (VMAT).

Material and methods: Eighteen lung cancer patients underwent a planning 4DCT (p4DCT) and 5
weekly repeated 4DCT (r4DCT) scans. Target volumes and organs at risk were manually delineated on
the three-dimensional (3D) average scans of the p4DCT (av_p4DCT) and of the r4DCT scans
(av_r4DCT). Planning target volume (PTV)-based VMAT plans and internal clinical target volume (ICTV)-
based robust IMPT plans were optimized in 3D on the av_p4DCT and re-calculated on the av_r4DCTs.
Re-planning on av_r4DCTs was performed when indicated and accumulated doses were evaluated on
the av_p4DCT.

Results: Adaptive VMAT and IMPT resulted in adequate ICTV coverage on av_r4DCT in all patients and
adequate accumulated-dose ICTV coverage on av_p4DCT in 17/18 patients (due to a shrinking target
in one patient). More frequent re-planning was needed for IMPT than for VMAT. The average mean
heart dose reduction with IMPT compared with VMAT was 4.6 Gy (p=.001) and it was >5 Gy for five
patients (6, 7, 8, 15, and 22Gy). The average mean lung dose reduction was 3.2Gy (p <.001).
Significant reductions in heart and lung V5 Gy were observed with IMPT.

Conclusion: Robust-planned IMPT required re-planning more often than VMAT but resulted in similar
accumulated ICTV coverage. With IMPT, heart and lung mean dose values and low dose regions were
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significantly reduced. Substantial cardiac sparing was obtained in a subgroup of five patients (28%).

Introduction

Radiotherapy results in radiation dose exposure to normal
tissue with consequently the risk of radiation induced tox-
icity. With current photon radiotherapy of lung cancer, the
radiation dose to the surrounding organs at risk (OAR), such
as the heart, lungs, and esophagus can be substantial [1]. It
has been demonstrated that high doses delivered to the
heart poses serious risks of cardiac events that may hamper
overall survival [2]. Furthermore, when large volumes of lung
receive low dose radiation, the risk of pulmonary complica-
tions increases significantly [3]. With pencil-beam scanned
intensity modulated proton therapy (IMPT), the dose distribu-
tion can be designed to conform better to the target, reduc-
ing the radiation dose to the surrounding normal tissue [4].
These dose reductions are expected to reduce the risk of car-
diac, pulmonary, and esophageal complications [5]. However,
the potential major advantages of IMPT for lung cancer are
challenged by respiratory motion, as well as the relatively

high density gradients in the thorax region. Proton therapy
is more sensitive (less robust) to uncertainties and anatom-
ical variations than photon therapy and this may lead to
inadequate coverage of the target volumes and/or may off-
set the dose expected to be delivered to OARs [6]. In order
to safely implement IMPT in clinical practice, thorough know-
ledge of the influence of setup errors, and inter- and intra-
fraction variations is essential [7]. Although randomized stud-
ies are scarce [5], an increasing number of articles report on
favorable results following proton therapy for lung cancer
[8-11]. For the comparison of IMPT with modern photon
radiotherapy, mainly in silico studies are available, comparing
IMPT or scattering proton techniques with modern photon
techniques on the planning CT [11-15]. Only a limited num-
ber of studies included inter-fractional changes in position
and anatomy [16], or robust treatment planning optimization
for proton therapy [14,17].

The aim of this study was to test the robustness of IMPT
for lung cancer on weekly repeated 4DCT (r4DCT), and to
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Table 1. Baseline patient characteristics.

Baseline factors This study Recent local population
Patients 18 317
Age 64+7 (46-77) 66+ 10 (32-87)
Male 12 (67%) 57%
T-stage
T0 1 (6%) 7%
T 5 (28%) 12%
T2 7 (39%) 28%
T3 2 (11%) 28%
T4 3 (17%) 25%
N-stage
NO 1 (6%) 24%
N1 1 (6%) 12%
N2 14 (78%) 47%
N3 2 (11%) 17%
Stage (7th edition)
1A 0 (0%) 1%
1B 0 (0%) 2%
1A 1 (6%) 6%
113 0 (0%) 9%
A 10 (56%) 35%
1B 2 (11%) 22%
\% 4 (22%) 8%
Limited disease 1 (6%) 17%
Tumor location
Right upper lobe 10 (56%) 37%
Right middle lobe 0 (0%) 16%
Right lower lobe 3 (17%) 14%
Left upper lobe 3 (17%) 20%
Left lower lobe 2 (11%) 13%

