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Bispecific antibodies (bsAbs) are antibodies that bind two distinct epitopes to cancer.. For use in oncology, one
bsAb has been approved and 57 bsAbs are in clinical trials, none of which has reached phase 3. These bsAbs
showgreat variability in design andmechanismof action. The various designs are often linked to themechanisms
of actions. Themajority of bsAbs engage immune cells to destroy tumor cells. However, some bsAbs are also used
to deliver payloads to tumors or to block tumor signaling pathways. This review provides insight into the choice
of construct for bsAbs, summarizes the clinical development of bsAbs in oncology and identifies subsequent
challenges.
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1. Introduction

Advances in biotechnology leading to improved antibody production
and recombination techniques have fueled the development of antibod-
ies and myriad antibody constructs. Currently, 72 antibodies are ap-
proved by the Food and Drug Administration (FDA) of which 30 are
registered for the treatment of cancer patients (TheAntibodySociety,
2018). Antibodies are playing an increasing role in cancer treatments
(Sliwkowski & Mellman, 2013). The understanding of antibodies and
how to modify their pharmacokinetic and physicochemical properties
has grown (Jain, Kamal, & Batra, 2007). After being established as stan-
dard treatments, increasingly complex antibody constructs have
been developed (Carter & Lazar, 2017). Besides intact immunoglobulin
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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G (IgG) antibodies, the first antibody drug conjugates and bispecific an-
tibodies (bsAb) have been approved for the treatment of cancer patients,
and other antibody constructs are in clinical trials (Carter & Lazar, 2017)
(Fig. 1).

Standard human antibodies aremonospecific antibodies inwhich both
binding sites are directed against the same target. A bsAb is a more com-
plex construct in which the binding sites are directed to different targets.
This enables novel and unique mechanisms of actions (Chames & Baty,
2009; Fan, Wang, Hao, & Li, 2015) such as engaging immune cells to
tumor cells, delivering payloads to tumors, and blocking signaling impor-
tant for the tumor (Fig. 2). Eachmechanism of action can require pharma-
cokinetic properties that can be obtained by modifying the bsAb. An
abundance of preclinical data has been published about these bsAb con-
structs and theirmechanisms of action (Brinkmann&Kontermann, 2017).

In oncology, two bsAbs have been approved for use in the clinic.
Catumaxomab, targeting Epithelial cell adhesion molecule (EpCAM) and
CD3, was approved by the European Medicines Agency (EMA) in 2009
for the treatment of malignant ascites (Seimetz, Lindhofer, & Bokemeyer,
2010).However, at the request of themarketing authorizationholdermar-
ket authorization was withdrawn in June 2017. Blinatumomab, targeting
CD19 and CD3, was approved by the FDA in December 2014 and by the
EMA in December 2015 for the treatment of Philadelphia chromosome
negative B cell acute lymphoblastic leukemia (ALL) (Przepiorka et al.,
2015). Outside of oncology the bsAb emicizumab,which binds clotting fac-
tors IXa and X, was approved by the FDA in November 2017 and by the
EMA in March, 2018 for the treatment of hemophilia A.

Currently, 57 bsAbs, including blinatumomab, are in clinical trials in
cancer patients (Table S1) of which 38 use the same mechanism of ac-
tion: engagement of immune cells with tumor cells. Of the remaining
19 bsAbs in clinical trials, five deliver a payload to tumors and 14 are
blocking signaling in the cancer environment.

This reviewhas two aims: 1) to summarize the ongoing clinical devel-
opment of bsAbs in oncology by evaluating their choice of construct, and
2) to identify the challenges bsAbs are facing in this clinical development.

2. Search strategy

Articles published in English until September 5 2018 were searched
using PubMed. The search strategy was based on the terms bispecific
Fig. 1. Schematic overview of the antibody structure and bsAb constructs currently being eval
binding part of the Fab region is called the single chain variable fragment (scFv). The antibod
can be subdivided by variable (VH and VL) and constant domains (CH and CL). (B) Random he
currently approved or in clinical trials.
antibody, T cell engager, immune cell engager, antibody constructs,
targeted delivery and variations of these terms.

The ClinicalTrials.gov database was searched for trials evaluating
bsAbs until September 5 2018, based on the abovementioned terms
and the names of known bsAbs found in literature. BsAbs were consid-
ered to be approaching the clinic if their clinical trialswere not all termi-
nated, withdrawn or completed before 2014 without reporting results.
Additionally, bsAbs were also excluded when press releases stated
that their development had ceased.

Registered drugs were verified on FDA.gov and ema.europe.eu.
Reference lists of articles were manually searched for relevant articles
missed in the PubMed or ClinicalTrials.gov searches.

3. Bispecific antibody formats and modifications

3.1. Antibody format

An antibody consists of heavy and light domains that connect to
form chains. Light chains consist of two light domains and heavy chains
of four heavy domains. A light and heavy chain together form a pair, and
two heavy-light chain pairs comprise an antibody (Fig. 1A). The region
where the two pairs connect is called the hinge region. IgG is the most
abundant antibody in the blood and it is the backbone most often
used for antibody therapeutics. Endogenous IgGs have small variations
in their hinge regions, resulting in IgG subtypes (Irani et al., 2015).

