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Hybrid interconnection of iterative bidding and power network dynamics
for frequency regulation and optimal dispatch

Tjerk Stegink, Ashish Cherukuri, Claudio De Persis, Arjan van der Schaft, and Jorge Cortés

Abstract—This paper considers a real-time electricity market
involving an independent system operator (ISO) and a group of
strategic generators. The ISO operates a market where genera-
tors bid prices at which they are willing to provide power. The
ISO makes power generation assignments with the goal of solving
the economic dispatch problem and regulating the network
frequency. We propose a multi-rate hybrid algorithm for bidding
and market clearing that combines the discrete nature of iterative
bidding with the continuous nature of the frequency evolution
in the power network. We establish sufficient upper bounds on
the inter-event times that guarantee that the proposed algorithm
asymptotically converges to an equilibrium corresponding to an
efficient Nash equilibrium and zero frequency deviation. Our
technical analysis builds on the characterization of the robustness
properties of the continuous-time version of the bidding update
process interconnected with the power network dynamics via the
identification of a novel LISS-Lyapunov function. Simulations on
the IEEE 14-bus system illustrate our results.

I. INTRODUCTION

The dispatch of power generation in the grid has been
traditionally done in a hierarchical fashion. Broadly speaking,
cost efficiency is ensured via market clearing at the upper
layers and frequency regulation is achieved via primary and
secondary controllers at the bottom layers. Research on im-
proving the performance of these layers has mostly developed
independently from each other, motivated by their separation
in time-scales. The increasing penetration of renewables poses
significant challenges to this model of operation because of
its intermittent and uncertain nature, see e.g., [2], [3]. At
the same time, the penetration of renewables also presents
an opportunity to rethink the architecture and its hierarchical
separation towards the goal of improving efficiency and adap-
tiveness. A key aspect to achieve the integration of different
layers is the characterization of the robustness properties of
the mechanisms used at each layer, since variables at the
upper layers cannot be assumed in steady state any more at
the lower ones. These considerations motivate our work on
iterative bidding schemes combined with continuous physical
network dynamics and the correctness analysis of the resulting
multi-rate hybrid interconnected system.
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Literature review: The integration of economic dispatch
and frequency regulation in power networks has attracted
increasing attention in the last decades. Many recent works [4],
[5], [6], [7], [8], [9], [10], [11] envision merging the design
of primary, secondary, and tertiary control layers for several
models of the power network/micro-grid dynamics with the
aim of bridging the gap between long-term optimization and
real-time frequency control. In scenarios where generators are
price-takers, the literature has also explored the use of market
mechanisms to determine the optimal allocation of power gen-
eration and to stabilize the frequency with real-time (locational
marginal) pricing, see [12], [13], [14], [15]. Our present work
shares with [16], [17] the use of dynamic iterative bidding
schemes by the ISO, although in these works the setting
is stochastic, the agents react in a price-taking manner, and
their dynamics is assumed to be decoupled from one another.
Instead, [18] proposes iterative bidding schemes where the
generators are strategic, leading to efficient Nash equilibria
where power generation levels minimize the total cost as
intended by the ISO. Inspired by [18] and [15], our work [19]
has shown that the integration with the frequency dynamics of
the network can also be achieved in scenarios where generators
are price-setters. However, the integration in [19] relies on
a continuous-time model for the bidding process, where the
frequency coming from the power network dynamics enters
as a feedback signal in the negotiation process. Instead, we
account here for the necessarily discrete nature of the bidding
process and explore the design of provably correct multi-
rate hybrid implementations that realize this integration. This
involves the identification of a strictly decreasing Lyapunov
function (compared to the weak Lyapunov function employed
in [19]) that allows us to go beyond the characterization
of asymptotic stability of the continuous-time dynamics and
establish strong robustness guarantees. These guarantees set
the basis for our design here of a provably correct, multi-rate
hybrid algorithm implementation.

Statement of contributions: We consider an electrical power
network consisting of an ISO and a group of strategic gener-
ators. The ISO seeks to ensure that the generation meets the
load with the minimum operation cost and the grid frequency
is regulated to its nominal value. Each generator seeks to
maximize its individual profit and does not share its cost
function with anyone. The ISO operates the market, where
generators bid prices at which there are willing to provide
power, and makes power generation assignments based on the
bids and the local frequency measurements. Our goal is to
design mechanisms that ensure the stability of the intercon-
nection between the ISO-generator bidding process and the
physical network dynamics while accounting for the different
nature (iterative in the first case, evolving in continuous time in



the second) of each process. Our starting point is a continuous-
time bid update scheme coupled with the physical dynamics of
the power network whose equilibrium corresponds to an effi-
cient Nash equilibrium and zero frequency deviation. Our first
contribution is the characterization of the robustness properties
of these dynamics against additive disturbances. To achieve
this, we identify a novel local Lyapunov function that includes
the energy function of the closed-loop system. The availability
of this function not only leads us to establish local exponential
convergence to the desired equilibrium, but also allows us
rigorously establish its local input-to-state stability properties.
Building on these results, our second contribution develops
a time-triggered hybrid implementation that combines the
discrete nature of iterative bidding with the continuous nature
of the frequency evolution in the power network. In our design,
we introduce two iteration loops, one (faster) inner-loop for the
bidding process that incorporates at each step the frequency
measurements, and one (slower) outer-loop for the market
clearing and the updates in the power generation levels, that
are sent to the continuous-time power network dynamics. We
refer to this multi-rate hybrid implementation as time-triggered
because we do not necessarily prescribe the time schedules
to be periodic. To analyze its convergence properties, we
regard the time-triggered implementation as an approximation
of the continuous-time dynamics and invoke the robustness
properties of the latter, interpreting as a disturbance their
mismatch. This allows us to derive explicit upper bounds on
the length between consecutive triggering times that guarantee
that the time-triggered implementation remains asymptotically
convergent. The computation of these upper bounds does not
require knowledge of the efficient Nash equilibrium. Simula-
tions on the IEEE 14-bus power network illustrate our results.

Notation: Let R,R≥0,R>0,Z≥0,Z≥1 be the set of real,
nonnegative real, positive real, nonnegative integer, and posi-
tive integer numbers, respectively. For m ∈ Z≥1, we use the
shorthand notation [m] = {1, . . . ,m}. For A ∈ Rm×n, we let
‖A‖ denote the induced 2-norm. Given v ∈ Rn, A = AT ∈
Rn×n, we denote ‖v‖2A := vTAv. The notation 1 ∈ Rn is used
for the vector whose elements are equal to 1. The Hessian of a
twice-differentiable function f : Rn → R is denoted by ∇2f .

II. POWER NETWORK FREQUENCY DYNAMICS

Here we present the model of the physical power network
that describes the evolution of the grid frequency. The network
is represented by a connected, undirected graph G = (V, E),
where nodes V = [n] represent buses and edges E ⊂ V×V are
the transmission lines connecting the buses. Let m denote the
number of edges, arbitrarily labeled with a unique identifier
in [m]. The ends of each edge are also arbitrary labeled with
‘+’ and ‘-’, so that we can associate to the graph the incidence
matrix D ∈ Rn×m given by

Dik =


+1 if i is the positive end of edge k,
−1 if i is the negative end of edge k,
0 otherwise.

(1)

A spanning tree T is as a connected acyclic subgraph of G that
contains all vertices of G. The incidence matrix DT associated

to T is constructed as in (1). Each bus represents a control
area and is assumed to have one generator and one load.
Following [20], the dynamics at the buses is described by the
following swing equations

δ̇ = ω,

Mω̇ = −DΓ sin(DT δ)−Aω + Pg − Pd.
(2)

Here, Γ = diag{γ1, . . . , γm} ∈ Rm×m, γk = BijViVj ,
where k ∈ [m] corresponds to the edge between nodes i
and j. For the asymptotic stability analysis carried out in
Sections IV and V, we assume that the load Pd is constant.
Table I specifies the meaning of the symbols used in the power

δ ∈ Rn (vector of) voltage phase angles
ω ∈ Rn frequency deviation w.r.t. the nominal frequency
Vi ∈ R>0 voltage magnitude at bus i
Pd ∈ Rn constant power load
Pg ∈ Rn power generation

M ∈ Rn×n≥0 diagonal matrix of moments of inertia

A ∈ Rn×n≥0 diagonal matrix of asynchronous damping constants

Bij ∈ R≥0 negative of the susceptance of transmission line (i, j)

Table I: Parameters and state variables of model (2).

network model (2). The validity of this model relies on the
following assumptions, which are standard in the literature on
power network dynamics [20], [21], and we state here for
completeness.

