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a b s t r a c t

We prove that the Kontsevich tetrahedral flow Ṗ = Qa:b(P), the right-hand side of which
is a linear combination of two differential monomials of degree four in a bi-vector P
on an affine real Poisson manifold Nn, does infinitesimally preserve the space of Poisson
bi-vectors on Nn if and only if the two monomials in Qa:b(P) are balanced by the ratio
a : b = 1 : 6. The proof is explicit; it is written in the language of Kontsevich graphs.

© 2017 Elsevier B.V. All rights reserved.

0. Introduction

The main question which we address in this paper is how Poisson structures can be deformed in such a way that they
stay Poisson. We reveal one such method that works for all Poisson structures on affine real manifolds; the construction of
that flow on the space of bi-vectors was proposed in [1]: the formula is derived from two differently oriented tetrahedral
graphs on four vertices. The flow is a linear combination of two terms, each quartic-nonlinear in the Poisson structure. By
using several examples of Poisson brackets with high polynomial degree coefficients, the first and last authors demonstrated
in [2] that the ratio 1 : 6 is the only possible balance at which the tetrahedral flow can preserve the property of the Cauchy
datum to be Poisson. But does the Kontsevich tetrahedral flow Ṗ = Q1:6(P) with ratio 1 : 6 actually preserve the space of
all Poisson bi-vectors?

We prove the infinitesimal version of this claim: namely, we show that [[P,Q1:6(P)]] = 0 for every bi-vector P satisfying
the master-equation [[P,P]] = 0 for Poisson structures. The proof is graphical: to prove that Eq. (2) holds, we find an
operator ♢, encoded by using the Kontsevich graphs, that solves equation (10). We also show that there is no universal
mechanism (that would involve the language of Kontsevich graphs) for the tetrahedral flow to be trivial in the respective
Poisson cohomology.
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The text is structured as follows. In Section 1 we recall how oriented graphs can be used to encode differential operators
acting on the space of multivectors. In particular, differential polynomials in a given Poisson structure are obtained as
soon as a copy of that Poisson bi-vector is placed in every internal vertex of a graph. Specifically, the right-hand side
Qa:b = a · Γ1 + b · Γ2 of the Kontsevich tetrahedral flow Ṗ = Qa:b(P) on the space of bi-vectors on an affine Poisson
manifold

(
Nn,P

)
is a linear combination of two differential monomials, Γ1(P) and Γ2(P), of degree four in the bi-vector P

that evolves.
We determine at which balance a : b the Kontsevich tetrahedral flow Ṗ = Qa:b(P) infinitesimally preserves the space of

Poisson bi-vectors, that is, the bi-vector P + εQa:b(P)+ ō(ε) satisfies the equation

[[P + εQa:b(P)+ ō(ε),P + εQa:b(P)+ ō(ε)]] .
= ō(ε) via [[P,P]] = 0; (1)

here we denote by [[·, ·]] the Schouten bracket (see formula (5)). Expanding, we obtain the cocycle condition,

[[P,Qa:b(P)]] .
= 0 via [[P,P]] = 0, (2)

with respect to the Poisson differential ∂P = [[P, ·]]. Viewed as an equation with respect to the ratio a : b, condition (2) is
the main object of our study.

Recent counterexamples [2] show that the bi-vector P + εQa:b(P) + ō(ε) can stay Poisson only if the balance a : b
in Qa:b is equal to 1 : 6. We now prove the infinitesimal part of sufficiency: the deformation P + εQ1:6(P) + ō(ε) is always
infinitesimally Poisson, whence the balance a : b = 1 : 6 in the Kontsevich tetrahedral flow is universal for all Poisson
bi-vectors P on all affine manifolds Nn. The proof is explicit: in Section 2 we reveal the mechanism of factorization – via the
Jacobi identity – in (2) at a : b = 1 : 6. On the left-hand side of factorization problem (2) we expand the Poisson differential
of the Kontsevich tetrahedral flow at the balance 1 : 6 into the sum of 39 graphs (see Fig. 3 and Table 2 in Appendix A). On
the other side of that factorization, we take the sum that runs with undetermined coefficients over all those fragments of
differential consequences of the Jacobi identity [[P,P]] = 0which are known to vanish independently. We then find a linear
polydifferential operator ♢(P, ·) that acts on the filtered components of the Jacobiator Jac (P) := [[P,P]] for the bi-vector P;
the operator ♢ provides the factorization [[P,Q1:6(P)]](f , g, h) = ♢

(
P, Jac (P)(·, ·, ·)

)
(f , g, h) of the ∂P-cocycle condition,

see (2), through the Jacobi identity Jac (P) = 0. To describe the differential operators that produce such consequences of
the Jacobi identity, we use the pictorial language of graphs: every internal vertex contains a copy of the bi-vector P and the
operators are reduced by using its skew-symmetry. There remain 7,025 graphs, the coefficients of which are linear in the
unknowns.Wenow solve the arising inhomogeneous linear algebraic system. Its solution yields a polydifferential operator♢,
encoded using Leibniz graphs, that provides the sought-for factorization [[P,Q1:6]] = ♢(P, Jac(P)). It is readily seen from
formula (11) that this operator ♢ is completely determined by only 8 nonzero coefficients (out of 1132 total).3 Therefore,
although finding an operator♢washard, verifying that it does solve the factorization problemhas become almost immediate,
as we show in the proof of Theorem 3.We thereby establish the main result (namely, Corollary 4). The paper concludes with
the formulation of an open problem about the integration of tetrahedral flow in (1) to higher order expansions in ε, see (13).

In Appendix B we outline a different method to tackle the factorization problem, namely, by making the Jacobi identity
visible in (2) by perturbing the original structure P ↦→ P̃ in such a way that P̃ is not Poisson and Q1:6(P̃) ̸= 0. Hence
P̃ contributes to the right-hand side of (2) such that the respectively perturbed bi-vector Q1:6(P̃) stops being compatible
with the perturbed Poisson structure P̃ . The first-order balance of both sides of perturbed equation (2) then suggests the
coefficients of those differential consequences of the Jacobiator which are actually involved in the factorization mechanism.
The coefficients of operators realized by graphs which were found by following this scheme are reproduced in the full
run-through that gave us the solution ♢ in Section 2.

1. The main problem: From graphs to multivectors

1.1. The language of graphs

Let us formalize away to encode polydifferential operators – in particularmultivectors – using oriented graphs [3,4]. In an
affine real manifold Nn (here 2 ⩽ n <∞), take a chart Uα ↪→ Rn and denote the Cartesian coordinates by x = (x1, . . . , xn).
We now consider only the oriented graphs whose vertices are either tails for an ordered pair of arrows, each decorated with
its own index, or sinks (with no issued edges) like the vertices 1, 2 in (1)

i
←− •

j
−→ (2). The arrowtail vertices are called

internal. Every internal vertex • carries a copy of a given Poisson bi-vector P = P ij(x) ∂i ∧ ∂j with its own pair of indices.
For each internal vertex •, the pair of out-going edges is ordered L ≺ R. The ordering L ≺ R of decorated out-going edges
coincides with the ordering ‘‘first ≺ second’’ of the indices in the coefficients of P . Namely, the left edge (L) carries the first
index and the other edge (R) carries the second index. By definition, the decorated edge •

i
−→ • denotes at once the derivation

∂/∂xi ≡ ∂i (that acts on the content of the arrowhead vertex) and the summation
∑n

i=1 (over the index i in the object which
is contained within the arrowtail vertex). As it has been explained in [5,6], the operator which every graph encodes is equal
to the sum (running over all the indices) of products (running over all the vertices) of those vertices content (differentiated
by the in-coming arrows, if any). Moreover, we let the sinks be ordered (like 1 ≺ 2 above), so that every such graph defines
a polydifferential operator: its arguments are thrown into the respective sinks.

3 The maximally detailed description of that solution ♢ is contained in Appendix A.
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Fig. 1. A tadpole and an ‘‘eye’’.