An antibody can be also divided into functional parts: the tail (Fc
region) and the binding sites (Fab regions). The Fc region mediates
the effector functions that lead to immune-mediated target-cell killing
(Scott, Wolchok, & Old, 2012). The Fc region can also be recognized by
a receptor called the neonatal receptor, which is involved in regulating
the IgG serum levels and actively prolongs the biological half-life
(Roopenian & Akilesh, 2007). This process is called neonatal recycling.
Connected to the Fc region are the Fab regions containing the variable
fragments that make up the binding sites.

3.2. Producing bsAbs

The two binding regions of an antibody target the same epitope. An
antibody is therefore bivalent but monospecific. In contrast, bsAbs that
uated in clinical trials. (A) The IgG antibody construct consists of Fab and Fc regions. The
y exists of two heavy chains (VH and CH) and two light chains (VL and CL). These chains
avy-light chain pairing. Two possibilities yield the desired outcome. (C) BsAb constructs

http://ClinicalTrials.gov
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http://ema.europe.eu
http://ClinicalTrials.gov


Fig. 2. Simplified schematic overview of the proposedmechanisms of action for bispecific antibodies (bsAbs) in clinical trials for oncology. 1. Engagement of immune cells to the tumor cell.
Immune cells can be engaged to tumor cells. 2. Targeted delivery of payloads. Tumor cells are being targeted with a bsAb having affinity for both the tumor and a payload. 3. Blocking
signaling. Two targets are being disrupted by the bsAb.
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have affinities for two different epitopes bind to two targets, either
monovalently or bivalently depending on the construct. Antibodies are
generally produced from hybridoma cell lines, which are a fusion of an
antibody-secreting B cell and an immortal myeloma cell line (Köhler &
Milstein, 1975). BsAbs can be produced by fusing two hybridoma cell
lines to form a quadroma, which results in a mixture of IgG molecules
(Jain et al., 2007). They can also be produced by conjugating two
existing antibodies or their fragments. Another option, which is popular
for its flexibility, is using recombinant proteins. Using genetically
engineered recombinant proteins creates options regarding origin,
composition, and production system (Kontermann, 2012). For example,
such proteins can be used to control the association of heavy and light
chains. A basic bsAb comprises one heavy-light chain pair from one an-
tibody and another heavy-light chain pair from another antibody.When
the four individual chains are combined, they associate randomly, and
16 combinations of IgG molecules can arise. Two of those combinations
result in the desired bsAbs with a heterodimerized heavy chain bound
to their specific light chains stemming from the same antibody
(Fig. 1B). Chimeric quadromas, common light chains and recombinant
proteins can provide solutions by limiting the options for association.
Chimeric quadromas have species-restricted heavy-light chain pairing.
Moreover, using common light chains also prevents undesired heavy-
light chain association. Recombinant proteins can force the correct asso-
ciation of heavy-light chains and the heavy chains by multiple means.
Examples are the knob-in-holes approach where one heavy chain is
engineered with a knob consisting of relatively large amino acids and
the other heavy chain is engineered with a hole consisting of relatively
small amino acids (A. M. Merchant et al., 1998). Other examples are the
constructs with their fragments connected by peptide chains, such as
bispecific T cell engagers (BiTE) molecules, thereby circumventing ran-
dom association of the chains (Mack, Riethmuller, & Kufer, 1995).
3.3. Rational design

Like an antibody, a bsAb can be modified in countless ways to cus-
tomize its functionality and enhance its efficacy, such as by modulating
the immunogenicity, effector functions and half-life of an antibody
(Brinkmann & Kontermann, 2017; Carter, 2006).

As regardsmodulating the immunogenicity, the immunogenic parts
of antibody constructs that arise from production in mice are often re-
placed by human counterparts to reduce auto-immunogenicity (Birch
& Racher, 2006; Khazaeli, Conry, & LoBuglio, 1994). This results in the
production of chimeric and humanized antibody constructs. Fully
human antibody constructs are increasingly being produced, usually
by phage display or by immunizing mice that are transgenic for
human IgG (Carter, 2006). With phage display, a library of phages ex-
pressing antibody parts is screened for affinity to an antigen. Other
parts of antibody constructs that can elicit immunogenicity are foreign
amino acid sequences, possibly introduced by novel protein engineering
(Tovey & Lallemand, 2011).

As regards the effector function of an antibody, the Fc region plays a
central role in mediating this process. The region is involved in the
immune-mediated cell-killing mechanisms such as complement-
dependent cytotoxicity and antibody-dependent cellular cytotoxicity
(Scott et al., 2012). In contrast to tumor-cell targeting antibodies, for
which a functional Fc region is desired for target cell killing, antibodies
binding immune cells are designed to mitigate this cell killing. The
immune-mediated cell-killing mechanisms can be influenced by
glycoengineering and changing the amino acid sequence of the Fc re-
gion (Jiang et al., 2011; Shields et al., 2001). These techniques can en-
hance or diminish the immune-mediated cell killing via the antibody,
depending on the location and the function of the glycans and the
amino acids of the antibody that are modified. Besides abolishing
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immune-mediated cell killing, the entire Fc region can also be deleted,
leading to the distinction between Fc region-bearing and Fc region-
lacking antibodies (Kontermann & Brinkmann, 2015). This elimination
also drastically reduces the size of an antibody which affects pharmaco-
kinetics including its clearance and tumor penetration (Schmidt &
Wittrup, 2009).