156 £ 145 (53-629)
291 +210 (123-938)
70+105 (9-431)

ICTV volume cm?®
PTV volume cm®
GTV volume cm®
Prescribed total dose
45 Gy (30fr twice daily)
60 Gy (25fr)

408 + 260 (54-1438)
87+£106 (3-732)

1 (6%) 8%
17 (94%) 74%

compare the organ sparing capabilities and robustness of
IMPT to that obtained with current volumetric modulated arc
photon therapy (VMAT). Our secondary aim was to investi-
gate the impact of adaptive re-planning by evaluating target
coverage and OAR dose parameter, both on weekly 4D
repeat CTs and by evaluating whole-course dose
accumulations.

Material and methods
Patients and imaging

The study population consisted of 18 patients with either
non-small-cell lung cancer (NSCLC) of any histological sub-
type, or small-cell lung cancer (SCLC) stage Ill (Table 1). All
patients were treated with photon-based VMAT with curative
intent in combination with chemotherapy. All patients under-
went a planning 4DCT scan (p4DCT) and weekly repeat 4DCT
scans (r4DCT) without contrast agents. Time-based 4DCT
scans were acquired using a large bore 64-slice CT scanner
(Somatom AS Open 64-RT Pro, Siemens Medical Systems,
Erlangen, Germany), in supine (treatment) position, with a
2mm slice thickness and an in-plane resolution of 1.0 mm.
The patients’ respiratory phases were determined using an
Anzai belt (Anzai Medical, Tokyo, Japan). The 4DCT images
were reconstructed into 10 respiratory phase bins and 3D
average intensity projection (AIP) CT images were created.
The analysis presented here focuses on the average p4DCTs

(av_p4DCT) and the average r4DCTs (av_r4DCT). This pro-
spective study was approved by the medical ethics review
committee of the UMCG and written informed consent was
obtained from all patients.

Target definition

The gross tumor volume (GTV) was delineated by a radiation
oncologist on the av_p4DCT. It included both nodal and pri-
mary tumor volumes and was expanded manually to encom-
pass the GTV on all phases of the 4DCT. The resulting
contour defined the internal gross tumor volume (IGTV) [18].
It was expanded with a uniform margin of 5mm to consti-
tute the internal clinical target volume (ICTV) and with
another 6 mm to constitute the planning target volume
(PTV). The GTVs and IGTVs were copied to the av_r4DCTs
using the intensity-based, anatomically constrained, deform-
able image registration (DIR) algorithm in the RayStation
v4.99 treatment planning system (RaySearch Laboratories,
Stockholm) [19]. Subsequently, the IGTVs were manually
adjusted by a radiation oncologist if necessary, and
expanded to define the ICTV. The heart, the total lung vol-
ume and the spinal cord were delineated as organs at
risk (OAR).

VMAT and IMPT treatment planning

Full VMAT treatment planning was performed using two
ipsilateral 180° arcs. The prescribed total dose to the PTV
was 60Gy (25 fractions of 2.4Gy). PTV optimized VMAT
plans were created on the av_p4DCT. Plans were iteratively
optimized such that (in order of priority) the mean dose to
the lungs, heart, and esophagus was as low as possible
without violating the PTV and spinal cord planning objec-
tives. Hotspots with >107% of the prescribed dose were
limited to 2cm?. For IMPT, typically three beam directions
were chosen considering plan robustness, e.g., beams avoid-
ing high density gradients and beams with short path
lengths to the target. ICTV-based robust optimized IMPT
plans were created with the same planning goals as for
VMAT, except that robust settings [20] were used to cover
the ICTV (6 mm for setup and 3% for range uncertainties)
[20-22] and the objective values and weights were adjusted
for IMPT. When an optimal plan was reached, a robustness
evaluation was performed simulating error scenarios for
both photons and protons [23]. The treatment plan was
accepted when the voxel-wise minimum ICTV D98 was
>57Gy and when the voxel-wise maximum spinal cord
DO0.1cm® was <50Gy. During IMPT optimization, auto-spot
spacing was used to distribute the spots in the lateral direc-
tion and in depth. A treatment machine was used with a
spot size (in air at isocentre) of 3mm (g) at 230MeV and a
minimum energy of 70MeV and a pencil beam dose algo-
rithm was used for dose calculation. All dose parameters
are reported in Gy (RBE), assuming an RBE of 1.1
for protons.