Example 1. Thewedge graph (1)
i
←−
L

P ij(x)
j
−→
R

(2) encodes the bi-differential operator
∑n

i,j=1(1)
←−
∂i ·P ij(x)·

−→
∂j (2). Such graph

specifies a Poisson bracket (on every chart Uα ⊆ Nn) if it satisfies the Jacobi identity, see (4).

Remark 1. In principle, we allow the presence of both the tadpoles and cycles over two vertices (or ‘‘eyes’’), see Fig. 1.
However, in hindsight there will be neither tadpoles nor eyes in the solution which we shall have found in Section 2.

Remark 2. Under the above assumptions, there exist inhabited graphs that encode zero differential operators. Namely,
consider the graph with a double edge:

ra rz
i

L

j

R

R
�

= ra rz
j

L

i

R

R
�

= − ra rz
j

R

i

L

R
�

flip
= − ra rz.

i

L

j

R

R
�

By first relabelling the summation indices and then swapping L ⇄ R (and redrawing) we evaluate the operator acting at z
to
∑n

i,j=1a
ij∂i∂j(z) = −

∑n
i,j=1a

ij∂i∂j(z); whence the operator is zero. In the same way, any graph containing a double edge
encodes a zero operator. Graphs can also encode zero differential operators in a more subtle way. For example consider the
wedge on two wedges:

-
⊴
⊴
⊴
⊴⊴

B
B
B
BBN@@R��	

@
@
R

r r
r rr

3 2R

L

1

f g

= 0. (3)

Swapping the labels 1 ⇄ 2 of the lowerwedges does not change the operator. On the other hand, doing the same in a different
way, namely, by swapping ‘left’ and ‘right’ in the top wedge introduces a minus sign. Hence the graph encodes a differential
operator equal to minus itself, i.e. zero. Proving that a graph which contains the left-hand side of (3) as a subgraph equals
zero is an elementary exercise (cf. Example 3).

Besides the trivial vanishing mechanism in Remark 2, there is the Jacobi identity together with its differential con-
sequences, which will play a key role in what follows. For any three arguments 1, 2, 3 ∈ C∞(Nn), the Jacobi identity
JacP (1, 2, 3) = 0 is realized4 by the graph

• •

⊴⊴ ?BBN
1 2 3

:= r r r
1 2 3

r
@@R��	

r
@
@@R

��	
i j k

− r r r
1 2 3

r
HHHj

����

r
��	◁
◁◁�

L
R

i j k
− r r r

1 2 3

r
@@R��	

r
�

��	
@@R

i j k
= 0. (4)

In our notation this identity’s left-hand side encodes a sum over all (i, j, k); instead restricting to fixed (i, j, k) corresponds
to taking a coefficient of the differential operator (cf. Lemma 1), which yields the respective component JacijkP of the
Jacobiator Jac(P). Clearly, the Jacobiator is totally skew-symmetric with respect to its arguments 1, 2, 3 .

In fact, the Jacobiator Jac(P) is the Schouten bracket of a given Poisson bi-vectorP with itself: Jac (P) = [[P,P]] (depending
on conventions, times a constant which is here omitted, cf. [7]). The bracket [[·, ·]] is a unique extension of the commutator
[·, ·] on the space of vector fields X1(Nn) to the space X∗(Nn) of multivector fields. Let us recall its inductive definition in the
finite-dimensional set-up.

Definition 1. The Schouten bracket [[·, ·]] : X∗(Nn)×X∗(Nn)→ X∗(Nn) coincides with the commutator [·, ·]when evaluated
on 1-vectors; when evaluated at a p-vector X, q-vector Y, and r-vector Z for p, q, r ⩾ 1, the Schouten bracket is shifted-
graded skew-symmetric, [[X, Y]] = −(−1)(p−1)(q−1)[[Y,X]], and it works over each argument via the graded Leibniz rule:
[[X, Y ∧ Z]] = [[X, Y]] ∧ Z+ (−1)(p−1)qY ∧ [[X,Z]]. The bracket is then extended by linearity from homogeneous components
to the entire space of multivector fields on Nn.

4 The notation JacP (1, 2, 3 ) is synonymic to Jac(P)(1⊗ 2⊗ 3).
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Remark 3. The construction of Schouten bracket also reads as follows. Denote by ξi the parity-odd canonical conjugate of the
variable xi for every i = 1, . . . , n. For instance, every bi-vector is realized in terms of local coordinates xi and ξi on ΠT ∗Nn

by using P = 1
2 ⟨ξi P

ij(x) ξj⟩. The Schouten bracket [[·, ·]] is the parity-odd Poisson bracket which is locally determined on
ΠT ∗Nn by the canonical symplectic structure dx ∧ dξ. Our working formula is5

[[P,Q]] = (P)
←−
∂

∂xi
·

−→
∂

∂ξi
(Q)− (P)

←−
∂

∂ξi
·

−→
∂

∂xi
(Q). (5)

It is now readily seen that the Schouten bracket of homogeneous arguments satisfies its own, shifted-graded Jacobi identity,

[[X, [[Y, · ]]]](Z)− (−)(|X|−1)·(|Y|−1)[[Y, [[X, · ]]]](Z) = [[[[X, Y]], · ]](Z).

Hence for a bi-vector P such that [[P,P]] = 0, the map ∂P = [[P, ·]] : Xℓ(Nn)→ Xℓ+1(Nn) is a differential.

Remark 4. The graphical calculation of the Schouten bracket [[·, ·]] of two arguments amounts to the action – via the Leibniz
rule – of every out-going edge in an argument on all the internal vertices in the other argument. For the Schouten bracket
of a k-vector with an ℓ-vector, the rule of signs is this. For the sake of definition, enumerate the sinks in the first and second
arguments by using 0, . . . , k − 1 and 0, . . ., ℓ − 1, respectively. Then the arrow into the jth sink in the second argument
acts on the internal vertices of the first argument, acquiring the sign factor (−)j; here 0 ⩽ j < ℓ. On the other hand, the
arrow to the ith sink in the first argument acts on the second argument’s internal vertices with the sign factor −(−)(k−1)−i
for 0 ⩽ i ⩽ k− 1.

The rule of signs, as it has been phrased above, is valid — provided that, for a k-vector X and ℓ-vector Y, the numbers 0, . . .
of the k (or k− 1) sinks originating in the (k+ ℓ− 1)-vector [[X, Y]] from the first argument X precede the numbers of ℓ− 1
(resp., ℓ) sinks originating from Y in the overall enumeration of those k + ℓ − 1 sinks.6 For example, it is this ordering of
sinks using 1 ≺ 2 which is shown in (6),

[[

q
◁
◁�
A
AU

1 2

,

q
?
1

]] = + q
◁
◁�
A
AU

q
?

1 2

−

( q
▷
▷
▷▷�

A
AUq
?

1 2

−

q
◁
◁�
C
C
CCW

q
?
2 1

)
; (6)

here k = 2, ℓ = 1 and the enumeration of arguments begins at 1.
Still let us note that in its realization via Kontsevich graphs, the calculation of the Schouten bracket [[·, ·]] effectively

amounts to a consecutive plugging of one of its arguments into each of the other argument’s sinks (see (6) again). Therefore,
it would be more natural to start enumerating the sinks of the graph that acts (on the new content in one of its sinks,
possibly the first), but when that new argument is reached, to interrupt and now enumerate the argument’s own sinks,
then continuing the enumeration of sinks (if there still remain any to be counted) in the graph that acts. This change of
enumeration strategy comes at a price of having extra sign factors in front of the graphs. Namely, the arrow into the jth sink
in the second argument acquires the extra sign factor (−)j·k. Similarly, the arrow to the ith sink in the first argument of [[·, ·]]
must now be multiplied by (−)ℓ·(k−1−i); we recall that 0 ⩽ i < k and 0 ⩽ j < ℓ. We note that for k and ℓ even (e.g., k = 2
and ℓ = 2 in formula (9)) no extra sign factors appear at all from the re-ordering at a price of (−)j·k and (−)ℓ·(k−1−i). For
example, such is the final ordering of the 3 = 2+ 1 = 1+ 2 sinks which is shown in Fig. 3.