Assumption II.1. (Swing equation model): For the power
network dynamics described by (2), the following hold:

• Lines are lossless, i.e., the conductance of all lines is
zero. This is generally valid for transmission lines;

• Nodal voltages Vi are constant;
• Reactive power flows are ignored;
• Network is balanced such that the three-phase network

can be analyzed by a single phase.

To avoid issues in the stability analysis of (2) due to the
rotational invariance of δ, see e.g., [22], we introduce a new
set of variables. To this end, consider an arbitrary spanning
tree T of G and let DT be its associated incidence matrix.
Consider ϕ = DT

T δ ∈ Rn−1 representing the voltage phase
angle differences along the edges of this spanning tree. The
physical energy stored in the transmission lines is given by

U(ϕ) = −1TΓ cos(DTD†TT ϕ), (3)

where D†T = (DT
TDT )−1DT

T denotes the Moore-Penrose in-
verse of DT . By noting that DTD

†
TD = (I− 1

n11
T )D = D,

the system (2) in the (ϕ, ω)-coordinates takes the form

ϕ̇ = DT
T ω,

Mω̇ = −DT∇U(ϕ)−Aω + Pg − Pd.
(4)

In the sequel we assume that, for the power generation Pg =
P̄g , there exists an equilibrium col(ϕ̄, ω̄) of (4) that satisfies
DTD†TT ϕ̄ ∈ (−π2 ,

π
2 )m. The latter assumption is standard and

often referred to as the security constraint [20].



III. PROBLEM STATEMENT

In this section we formulate the problem statement and then
discuss the paper objectives. We start from the power network
model introduced in Section II and then explain the game-
theoretic model describing the interaction between the ISO
and the generators following the exposition of [23], [18].

The cost incurred by generator i ∈ [n] in producing Pgi
units of power is given by

Ci(Pgi) := 1
2qiP

2
gi + ciPgi, (5)

where qi > 0 and ci ≥ 0. The total network cost is then

C(Pg) :=
∑
i∈[n]

Ci(Pgi) = 1
2P

T
g QPg + cTPg, (6)

with Q = diag{q1, . . . , qn} and c = col(c1, . . . , cn). Given
the cost (6) and the constant power loads Pd, the ISO seeks
to solve the economic dispatch problem

minimize
Pg

C(Pg), (7a)

subject to 1TPg = 1TPd, (7b)

and, at the same time, regulate the network frequency to its
nominal value. Since the function C is strongly convex, there
exists a unique optimizer P ∗g of (7). However, we assume
that the generators are strategic and they do not reveal their
cost functions to anyone, including the ISO. Consequently,
the ISO is unable to determine the optimizer of (7). Instead, it
determines the power dispatch according to a market clearing
procedure in which each generator submits bids to the ISO.

We consider price-based bidding: each generator i ∈ [n]
submits the price per unit electricity bi ∈ R at which it
is willing to provide power. Based on these bids, the ISO
finds the power generation allocation that minimizes the total
generator payment while meeting the load. More precisely,
given the bid b = col(b1, . . . , bn), the ISO solves

minimize
Pg

bTPg, (8a)

subject to 1TPg = 1TPd. (8b)

The optimization problem (8) is linear and may in general
have multiple (unbounded) solutions. Among these solutions,
let P opt

g (b) = col(P opt
g1 (b), . . . , P opt

gn (b)) be the optimizer of
(8) the ISO selects given bids b. Knowing this process, each
generator i aims to bid a quantity bi to maximize its payoff

Πi(bi, P
opt
gi (b)) := P opt

gi (b)bi − Ci(P opt
gi (b)). (9)

For an unbounded optimizer we have Πi(bi,±∞) = −∞.
To analyze the clearing of the market, we resort to tools
from game theory [24]. To this end, we define the inelastic
electricity market game:
• Players: the set of generators [n].
• Action: for each player i ∈ [n], the bid bi ∈ R.
• Payoff: for each player i ∈ [n], the payoff Πi in (9).

We refer to the game as inelastic, as the load is not affected
by the bids bi. For the bid vector we interchangeably use the
notation b ∈ Rn and (bi, b−i) ∈ Rn, where b−i represents the
bids of all players except i. A bid profile b∗ ∈ Rn is a Nash

equilibrium if there exists an optimizer P opt
g (b∗) of (8) such

that ∀i ∈ [n],

Πi(bi, P
opt
gi (bi, b

∗
−i)) ≤ Πi(b

∗
i , P

opt
gi (b∗))

for all bi 6= b∗i and all optimizers P opt
gi (bi, b

∗
−i) of (8). In par-

ticular, we are interested in bid profiles that can be associated
to economic dispatch. More specifically, a bid b∗ ∈ Rn is
efficient if there exists an optimizer P ∗g of (7) which is also
an optimizer of (8) given bids b = b∗ and

P ∗gi = arg max
Pgi

{Pgib∗i − Ci(Pgi)} for all i ∈ [n]. (10)

A bid b∗ is an efficient Nash equilibrium if it is both efficient
and a Nash equilibrium. At the efficient Nash equilibrium,
the optimal generation allocation determined by (7) coincides
with the production that the generators are willing to provide,
maximizing their profit (9). Following the same arguments
as in the proof of [23, Lemma 3.2], one can establish the
existence and uniqueness of the efficient Nash equilibrium.

Proposition III.1. (Existence and uniqueness of efficient Nash
equilibrium): Let (P ∗g , λ

∗) be a primal-dual optimizer of (7),
then b∗ = ∇C(P ∗g ) = 1λ∗ is the unique efficient Nash
equilibrium of the inelastic electricity market game.

In the scenario described above, neither the ISO nor the in-
dividual strategic generators are able to determine the efficient
Nash equilibrium beforehand. Our goal is then to design an
online bidding algorithm where ISO and generators iteratively
exchange information about the bids and the generation quan-
tities before the market is cleared and dispatch commands are
sent. The algorithm should be truly implementable, meaning
that it should account for the discrete nature of the bidding
process, and at the same time ensure that network frequency,
governed by the continuous-time power system dynamics, is
regulated to its nominal value. The combination of these two
aspects leads us to adopt a hybrid implementation strategy to
tackle the problem.

IV. ROBUSTNESS OF THE CONTINUOUS-TIME BID AND
POWER-SETPOINT UPDATE SCHEME

In this section, we introduce a continuous-time dynamics
that prescribes a policy for bid updates paired with the
frequency dynamics of the power network whose equilib-
rium corresponds to an efficient Nash equilibrium and zero
frequency deviation. In this scheme, generators update their
bids in a decentralized fashion based on the power generation
quantities received by the ISO, while the ISO changes the
generation quantities depending on both the generator bids
and the network frequency. This design is a simplified version
of the one proposed in our previous work [19]. The main
contribution of our treatment here is the identification of a
novel Lyapunov function that, beyond helping establish local
exponential convergence, allows us to characterize the input-
to-state stability properties of the dynamics. We build on
this characterization later to develop our time-triggered hybrid
implementation that solves the problem outlined in Section III.



A. Bidding process coupled with physical network dynamics

Recall from Section III that given bid bi, generator i ∈
[n] wants to produce the amount of power that maximizes its
individual profit, given by

P des
gi := arg max

Pgi

{biPgi − Ci(Pgi)} = q−1
i (bi − ci). (11)

Hence, if the ISO wants generator i to produce more power
than its desired quantity, that is Pgi > P des

gi , generator i will
increase its bid, and vice versa. Bearing this rationale in mind,
the generators update their bids according to

Tbḃ = Pg −Q−1b+Q−1c. (12a)

Here Tb ∈ Rn×n is a diagonal positive definite matrix. Next,
we provide an update law for the ISO depending on the bid
b ∈ Rn and the local frequency of the power network. The
ISO updates its actions according to

TgṖg = 1λ− b+ ρ11T (Pd − Pg)− σ2ω,

τλλ̇ = 1T (Pd − Pg).
(12b)

with parameters ρ, σ, τλ ∈ R>0 and where Tg ∈ Rn×n is a
diagonal positive definite gain matrix.