Plan perturbations on weekly repeat CTs

The VMAT and IMPT plans created on the av_p4DCT were re-
calculated on the weekly av_r4DCTs, simulating 26, and for
protons 52 error scenarios (2mm for both setup uncertain-
ties, and 3% for IMPT range uncertainties). The 2mm setup
uncertainty has been established from an internal assess-
ment accounting for imaging versus treatment isocentre
accuracy as well as intra-fractional setup error. When the
voxel-wise minimum ICTV D98 on an av_r4DCT was <56 Gy
or when the voxel-wise maximum spinal cord D0.1 cm® was
>51Gy, PTV-based (VMAT) or ICTV-based robust (IMPT) re-
planning was performed on that av_r4DCT. The re-plan was
then used to evaluate subsequent av_r4DCT scans.

Treatment-trajectories and evaluation of accumulated
dose on the av_p4DCT

For each patient, virtual ‘treatment-trajectories’ with and
without re-planning were considered, where a treatment-
trajectory is the set of plans for all weeks of treatment.
Patients had one treatment-trajectory when no re-planning
was required, two treatment-trajectories when re-planning
was needed once, etcetera. For each treatment-trajectory,
the computed dose per voxel for each av_r4DCT was warped
to the av_p4DCT and then accumulated and evaluated. Dose
was accumulated accounting 5 fractions per av_r4DCT, tak-
ing into account adapted plans on the corresponding and
subsequent av_r4DCTs.

Results

The 18 patients included in this study were a representative
sample of the population of lung patients treated at our
institute (Table 1). A total of 18 av_p4DCT scans and 87
av_r4DCT scans were available for the current analysis.
Sixteen patients had five weekly av_r4DCTs, one patient had
four (due to downtime of the CT scanner) and one patient
had three av_r4DCTs (due to the fractionation schedule of 30
fractions, twice daily). The ICTV averaged over patients with
five weekly scans decreased over time; for the 16 patients
with five r4DCTs available, it was 119cm? on the av_p4DCT,
and on the subsequent weekly av_r4DCTs it was 117 cm?,
109cm?®, 103cm?, 98cm?, and 93 cm?, respectively. The 3D
displacement of the GTV during breathing, averaged over all
patients and all four-dimensional (4D) CTs, was 4mm =+
3mm, and ranged from 1 to 15mm.

Re-planning was indicated (ICTV D98 < 56 Gy and/or spinal
cord D0.1cm® > 51 Gy) for two patients planned with VMAT
based on the av_r4DCT in the second week. For IMPT plans,
re-planning was indicated according to the weekly
av_r4DC(CTs for eight patients, of which five patients needed
re-planning once and three patients needed re-planning
more than once (Figure 1). When the ICTV D98 coverage on
the av_r4DCTs was between 56 Gy and 57 Gy, no re-planning
was performed. This was the case with VMAT for 10
av_r4DCTs (of five patients) and with IMPT for 11 av_r4DCTs
(of six patients). The decision not to re-plan in these cases
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never compromised the accumulated av_p4DCT ICTV cover-
age with VMAT and IMPT. When re-planning was omitted for
all patients, the accumulated av_p4DCT ICTV coverage with
VMAT and IMPT would have still been adequate for 18 and
15 patients, respectively. In retrospect, three of the eight
patients for whom IMPT re-planning was performed needed
the plan adaptation for adequate accumulated av_p4DCT
ICTV coverage. One patient who required IMPT re-planning
had inadequate ICTV coverage that was caused by a dense
mass in the lung, of which the volume, position and shape
changed every week (Supplementary Figure 1). For another
patient, the inadequate dose coverage was due to the shoul-
der position on the av_r4DCTs, which was different from the
av_p4DCT. The third patient had a slight rotation combined
with a slight position change on the av_r4DCTs, with respect
to the av_p4DCT, causing inadequate dose distributions.

Accumulated full re-planning treatment-trajectories had
adequate ICTV coverage on the av_p4DCT with both VMAT
and IMPT for 17 patients (Figure 1). For one patient with
NSCLC, re-planning decreased the ICTV D98 on the
av_p4DCT with both VMAT and IMPT. This decrease was
mainly due to a shrinking ICTV over the course of treatment
in combination with shrinking treatment fields after
re-planning.