Summarizing, to be Poisson a bi-vector P must satisfy themaster-equation,

[[P,P]] = 0, (7)

of which formula (4) is the component expansion with respect to the indices (i, j, k) in the tri-vector [[P,P]](x, ξ).

Definition 2. Let P be a Poisson bi-vector on the manifold Nn at hand and consider its deformation P ↦→ P + εQ(P)+ ō(ε).
We say that after such deformation the bi-vector stays infinitesimally Poisson if

[[P + εQ(P)+ ō(ε),P + εQ(P)+ ō(ε)]] = ō(ε), (1′)

that is, the master-equation is still satisfied up to ō(ε) for a given solution P of (7).

Remark 5. Nowhere above should one expect that the leading deformation termQ inP+εQ+ ō(ε) itself would be a Poisson
bi-vector. This may happen for Q only incidentally.

Expanding the left-hand side of Eq. (1) and using the shifted-graded skew-symmetry of the Schouten bracket [[·, ·]], we
extract the deformation equation

[[P,Q]] .
= 0 via [[P,P]] = 0. (2)

5 In the set-up of infinite jet spaces J∞(π ) (see [8] and [5,9,10]) the four partial derivatives in formula (5) for [[·, ·]] become the variational derivatives
with respect to the same variables, which now parametrize the fibres in theWhitney sum π ×Mm Π π̂ of (super-)bundles over them-dimensional baseMm .

6 Such is the default convention which formula (5) suggests for the product of parity-odd variables ξiα , where 1 ⩽ α ⩽ k+ ℓ− 1.
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Fig. 2. The Kontsevich tetrahedral graphs encode two bi-linear bi-differential operators on the product C∞(Nn)× C∞(Nn).

Let us consider a class of its solutions Q = Q(P) which are universal with respect to all finite-dimensional affine Poisson
manifolds (Nn,P).

1.2. The Kontsevich tetrahedral flow

In the paper [1], Kontsevich proposed a particular construction of infinitesimal deformations P ↦→ P + εQ(P) + ō(ε)
for Poisson structures on affine real manifolds. One such flow Ṗ = Q(P) on the space of Poisson bi-vectors P is associated
with the complete graph on four vertices, that is, the tetrahedron. Up to symmetry, there are two essentially different ways,
resulting in Γ1 and Γ ′2 , to orient its edges, provided that every vertex is a source for two arrows and, as an elementary count
suggests, there are two arrows leaving the tetrahedron and acting on the arguments of the bi-differential operator which the
tetrahedral graph encodes. The two oriented tetrahedral graphs are shown in Fig. 2. Unlike the operator encoded by Γ1, that
ofΓ ′2 is generally speaking not skew-symmetric with respect to its arguments. By definition, putΓ2 :=

1
2 (Γ

′

2(1, 2)−Γ ′2(2, 1))
to extract the antisymmetric part, that is, the bi-vector encoded by Γ ′2 . Explicitly, the quartic-nonlinear differential
polynomials Γ1(P) and Γ2(P), depending on a Poisson bi-vector P , are given by the formulae

Γ1(P) =
n∑

i,j=1

(
n∑

k,ℓ,m,k′,ℓ′,m′=1

∂3P ij

∂xk∂xℓ∂xm
∂Pkk′

∂xℓ′

∂Pℓℓ′

∂xm′
∂Pmm′

∂xk′

)
∂

∂xi
∧

∂

∂xj
(8a)

and

Γ2(P) =
n∑

i,m=1

(
n∑

j,k,ℓ,k′,ℓ′,m′=1

∂2P ij

∂xk∂xℓ

∂2Pkm

∂xk′∂xℓ′

∂Pk′ℓ

∂xm′
∂Pm′ℓ′

∂xj

)
∂

∂xi
∧

∂

∂xm
, (8b)

respectively. To construct a class of flows on the space of bi-vectors, Kontsevich suggested to consider linear combinations,
balanced by using the ratio a : b, of the bi-vectors Γ1 and Γ2. We recall from Section 1.1 that every internal vertex of each
graph is inhabited by a copy of a given Poisson bi-vectorP , so that the linear combination of two graphs encodes the bi-vector
Qa:b(P) = a · Γ1(P) + b · Γ2(P), quartic in P and balanced using a : b. We now inspect at which ratio a : b the bi-vector
P + εQa:b(P)+ ō(ε) stays infinitesimally Poisson, that is,

[[P + εQa:b(P)+ ō(ε),P + εQa:b(P)+ ō(ε)]] = ō(ε). (1)

The left-hand side of the deformation equation,

[[P,Qa:b(P)]] .
= 0 via [[P,P]] = 0, (2)

can be seen in terms of graphs:

[[P, a · Γ1 + b · Γ2]] =

⎡⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎣ A
AAU

◁
◁◁�

21

, a ·
◁
◁
◁��
��>
}bbC
C
CCW
AAU◁◁�

PPPq

�
���

21

+
b
2
·

(
◁
◁
◁�

�
��⊐

}bbC
C
CCW

??

PPPq

�
��

�

21

−

◁
◁
◁�

�
��⊐

}bbC
C
CCW

⊐~

PPPq

�
��

�

21

)⎤⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎦ . (9)

Let a : b = 1 : 6 (specifically, a = 1
4 and b = 3

2 ). Then the left-hand side of (2) takes the shape depicted in Fig. 3. After
the expansion of Leibniz rules and skew-symmetrization, the sum in Fig. 3 simplifies to 39 graphs; they are listed in Table 2.
Collecting, we conclude that the left-hand side of (2) is the sum of 9 manifestly skew-symmetric expressions, see Fig. 4 (and
Table 3 in Appendix A). For example, when outlining a proof of our main theorem, we shall explain how the coefficient− 1

2
of the first and second graphs in Fig. 4 is accumulated from the terms on the right-hand side of (10). Simultaneously, we
shall track how the coefficients cancel out for the two other graphs which are produced by expanding the same Leibniz rules
(that gave the above two graphs).
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Fig. 3. Incoming arrows act on the content of boxes via the Leibniz rule; to obtain the tri-vector, the entire picture must be skew-symmetrized over the
content of three sinks using

∑
σ∈S3

(−)σ . Expanding and skew-symmetrizing, one obtains 39 graphs on the left-hand side of (2).

Fig. 4. This sum of graphs is the skew-symmetrized content of Fig. 3. In what follows, we realize these 9 terms on the left-hand side of (2) by using an
operator ♢ acting, on the right-hand side of (10), on the Jacobiator (4).

1.3. Main result

The reason why we are particularly concerned with the ratio a : b = 1 : 6 is that this condition is necessary for Eq. (2)
to hold. This has been proved in [2] by producing examples of Poisson bi-vector P such that [[P,Qa:b(P)]] = 0 only when
a : b = 1 : 6. Let us now inspect whether this condition is also sufficient. The task is to factorize the content of Fig. 4 through
the Jacobi identity in (4).

We first examine themechanism for the tri-vector [[P,Q1:6(P)]] in (2) to vanish by virtue of the Jacobi identity Jac(P) = 0
for a given Poisson bi-vector P on an affine manifold Nn of any dimension. We claim that the Jacobiator JacP (·, ·, ·) is not
necessarily (indeed, far not always! ) evaluated at the three arguments f , g, h of the tri-vector [[P,Q1:6(P)]]. A sample graph
that can actually appear in such factorizing operators ♢ is drawn in Fig. 5.

Lemma 1 ([11]). A tri-differential operator C =
∑
|I|,|J|,|K |⩾0c

IJK ∂I ⊗ ∂J ⊗ ∂K with coefficients c IJK ∈ C∞(Nn) vanishes identically
iff all its homogeneous components Cijk =

∑
|I|=i,|J|=j,|K |=kc

IJK ∂I⊗∂J⊗∂K vanish for all differential orders (i, j, k) of the respective
multi-indices (I, J, K ); here ∂L = ∂

α1
1 ◦ · · · ◦ ∂

αn
n for a multi-index L = (α1, . . . , αn).