An intact IgG antibody is 150 kDa and is cleared by the liver, while
proteins with amolecular weight below b60 kDa are cleared by the kid-
neys. Renal clearance is faster than hepatic clearance (Wittrup, Thurber,
Schmidt, & Rhoden, 2012). The size of an antibody can also be altered by
removing domains in the non-binding region of the Fab-region, the CL
and CH1 domains (Fig. 1A). If the non-binding domains are deleted
from the construct only the essential binding sites, i.e. the variable frag-
ments remain. These variable fragments linked together by a single pep-
tide chain are called a single chain variable fragment (scFv) (Weisser &
Hall, 2009). ScFvs are cleared rapidly from the circulation due to their
small size and the lack of the neonatal receptor. Therefore, continuous
administration of scFvs may be necessary when a constant blood level
is required for treatment of patients (Portell, Wenzell, & Advani,
2013). Moreover, scFvs can serve as building blocks to create bsAbs
(Fig. 1C).

Besides increasing the size, others options to extend the half-life of
an antibody construct are fusing with or binding to albumin, conjugat-
ing to polyethylene glycol fragments and fusing a Fc region to the con-
struct (Kontermann, 2016). Several bispecific constructs when fused
to human serum albumin, show increased in half-life in mouse models
(Müller et al., 2007). Also, adding a Fc region to bispecifics can circum-
vent the continuous administration that is required for small constructs
due to rapid clearance (L. Liu et al., 2017; Lorenczewski et al., 2017;
Moore et al., 2018). In non-human primates, the serum half-life of var-
ious BiTEs was extended from 6 to 44–167 h by fusing Fc region to
them (Arvedson et al., 2017).

BsAbs, in contrast to the standard antibody, do not always bind
bivalently to one target. Bivalent binding increases the avidity and can
affect the pharmacodynamics of the construct. Bivalent antibodies can
induce antibody-dependent dimerization. One example is the develop-
ment of an antibody that blocks mesenchymal epithelial transition fac-
tor (MET) kinase signaling. A monovalent antibody was engineered to
prevent dimerization of the MET receptors and downstream activation
(M. Merchant et al., 2013). Bivalent antibodies targeting CD3 can also
induce crosslinking between T cells leading to T cell lysis (Wong,
Eylath, Ghobrial, & Colvin, 1990). In contrast, a one-armed antibody
targeting CD3 failed to induce T cell lysis in vitro (Wong et al., 1990).
To prevent rejection in patients receiving a renal transplant, a bivalent
antibody targeting CD3 depleted T cells but also provoked serious cyto-
kine release (Gaston et al., 1991). With immune cell-engaging bsAbs in
oncology, immune cell depletion is not desired, so most of these bsAbs
bind CD3 monovalently.

4. Engagement of immune cells

The growing interest in cancer immunotherapy is also driving the
development of immune cell engaging bsAbs (Wu & Cheung, 2018).

The bsAb blinatumomab engages immune cells to B cell ALL
(Kantarjian et al., 2017). It engages the immune cell with the CD3 anti-
gen, a general marker of T cells. The T cell is bound to the tumor by
targeting a tumor-associated antigen (TAA). For blinatumomab this
TAA is CD19, a marker of B cells. Generally, a TAA should be specific
for tumor cells, leaving healthy tissue unharmed. The TAA does not
have to play a role in the pathogenesis of the cancer; its primary role
in case of immune cell-engaging bsAbs is to provide a binding place at
the tumor cell membrane.

The use of immune cell-engaging bsAbs has been explored for over
30 years (Songsivilai & Lachmann, 1990; Staerz, Kanagawa, & Bevan,
1985). Recently, blinatumomab has confirmed the potential of immune
cell-engaging bsAbs for the treatment of hematological malignancies
(Kantarjian et al., 2017; Topp et al., 2015). In a randomized study, pa-
tients with heavily pretreated B cell precursor ALL treated with
blinatumomab had a median survival of 7.7 months compared to
4.0 months for the chemotherapy treated group (Kantarjian et al.,
2017) (Table 2).

Most bsAbs in clinical trials are immune cell-engaging; 38 of the 57
oncology-related bsAbs reported on ClinicalTrials.gov are of this type
(Fig. 3).

4.1. CD3+ T cell-engaging bsAbs

Of the 38 immune cell-engaging bsAbs found in clinical trials, 36 en-
gage T cells by binding to T cell receptor CD3: 18 target hematological
malignancies and the remaining 16 target solid cancers.

When both T cell and tumor cell are bound by the bsAb, a cytolytic
synapse is formed. In this cytolytic synapse the T cell releases the
poreforming perforin and cytotoxic granzyme-B, leading to killing of
the target cell, as was proven in vitro (Offner, Hofmeister, Romaniuk,
Kufer, & Baeuerle, 2006) and has been visualized by confocal micros-
copy (Haas et al., 2009). Binding to a T cell in the absence of a target
cell does not activate the T cell as shown in in vitro T cell activation
and cytotoxicity assays with human peripheral blood mononuclear
cells (PBMCs) and BiTEs (Amann et al., 2009; Brischwein et al., 2007).

However, when epidermal growth factor receptor (EGFR) positive
and negative cancer cells were mixed in vitro and used to create
human xenograft mouse models, a BiTE binding CD3 and EGFR also in-
duced killing in the EGFR-negative cells (Ross et al., 2017). This illus-
trated that BiTE treatment can provoke killing of non-TAA expressing
tumor cells as well.