The intuition behind the dynamics (12b) is explained as
follows. If generator i bids higher than the Lagrange multiplier
λ (sometimes referred to as the shadow price [25]) associated
to (8b), then the power generation (setpoint) of node i is
decreased, and vice versa. By adding the term with ρ > 0,
one can enhance the convergence rate of (12b), see e.g., [26].
We add the feedback signal −σ2ω to compensate for the
frequency deviations in the physical system. Interestingly,
albeit we do not pursue this here, the dynamics (12) could also
be implemented in a distributed way without the involvement
of a central regulating authority like the ISO.

For the remainder of the paper, we assume that there exists
an equilibrium x̄ = col(ϕ̄, ω̄, b̄, P̄g, λ̄) of (4)-(12) such that
DTD†TT ϕ̄ ∈ (−π/2, π/2)m (cf. Section II). Note that this
equilibrium satisfies

λ̄ =
1T (Pd +Q−1c)

1TQ−11
> 0, ω̄ = 0, b̄ = 1λ̄,

P̄g = Q−11λ̄−Q−1c, 1T P̄g = 1TPd.

(13)

In particular, at the steady state, the frequency deviation is
zero, the power balance 1T P̄g = 1TPd is satisfied, and 1λ̄ =
b̄ = ∇C(P̄g), implying that P̄g is a primal optimizer of (7) and
b̄ is an efficient Nash equilibrium by Proposition III.1. Hence,
at steady state the generators do not have any incentive to
deviate from the equilibrium bid.

B. Local input-to-state (LISS) stability

While the ISO dynamics (12b) is a saddle-point dynamics
of the linear optimization problem (8) (and hence, poten-
tially unstable), we show next that the interconnection of
the physical power network dynamics (4) with the bidding
process (12) is locally exponentially stable and, furthermore,
robust to additive disturbances. First, inspired by our previous
work [19], we define the function

V (x) = U(ϕ)− (ϕ− ϕ̄)T∇U(ϕ̄)− U(ϕ̄) + 1
2ω

TMω

+ 1
2σ2 (‖b− b̄‖2Tb + ‖Pg − P̄g‖2Tg + ‖λ− λ̄‖2τλ). (14)

where x = col(ϕ, ω, b, Pg, λ). Then the closed-loop system
obtained by combining (4) and (12) is compactly written as

ẋ = F (x) = Q−1AQ−1∇V (x) (15)

with Q = QT = blockdiag(I,M, Tbσ ,
Tg
σ ,

τλ
σ ) > 0 and

A =


0 DT

T 0 0 0
−DT −A 0 σI 0

0 0 −Q−1 I 0
0 −σI −I −ρ11T 1

0 0 0 −1T 0

 .
By exploiting the structure of the system, we obtain the
dissipation inequality

V̇ = 1
2 (∇V (x))TQ−1(A+AT )Q−1∇V (x) ≤ 0. (16)

However, since R := − 1
2 (A + AT ) is only positive semi-

definite, V is not strictly decreasing along the trajectories
of (15). Nevertheless, one can employ this function, cf. [19],
and invoke the LaSalle Invariance Principle to characterize
the local asymptotic convergence properties of the dynamics.
Here, we show that, in fact, the dynamics is locally input-to-
state (LISS) stable, as defined in [27], and therefore robust
to additive disturbances. Our key tool to establish this is the
identification of a LISS-Lyapunov function, which in general
is far from trivial for dynamics that involve saddle-point
dynamics. To this end, consider the system

ẋ = F (x) +Bd (17)

for some B ∈ R4n×q and disturbance signal d ∈ Rq . While
the function V defined in (14) does not qualify for being a
LISS Lyapunov function, the next result shows that adding
suitable cross-terms to it yields an LISS-Lyapunov function
for the system (17).

Theorem IV.1. (LISS-Lyapunov function for the intercon-
nected dynamics): Consider the interconnected dynamics (17)
and define the function

Wε(x) = V (x) + ε0ε1(ϕ− ϕ̄)TD†TMω (18)

− ε0ε2
σ2 (b− b̄)TTg(Pg − P̄g)− ε0ε3

σ2 (λ− λ̄)1TTg(Pg − P̄g),

with parameters ε = col(ε0, ε1, ε2, ε3) ∈ R4
>0 and V given by

(14). Given the equilibrium x̄ = col(ϕ̄, ω̄, b̄, P̄g, λ̄) of (15), let
η̄ = DTD†TT ϕ̄. For γ such that ‖η̄‖∞ < γ < π

2 , define the
closed convex set

Ω = {x = col(ϕ, ω, b, Pg, λ) |DTD†TT ϕ ∈ [−γ, γ]m}. (19)

Then there exist sufficiently small ε such that Wε is an LISS-
Lyapunov function of (17) on Ω. In particular, there exist
constants α, χ, c1, c2 > 0 such that for all x ∈ Ω and all
d satisfying ‖d‖ ≤ χ‖x− x̄‖,

1
2c1‖x− x̄‖

2 ≤Wε(x) ≤ 1
2c2‖x− x̄‖

2, (20a)

(∇Wε(x))T (F (x) +Bd) ≤ −α‖x− x̄‖2. (20b)

We refer to Appendix A for the proof of Theorem IV.1.
Using the characterization (20) and [28, Theorem 4.10], each



trajectory of (15) initialized in a compact level set contained in
Ω exponentially converges to the equilibrium x̄ corresponding
to economic dispatch and the efficient Nash equilibrium.
Moreover, we exploit the local ISS property of (17) guaranteed
by Theorem IV.1 next to develop a time-triggered hybrid
implementation.

V. TIME-TRIGGERED IMPLEMENTATION: ITERATIVE BID
UPDATE AND MARKET CLEARING

In realistic implementations, the bidding process between
the ISO and the generators is not performed continuously.
Given the availability of digital communications, it is reason-
able to instead model it as an iterative process. Building on
the continuous-time bidding dynamics proposed in Section IV,
here we develop a time-triggered hybrid implementation that
combines the discrete nature of bidding with the continuous
nature of the frequency evolution in the power network. We
consider two time-scales, one (faster) for the bidding process
that incorporates at each step the frequency measurements, and
another one (slower) for the market clearing and updates of
the power generation levels that are sent to the power network
dynamics. We refer to this implementation as time-triggered
because we do not necessarily prescribe the time schedules to
be periodic in order to guarantee that the asymptotic stability
properties are retained by the hybrid implementation.

A. Algorithm description

We start with an informal description of the iterative update
scheme between the ISO and the generators, and the intercon-
nection with the dynamics of the power network.

[Informal description]: The algorithm has two time
indices, k to label the iterations on the bidding
process and l to label the iteration in the market
clearing process that updates the power setpoints.
At each iteration l ∈ Z≥0, ISO and generators
are involved in an iterative process where, at each
subiteration k, generators send a bid to the ISO.
Once the ISO has obtained the bids and the network
frequency measurements at time tlk, it computes
the new potential generation allocations, denoted
P k+1
g ∈ Rn, and sends the corresponding one to

each generator. At the (k + 1)-th subiteration, each
generator adjust its bid based on their previous bid
and the generation allocation received from the ISO
at time tlk+1. Once k = Nl ∈ Z≥1 at time tlNl , the
market is cleared, meaning that the bidding process
is reset (i.e., k = 0), the power generations in the
swing equations are updated according to the current
setpoints PNlg , and the index l moves to l + 1.