In practice, Lemma 1 states that for every arrow falling on the Jacobiator JacP (1, 2, 3) – for which, in turn, a triple of
arguments 1, 2, 3 is specified – the expansion of the Leibniz rule yields four fragments which vanish separately: e.g., we
have that
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Namely, there is the fragment such that the derivation acts on the content P of the Jacobiator’s two internal vertices, and
there are three fragments such that the arrow falls on the first, second, or third argument of the Jacobiator. Now it is readily
seen that the action of a derivative ∂i on an argument of the Jacobiator amounts to an appropriate redefinition of that
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Fig. 5. This is an example of Leibniz graph of which the factorizing operators can consist.

argument: ∂i
(
JacP (1, 2, 3)

)
=(

∂i JacP
)
(1, 2, 3)  
=0

+ JacP
(
∂i(1), 2, 3

)  
=0

+ JacP
(
1, ∂i(2), 3

)  
=0

+ JacP
(
1, 2, ∂i(3)

)  
=0

= 0.

Let us introduce a name for the (class of) graphs which make the first term –out of four – in the expansion of Leibniz rule in
the above formula.

Definition 3. A Leibniz graph is a graphwhose vertices are either sinks, or the sources for two arrows, or the Jacobiator (which
is a source for three arrows). There must be at least one Jacobiator vertex. The three arrows originating from a Jacobiator
vertex must land on three distinct vertices. Each edge falling on a Jacobiator works by the Leibniz rule on the two internal
vertices in it.

An example of a Leibniz graph is given in Fig. 5. Every Leibniz graph can be expanded to a sum of Kontsevich graphs,
by expanding both the Leibniz rule(s) and all copies of the Jacobiator; e.g. see (12). In this way Leibniz graphs also encode
(poly)differential operators, depending on the bi-vector P and the tri-vector Jac(P).

Proposition 2. For every Poisson bi-vector P the value – at the Jacobiator Jac(P)– of every (poly)differential operator encoded
by the Leibniz graph(s) is zero.

Theorem 3. There exists a polydifferential operator

♢ ∈ PolyDiff
(

Γ

(⋀2
TNn

)
× Γ

(⋀3
TNn

)
→ Γ

(⋀3
TNn

))
which solves the factorization problem

[[P,Q1:6(P)]](f , g, h) = ♢
(
P, JacP (·, ·, ·)

)
(f , g, h). (10)

The polydifferential operator ♢ is realized using Leibniz graphs in formula (11) .

Corollary 4 (Main Result). Whenever a bi-vector P on an affine real manifold Nn is Poisson, the deformationP+εQ1:6(P)+ ō(ε)
using the Kontsevich tetrahedral flow is infinitesimally Poisson.

Remark 6. It is readily seen that the Kontsevich tetrahedral flow Ṗ = Q1:6(P) is well defined on the space of Poisson
bi-vectors on a given affine manifold Nn. Indeed, it does not depend on a choice of coordinates up to their arbitrary affine
reparametrizations. In other words, the velocity Ṗ

⏐⏐
u∈Nn does not depend on the choice of a chart U ∋ u from an atlas in

which only affine changes of variables are allowed. (Let us remember that affine manifolds can of course be topologically
nontrivial.)

Suppose however that a given affine structure on the manifold Nn is extended to a larger atlas on it; for the sake of
definition let that atlas be a smooth one. Assume that the smooth structure is now reduced –by discarding a number of
charts – to another affine structure on the same manifold. The tetrahedral flow Ṗ = Q1:6(P) which one initially had can
be contrasted with the tetrahedral flow ˙̃P = Q1:6(P̃) which one finally obtains for the Poisson bi-vector P̃

⏐⏐
ũ(u) = P

⏐⏐
u in

the course of a nonlinear change of coordinates on Nn. Indeed, the respective velocities Ṗ and ˙̃P can be different whenever
they are expressed by using essentially different parametrizations of a neighbourhood of a point u in Nn. For example, the
tetrahedral flow vanishes identically when expressed in the Darboux canonical variables on a chart in a symplecticmanifold.
But after a nonlinear transformation, the right-hand side Q1:6(P̃) can become nonzero at the same points of that Darboux
chart.

This shows that an affine structure on the manifold Nn is a necessary part of the input data for construction of the
Kontsevich tetrahedral flows Ṗ = Q1:6(P).
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2. Solution of the factorization problem

Expanding the Leibniz rules in [[P,Q1:6(P)]], we obtain the sum of 39 graphs with 5 internal vertices and 3 sinks (so
that from Fig. 3 we produce Table 2). By construction, the Schouten bracket [[P,Q1:6(P)]] ∈ Γ (

⋀3TNn) is a tri-vector on the
underlyingmanifoldNn, that is, it is a totally antisymmetric tri-linear polyderivation C∞(Nn)×C∞(Nn)×C∞(Nn)→ C∞(Nn).
At the same time,we seek to recognize the tri-vector [[P,Q1:6(P)]] as the result of application of a (poly)differential operator♢
(see (10) in Theorem 3) to the Jacobiator Jac(P) (see (4)).

We now explain how the operator ♢ is found.7 The ansatz for ♢ is the sum – with undetermined coefficients – of all
(separately vanishing) Leibniz graphs containing one Jacobiator and three wedges, and having differential order (1, 1, 1)
with respect to the sinks (see Fig. 6). We thus have 28,202 unknowns introduced (counted with possible repetitions of
graphs which they refer to). Expanding all the Leibniz rules and Jacobiators, we obtain a sum of Kontsevich graphs with 5
internal vertices on 3 sinks.

As soon as we take into account the order L ≺ R and the antisymmetry of graphs under the reversion of that ordering
at an internal vertex, the graphs that encode zero differential operators are eliminated.8 There remain 7,025 admissible
graphs with 5 internal vertices on 3 sinks; the coefficient of every such graph is a linear combination of the undetermined
coefficients of the Leibniz graphs. In conclusion, we view (10) as the system of 7,025 linear inhomogeneous equations for
the coefficients of Leibniz graphs in the operator ♢. Solving this linear system is a way towards a proof of our main result
(which is expressed in Corollary 4). The process of finding a solution ♢ itself does not constitute that proof. Therefore, the
justification of the claim in Theorem 3 will be performed separately. In the meantime, using software tools, we solve the
linear algebraic system at hand. The duplications of graph labellings are conveniently eliminated by our request for the
program to find a solution with a minimal number of nonzero components. Totally antisymmetric in tri-vector’s arguments,
the solution consists of 27 Leibniz graphs, which are assimilated into the sum of 8 manifestly skew-symmetric terms as
follows:

♢ =
• •
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(11)

To display the L ≺ R ordering at every internal vertex and to make possible the arithmetic and algebra of graphs, we use the
notation which is explained in Appendix A.

7 Another method for solving the factorization problem is outlined in Appendix B.
8 The relevant algebra of sums of graphs modulo skew-symmetry and the Jacobi identity has been realized in software by the second author. An

implementation of those tools in the problem of high-order expansion of the Kontsevich ⋆-product is explained in a separate paper, see [12].
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Fig. 6. This is the list of all different types of Leibniz graphs which are linear in the Jacobiator and which have differential order (1, 1, 1) with respect to the
sinks. The list is ordered by the number of ground vertices on which the Jacobiator stands.

Remark 7. We remember that the set {1 , 2 , 3 } of three arguments of the Jacobiator need not coincide with the set {f , g, h}
of the arguments of the tri-vector ♢(P, Jac(P)). Of course, the two sets can intersect; this provides a natural filtration for the
components of solution (11). Namely, the number of elements in the intersection runs from three for the first term to zero
in the second or third graph.