Preclinical research has suggested the involvement of immune
checkpoints in mitigating the response to immune cell-engaging
bsAbs in hematological cancers. Addition of AMG330, a BiTE targeting
CD33 and CD3, to a co-culture of primary acute myeloid leukemia
(AML) cells and PBMCs collected from patients resulted in upregulation
of programmed death ligand 1 (PD-L1) on predominantly AML cells
(Krupka et al., 2016). Addition of anti-PD-1 and/or anti-PD-L1 antibody
enhanced lysis of AML cells in these patient samples(Krupka et al.,
2016). In cynomolgus monkeys, a CD3 and B cell lineage marker
FcRH5 targeting full-length bsAb for the treatment ofmultiplemyeloma
induced PD1 + CD8+ T cells measured in blood, spleen, lymphnodes
and bonemarrow and depleted their B cells (Li et al., 2017). Combining
this bsAb with an anti-PD-L1 antibody in vitro increased lysis of tumor
cells transfected with a PD-L1 encoding plasmid (Li et al., 2017).

In many solid tumor mouse models, with functional immune sys-
tems, tumor responses have been observed with immune cell-
engaging bsAbs (Yu et al., 2017). For these studies, a broad range of
TAAs were chosen, including established tumor markers such as
carcinoembryonic antigen (CEA), EpCAM, human epidermal growth
factor receptor 2 (HER2) and EGFR. However, clinical efficacy data on
immune cell-engaging bsAbs in solid cancers in humans is scarce
(Table 2).

A noteworthy bsAb is IMCgp100, which engages CD3 to glycopro-
tein100 (gp100), an antigen associated with melanoma. The construct
used for IMCgp100, ImmTAC, targets the surface protein gp100 with a
T cell receptor (TCR) instead of the Fab region of an antibody (Liddy
et al., 2012) (Fig. 1C). The use of TCRs can enable targeting of intracellu-
lar oncoproteins presented by major histocompatibility complex mole-
cules. However, a polyclonal T cell response, such as that generated by
CD3-engaging bsAbs, is precluded. A TCR specific for the intracellular
WT1protein coupled to a scFv targeting CD3 (Dao et al., 2015), inhibited
xenograft mouse models of human leukemias and solid cancers.

A slightly different approach is the use of bsAb armed T cells (Lum
et al., 2015). An example is HER2Bi, a bsAb consisting of two linked an-
tibodies targeting HER2 and CD3. In a phase 1 study, T cells were har-
vested from the patient and cultured together with the bsAb. The T
cells plus the bsAb were then re-infused (Lum et al., 2015). Due to the

http://ClinicalTrials.gov


Fig. 3. BsAbs in development and registered in clinical trials at ClinicalTrials.gov in cancer patients. BsAbs are displayed as dots and their location in the chart indicates themost advanced
phase of development and theirmechanism of action. Registered bsAbs are all shown at the center of the chart and bsAbs in phase 1 are shown at the periphery. The bsAbs are also sorted
according tomechanism of action: the green part represents the engagement of immune cells, the red part represents targeted bsAbs and the yellow part represents signal blockade. The
color of the dot indicates whether the bsAb is targeted against a solid or hematological cancer.
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controlled binding to the T cells ex vivo, less bsAb is potentially required
and chance of side effectsmight be reduced (Bhutani & Lum, 2015). This
phase 1 study confirms relatively mild side effects, and showed in-
creased levels of cytokines generally involved in anti-tumor immune re-
sponses (Table 2).

4.2. Interplay of CD3+ T cell-engaging bsAbs with the immune system

In general, T cell engaging bsAbs destroy their target independent of
co-stimulation, as shown in in vitro cytotoxicity assays with human
PBMCs inducing cell death in a human lymphoma cell line in the pres-
ence of an anti-CD3× anti-CD19 bsAb (Dreier et al., 2002). However, ad-
dition of a co-stimulatory signal, in this case interleukin-2, can enhance
the potency, especially when the PBMCs are co-cultured with the co-
stimulatory signal (Dreier et al., 2002). Likewise, targeting co-
stimulatory molecules CD137 and CD28 as a co-treatment improved
tumor cell killing of immune engaging bsAbs (Liu et al., 2010). Combin-
ing a bsAb binding anti-CD137 and anti-CD20with a bsAb binding anti-
CD3 and anti-CD20, showed a synergistic effect in mice bearing human
lymphoma xenografts (Liu et al., 2010). However, the CD137 × CD3
bsAb alone did not reduce tumor growth.

Besides co-stimulatory molecules, co-inhibitory molecules are also
thought to hamper the effect of immune cell-engaging bsAbs. BsAb
RO6958688, the 2:1 CrossMab construct targeting CEA and CD3, in-
creased T cell infiltration into a xenograft colon carcinoma in mice co-
grafted with PBMCs as shown with intravital microscopy (Bacac et al.,
2016). Moreover administration of this bsAb converted a PD-L1 nega-
tive tumor in a PD-L1 positive tumor (Bacac et al., 2016). Similar results
were reported for transgenic mouse models with human CD3 and lung
and liver carcinoma transduced with human glypican-3 when treated
with ERY974, an IgG format bsAb targeting glypican-3 and CD3
(Ishiguro et al., 2017). In in vitro co-cultures of T cells and a panel of
tumor cell lines, a BiTE targeting CD3 and CEA induced PD1 expression
on T cells and PD-L1 expression on the tumor cells regardless of their
initial expression levels (Osada et al., 2015). Cytotoxicity of this BiTE
was enhanced by addition of anti-PD1 and anti-PD-L1 antibodies.