Figure 1 shows the two iteration layers in the update
scheme. The evolution of the frequency occurs in continuous
time according to (4). To relate iteration numbers with time
instances on R, we consider time sequences of the form
{{tlk}

Nl
k=0}∞l=0 which satisfy

tlk − tlk−1 > 0, tl+1
0 = tlNl , ∀l ∈ Z≥0,∀k ∈ [Nl]. (21)

Here Nl ∈ Z≥1 is the number of bid iterates before the
bidding process of market clearing instance l ∈ Z≥0 stops, see
Figure 1. Algorithm 1 formally describes the iterative updates
of the bidding process between the generators and the ISO.

Algorithm 1: ITERATIVE BID UPDATE AND MARKET
CLEARING ALGORITHM

Executed by: generators i ∈ [n] and ISO
Data : time sequence {{tlk}

Nl
k=0}∞l=0; cost function

(5) for each generator i; frequency deviation
ω(tlk) at each time tlk and load Pd for ISO

Initialize : each generator i selects arbitrarily b0i ≥ ci,
sets k = 0, l = 0, and jumps to step 6; ISO
selects arbitrary P 0

gi > 0, λ0
i > 0, sets

k = 0, l = 0 and waits for step 8

1 while l ≥ 0 do

2 while k ≥ 0, k < Nl do
3 /* For each generator i: */
4 Receive P kgi from ISO at tlk; Set
5 bk+1

i = bki + (tlk+1− tlk)T−1
bi (P kgi− q

−1
i (bki + ci))

6 Send bk+1
i to the ISO; set k = k + 1

7 /* For ISO: */
8 Receive bki , ωi(t

l
k) from each i ∈ [n] at tlk

9 Set P k+1
gi = P kgi + (tlk+1 − tlk)T−1

gi (λk − bki −
σ2ωi(t

l
k) + ρ

∑
i∈[n](Pdi − P kgi)) for all i ∈ [n]

λk+1 = λk +
tlk+1−t

l
k

τλ

∑
i∈[n](Pdi − P kgi)

10 Send P k+1
gi to each i ∈ [n], set k = k + 1

11 end
12 Set Pgi(t) = PNlgi in (4) ∀i ∈ [n],∀t ∈ [tlNl , t

l+1
Nl+1

)

13 Set b0i = bNli , P 0
gi = PNlgi , λ

0
i = λNli for each i ∈ [n]

14 Set l = l + 1, k = 0
15 end

For analysis purposes, we find it convenient to represent the
dynamics resulting from the combination of Algorithm 1 and
the network dynamics (4) as the time-triggered continuous-
time system

ϕ̇(t) = DT
T ω(t),

Mω̇(t) = −DT∇U(ϕ(t))−Aω(t) + Pg(t
l
0)− Pd,

Tbḃ(t) = Pg(t
l
k)−Q−1b(tlk)−Q−1c, (22)

TgṖg(t) = 1λ(tlk)− b(tlk)− σ2ω(tlk) + ρ11T (Pd − Pg(tlk)),

τλλ̇(t) = 1T (Pd − Pg(tlk)),

for t ∈ [tlk, t
l
k+1) ⊂ [tl0, t

l+1
0 ), l ∈ Z≥0, k ∈ {0, . . . , Nl − 1}.

We write the system (22) compactly in the form

ẋ(t) = f(x(t)) + g(x(tlk)) + h(x(tl0)), (23)

with

f(x) = col(DT
T ω,−M−1(DT∇U(ϕ) +Aω + Pd), 0, 0, 0),

g(x) = col(0, 0, T−1
b (Pg −Q−1b−Q−1c),

T−1
g (1λ− b− σ2ω + ρ11T (Pd − Pg)), τ−1

λ 1T (Pd − Pg)),
h(x) = col(0,M−1Pg, 0, 0, 0).
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Figure 1: Relation between time and iteration numbers in the time-triggered system (22). The lower time-axis corresponds to the continuous-time physical
system (4) while the upper one corresponds to the time sequence {{tlk}

Nl
k=0}

∞
l=0 of the ISO-generator bidding process given in Algorithm 1. The arrows

pointing up indicate the frequency updates in the bidding dynamics while the arrows pointing down correspond to update of the power generation levels in
the physical system. As indicated, for each l ∈ Z≥0 the lower index k is reset once it reaches k = Nl ∈ Z≥1, i.e., tlNl = tl+1

0 for all l ∈ Z≥0.

With this notation, note that the continuous-time dynam-
ics (15) corresponds to

ẋ(t) = f(x(t)) + g(x(t)) + h(x(t)). (24)

Since supϕ∈Rn−1 ‖∇2U(ϕ)‖ < ∞ and g, h are linear, it
follows that f, g, h are globally Lipschitz (we denote by
Lf , Lg, Lh their Lipschitz constants, respectively). When
viewed as a continuous-time system, the dynamics (22) has
a discontinuous right-hand side, and therefore we consider its
solutions in the Carathéodory sense, cf. [29].

B. Sufficient condition on triggering times for stability

In this section we establish conditions on the time sequence
that guarantee that the solutions of (22) are well-defined and
retain the convergence properties of (15). Specifically, we
determine a sufficient condition on the inter-sampling times
tlk+1 − tlk for bidding and tl+1

k − tlk for market clearing that
ensure local asymptotic convergence of (23) to the equilib-
rium x̄ of the continuous-time system (15).

Our strategy to accomplish this relies on the robustness
properties of (15) characterized in Theorem IV.1 and the fact
that the time-triggered implementation, represented by (23),
can be regarded as an approximation of the continuous-time
dynamics, represented by (24). We use the Lyapunov function
Wε defined by (18) and examine the mismatch between both
dynamics to derive upper bounds on the inter-event times
that guarantee that Wε is strictly decreasing along the time-
triggered system (22).

Theorem V.1. (Local asymptotic stability of time-triggered
implementation): Consider the time-triggered implementa-
tion (22) of the interconnection between the ISO-generator
bidding processes and the power network dynamics. With the
notation of Theorem IV.1, let

ξ̄ :=
1

Lf + Lg
log
(

1 +
β(Lf + Lg)

L(LWLh + β)

)
, (25)

ζ̄ :=
1

Lf
log
(

1 +
Lf (α− β)

Lg(LLW + α) + (α− β)(Lf + Lg)

)
,

where 0 < β < α, L := Lf+Lg+Lh, and LW is the Lipschitz
constant of ∇Wε. Assume the time sequence {{tlk}

Nl
k=0}∞l=0

satisfies, for some ζ ∈ (0, ζ) and ξ ∈ (0, ξ),

ζ ≤ tl+1
0 − tl0 ≤ ζ and ξ ≤ tlk − tlk−1 ≤ ξ, (26)

for all l ∈ Z≥0 and k ∈ [Nl]. Then, x̄ is locally asymptotically
stable under (22).

We refer the reader to Appendix B for the proof of The-
orem V.1. The uniform lower bounds ζ and ξ in (26) ensure
that the solutions of the time-triggered implementation (22)
are well-defined, avoiding Zeno behavior. Theorem V.1 implies
that convergence is guaranteed for any constant stepsize imple-
mentation, where the sufficiently small stepsize satisfies (26).
However, the result of Theorem V.1 is more general and does
not require constant stepsizes. Another interesting observation
is that the upper bounds can be calculated without requiring
any information about the equilibrium x̄. This is desirable,
as this equilibrium is not known beforehand and must be
determined by the algorithm itself.

Remark V.2. (General cost functions, generator box con-
straints, and elastic demand): We briefly discuss here the
feasibility and challenges involved in extending the present
treatment along different directions.

General cost functions: The results presented above also
hold for general convex (instead of quadratic) cost func-
tions. Specifically, if there exist c1, c2 ∈ R>0 such that
0 ≺ c1I � ∇2C(Pg) � c2I for all Pg ∈ Rn, then
one can establish LISS of the closed-loop system and
compute bounds on the inter-event times to guarantee
local asymptotic stability. However, this setting requires
a significant more technical derivation and therefore it is
omitted in the present work.

Generator box constraints: An interesting extension would
be the inclusion in (7) of box constraints on power gen-
eration. Such extension would require the re-examination
of the existence and uniqueness of Nash equilibria, as
generators may take advantage of them to arbitrarily
increase their individual profit, and the modification of
the proposed algorithm to accommodate these constraints,
e.g., by using projections in the dynamics. The latter
makes it difficult to asses LISS as the characterization
of the input-to-state stability properties of projected dy-
namics systems is still open.