The accumulated average mean heart dose in all patients
after full re-planning with VMAT and IMPT was 6.6 Gy and
2.0Gy (Wilcoxon signed-rank test p=.001), respectively
(Figure 2). For five patients, the mean heart dose was reduced
by more than 5Gy (-6.1Gy, -7.2Gy, -8.0Gy, -15.0Gy, and
-21.5Gy) (Figure 3). The average heart V5Gy in all patients
(Vx Gy is the relative volume receiving >x Gy) with VMAT
and IMPT was 27.1% and 8.0% (p <.001), respectively. The
average mean lung dose was 9.8 Gy and 6.6 Gy (p <.001). The
average lung V5Gy with VMAT and IMPT was 40.1% and
23.0% (p <.001), respectively. Mean dose reductions were
also observed for the esophagus and the integral dose
(Table 2).

Discussion

To our knowledge, this is the first study to investigate the
inter-fraction robustness of adaptive IMPT relative to VMAT
on 4D repeat CTs obtained weekly throughout the course of
treatment. The number of required and unnecessary re-plan-
ning procedures between IMPT and VMAT were compared
both on the weekly 4D repeat CTs and by evaluating whole-
course dose accumulations. We found that, without any re-
planning, IMPT for lung cancer results in adequate coverage
of the target volume for 15/18 patients. With re-planning,
adequate whole-course accumulated dose coverage of the
target volume was obtained in 17/18 patients with both IMPT
and VMAT.

Re-planning was required more often for IMPT than for
VMAT; eight patients required re-planning at least once for
IMPT based on the weekly scans. However, in retrospect, five
of these patients did not require any re-planning when the
accumulated dose on av_p4DCT was evaluated. Additional
research is needed to find the optimal decision criterion to
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Planned dose plan scan

Weekly repeat CT scans

Summed dose plan scan

IMPT

Replanning: never

n=10

Replanning: once

n=5

Omit replanning

H n=2

n=3 H

Replanning: > once
Omit replanning

H n=1

VMAT

Replanning: once
omit replanning | R

* same patient, weekly coverage adequate, summed replanning dose not adequate

[1CTV D98 < 95% (< 57 Gy) |

Figure 1. IMPT and VMAT re-planning frequencies for treatment-trajectories with and without re-planning. Decisions to re-plan were based on the weekly repeated
4D(Ts only, i.e., without dose accumulation. Whole-course ICTV coverage was evaluated with dose accumulation on the average planning 4DCT.

avoid unnecessary plan adaptations. In general, more
insights are required if plan adaptation decisions should be
made based on day-specific dose recalculations or accumu-
lated reconstructed doses as proposed by Meijers et al. [24].
Only two patients required re-planning for VMAT. With IMPT,
in three patients the main causes of decreased ICTV cover-
age were density changes in the lung and changes in the
patient position. These three patients did not require re-plan-
ning with VMAT. Inadequate accumulated ICTV coverage on
av_p4DCT was rarely caused by a shifted position of the
ICTV on the av_r4DCT. For one patient, who had an ICTV
that shrunk and changed position each week, re-planning
was required for both IMPT and VMAT. Re-planning in this
patient improved the ICTV coverage on the weekly
av_r4DCTs, while the accumulated dose did not adequately
cover the ICTV on the av_p4DCT.

For most patients, weekly IMPT evaluation with or without
one single plan adaptation on av_r4DCTs appeared sufficient
for adequate accumulated ICTV coverage on the av_p4DCT.
Further research, based on daily imaging such as CBCT, may
show which patients benefit from daily imaging and more
frequent treatment plan adaptation [16].

For IMPT, robust planning and robustness evaluation is
essential [25]. In this study, IMPT was robustly planned in 3D,
while for VMAT optimization, PTV-based planning was used,
as this best represents current clinical practice. The robust-
ness settings for IMPT used similar geometrical uncertainties
as for VMAT, which is accounted for in the CTV to PTV mar-
gin (6 mm).

In this study we defined the target volume using the
ICTV approach, which is more conservative than e.g., the
mid-ventilation or mid-position approaches. It is not yet
clear which method is best for IMPT. Additional studies
are necessary to investigate the influence of such factors.