HEK293 tumor cells transfected with PD-L1 limited cytotoxic activ-
ity in vitro of HER2-TBD, an anti-HER2 x anti-CD3 bsAb (Junttila et al.,
2014). In that study, administration of this bsAb combined with a PD-
L1 blocking antibody restored the cytotoxic potential of the bsAb
(Junttila et al., 2014). Next, in a syngeneic tumor model in transgenic
mice expressing human CD3, human HER2-transfected CT26 tumors
were treatedwith the same anti-HER2 x anti-CD3 bsAb alone or in com-
bination with an anti-PD-L1 antibody (Junttila et al., 2014). The combi-
nation treatment also controlled the tumor growth more potently
(Junttila et al., 2014). An Fab(2)-scFv construct engaging CD3 to TROP-
2 was synergistic when combined with an anti-PD1 antibody to inhibit
tumor growth in spheroid models of the MDA-MB-231 breast cancer
cell line and when xenografted in mice (Chang et al., 2017).

The potential of immune cell engaging bsAbs to increase T cell infil-
tration into solid tumors (Ji Li et al., 2018) and the emerging evidence
that inhibition of the PD1/PD-L1 axis could potentiate the effect of
bsAbs, is leading to an increase in phase 1 trials evaluating immune
cell engaging bsAbs in combination with checkpoint inhibitors, espe-
cially anti-PD-L1 antibodies (Table 3). Early results show enhanced ac-
tivity of RO6958688, the CEA and CD3 targeting bsAb, when combined
with anti-PDL1 antibody atezolizumab in patients with metastatic
colorectal cancer (Argilés et al., 2017; Segal et al., 2017). Two of 31 pa-
tients treated with RO6958688 alone had a partial response, compared
to three of 14 patients treated with the combination (Argilés et al.,

http://ClinicalTrials.gov
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2017; Segal et al., 2017) (Table 2). Moreover, no additive toxicities
were seen.

4.3. Engagement of other immune receptors

Besides T cells, other effector cells or immune cell subsets can also
be engaged to tumor cells (Lameris et al., 2014). There are many CD3
+ T cell subtypes and not all contribute to anti-tumor immune re-
sponses. Regulatory T cells (Treg) suppress activated T cells. The amount
of Tregs in the peripheral blood prior to blinatumomab treatment in-
versely predicted response in 42 patients with B cell ALL (Duell et al.,
2017). In vitro, blinatumomab activated the Tregs which suppressed
the cytotoxicity of effector T cells (Duell et al., 2017). Preventing the ac-
tivation of Tregs is one of the rationales behind the development of a
CD8+ T cell and prostate stem cell antigen engaging tandem scFv
(Michalk et al., 2014). This bsAb did induce lysis of a human prostate
tumor cell line in vitro, but less effectively compared to a CD3+ T cell
engaging bsAb when co-cultured with human PBMCs and isolated
CD8+ T cells (Michalk et al., 2014).

A bsAb engaging the agonistic T cell receptor CD28 with CD20
showed robust tumor cell killing in vitro of several lymphoma cell
lines co-cultured with PBMCs (Otz, Große-Hovest, Hofmann,
Rammensee, & Jung, 2009). The BiTE-like construct RM28 targets
CD28 and the TAA melanoma-associated proteoglycan on melanoma
cells (Grosse-Hovest et al., 2003). A phase 1 trial in which this bsAb
was administered intralesionally in patients with metastatic melanoma
was completed in 2007 (NCT00204594), but results are not available.

BsAbs are also developed to target natural killer (NK)s, which are po-
tent cytotoxic lymphocytes of the innate immune system. A phase 1 trial
in patients with Hodgkin's lymphoma of AFM13, a tandem diabody
(TandAb) construct targeting CD30 and CD16, has been completed
(Rothe et al., 2015). In that study, activated NK cells and a decrease of
soluble CD30were seen in the peripheral blood, and three out of 26 pa-
tients had a partial remission (Rothe et al., 2015) (Table 2). A phase 2
trial with AFM13 is now ongoing in patients with Hodgkin's lymphoma
(Table S1).

A CD16 and CD33 NK-cell engaging bsAb was modified by introduc-
ing IL-15 between the anti-CD33 and anti-CD16 blocks (Fig. 1C) (Vallera
et al., 2016). It showed superior anti-tumor activity and enhanced sur-
vival of human NK cells in vitro compared to the non-modified bsAb
(Vallera et al., 2016). A trial of this trispecific construct, known as
161,533, is planned in patients with CD33+ myeloid malignancies
(Table S1).

5. Payload delivery

BsAbs are also options for payload delivery. Payload delivery via an-
tibodies, such as radioimmunotherapy and antibody-drug-conjugates,
has entered the clinic (Moek, de Groot, de Vries, & Fehrmann, 2017).
In this approach, a payload containing an isotope or a drug is directly
coupled to an antibody. The radioimmunotherapy 90Y-ibritumomab
tiuxetan is registered for the treatment of non-Hodgkin lymphoma,
the antibody-drug-conjugate ado-trastuzumab emtansine is registered
for the treatment of patients with metastatic HER2 overexpressing
breast cancer, and brentuximab vedotin is registered for the treatment
of Hodgkin lymphoma and systemic anaplastic large cell lymphoma.
They deliver their payload directly to the tumor by binding of the anti-
body to the TAA. The antibody, with payload, bound to the TAA is then
internalized and the payload is trapped in the cell and can exert its
effect.