Elastic demand: Our treatment here has considered inelastic
loads. If instead loads are flexible, i.e., the demand is elas-
tic, then consumers would also react to prices, possibly in
a price-taking manner as in a Cournot-type of competitive
market. This implies that the game-theoretic model has



to be revised to accommodate loads that change with
generator bids/prices. The investigation of how to carry
this out is an interesting topic for future research. •

VI. SIMULATIONS

In this section we illustrate the convergence properties of
the interconnected time-triggered system (22). We consider the
IEEE 14-bus power network depicted in Figure 2, where each
node has one generator and one load according to model (2).
We assume costs at each node i ∈ [14] of the form

Ci(Pgi) = 1
2qiP

2
gi + ciPgi,

with qi > 0 and ci ≥ 0. In the original IEEE 14-bus bench-
mark model, nodes 1, 2, 3, 6, 8 have synchronous generators
while the other nodes are load nodes and have no power
generation. We replicate this by suitably choosing the cost
at the load nodes such that the optimizer of the economic
dispatch problem (7) is zero at them. In addition, we choose
Mi ∈ [4, 5.5] for generator nodes i ∈ {1, 2, 3, 6, 8} and
Mi � 1 for the load nodes. We set Ai ∈ [1.5, 2.5], Vi ∈
[1, 1.06], Tbi ∈ [0.0005, 0.001], Tgi = 13.5 for all i ∈ [14]
and ρ = 900. The other parameter values for the ISO
dynamics (12b) are τλ = 0.0004, ρ = 3, σ = 17.

1 2 3

45

6 7

8

91011

12 13 14

Figure 2: Schematic of the modified IEEE 14-bus benchmark. Each edge
represents a transmission line. Red nodes represent loads. All the other nodes
represent synchronous generators, with different colors that match the ones
used in Figures 3 and 5. The physical dynamics are modeled by (2).

At time t = 0 s, the inelastic load (in MW’s) is given by

Pd = (0, 20, 86, 43, 7, 10, 0, 0, 27, 8, 3, 6, 12, 14).

Initially, we set (q1, q2, q3, q6, q8) = (22, 128, 45, 60, 30),
(c1, c2, c3, c6, c8) = (7.5, 7.5, 7.5, 7.5, 7.5) and qi =
1500, ci = 26 for the remaining nodes. The time-triggered
system (22) is initialized at steady state at the optimal gener-
ation level

(Pg1, Pg2, Pg3, Pg6, Pg8) = (85, 15, 42, 31, 63),

and with Pgi = 0 for all other nodes. Figures 3-5 depict the
simulation of the time-triggered system for different triggering
times. At t = 1 s all the loads are increased by 10% and we
set ci = 28 for the load nodes. As observed in all figures,
the trajectories converge to a new efficient equilibrium with
optimal power generation level

(Pg1, Pg2, Pg3, Pg6, Pg8) = (94, 16, 46, 34, 69),

and Pgi = 0 for all other nodes. Furthermore, at steady
state the generators all bid equal to the Lagrange multiplier
which, by Proposition III.1, corresponds to an efficient Nash
equilibrium.

At t = 15 s the cost functions of the generators
are changed to (q1, q2, q3, q6, q8) = (23, 116, 48, 63, 38),
(c1, c2, c3, c6, c8) = (7.5, 6, 13.5, 15, 10.5) and qi =
1500, ci = 33 for the remaining nodes. As a result, the
optimal dispatch of power changes. Due to the changes of the
power generation, a temporary frequency imbalance occurs.
As illustrated in Figures 3-5, the power generations converge
to the new optimal steady state given by

(Pg1, Pg2, Pg3, Pg6, Pg8) = (108, 23, 40, 28, 60).

In addition, we observe that after each change of either the
load or the cost function, the frequency is stabilized and
the bids converge to a new efficient Nash equilibrium. The
fact that the frequency transients are better in Figures 3-
4 (with inter-event times of maximal 2 ms for bidding and
on average respectively 50 ms, 62.5 ms for market clearing)
than in Figure 5 (with inter-event times of 2 ms for bidding
and 160 ms for market clearing) is to be expected given the
longer inter-event times in the second case. A slight increase
in the inter-event times for Figure 5 in either bid updating or
market clearing time result in an unstable system. Figure 6
illustrates the evolution of the interconnected system with the
primary/secondary and tertiary control layers separated and its
loss of efficiency compared to the proposed integrated design.

VII. CONCLUSIONS

This paper has studied the joint operation of the economic
dispatch and frequency regulation layers, which are tradition-
ally separated in the control of power networks. The starting
point of our design was a continuous-time bid update scheme
coupled with the frequency dynamics whose equilibrium cor-
responds to an efficient Nash equilibrium and zero frequency
deviation. Building on the identification of a novel LISS-
Lyapunov function for this dynamics, we have characterized its
robustness properties against additive disturbances. We have
exploited the LISS-property to propose a provably correct
multi-rate hybrid implementation that combines the iterative
nature of the fast bid updates and the slower power setpoint
updates with the continuous frequency network dynamics. Our
results show that real-time iterative bidding can successfully
be interconnected with frequency control to increase efficiency
while retaining stability of the power system. Future work
will incorporate elastic demand, generator bounds, and power
flow constraints in the formulation. We also wish to explore
more general bids including piecewise constant and linear
supply functions. Finally, we aim to develop distributed and
opportunistic self-triggered implementations of the proposed
dynamics, and characterize the convergence properties of data-
driven optimization algorithms.

APPENDIX A
PROOF OF THEOREM IV.1

We structure the proof of Theorem IV.1 in two separate
parts, corresponding to the inequalities (20a) and (20b), re-
spectively.
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(a) Evolution of the frequency deviations. After
each sudden supply-demand imbalance, frequency
is restored to its nominal value.
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(b) Evolution of the nodal power generations. After
each change in the network, the power generation
quantities converge to the optimal values deter-
mined by (7).
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(c) Evolution of the bids and the Lagrange mul-
tiplier (dashed black line). As shown, the bids
converge to the unique efficient Nash equilibrium.

Figure 3: Simulations of the interconnection between the iterative bidding mechanism and the power network dynamics modeled by the time-triggered system
(22). The colors in the graph corresponds to the nodes as depicted in Figure 2. We choose identical inter-event times given by tlk− t

l
k−1 = 2ms, tl0− t

l−1
0 =

50ms for all l ∈ Z≥1, k ∈ [25]. As expected, the time-triggered system is asymptotically stable for sufficiently fast updates.
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(b) Evolution of each power generation.

Time (s)
0 10 20 30

26

28

30

32

34

36

Bid ($/MWh)

(c) Evolution of the bids & Lagrange multiplier.

Figure 4: Simulations of the time-triggered system (22) under time-varying step sizes. We choose the time between two consecutive bid iterations randomly
between 0.5ms ≤ tlk− t

l
k−1 ≤ 2ms, for all l ∈ Z≥1, k ∈ [Nl], and we choose the number of bid iterations Nl ∈ Z before market clearing occurs randomly

in the interval [20, 80]. Since the step sizes are sufficiently small, and therefore the mismatch of the time-triggered system with its continuous-time variant,
the performance is similar compared to Figure 3.

A. Positive definiteness of Lyapunov function Wε

Let x̄ be the equilibrium of (15) satisfying the hypothesis.
We now prove the existence of constants c1, c2, ε0 > 0 such
that (20a) holds, given the constants ε1, ε2, ε3 > 0. The
Hessian of Wε (eq. (18)) is given by a block-diagonal matrix
∇2Wε(x) = blockdiag(H1(ϕ), H2) with upper left block as

H1(ϕ) =

[
∇2U(ϕ) ε0ε1D

†
TM

ε0ε1MD†TT M

]
,

and the lower right block is given by

H2 =
1

σ2

 Tb −ε0ε2Tg 0
−ε0ε2Tg Tg −ε0ε3Tg1

0 −ε0ε31TTg τλ

 .
We will now show that there exists sufficiently small ε0 such
that H1(ϕ), H2 are both positive definite for all x ∈ Ω. To
this end, let us define the function

U(η) = D†TDΓ cos(η)DTD†TT (27)

and note that U(DTD†TT ϕ) = ∇2U(ϕ), implying that 0 <
U(γ1) ≤ ∇2U(ϕ) ≤ ∇2U(0) = U(0) for all x ∈ Ω, see (19).
Consequently, for D := ε0ε1D

†
TM , we have[

U(γ1) D

DT M

]
︸ ︷︷ ︸

K1

≤ H1(ϕ) ≤
[
U(0) D

DT M

]
︸ ︷︷ ︸

K2

, ∀x ∈ Ω.