Various choices made in this study may have influenced
the results of this study in a certain degree, e.g., the exact
number of plan adjustments performed or the exact dose
reductions obtained with IMPT relative to VMAT may be
different under different circumstances. However, as we are
currently preparing to implement IMPT for lung cancer,
the current study, and other research being performed at
this moment, offers us confidence that a robust treatment
is feasible for our patients. We foresee to start with
patients with limited motion amplitudes, which will be
closely monitored by using 3D and 4D imaging throughout
the course of fractionated proton treatment and we envi-
sion a workflow described in a recent publication of our
group [24].

Interplay effects could impact ICTV coverage, especially
with IMPT [26]. These effects were not considered in the cur-
rent study. Instead we used AIP for plan generation and
evaluation as we feel this is a valid representation of the
positions of target and OARs over the course of treatment.
This method is preferred as it appears to provide for a robust
but also efficient workflow. In a connecting article, we report
on the use of 4D optimization and verification and the
potential benefits in terms of additional OAR sparing [27].
The 4D method described in that article requires the use of
treatment log files for verification and delineation of targets
and OARs on each breathing phase, which is very labor
intensive. Also increased calculation times needed for treat-
ment plan optimization render this approach not yet clinic-
ally practically viable. The 4D workflow might also turn out
not to be ‘required’ for the clinic. The effects due to interplay
are expected to be limited for the current population as the
GTV displacement was relatively small (the population aver-
age 3D-vector displacement of the GTV was largest in the
first week of treatment: 5mm + 4 mm). Furthermore, dose
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Figure 2. Dose volume histograms for heart and lungs contours with VMAT and IMPT (accumulated dose including re-planning).

Figure 3. Accumulated dose distributions with VMAT and IMPT and mean heart dose reductions with IMPT in a subgroup of patients with substantial cardiac spar-
ing with IMPT.
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Table 2. Full re-planning trajectories ICTV D98 and OAR mean dose summed on av_p4DCT.

ICTV D98 (Gy) Heart MD (Gy) Lungs MD (Gy) Esophagus MD (Gy) Integral dose (Gy*volume*]O“)

ID VMAT IMPT VMAT IMPT VMAT IMPT VMAT IMPT VMAT IMPT
1 58.3 58.9 28.5 7.0 14.2 10.0 38.7 36.6 220 13.0
2 58.4 59.7 6.7 1.8 12.1 8.2 49 0.0 12.8 6.2
3 58.4 57.5 52 1.9 10.3 8.7 12.8 10.9 13.4 8.9
4 59.1 58.6 3.6 23 7.8 5.3 11.9 13.4 10.8 6.1
5 58.9 58.2 0.5 0.4 6.3 4.2 20.5 19.1 9.3 5.2
6 58.8 58.0 0.1 0.1 0.5 0.4 0.6 0.6 0.5 0.4
7 58.3 59.2 0.6 0.2 7.4 5.6 5.6 3.0 7.9 4.5
8 58.5 58.1 0.8 0.1 6.0 2.8 5.3 43 9.3 44
9 58.2 58.7 19.0 4.0 133 8.0 10.3 8.1 131 6.6
10 583 58.7 55 34 10.8 6.5 7.6 34 14.8 8.2
1 58.9 58.0 38 2.2 1.3 75 8.7 9.5 18.7 10.3
12 58.1 58.5 10.6 2.6 9.3 5.4 10.6 10.9 10.8 5.2
13 58.8 58.5 9.1 3.0 11.6 6.5 215 20.0 13.0 59
14 57.8 59.3 39 0.9 9.3 7.7 8.9 5.6 9.5 5.9
15 55.9 50.9 13 0.1 9.9 6.0 16.3 3.2 15.5 74
16 60.4 57.6 11.5 43 17.7 14.5 19.8 17.6 22.8 15.8
172 58.4 59.1 55 1.2 10.7 75 16.4 12.8 15.0 7.9
18 59.5 59.0 1.9 0.4 7.3 4.0 14.6 13.6 9.3 44
Mean 58.5 58.1 6.6 2.0 9.8 6.6 13.1 10.7 12.7 7.0
SD 0.9 19 7.3 1.9 3.7 3.0 8.6 8.9 5.2 3.5
Min 55.9 50.9 0.1 0.1 0.5 0.4 0.6 0.0 0.5 0.4
Max 60.4 59.7 28.5 7.0 17.7 14.5 38.7 36.6 228 15.8
Trajectories without any re-planning