In fact, Remark 7 reveals a highly nontrivial role of the operator ♢ in (10). Some of the three internal vertices of its graphs
can be arguments of Jac(P) whereas some of the other such vertices (if any) can be tails for the arrows falling on Jac(P). In
retrospect, the two subsets of such vertices of ♢ do not intersect; every vertex in the intersection, if it were nonempty, would
produce a two-cycle, but there are no ‘‘eyes’’ in (11).

Proof of Theorem 3. So far, we have constructed operator (11); it involves a reasonably small number of Leibniz graphs so
that the factorization in (10) can be verified by a straightforward calculation. The sums in (11) contain 27 Leibniz graphs.
Now expand all the Leibniz rules; this yields the sum of 201 Kontsevich graphs with 3 sinks and 5 internal vertices: together
with their coefficients, they are listed in Table 5 in Appendix A. We claim that by collecting similar terms, one obtains the
39 graphs from the left-hand side of (10), see Fig. 4 and the encoding of those graphs in Table 3. Because we are free to
enumerate the five internal vertices in every graph in a way we like, and because the ordering of every pair of outgoing
edges is also under our control, at once do we bring all the graphs to their normal form.9

It is readily seen that there are many repetitions in Table 5. We must inspect what vanishes and what stays. Let us do a
sample reasoning first. Namely, let us inspect the contribution to the left-hand side of (10) from the first term of (11). We
have that
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The right-hand side of (12) expands into the sum of 12 different graphs. They are marked in the first twenty-four lines of
Table 5 by ♦i,♥i,♣i and ♠i for 1 ⩽ i ⩽ 3, respectively; by definition, a suit with different values of its subscript i denotes
the ith cyclic permutation of the ground vertices for the same graph.10 For example, the symbols♦1,♦2,♦3 mark the three
cyclic permutations of arguments in the first term on the right-hand side of (12). The sum of the first two terms on the
right-hand side of (12) – marked by ♦i and ♥i, respectively – equals the sum of the first two terms in Fig. 4.11 At the same
time, the sum of the last two terms – whose encodings with coefficients±1 are marked by♣i and♠i, respectively – cancels

9 The normal form of a graph is obtained by running over the group S5× (Z2)5 of all the relabellings of internal vertices and swaps L ⇄ R of orderings at
each vertex. (We recall that every swap negates the coefficient of a graph; the permutations from S5 are responsible for encoding a given topological profile
in seemingly ‘‘different’’ ways.) By definition, the normal form of a graph is the minimal sequence of five ordered pairs of target vertices viewed as 10-digit
base-(3+ 5) numbers. (By convention, the three ordered sinks are enumerated 0, 1, 2 and the internal vertices are the octonary digits 3, . . . , 7.)
10 By taking a graph, placing it consecutively over three cyclic permutations of its sinks’ content, and bringing the three graph encodings to their normal

form, see above, one can obtain an extra sign factor in front of some of these graphs. This is due to a convention about ‘‘minimal’’ graph encoding, not
signalling any mismatch in the arithmetic. For example, after the normalization such is the case with the columns in Table 1: each column refers to a cyclic
permutation of three arguments and the coefficients in every line would coincide if one encoded the graphs for the last column not using the respective
minimal 10-digit octonary numbers. To make all the three coefficients in each line coinciding, it is enough to swap L ⇄ R in one internal vertex in every
graph from the third column.
11 We inspect further that no other graphs in Table 5 make any contribution to the coefficients of these two graphs.
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Table 1
The coefficients of graphs marked by the four suits.

♦1: −1 ♦2 : −1 ♦3 : +1

♥1: −1 ♥2 : −1 ♥3 : +1

♣1: −1− 1− 1+ 3 = 0 ♣2 : −1− 1− 1+ 3 = 0 ♣3 : +1+ 1+ 1− 3 = 0

♠1: −1− 1− 1+ 3 = 0 ♠2 : −1− 1− 1+ 3 = 0 ♠3 : +1+ 1+ 1− 3 = 0

against the contributions from the fourth and sixth terms in solution (11) — with coefficients±3, also marked by♣i and♠i
in the rest of Table 5. In Table 1 we calculate the coefficient of each graph marked by the respective indexed symbol.

Now, in the same way all other similar terms are collected. There remain only 39 terms with nonzero coefficients. One
verifies that those 39 terms are none other than the entries of Table 2, that is, realizations of the 39 graphs on the left-hand
side of (10). This shows that Eq. (10) holds for the operator ♢ contained in (11). □

Remark 8. Operator (11) is not a unique solution of factorization problem (10). We claim that apart from this sum of
27 Leibniz graphs, there is another solutionwhich consists of 112 Leibniz graphs; it is also linearwith respect to the Jacobiator
(that is, its realization in the form ♢(P, Jac(P), Jac(P)) is not possible).

Discussion

Non-triviality

A flow specified on the space of Poisson bi-vectors by using the Kontsevich graphs can be Poisson cohomology trivial
modulo a sum of Leibniz graphs that would vanish identically at any Poisson structure. However, this is not the case of the
Kontsevich tetrahedral flow Ṗ = Q1:6(P).

Proposition 5. There is no 1-vector field X encoded over Nn by the Kontsevich graphs and there is no operator ∇ encoded using
the Leibniz graphs such that

Q1:6(P) = [[P,X]] + ∇(P, Jac(P)).

The claim is established by a run-through over all Kontsevich graphs with three internal vertices and one sink (making an
ansatz for X) and all Leibniz graphs (in the operator ∇) with two copies of P and one Jacobiator in the internal vertices; all
such graphs of both types are taken with undetermined coefficients. The resulting inhomogeneous linear algebraic system
has no solution.

Integrability

By using the technique of Kontsevich graphs one can proceed with a higher order expansion of the tetrahedral
deformation,

P ↦→ P + εQ1:6(P)+ εR(P)+ · · · + ō(εd), d ⩾ 2,

for Poisson structures P . Assuming that the master-equation holds up to ō(εd),

[[P + εQ1:6(P)+ εR(P)+ · · · + ō(εd),P + εQ1:6(P)+ εR(P)+ · · · + ō(εd)]] .
= ō(εd) via [[P,P]] = 0, (13)

we obtain a chain of linear equations for the higher order expansion terms, namely,

2[[P,R(P)]] + [[Q1:6(P),Q1:6(P)]] .
= 0 via [[P,P]] = 0, etc. (14)

A solution consisting of R(P) and consecutive terms at higher powers of the deformation parameter12 can be sought using
the same factorization techniques and computer-assisted proof schemes [12] which have been implemented in this paper —
whenever such solution actually exists. It is clear that there can be Poisson cohomological obstructions to resolvability of
cocycle conditions (14). Hence the integrability issue for the Kontsevich tetrahedral flowmay be Poisson model-dependent,
unlike the universal nature of such deformation’s infinitesimal part.

12 In every graph at εk the number of internal vertices is 3k+ 1.
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Table 2
Machine-readable encoding of Fig. 3.