By considering the Schur complements, the matrices K1, H2

are shown to be positive definite by choosing ε0 > 0 suffi-
ciently small such that

U(γ1)− ε20ε21D
†
TMD†TT > 0,

Tb − ε20ε22Tg > 0,

τλ − ε20ε231TTbTg(Tb − ε20ε22Tg)−11 > 0.

(28)

Next we define

c1 := min{λmin(K1), λmin(H2)}, (29)
c2 := max{λmax(K2), λmax(H2)}, (30)

where λmin(A), λmax(A) denote the smallest and largest
eigenvalue of the matrix A ∈ Rn×n. Note that c1, c2 > 0
and the following holds

0 < c1I ≤ ∇2Wε(x) ≤ c2I, ∀x ∈ Ω. (31)
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(a) Compared to Figure 3a, there are more os-
cillations and a larger overshoot of the frequency
deviations.
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(b) Evolution of the power generations at each
node.
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(c) Evolution of the bids and the Lagrange multi-
plier. Compared to Figure 3c, more oscillations in
the bids occur.

Figure 5: Simulations of the time-triggered system (22). Here we consider the case tlk − t
l
k−1 = 2ms, tl0 − t

l−1
0 = 160ms for all l ∈ Z≥1, k ∈ [80]. The

scenario is the same as in Figure 3. In this case however, the interconnected time-triggered system is only marginally stable; a small increase in either of the
inter-event times results in an unstable system.
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(a) Evolution of the frequency deviations. Com-
pared to Figures 3a-4a, there are more oscillations
in the frequency deviations.
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(b) Evolution of each power generation. After
primary and secondary controllers are activated at
t = 1 s, optimal power sharing is lost.
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(c) Evolution of the total generation costs (in
black) compared to the optimal values calculated
by (7). Activation of primary/secondary control,
and changes in the cost function result in a loss
of efficiency.

Figure 6: Simulations of swing equations with the primary/secondary and tertiary control layers separated. At time t = 1 s, the load is increased as in Figure 3
and decentralized primary/secondary controllers are activated to regulate the frequency but, as a result, optimal power sharing is lost. At t = 14 s the tertiary
control layer is activated by resetting the setpoints optimally. After the change of the cost functions at t = 15 s, economic optimality is temporary lost again
until the next time the tertiary control layer is activated (typically in the order of minutes).

Note that since Wε(x̄) = 0,∇Wε(x̄) = 0, we have

Wε(x) = Wε(x)−Wε(x̄)

= (x− x̄)T
∫ 1

0

(
∇Wε((x− x̄)τ + x̄)−∇Wε(x̄)

)
dτ

= (x− x̄)T
∫ 1

0

∫ 1

0
τ∇2Wε((x− x̄)τθ + x̄)dτdθ(x− x̄).

Since Ω is convex, it follows that xτθ + (1 − τθ)x̄ ∈ Ω for
all τ, θ ∈ [0, 1], x ∈ Ω. Consequently, by (31) we have

c1I ≤ ∇2Wε(xτθ + (1− τθ)x̄) ≤ c2I, ∀τ, θ ∈ [0, 1],

and ∀x ∈ Ω. Since
∫ 1

0

∫ 1

0
τdθdτ = 1

2 , inequality (20a) follows.

B. Dissipation inequality

Here we establish the inequality (20b). First we consider the
case without disturbance, i.e., d = 0. Given the equilibrium
x̄ of (15), we define x̃ := x − x̄ and likewise ϕ̃, ω̃, b̃, P̃g, λ̃.
Then, the system (15) reads as

˙̃ϕ = DT
T ω̃,

M ˙̃ω = −DT (∇U(ϕ)−∇U(ϕ̄))−Aω̃ + P̃g,

Tb
˙̃
b = P̃g −Q−1b̃,

Tg
˙̃Pg = 1λ̃− b̃− ρ11T P̃g − σ2ω̃,

τλ
˙̃
λ = −1T P̃g.

In addition, note that Wε (eq. (18)) takes the form

Wε(x) = V (x) + Vε(x), (32)

Vε(x) = ε0ε1ϕ̃
TD†TMω− ε0ε2

σ2 b̃
TTgP̃g− ε0ε3

σ2 λ̃1
TTgP̃g. (33)

Next, we determine the time-derivative of the individual terms
of the candidate Lyapunov function Wε.
(0): First, observe from (16) that

V̇ = −ωTAω − 1
σ2 (b− b̄)TQ−1(b− b̄)

− ρ
σ2 (Pg − P̄g)T11T (Pg − P̄g).

(1): The time-derivative of the first term of Vε satisfies
d
dt ϕ̃

TD†TMω = ω̃TMD†TT DT
T ω̃

− ϕ̃TD†TDT (∇U(ϕ)−∇U(ϕ̄))− ϕ̃TD†T Aω̃ + ϕ̃TD†T P̃g.

By exploiting D†TDT = I , the second term is rewritten as

−ϕ̃TD†TDT (∇U(ϕ)−∇U(ϕ̄)) = −ϕ̃TU(ϕ)ϕ̃T ,



where we used that ∇U(ϕ)−∇U(ϕ̄) = U(ϕ)(ϕ− ϕ̄) with

U(ϕ) =
∫ 1

0
∇2U((ϕ− ϕ̄)θ + ϕ̄)dθ. (34)

Since U(ϕ) ≥ U(1γ) = D†TDΓ cos(1γ)DTD†TT (see eq.
(27)) for all x ∈ Ω, we obtain

d
dt ϕ̃

TD†TMω ≤ ω̃TMD†TT DT
T ω̃ − ϕ̃TU(1γ)ϕ̃T

− ϕ̃TD†T Aω̃ + ϕ̃TD†T P̃g.

(2): For the second term of Vε the following holds:
d
dt b̃

TTgP̃g = P̃Tg TgbP̃g − P̃Tg TgbQ−1b̃+ b̃T1λ̃

− b̃T b̃− ρb̃T11T P̃g − σ2b̃T ω̃,

where we define Tgb := TgT
−1
b .

(3): Similarly, by defining Tgλ := TgT
−1
λ we obtain

d
dt λ̃1

TTgP̃g = −P̃Tg Tgλ11T P̃g + nλ̃2 − λ̃1T b̃
− ρnλ̃1T P̃g − σ2λ̃1T ω̃.

By combining the above calculations, we can show that the
time-derivative of Wε satisfies

Ẇε = V̇ + V̇ε ≤ 1
2ε0(x− x̄)TPTΞεP(x− x̄).

where Ξε is given by (35) (see page 11), P takes the form

P =


0 I 0 0 0
0 0 1

σ I 0 0
0 0 0 1

σ I 0
0 0 0 0 1

σ
I 0 0 0 0

 ,
and M := MD†TT DT

T + DTD
†
TM,T := Tgλ11

T + 11TTgλ.
Next, we will show that there exists ε0, ε1, ε2, ε3 > 0 such that
Ξε is positive definite.

This can be done by successive use of the Schur com-
plement. In particular, for A ∈ Rn×n, B ∈ Rn×m, C ∈
Rm×m, β > 0, recall that[
βA B
BT C

]
> 0 ⇐⇒ C > 0 & βA−BC−1BT > 0.