Using a bsAb enables new targeting methods. Instead of direct cou-
pling to an antibody, a bsAb with affinity for the TAA and the payload
can be incubatedwith the payload before injection. Pretargeted delivery
could also be achieved by first injecting the bsAb with affinity for a TAA
and for a payload, and then injecting the payload. Pretargeting tech-
niques to deliver payloads to a tumor could potentially circumvent
prolonged exposure of healthy tissue to the payload, thus mitigating
toxicity and adverse effects (Boerman, van Schaijk, Oyen, & Corstens,
2003).

Connecting the payload and the bsAb is achieved by directing one
arm of the bsAb to a hapten of the payload (Goldenberg et al., 2012;
Goldenberg & Sharkey, 2007; Knight & Cornelissen, 2014). Haptens
are molecules that are not immunogenic by themselves, but can act as
an antigen and can be bound by an antibody.

The first paper reporting a clinical trial using a bsAb for delivery of a
payload was published in 1993 (Le Doussal et al., 1993). Currently, five
bsAbs delivering payloads are in clinical trials, four of which target solid
tumors. BsAb TF2, existing of three Fab fragments of which two target
CEA and one the payload, is most advanced with a phase 2 trial (Fig. 3).

5.1. Pretargeted delivery of a radioactive payload

Patients with medullary thyroid cancer expressing CEA were
injected with bsAb TF2, targeting CEA and the payload (Schoffelen
et al., 2013). After 24 h, the payload, a small peptide labeled with
111indium, was administered. Tumor-to-tissue ratios N1:20 were ob-
served 24 h after administering this small peptide showing the feasibil-
ity of pretargeting with bsAbs (Schoffelen et al., 2013). In theory, the
unbound payload will be cleared rapidly due to its small size, minimiz-
ing damage to not-targeted tissues (van de Watering, Rijpkema,
Robillard, Oyen, & Boerman, 2014).

When the payload is a therapeutic radiometal, the hapten can be the
chelator of the radiometal (Cheal et al., 2014). Another option is the use
of two haptens to create one large bivalent hapten that favors the bind-
ing to two tumor-bound bsAbs, which would stabilize binding to the
tumor (Barbet et al., 1999). This system is called affinity enhancement
system (Le Doussal, Martin, Gautherot, Delaage, & Barbet, 1989) and
has been used in clinical studies (Table 2).

For the pretargeted delivery of yttrium-90 for radioimmunotherapy,
a bsAb with affinity for CD38 and the DOTA-yttrium complex was com-
paredwith an antibody binding the radiometal via a streptavidin-biotin
bond. In mice xenografted with non-Hodgkin lymphoma, or multiple
myeloma, the bsAb approach showed a superior antitumor effect com-
pared to the streptavidin-biotin approach (Green et al., 2018).

Pretargeting can also be achieved with alternatives for linking the
payload and the antibody. These include streptavidin-biotin, oligonucle-
otides or click-chemistry, such as the cycloaddition reaction between a
tetrazine and a trans-cyclooctene (Altai, Membreno, Cook, Tolmachev,
& Zeglis, 2017). However the approach with bsAbs is the only one that
has been tested in the clinic so far (Altai et al., 2017) (Table 2).

5.2. Delivery of other payloads

Pretargeted delivery of other toxic payloads by bsAbs, such as doxo-
rubicin, has been explored in animal models by binding a chelator-
hapten (Gada, Patil, Panwar, Hatefi, & Khaw, 2012; Khaw et al., 2014).
In these studies, the chelator was loaded with the radioisotope
technetium-99 to validate target-specific binding. Other haptens, such
as digoxigenin, can also be conjugated to the payload and are used for
drug delivery (Dengl, Sustmann, & Brinkmann, 2016). Several payloads,
such as doxorubicin and the fluorescent dye Cy5 conjugated to
digoxigenin, showed specific targeting in human xenograft mouse
models (Metz et al., 2011).

A direct targeting approach, in which the bsAb and the payload are
incubated prior to administration is being tested in the clinic
(MacDiarmid et al., 2007) (Table 2 andS1). In this approach, the payload
is encapsulated in a bacterially-derived nanocell, which is called an
engeneic delivery vehicle (EDV), and the bsAbs are two antibodies
linked together via their Fc regions (MacDiarmid et al., 2007). The pay-
load can be a chemotherapeutic drug such as doxorubicin or paclitaxel,
but also silencing microRNA. Results of three trials that tested EDVs



Table 1
Constructs of the bsAbs in clinical trials.

Construct Structure Characteristics bsAbs

TrioMab Produced in a rat/mouse quadroma (Chelius et al., 2010).
One heavy-light chain is rat, the other heavy-light chain is
mouse.

Species restricted heavy-light chain pairing Catumaxomab

IgG-like, common
light chain.

IgG like with each Fab binding another epitope. Heterodimerization of heavy chains is based on the
knob-in-holes or a another heavy chain pairing
technique. Randomly pairs light chains to heavy pairs.
Often a common light chain is used (Dovedi et al., 2018),
(E. J. Smith et al., 2015), (Yen et al., 2016), (de Vries
Schultink et al., 2018).