1.1 3 5 4 2 0 1 4 6 4 7 4 5 1/4 7.1 3 5 6 2 7 0 1 4 4 5 5 6 3/4
1.2 3 5 4 0 1 2 4 6 4 7 4 5 1/4 7.2 3 5 6 0 7 1 2 4 4 5 5 6 3/4
1.3 3 5 4 1 2 0 4 6 4 7 4 5 1/4 7.3 3 5 6 1 7 2 0 4 4 5 5 6 3/4

2.1 3 5 7 0 3 5 3 6 3 4 1 2 1/4 8.1 3 5 7 2 7 0 1 4 4 5 5 6 3/4
2.2 3 5 7 1 3 5 3 6 3 4 2 0 1/4 8.2 3 5 7 0 7 1 2 4 4 5 5 6 3/4
2.3 3 5 7 2 3 5 3 6 3 4 0 1 1/4 8.3 3 5 7 1 7 2 0 4 4 5 5 6 3/4

3.1 3 5 5 2 0 1 4 6 4 7 4 5 3/4 9.1 3 5 4 2 7 1 0 4 4 5 5 6 −3/4
3.2 3 5 5 0 1 2 4 6 4 7 4 5 3/4 9.2 3 5 4 0 7 2 1 4 4 5 5 6 −3/4
3.3 3 5 5 1 2 0 4 6 4 7 4 5 3/4 9.3 3 5 4 1 7 0 2 4 4 5 5 6 −3/4

4.1 3 5 6 7 0 3 3 4 4 5 1 2 3/4 10.1 3 5 5 2 7 1 0 4 4 5 5 6 −3/4
4.2 3 5 6 7 1 3 3 4 4 5 2 0 3/4 10.2 3 5 5 0 7 2 1 4 4 5 5 6 −3/4
4.3 3 5 6 7 2 3 3 4 4 5 0 1 3/4 10.3 3 5 5 1 7 0 2 4 4 5 5 6 −3/4

5.1 3 5 4 2 7 0 1 4 4 5 5 6 3/4 11.1 3 5 6 2 7 1 0 4 4 5 5 6 −3/4
5.2 3 5 4 0 7 1 2 4 4 5 5 6 3/4 11.2 3 5 6 0 7 2 1 4 4 5 5 6 −3/4
5.3 3 5 4 1 7 2 0 4 4 5 5 6 3/4 11.3 3 5 6 1 7 0 2 4 4 5 5 6 −3/4

6.1 3 5 5 2 7 0 1 4 4 5 5 6 3/4 12.1 3 5 7 2 7 1 0 4 4 5 5 6 −3/4
6.2 3 5 5 0 7 1 2 4 4 5 5 6 3/4 12.2 3 5 7 0 7 2 1 4 4 5 5 6 −3/4
6.3 3 5 5 1 7 2 0 4 4 5 5 6 3/4 12.3 3 5 7 1 7 0 2 4 4 5 5 6 −3/4

13.1 3 5 6 0 7 3 3 4 4 5 1 2 −3/4
13.2 3 5 6 1 7 3 3 4 4 5 2 0 −3/4
13.3 3 5 6 2 7 3 3 4 4 5 0 1 −3/4

Table 3
Machine-readable encoding of Fig. 4.

3 5 0 1 2 3 4 6 4 7 4 5 −1/2
3 5 0 4 1 2 4 6 4 7 4 5 −1/2
3 5 0 4 5 6 1 2 5 7 4 5 3/2
3 5 0 1 2 5 6 7 3 4 4 6 3/2
3 5 0 4 5 6 1 2 3 7 3 4 3/2
3 5 0 4 5 6 1 6 2 7 4 5 −3
3 5 0 4 5 6 1 7 5 7 2 4 3
3 5 0 4 1 5 2 6 4 7 4 5 3
3 5 0 4 2 5 6 7 1 4 4 6 −3
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Appendix A. Encoding of the solution

Let Γ be a labelled Kontsevich graph with n internal and m external vertices. We assume the ground vertices of Γ are
labelled [0, . . . ,m − 1] and the internal vertices are labelled [m, . . . ,m + n − 1]. We define the encoding of Γ to be the
prefix (n,m), followed by a list of targets. The list of targets consists of ordered pairs where the kth pair (k ⩾ 0) contains the
two targets of the internal vertex numberm+ k.

The expansion of the Schouten bracket [[P,Qa:b]] for the ratio a : b = 1 : 6 depicted in Fig. 3 simplifies to a sum of 39
graphswith coefficients± 1

4 ,±
3
4 . The encodings of these graphs, followed by their respective coefficients, are listed in Table 2.

The graphs are collected into groups of three, consisting of the skew-symmetrization – by a sumover cyclic permutations – of
a single graph.Within the encodings in the groups of three, the lists of targets only differ by a cyclic permutation of the target
vertices 0, 1, 2.

Consisting of 8 skew-symmetric terms, the solution (see (11)) is encoded in Table 4: the sought-for values of coefficients
are written after the encoding of the respective 27 Leibniz graphs. Here the sums over permutations of the ground vertices
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Table 4
Machine-readable encoding of solution (11).

1.1 3 5 4 6 5 6 3 6 0 1 6 2 −1 6.1 3 5 1 2 3 5 3 6 0 3 6 4 3
6.2 3 5 0 2 3 5 3 6 1 3 6 4 −3

2.1 3 5 0 4 1 5 2 3 3 4 6 5 −3 6.3 3 5 4 6 0 1 3 4 2 4 6 5 −3
2.2 3 5 0 4 2 5 1 3 3 4 6 5 3

7.1 3 5 1 5 3 5 2 6 0 3 6 4 −3
3.1 3 5 0 4 1 2 3 4 3 4 6 5 −3 7.2 3 5 1 5 3 5 0 6 2 3 6 4 3
3.2 3 5 0 1 2 3 3 4 3 4 6 5 −3 7.3 3 5 0 5 3 5 2 6 1 3 6 4 3
3.3 3 5 0 2 1 3 3 4 3 4 6 5 3 7.4 3 5 2 5 3 5 1 6 0 3 6 4 3

7.5 3 5 2 5 3 5 0 6 1 3 6 4 −3
4.1 3 5 4 5 1 6 4 6 0 2 6 3 −3 7.6 3 5 0 5 3 5 1 6 2 3 6 4 −3
4.2 3 5 4 5 0 6 4 6 1 2 6 3 3
4.3 3 5 5 6 3 5 2 6 0 1 6 4 −3 8.1 3 5 1 4 2 5 3 6 0 3 6 4 −3

8.2 3 5 1 5 2 3 4 6 0 3 6 4 −3
5.1 3 5 1 4 5 6 3 6 0 2 6 3 3 8.3 3 5 0 4 2 5 3 6 1 3 6 4 3
5.2 3 5 0 4 5 6 3 6 1 2 6 3 −3 8.4 3 5 0 5 2 3 4 6 1 3 6 4 3
5.3 3 5 5 6 2 3 4 6 0 1 6 4 −3 8.5 3 5 4 6 0 5 1 3 2 4 6 5 −3

8.6 3 5 4 6 1 5 0 3 2 4 6 5 3

are expanded (thus making the 27 Leibniz graphs out of the 8 skew-symmetric groups). In every entry of Table 4, the sum
of three graphs in Jacobiator (4) is represented by its first term. For all the in-coming arrows, the vertex 6 is the placeholder
for the Jacobiator (again, see (4)); in earnest, the Jacobiator contains the internal vertices 6 and 7. This convention is helpful:
for every set of derivations acting on the Jacobiator with internal vertices 6 and 7, only the first term is listed, namely the
one where each edge lands on 6.

Example 2. The first entry of Table 4 encodes a graph containing a three-cycle over internal vertices 3, 4, 5. Issued from each
of these three, the other edge lands on the vertex 6: the placeholder for the Jacobiator. This entry is the first term in (11).

Example 3. The entry 3.1 is one of three terms produced by the third graph in solution (11); the Jacobiator in this entry is
expanded using formula (4), resulting in three terms (by definition). It is easy to see that the first term contains picture (3)
from Remark 2 as a subgraph. Hence the polydifferential operator encoded by this graph vanishes due to skew-symmetry.
However, the other two terms produced in the entry 3.1 by formula (4) do not vanish by skew-symmetry. Likewise, there is
one term vanishing by the same mechanism in the entry 3.2 and in 3.3.

The proof of Theorem 3 amounts to expanding the Leibniz rules on Jacobiators in Table 4 according to the rules above
(resulting in Table 5, where the prefix ‘‘3 5’’ of each graph has been omitted for brevity), simplifying by collecting terms,
and seeing that one obtains Table 3.

Appendix B. Perturbation method

In Section 2, the run-through method gave all the terms at once in the operator ♢ that establishes the factorization
[[P,Q1:6]] = ♢(P, Jac(P)). At the same time, there is another method to find ♢; the operator ♢ is then constructed gradually,
term after term in (11), by starting with a zero initial approximation for ♢. This is the perturbation scheme which we
now outline. (In fact, the perturbation method was tried first, revealing the typical graph patterns and their topological
complexity.)