For successively applying this result to Ξε, given by (35), let
us first fix ε1, ε3 > 0. Then ε2 can be chosen sufficiently large
such that lower-right 3× 3 block submatrix of Ξε is positive
definite. Then we can choose a ε0 > 0 sufficiently small
such that (28) holds and Ξε > 0. Here, note that choosing
ε0 smaller does not affect the positive definiteness of the
lower-right 3 × 3 block submatrix of Ξε. By construction of
ε0, ε1, ε2, ε3, there exist constants c1, c2 ∈ R>0 such that (20a)
holds for all x ∈ Ω, see also Section A-A. In addition, for this
choice of ε we have that Ξε > 0 and, as a result, there exists
α̂ := 1

2ε0λmin(PTΞεP) > 0 such that

(∇Wε(x))TF (x) ≤ −α̂‖x− x̄‖2

for all x ∈ Ω. Next, we consider the case when the disturbance
is present. Let χ satisfy 0 < χ < α̂/(LW ‖B‖). Then, by
exploiting the Lipschitz property of ∇Wε,

(∇Wε(x))T (F (x) +Bd) ≤ −α̂‖x− x̄‖2 +∇Wε(x))TBd

≤ −α̂‖x− x̄‖2 + LW ‖B‖‖x− x̄‖‖d‖

≤ −(α̂− LW ‖B‖χ)‖x− x̄‖2 = −α‖x− x̄‖2

with α := α̂ − LW ‖B‖χ > 0 and thus (20b) holds. This
concludes the proof of Theorem IV.1. �

APPENDIX B
PROOF OF THEOREM V.1

Here we prove Theorem V.1. To do so, we rely on Gron-
wall’s inequality, which in general allows to bound the evo-
lution of continuous-time and discrete-time signals described
by differential and difference equations, respectively. Given the
hybrid nature of the time-triggered dynamics (22), we rely on a
version of Gronwall’s inequality for hybrid systems developed
in [30]. Adapted for our purposes, it states the following.

Proposition B.1. (Generalized Gronwall’s inequality [30]):
Let t 7→ y(t) ∈ R be a continuous signal, t 7→ p(t) ∈ R
be a continuously differentiable signal, r := {rj}k−1

j=0 be a
nonnegative sequence of real numbers, q ≥ 0 a constant, and
E := {tj}k+1

j=0 , k ∈ Z≥0 be a sequence of times satisfying
tj < tj+1 for all j ∈ {0, . . . , k}. Suppose that for all
t ∈ [t0, tk+1], the elements y, p, and r satisfy

y(t) ≤ p(t) + q
∫ t
t0
y(s)ds+

∑i(t)−1
j=0 rjy(tj+1) (36)

with i(t) := max{i ∈ Z≥0 : ti ≤ t, ti ∈ E} for t < tk+1 and
i(tk+1) := k. Then,

y(t) ≤ p(t0)h(t0, t) +
∫ t
t0
h(s, t)ṗ(s)ds (37)

for all t ∈ [t0, tk+1] where for all t0 ≤ s ≤ t ≤ tk+1,

h(s, t) := exp
(
q(t− s) +

∑i(t)−1
j=i(s) log(1 + rj)

)
. (38)

We are now ready to prove Theorem V.1.
Proof of Theorem V.1: Let {{tlk}

Nl
k=0}∞l=0 be a sequence

of times satisfying the hypotheses. Consider a trajectory t 7→
x(t) of (22) with x(0) belonging to a neighborhood of x̄.
The definition of this neighborhood will show up later. Our
proof strategy involves showing the monotonic decrease of the
function Wε (cf. (18)) along this arbitrarily chosen trajectory.
Consider any t ∈ R≥0 such that t 6∈ {tlk}

Nl
k=0 for any l ∈ Z≥0

and x(t) ∈ Ω where Ω is defined by (19). With a slight abuse
of notation let l and k ∈ {0, . . . , Nl − 1} be fixed such that
t ∈ (tlk, t

l
k+1). Then, using the expression of F (x) = f(x) +

g(x) +h(x) given in (24), one can write the evolution of x at
t for the considered trajectory as

ẋ(t) = F (x(t)) + g(x(tlk))− g(x(t)) + h(x(tl0))− h(x(t)).

(I) Dissipation inequality: Note that at t the evolution of Wε

is equal to the dot product between the gradient of Wε and
right-hand side of the above equation. Hence, we get

Ẇε(x(t)) = ∇Wε(x(t))>
(
F (x(t)) + g(x(tlk))− g(x(t))

+ h(x(tl0))− h(x(t))
)
. (39)

From (20b), we have ∇Wε(x(t))>F (x(t)) ≤ −α‖x(t)− x̄‖2.
Moreover, since maps ∇Wε, g, and h are globally Lipschitz
and ∇Wε(x̄) = 0, one has ‖∇Wε(x(t))‖ ≤ LW ‖x(t) − x̄‖,
‖g(x(tlk)) − g(x(t))‖ ≤ Lg‖x(tlk) − x(t)‖, and ‖h(x(tl0)) −



Ξε =



ω b/σ Pg/σ λ/σ ϕ

ω 2
ε0
A− ε1M −ε2σI 0 −ε3σ1 ε1AD

†T
T

b
σ −ε2σI −2ε2I + 2

ε0
Q−1 −ε2(Q−1Tgb + ρ11T ) (ε2 − ε3)1 0

Pg
σ 0 −ε2(TgbQ

−1 + ρ11T ) 2ε2Tgb + 2
ε0
ρ11T − ε3T −ε3nρ1 −ε1σD†TT

λ
σ −ε3σ1T (ε2 − ε3)1T −ε3nρ1T 2nε3 0

ϕ ε1D
†
T A 0 −ε1σD†T 0 2ε1U(1γ)


(35)

h(x(t))‖ ≤ Lh‖x(tl0)−x(t)‖. Using these bounds in (39), we
get

Ẇε(x(t)) ≤ −α‖x(t)− x̄‖2 + LW ‖x(t)− x̄‖
(
Lg‖x(t)

− x(tlk)‖+ Lh‖x(t)− x(tl0)‖
)
. (40)

Next, we provide bounds on ‖x(t)−x(tlk)‖ and ‖x(t)−x(tl0)‖
in terms of ‖x(t) − x̄‖, t − tlk, and t − tl0. To reduce the
notational burden, we drop the superscript l from the time
instances {tli}

Nl
i=1. In addition, we define

xk := x(tk), ζk(t) := t− tk,
ζkj := ζj(tk) = tk − tj , ξl(t) := ζ0(t) = t− t0.

(II) Bounds on ‖x(t)− x(tlk)‖: Note that x(t) can be written
using (23) as the line integral

x(t)−xk =
∫ t
tk
f(x(s))ds+ ζk(t)g(xk) + ζk(t)h(x0)

=
∫ t
tk

(f(x(s))− f(xk))ds+ ζk(t)(f(xk)− f(x̄))

+ ζk(t)(g(xk)− g(x̄) + h(x0)− h(x̄)). (41)

Above, we have added and subtracted ζk(t)f(xk) and sub-
tracted f(x̄) + g(x̄) + h(x̄) as x̄ is an equilibrium. Using
Lipschitz bounds and triangle inequality in (41) we obtain

‖x(t)− xk‖ ≤ Lf
∫ t
tk
‖x(s)− xk‖ds (42)

+ ζk(t)(Lf + Lg)‖xk − x̄‖+ ζk(t)Lh‖x0 − x̄‖.

We wish to obtain an upper bound on ‖x(t) − xk‖ that is
independent of the state at times s ∈ (tk, t). To this end, we
employ Gronwall’s inequality as stated in its general form in
Proposition B.1. Drawing a parallelism between the notations,
for (42), we consider E = ∅, r = 0, y(t) = ‖x(t)− xk‖, q =
Lf , p(t) = ζk(t)(Lf + Lg)‖xk − x̄‖ + ζk(t)Lh‖x0 − x̄‖ and
replace t0 by tk. With these choices, the hypothesis (36) is
satisfied (as it exactly corresponds to (42) above). Then, with
the notation of Proposition B.1, we have

h(s, t) = eLf (t−s),

ṗ(s) = (Lf + Lg)‖xk − x̄‖+ Lh‖x0 − x̄‖, p(tk) = 0,

and (37) reads as

‖x(t)− xk‖ ≤
∫ t
tk
eLf (t−s)

(
(Lf+Lg)‖xk − x̄‖+Lh‖x0 − x̄‖

)
ds

=
(
1 +

Lg
Lf

)
‖xk − x̄‖(eLf ζk(t) − 1) (43)

+ Lh
Lf
‖x0 − x̄‖(eLf ζk(t) − 1).