ERY972, BTCT4465A,
MCLA-117, MCLA-128,
MEDI5752, OMP305B83,
REGN1979, ZW25

CrossMab Uses the knob-in-holes technique for the heavy chain
pairing. The CH1 domain of the heavy chain is switched
with the constant domain of the light chain (CL) (Klein,
Schaefer, & Regula, 2016).

Ensures specific pairing between the heavy-light chains.
No side products possible.

Vanucizumab

2:1 CrossMab An additional Fab-fragment is added to the N-terminus of
its VH domain of the CrossMab (Klein et al., 2016), (Bacac
et al., 2018).

The added Fab-fragment to the CrossMab increases the
avidity by enabling bivalent binding.

RO6958688, RO7082859

2:2 CrossMab A tetravalent bispecific antibody generated by fusing a
Fab-fragment to each C-terminus of a CrossMab (Klein
et al., 2016). These Fab-fragments are crossed: their CH1
is switched with their CL. VH is fused to their CL and the
VL to the CH1 (Brünker et al., 2016).

CrossMab technology in Fab-fragments ensure specific
pairing. Avidity is enhanced by double bivalent binding.

RO6874813

Duobody The Fab-exchange mechanism naturally occurring in IgG4
antibodies is mimicked in a controlled matter in IgG1
antibodies, a mechanism called controlled Fab exchange
(Labrijn et al., 2013).

Ensures specific pairing between heavy-light chains and
heterodimerization of heavy chains.

JNJ-61186372,
JNJ-64007957

Dual-variable-domain
antibody (DVD-Ig)

Additional VH and variable light chain (VL) domain are
added to each N-terminus for bispecific targeting (Jakob
et al., 2013).

This format resembles the IgG-scFv, but the added
binding domains are bound individually to their
respective N-termini instead of a scFv to each heavy
chain N-terminus.

ABT165

scFv-IgG Two scFv are connected to the C-terminus of the heavy
chain (CH3) (Xu et al., 2013).

Has two different bivalent binding sites and is
consequently also called tetravalent. No heavy-chain and
light-chain pairing problem.

MM-141, NOV1501/ABL001

IgG-IgG Two intact IgG antibodies are conjugated by chemically
linking the C-terminals of the heavy chains (Ma et al.,
2013).

Facile development using available antibodies. EGFRBi, HER2Bi, Cerebral EDV,
KIDEDV, TargoMir

Fab-scFv-Fc Assembly of a light chain, heavy chain and a third chain
containing the Fc region and the scFv (Moretti et al.,
2013), (Chu et al., 2014), (de Zafra et al., 2017).

Efficient manufacturing and purification. XmAb14045, XmAb13676,
XmAb18087,
XmAb20717, AMG424,
GBR1302,
GBR1342

TF Three Fab fragments are linked by disulfide bridges (Rossi
et al., 2006). Two fragments target the tumor associated
antigen (TAA) and one fragment targets a hapten.

Lacks an Fc region. TF2

ADAPTIR Two scFvs bound to each sides of an Fc region
(Hernandez-Hoyos et al., 2016).

Abandons the intact IgG as a basis for its construct, but
conserves the Fc region to extend the half-life and
facilitate purification.

ES414

Bispecific T cell
Engager (BiTE)

Consists of two scFvs, VLA VHA and VHB VLB on one
peptide chain (Mack et al., 1995).

Has only binding domains, no Fc region. Blinatumomab, AMG110,
AMG211, AMG330,
BAY2010112, BFCR4350A and
BI836909/AMG420

BiTE-Fc An Fc region is fused to the BiTE construct (Lorenczewski
et al., 2017).

Addition of Fc region enhances half-life leading to longer
effective concentrations, avoiding continuous IV
(Arvedson et al., 2017).

AMG757

Dual affinity
retargeting (DART)

Two peptide chains connecting the opposite fragments,
thus VLA with VHB and VLB with VHA, and a sulfur bond at
their C-termini fusing them together (Moore et al., 2011).

Sulfur bond supposed to improve stability over BiTEs. MGD006

DART-Fc An Fc region is attached to the DART structure. Generated
by assembling three chains. Two via a disulfide bond, as
with the DART. One chain contains half of the Fc region
which will dimerize with the third chain, only expressing
the Fc region (Moore et al., 2018), (Root et al., 2016).

Addition of Fc region enhances half-life leading to longer
effective concentrations, avoiding continuous IV.

MGD007, MGD009,
PF-06671008

Tetravalent DART Four peptide chains are assembled. Basically, two DART
molecules are created with half an Fc region and will
dimerize (La Motte-Mohs et al., 2017).

Bivalent binding to both targets, thus a tetravalent
molecule

MGD013

Tandem diabody
(TandAb)

Two diabodies. Each diabody consists of an VHA and VLB
fragment and a VHA and VLB fragment covalently
associating. Two diabodies are linked with a peptide chain
(Kipriyanov et al., 1999).

Designed to improve stability over the diabody
consisting of two scFvs (Kipriyanov et al., 1999). Has two
bivalent binding sites.

AFM11, AFM13, AMV564

scFv-scFv-toxin Toxin and two scFv with a stabilizing linker (Vallera, Chen,
Sicheneder, Panoskaltsis-Mortari, & Taras, 2009).

Specific delivery of payload DT2219ARL

Modular
scFv-scFv-scFv

One scFv directed against the TAA is tagged with a short
recognizable peptide is assembled to a bsAb consisting of
two scFvs, one directed against CD3 and one against the
recognizable peptide (Arndt et al., 2014).