The difficulty is that because the condition [[P,Q1:6]] = 0 and the Jacobi identity [[P,P]] = 0 are valid, it is impossible
to factorize one through the other; both are invisible. So, we first make both expressions visible by perturbing the Poisson
bi-vector P ↦→ Pϵ = P + ϵ∆ in such a way that the tri-vector [[Pϵ,Q1:6(Pϵ)]] and the Jacobiator [[Pϵ,Pϵ]] stop vanishing
identically:

[[Pϵ,Q1:6(Pϵ)]] ̸= 0 and [[Pϵ,Pϵ]] ̸= 0.

To begin with, put ♢ := 0. Now consider a class of Poisson brackets on R3 (cf. [13]) by using the pre-factor f (x, y, z) and
arbitrary function g(x, y, z) in the formula

{u, v}P = f · det
(

∂(g, u, v)
∂(x, y, z)

)
;

it is helpful to start with some very degenerate dependencies of f and g of their arguments (see [2] and [14]). The next step
is to perturb the coefficients of the Poisson bracket {·, ·}P at hand; in a similar way, one starts with degenerate dependency
of the perturbation ∆. The idea is to take perturbations which destroy the validity of Jacobi identity for Pϵ in the linear
approximation in the deformation parameter ϵ. It is readily seen that the expansion of (10) in ϵ yields the equality

[[Pϵ,Q1:6]](ϵ) = (♢+ ō(1)) ([[Pϵ,Pϵ]]) = 2ϵ · (♢+ ō(1)) ([[P, ∆]])+ (♢+ ō(1)) ([[P,P]])+ ō(ϵ).
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Table 5
Expansion of Leibniz rules on Jacobiators in Table 4.

♦1 0 1 2 3 3 6 3 7 3 5 −1 0 4 2 5 6 7 1 3 3 6 −3 0 4 2 5 3 6 3 4 1 6 −3
♣1 0 1 2 3 3 6 3 7 4 5 −1 0 4 5 6 1 3 3 5 2 3 3 0 4 2 5 3 6 1 7 3 4 −3
♣1 0 1 2 3 3 6 3 7 4 5 −1 0 4 5 6 1 3 5 7 2 3 −3 0 4 2 5 3 6 1 4 3 6 3
♠1 0 1 2 3 3 6 4 7 4 5 −1 0 4 5 6 1 7 3 5 2 3 3 0 4 2 5 3 6 3 7 1 4 3
♣1 0 1 2 3 3 6 3 7 4 5 −1 0 4 5 6 1 7 5 7 2 3 −3 0 4 5 6 1 3 2 3 5 6 −3
♠1 0 1 2 3 3 6 4 7 4 5 −1 0 4 1 2 3 4 3 7 4 5 −3 0 4 5 6 2 3 5 7 1 3 −3
♠1 0 1 2 3 3 6 4 7 4 5 −1 ♣2 0 4 1 2 3 6 4 7 4 5 3 0 4 5 6 2 3 3 5 1 6 −3
♥1 0 1 2 3 4 6 4 7 4 5 −1 0 4 5 6 1 2 5 7 4 5 3 0 4 5 6 1 7 2 3 3 6 3
♦2 0 4 1 2 4 6 4 7 4 5 −1 0 4 5 6 1 2 5 7 3 5 3 0 4 5 6 1 6 2 3 3 5 −3
♣2 0 4 1 2 3 6 4 7 4 5 −1 0 4 5 6 1 2 3 5 3 5 3 0 4 5 6 2 3 3 7 1 5 3
♣2 0 4 1 2 3 6 4 7 4 5 −1 0 4 5 6 1 2 5 7 3 5 −3 0 4 2 5 1 3 3 4 5 6 3
♠2 0 4 1 2 3 6 3 7 4 5 −1 0 4 1 5 2 6 3 4 3 5 3 0 4 2 5 6 7 1 3 3 4 3
♣2 0 4 1 2 3 6 4 7 4 5 −1 0 4 1 5 2 6 4 7 3 5 −3 0 4 2 5 3 6 3 4 1 5 −3
♠2 0 4 1 2 3 6 3 7 4 5 −1 0 4 5 6 1 6 2 7 4 5 −3 0 4 2 5 1 6 3 7 3 4 −3
♠2 0 4 1 2 3 6 3 7 4 5 −1 0 4 5 6 1 6 2 7 3 5 −3 0 4 2 5 1 6 3 4 3 5 3
♥2 0 4 1 2 3 6 3 7 3 5 −1 0 4 2 5 3 6 1 4 3 6 −3 0 4 2 5 3 6 1 7 3 4 3
♦3 0 2 1 3 3 6 3 7 3 5 1 0 4 2 5 6 7 1 4 3 6 3 0 4 1 5 2 3 3 5 4 6 3
♣3 0 2 1 3 3 6 3 7 4 5 1 0 4 1 5 3 6 2 4 3 6 3 0 4 5 6 1 7 3 7 2 3 3
♣3 0 2 1 3 3 6 3 7 4 5 1 0 4 1 5 6 7 2 4 3 6 −3 0 4 5 6 2 3 3 5 1 4 −3
♠3 0 2 1 3 3 6 4 7 4 5 1 0 4 5 6 1 7 2 5 4 6 −3 0 4 1 5 6 7 2 3 3 6 −3
♣3 0 2 1 3 3 6 3 7 4 5 1 0 4 5 6 1 7 2 5 3 6 −3 0 4 1 5 3 6 2 3 4 6 −3
♠3 0 2 1 3 3 6 4 7 4 5 1 0 4 2 5 1 6 3 4 3 5 −3 0 4 5 6 1 7 2 3 3 6 −3
♠3 0 2 1 3 3 6 4 7 4 5 1 0 4 2 5 1 6 4 7 3 5 3 0 4 1 5 2 3 3 4 5 6 −3
♥3 0 2 1 3 4 6 4 7 4 5 1 0 4 1 5 2 3 3 7 4 5 −3 0 4 1 5 6 7 2 3 3 4 −3

0 1 2 5 3 6 3 4 3 4 −3 0 4 1 5 2 6 3 7 4 5 −3 0 4 1 5 3 6 3 4 2 5 3
0 1 2 5 3 6 4 7 3 4 3 0 4 5 6 1 7 5 7 2 4 3 0 4 1 5 2 6 3 7 3 4 3
0 1 2 5 6 7 3 4 3 4 −3 0 4 5 6 1 7 5 7 2 3 3 0 4 1 5 2 6 3 4 3 5 −3
0 1 2 5 6 7 3 4 4 6 3 0 4 5 6 1 6 2 3 3 5 3 0 4 1 5 3 6 2 7 3 4 −3
0 4 1 5 2 6 4 7 4 5 3 0 4 5 6 1 6 2 7 3 5 3 0 4 2 5 1 3 3 5 4 6 −3
0 4 1 5 2 6 4 7 3 5 3 0 4 2 5 1 3 3 7 4 5 3 0 4 5 6 2 7 3 7 1 3 −3
0 4 1 5 2 6 3 7 4 5 3 0 4 2 5 1 6 3 7 4 5 3 0 4 5 6 1 3 3 5 2 4 3
0 4 1 5 2 6 3 7 3 5 3 0 4 5 6 2 7 5 7 1 4 −3 0 4 2 5 6 7 1 3 3 6 3
0 4 2 5 3 6 3 4 1 3 −3 0 4 5 6 2 7 5 7 1 3 −3 0 4 2 5 3 6 1 3 4 6 3
0 4 2 5 3 6 4 7 1 3 3 0 4 5 6 1 3 2 5 3 6 3 0 4 5 6 1 3 2 7 3 5 −3
0 4 2 5 6 7 1 3 3 4 −3 0 4 5 6 1 7 2 5 3 6 3 0 1 2 3 3 4 3 5 4 6 3
0 4 2 5 6 7 1 3 4 6 3 0 4 5 6 1 2 3 5 3 5 −3 ♣1 0 1 2 3 3 6 3 7 4 5 3
0 1 2 3 3 4 3 7 4 5 −3 0 4 5 6 1 2 3 7 3 5 −3 0 1 2 5 3 6 3 7 3 5 −3
0 1 2 5 3 6 4 7 3 4 −3 0 4 5 6 3 7 3 7 1 2 −3 0 1 2 5 3 6 3 7 3 4 −3