Bounding the above inequality using the triangle inequality
collecting coefficients of ‖x(t) − xk‖ on the left-hand side,
and rearranging gives

‖x(t)− xk‖ ≤
Lh(eLfζk(t) − 1)

Lf − (Lf + Lg)(eLfζk(t) − 1)
‖x0 − x̄‖

+
(Lf + Lg)(e

Lfζk(t) − 1)

Lf − (Lf + Lg)(eLfζk(t) − 1)
‖x(t)− x̄‖. (44)

(III) Bounds on ‖x(t)− x(tl0)‖: Our next step is to provide
an upper bound on the term ‖x(t) − x0‖. Recall that the
considered trajectory satisfies (23) and so, the line integral
over the interval [t0, t] gives

x(t)− x0 =
∫ t
t0
f(x(s))ds+

∑k−1
j=0 ζ

j+1
j g(xj)

+ ζk(t)g(xk) + ξl(t)h(x0).

As done before, on the right-hand side, we add and subtract
the terms ξl(t)f(x0) and ξl(t)g(x0) and then subtract f(x̄) +
g(x̄) + h(x̄). This gives us

x(t)− x0 =
∫ t
t0

(f(x(s))− f(x0))ds

+
∑k−1
j=0 ζ

j+1
j (g(xj)− g(x0)) + ζk(t)(g(xk)− g(x0))

+ ξl(t)(f(x0)− f(x̄) + g(x0)− g(x̄) + h(x0)− h(x̄)).

By defining L := Lf + Lg + Lh, taking the norms, using the
global Lipschitzness, we obtain from above

‖x(t)− x0‖ ≤ Lf
∫ t
t0
‖x(s)− x0‖ds+ ξl(t)L‖x0 − x̄‖

+ Lg
∑k−1
j=0 ζ

j+1
j ‖xj − x0‖+ Lgζk(t)‖xk − x0‖.

Consider any t̂ ∈ [t, tk+1] and note that ζk(t) ≤ ζk(t̂).
Using this bound and the fact that the first term in the above
summation is zero, we write

‖x(t)−x0‖ ≤ Lf
∫ t
t0
‖x(s)− x0‖ds+ ξl(t)L‖x0 − x̄‖

+ Lg
∑k−2
j=0 ζ

j+2
j+1‖xj+1 − x0‖+ Lgζk(t̂)‖xk − x0‖.

We now apply Proposition B.1 to give a bound for the left-
hand side independent of x(s), s ∈ (t0, t]. In order to do
so, the elements corresponding to those in the Gronwall’s
inequality are: E = {tj}kj=0∪{t̂}, y(t) = ‖x(t)−x0‖, p(t) =

ξl(t)L‖x0 − x̄‖, q = Lf , rj = Lgζ
j+2
j+1 for j = 0, . . . , k − 2,

and rk−1 = t̂− tk. From Proposition B.1, we get

‖x(t)− x0‖ ≤ L‖x0 − x̄‖
∫ t
t0
h(s, t)ds, (45)

where h(s, t) = exp
( ∫ t

s
LfdT +

∑k−2
j=i(s) log(1 + ζj+2

j+1Lg) +

log(1 + Lgζk(t̂))
)

and i(s) is as defined in Proposition B.1.



Using log(1 + x) ≤ x for x ≥ 0 and the fact that the
exponential is a monotonically increasing function, we get

h(s, t) ≤ exp
(
Lf (t− s) + Lg

∑k−2
j=i(s) ζ

j+1
j+1 + Lgζk(t̂)

)
.

By noting that s ≤ i(s) + 1 and t ≤ t̂, we can upper bound
the right-hand side as h(s, t) ≤ exp

(
Lf (t− s) + Lg(t̂− s)

)
.

Since t̂ was chosen arbitrarily in the interval [t, tk+1], we
pick it equal to t. Thus, h(s, t) ≤ exp ((Lg + Lf )(t− s)).
Substituting this inequality in (45) yields

‖x(t)− x0‖ ≤ L‖x0 − x̄‖
∫ t
t0
e(Lf+Lg)(t−s)ds

= L
Lf+Lg

(e(Lf+Lg)ξl(t) − 1)‖x0 − x̄‖. (46)

This inequality when used in the right-hand side of the triangle
inequality ‖x0 − x̄‖ ≤ ‖x(t)− x0‖+ ‖x(t)− x̄‖ yields after
rearrangement the following

‖x0 − x̄‖ ≤
Lf + Lg

Lf + Lg − L(e(Lf+Lg)ξl(t) − 1)
‖x(t)− x̄‖.

(47)

Subsequently, using the above bound in (46) gives

‖x(t)− x0‖ ≤
L(e(Lf+Lg)ξl(t) − 1)

Lf + Lg − L(e(Lf+Lg)ξl(t) − 1)
‖x(t)− x̄‖.

(48)

Combining inequalities (44) and (47) we obtain

‖x(t)− xk‖ ≤
Lh(eLfζk(t) − 1)

Lf − (Lf + Lg)(eLfζk(t) − 1)
·

Lf + Lg

Lf + Lg − L(e(Lf+Lg)ξl(t) − 1)
‖x(t)− x̄‖

+
(Lf + Lg)(e

Lfζk(t) − 1)

Lf − (Lf + Lg)(eLfζk(t) − 1)
‖x(t)− x̄‖. (49)

(IV) Monotonic decrease of Wε: Note first that follow-
ing (48) and using the bound ξl(t) ≤ ξ̄ yields

‖x(t)− x0‖ ≤
L(e(Lf+Lg)ξ̄ − 1)

Lf + Lg − L(e(Lf+Lg)ξ̄ − 1)
‖x(t)− x̄‖.

Using the definition of ξ̄, one gets e(Lf+Lg)ξ̄ − 1 =
β(Lf+Lg)
L(LWLh+β) . Substituting this value in the above inequality
and simplifying the expression provides us

‖x(t)− x0‖ ≤ (β/(LWLh))‖x(t)− x̄‖. (50)

In a similar way, using the bound on ξl(t) and substituting the
value of e(Lf+Lg)ξ̄ − 1 in (49) and simplifying yields

‖x(t)− xk‖ ≤
(eLfζk(t) − 1)(L+ β/LW )

Lf − (Lf + Lg)(eLfζk(t) − 1)
‖x(t)− x̄‖.

Note that ζk(t) ≤ ζ̄. Using this bound and the definition of ζ̄
in the above inequality gives

‖x(t)− xk‖ ≤ α−β
LWLg

‖x(t)− x̄‖. (51)

Finally, substituting (50) and (51) in (40) and using the fact
that β < α, we obtain Ẇε(x(t)) < 0. Recall that t ∈ R≥0

was chosen arbitrarily satisfying t 6∈ {tlk}
Nl
k=1 for any l ∈ Z≥0.

Therefore, Wε monotonically decreases at all times along the

trajectory except for a countable number of points. Further, the
map t 7→Wε(x(t)) is continuous. Therefore, we conclude that
the trajectory initialized in a compact level set of Wε contained
in Ω converges asymptotically to the equilibrium point x̄. This
completes the proof. �
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[30] N. Noroozi, D. Nešić, and A. R. Teel, “Gronwall inequality for hybrid
systems,” Automatica, vol. 50, no. 10, pp. 2718–2722, 2014.

Tjerk Stegink is a Ph.D. candidate at the Engineer-
ing and Technology Institute, Faculty of Science and
Engineering, University of Groningen, the Nether-
lands. He received his B.Sc. (2012) in Applied Math-
ematics and M.Sc. (2014, cum laude) in Applied
Mathematics (Systems, Control and Optimization)
from the same university. His main research interests
are in distributed optimization and control of power
systems.

Ashish Cherukuri is a Postdoctoral Researcher
at the Automatic Control Laboratory, ETH Zürich,
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