Mean 58.7 56.6 6.6 1.9 9.7 6.5 13.0 10.4 12.7 6.9
SD 0.6 44 73 1.7 3.7 3.0 8.6 8.0 5.2 35
Min 57.8 40.2 0.1 0.1 0.5 0.4 0.6 0.0 0.5 0.4
Max 60.4 59.7 28.5 6.1 17.7 14.5 38.7 31.7 22.8 15.8

The results for ICTV are based on the voxel-wise minimum dose distribution. The results for the organs at risk are based on the voxel-wise average dose

distribution.

This patient was prescribed a total dose of 45 Gy. ICTV results for this patient in this table were scaled as if 60 Gy were prescribed.

fractionation is expected to mitigate the effects of interplay
because the dose distribution is averaged over 25 fractions.
This is consistent with the observations in the current study:
although individual fractions resulted in reduced ICTV cover-
age in some patients, in most cases this effect disappeared
when the whole treatment course dose was accumulated.
Furthermore, the differences in OAR dose were minor when
comparing treatment trajectories with and without
re-planning.

The accumulated deformed dose distribution presented in
this study may be influenced by the accuracy and validity of
the DIR procedure [28]. The applied DIR method has been
approved for clinical contour propagation and dose accumu-
lation at our institute and has the option to use the ICTV as
controlling region for increased accuracy [29]. Although all
DIR matches were visually checked for validity, and the same
DIR was used for VMAT and IMPT, dosimetric errors may still
exist [30]. It is, however, not expected that this will alter the
conclusions of this study, as errors are reduced by repeated
imaging and the tumor motion in this study was rela-
tively small.

The secondary aim of this study was to investigate the
organ sparing capabilities of IMPT under robust treatment
conditions (robust planning, weekly plan evaluation, and re-
planning when necessary) when compared with VMAT. While
moderate mean dose reductions were observed for the lung
and the esophagus contours with IMPT, significant reduc-
tions could be obtained for low-dose regions (V5 Gy) of the
lung. Reduction of these volumes receiving 5Gy may signifi-
cantly decrease the risk of pulmonary complications, pneu-
monia and acute respiratory stress syndrome [3,31].

The reductions in V5Gy of the heart and the mean heart
dose were statistically significant. In a subgroup of five
patients the mean heart dose reduction was substantial,
ranging from 6 to 22 Gy. Unfortunately, no validated NTCP
models for cardiovascular events are currently available for
lung cancer patients, and the observed cardiac mean dose
reductions with IMPT cannot be translated into reduced risks
of cardiovascular complications. However, several authors
have reported on reductions in overall survival of patients
who received radiotherapy for lung cancer [32]. In a recent
randomized trial (RTOG-0617) it was demonstrated that
patients who received an escalated dose (74 Gy) to the target
had worse survival than patients who received the standard
dose of 60 Gy. Moreover, overall survival was associated with
cardiac dose, especially the heart V5 Gy and the heart V30 Gy
[2]. A single institution analysis of 251 NSCLC patients
showed that keeping the heart V50 Gy below 25% was asso-
ciated with a nearly 20% absolute improvement in 2-year
overall survival [33].

This indicates that a subgroup of lung cancer patients
with significant reductions in incidental radiation dose to the
heart is likely to substantially benefit from proton therapy. In
the current study, we demonstrated that such dose reduc-
tions can be obtained with IMPT without compromising
adequate target coverage.

Conclusion

We found in a group of 18 patients that robust 3D-planned
IMPT required re-planning on weekly average 4DCT scans
more often than for PTV-based VMAT. With re-planning, the



accumulated ICTV coverage on average-intensity 4DCT scans
was similar for both IMPT and VMAT. With robustly opti-
mized IMPT, significant reductions in V5Gy values for the
lung were obtained. Furthermore, as seen in a subgroup of
5/18 patients, significant cardiac dose reductions were
achieved with IMPT.

Oral presentation at ASTRO 2018: Robustness and Organ
Sparing Potential of Intensity Modulated Proton Therapy for
Lung Cancer. International journal of radiation oncology biol-
ogy physics, vol. 102, issue 3, p. S56-S57. Hans Paul van der
Laan has a MSc in epidemiology and was responsible for the
statistical analysis for this article.
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