♠1 0 1 2 3 3 6 4 7 4 5 3 0 4 5 6 3 6 3 7 1 2 3 0 1 2 5 3 6 3 4 3 4 3
0 1 2 5 3 6 4 7 4 5 3 0 4 5 6 2 3 3 5 1 5 −3 0 1 2 5 3 6 3 7 3 4 3
0 4 1 5 6 7 2 4 4 6 3 0 4 5 6 2 3 3 7 1 5 −3 0 4 1 5 3 6 2 3 4 6 3
0 4 1 5 6 7 2 3 4 6 3 0 4 5 6 1 7 3 7 2 3 −3 0 4 1 5 3 6 4 7 2 3 3
0 4 1 5 6 7 2 4 3 6 3 0 4 5 6 1 7 3 5 2 3 −3 0 4 1 5 3 6 3 4 2 6 3
0 4 1 5 6 7 2 3 3 6 3 0 4 5 6 1 3 3 5 2 5 3 0 4 1 5 3 6 2 7 3 4 3
0 4 5 6 2 3 3 5 1 3 −3 0 4 5 6 1 3 3 7 2 5 3 0 4 1 5 3 6 2 4 3 6 −3
0 4 5 6 2 7 3 5 1 3 −3 0 4 5 6 2 7 3 7 1 3 3 0 4 1 5 3 6 3 7 2 4 −3
0 4 5 6 2 3 5 7 1 3 3 0 4 5 6 2 7 3 5 1 3 3 0 4 5 6 1 3 2 5 3 6 −3
0 4 5 6 2 7 5 7 1 3 3 0 4 1 2 3 4 3 5 4 6 3 0 4 5 6 1 3 3 7 2 5 −3
0 2 1 5 3 6 3 4 3 4 3 ♠2 0 4 1 2 3 6 3 7 4 5 3 0 4 5 6 1 3 3 5 2 6 3
0 2 1 5 3 6 4 7 3 4 −3 0 4 5 6 1 2 3 7 3 5 3 0 4 5 6 1 3 2 7 3 5 3
0 2 1 5 6 7 3 4 3 4 3 0 4 5 6 1 2 3 7 3 4 3 0 4 5 6 1 3 2 3 5 6 3
0 2 1 5 6 7 3 4 4 6 −3 0 4 2 5 3 6 3 4 1 4 −3 0 4 5 6 1 3 5 7 2 3 3
0 4 2 5 1 6 4 7 4 5 −3 0 4 2 5 3 6 3 7 1 4 −3 0 1 2 3 3 4 3 4 5 6 −3
0 4 2 5 1 6 4 7 3 5 −3 0 4 1 5 2 6 3 7 3 5 −3 0 1 2 3 3 4 3 7 4 5 3
0 4 2 5 1 6 3 7 4 5 −3 0 4 1 5 2 6 3 7 3 4 −3 0 1 2 3 3 4 3 5 4 6 −3
0 4 2 5 1 6 3 7 3 5 −3 0 4 1 5 3 6 3 4 2 4 3 0 2 1 3 3 4 3 4 5 6 3
0 4 1 5 3 6 3 4 2 3 3 0 4 1 5 3 6 3 7 2 4 3 0 2 1 3 3 4 3 7 4 5 −3
0 4 1 5 3 6 4 7 2 3 −3 0 4 2 5 1 6 3 7 3 5 3 0 2 1 3 3 4 3 5 4 6 3
0 4 1 5 6 7 2 3 3 4 3 0 4 2 5 1 6 3 7 3 4 3 0 4 1 2 3 4 3 4 5 6 −3
0 4 1 5 6 7 2 3 4 6 −3 0 2 1 3 3 4 3 5 4 6 −3 0 4 1 2 3 4 3 7 4 5 3
0 2 1 3 3 4 3 7 4 5 3 ♣3 0 2 1 3 3 6 3 7 4 5 −3 0 4 1 2 3 4 3 5 4 6 −3

♠3 0 2 1 3 3 6 4 7 4 5 −3 0 2 1 5 3 6 3 7 3 5 3 0 4 1 5 2 3 3 4 5 6 3
0 2 1 5 3 6 4 7 3 4 3 0 2 1 5 3 6 3 7 3 4 3 0 4 1 5 2 3 3 7 4 5 3
0 2 1 5 3 6 4 7 4 5 −3 0 2 1 5 3 6 3 4 3 4 −3 0 4 1 5 2 3 3 5 4 6 −3
0 4 2 5 6 7 1 4 4 6 −3 0 2 1 5 3 6 3 7 3 4 −3 0 4 2 5 1 3 3 4 5 6 −3
0 4 2 5 6 7 1 4 3 6 −3 0 4 2 5 3 6 1 3 4 6 −3 0 4 2 5 1 3 3 7 4 5 −3
0 4 2 5 6 7 1 3 4 6 −3 0 4 2 5 3 6 4 7 1 3 −3 0 4 2 5 1 3 3 5 4 6 3

Knowing the left-hand side at first order in ϵ and taking into account that [[P,P]] ≡ 0 for the Poisson bi-vector P
which we perturb by ∆, we reconstruct the operator ♢ that now acts on the known tri-vector 2[[P, ∆]]. In this sense, the
Jacobiator [[P,P]] shows up through the term [[P, ∆]].
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For each pair (P, ∆), the above balance at ϵ1 contains sums over indices thatmark the derivatives falling on the Jacobiator.
By taking those formulae, we guess the candidates for graphs that form the next, yet unknown, part of the operator
♢. Specifically, we inspect which differential operator(s), acting on the Jacobi identity, becomes visible and we list the
graphs that provide such differential operators via the Leibniz rule(s). For a while we keep every such candidate with an
undetermined coefficient. By repeating the iteration, now for a different Poisson bi-vector P or its new, less degenerate
perturbation ∆, we obtain linear constraints for the already introduced undetermined coefficients. Simultaneously, we
continue listing the new candidates and introducing new coefficients for them.

Remark 9. By translating formulae into graphs, we convert the dimension-dependent expressions into the dimension-
independent operators which are encoded by the graphs. An obvious drawback of the method which is outlined here is that,
presumably, some parts of the operator ♢ could always stay invisible for all Poisson structures over R3 if they show up only
in the higher dimensions. Secondly, the number of variants to consider and in practice, the number of irrelevant terms, each
having its own undetermined coefficient, grows exponentially at the initial stage of the reasoning.

By following the loops of iterations of this algorithm, we managed to find two non-zero coefficients and five zero
coefficients in solution (11). Namely, we identified the coefficient ±1 for the tripod, which is the first term in (11), and
we also recognized the coefficient±3 of the sum of ‘elephant’ graphs, which is the second to last term in (11).

Remark 10. Because of the known skew-symmetry of the tri-vector [[P,Q1:6]]with respect to its arguments f , g, h, finding
one term in a sum within formula (11) for ♢ means that the entire such sum is reconstructed. Indeed, one then takes the
sum over a subgroup of S3 acting on f , g, h, depending on the actual skew-symmetry of the term which has been found.

For instance, the first term in (11), itself making a sum running over {id} ≺ S3, is obviously totally antisymmetric with
respect to its arguments. The other graph which we found by using the perturbation method (see the last graph in the
second line of formula (11)) is skew-symmetric with respect to its second and third arguments but it is not yet totally skew-
symmetricwith respect to the full set of its arguments. This shows that it suffices to take the sumover the group⟳ = A3 ≺ S3
of cyclic permutations of f , g, h, thus reconstructing the sixth term in solution (11).
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