Modular system, thus flexible, built around the
recognizable peptide.

GEM333

(continued on next page)
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Table 1 (continued)

Construct Structure Characteristics bsAbs

ImmTAC A stabilized and soluble T cell receptor is fused to a scFv
recognizing CD3 (Oates, Hassan, & Jakobsen, 2015).

By using a TCR, the ImmTAC is suitable to target
processed, e.g. intracellular, proteins.

IMCgp100, IMCnyeso

Tri-specific nanobody Two single variable domains (nanobodies) with an
additional module for half-life extension (I. Hofmann
et al., 2015).

Extra module added to enhance half-life. BI836880

Trispecific Killer
Engager (TriKE)

Two scFvs connected via polypeptide linkers
incorporating human IL-15 (Vallera et al., 2016).

Linker to IL-15 added to increase survival and
proliferation of NKs

161,533
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have been published (Table 2). The phase 1 data showed an acceptable
safety profile.

The bsAb DT2219 has a directly conjugated payload and targets both
CD22 and CD19 to enhance specific delivery. The payload is the toxin
diphtheria and enters the cytosol after internalization by CD19 and/or
CD22 (Bachanova et al., 2015). This bsAb has been studied in patients
with refractory B cell malignancies and one complete and one partial re-
sponse were reported out of 25 patients (Table 2).

6. Signaling blockade

Targetingmultiple epitopes or receptors in cancer with combination
therapies is a popular approach andmany combinational approaches to
antibody treatments are being evaluated in clinical trials (D. S. Chen &
Mellman, 2017; Henricks, Schellens, Huitema, & Beijnen, 2015; Smyth,
Ngiow, Ribas, & Teng, 2016).

A combination of nivolumab, an anti-PD-1 antibody, with
ipilimumab, an anti-CTLA4 antibody, has been approved by the FDA
and EMA for metastatic melanoma (Postow et al., 2015). Recently, this
combination was also approved for the treatment of advanced renal
cell carcinomaby the FDA (Motzer et al., 2018). A slightly different com-
bination treatment is a multi-epitope approach with pertuzumab and
trastuzumab, both targeting HER2 but on different epitopes. It has
been approved as a combination treatment for patients withmetastatic
HER2-positive tumors (Swain et al., 2015).

Theoretically, the targets of two antibodies could be incorporated
into a single bsAb, which could yield various benefits. The specificity
of such a drugmight be enhanced by co-localization of receptors on can-
cers, thus minimizing on-target toxicity of healthy tissues. Also, im-
provements of binding affinity might be achieved by targeting
different epitopes of one antigen. Potential disadvantages of such a
bsAb are that it would limit itself to one combination of antigens,
while antibodies can be combined freely, and it would prevent the se-
quential administration or personalized dosing of two antibodies. Ac-
cording to ClinicalTrials.gov, 14 bsAbs that block signaling important
for the tumor are being studied in clinical trials.

6.1. Tumor cell surface receptors

Due to their crosstalk, common targets for bsAbs that disrupt two
signals are the ErbB family members, EGFR, HER2 and HER3
(Fitzgerald et al., 2014; Huang et al., 2013; McDonagh et al., 2012;
Moores et al., 2016; Weidle, Kontermann, & Brinkmann, 2014).

BsAbs MM-111, JNJ-61186372 and MEHD7945A are examples that
are directed against one or more of these targets (Table S1). They do
so with different constructs, although all have a long half-life (Table 1).

Interestingly, bsAb MEHD7945A, targeting EGFR and HER3, is more
effective than either the anti-EGFR antibody cetuximab or the EGFR ki-
nase inhibitor erlotinib and overcomes cetuximabor erlotinib resistance
in mice xenografted with human non-small cell lung cancer and head
and neck squamous cell carcinoma. Most likely this is due to shutting
down crosstalk in the signaling pathways of the ErbB family members
(Huang et al., 2013). Nevertheless, no benefit of MEHD7945A over
cetuximab was found in phase 2 trails in patients with metastatic colo-
rectal cancer (Hill et al., 2018) and head and neck squamous cell
carcinoma (Fayette et al., 2016). Therefore development of this bsAb
has stopped (Table 2).

Other targets that are being investigated are death receptors, such as
CD95, or receptors involved in lysosomal internalization, such as CD63.
A bsAb targeting CD20 andCD95,wasmore effective in inhibiting tumor
growth in human xenograft mousemodels than different anti-CD20 an-
tibody variants (Nalivaiko et al., 2016). To improve antibody drug con-
jugates, a bsAb loaded with a drug was designed that bound the
receptor CD63 in addition to HER2. This induced internalization, as
shownwithfluorescent confocalmicroscopy, and improved tumor inhi-
bition of HER2-positive xenograft mouse models (de Goeij et al., 2016).

The CD47-SIRPα interaction, also called the “don't eatme signal”, in-
hibits phagocytosis of CD47-expressing cells via SIRPα expressed on
macrophages (Jaiswal et al., 2009) and is overexpressed on many solid
and hematological tumor cells (Willingham et al., 2012). This interac-
tion can also be disrupted by bsAbs. In mice xenografted with Raji
tumor cells, an IgG-scFv bsAb targeting CD20 and CD47 prolonged sur-
vival and an IgG-like bsAb targeting CD19 and CD47 eradicated the
tumor (Dheilly et al., 2017; Piccione et al., 2015), while monotherapies
with anti-CD47, anti-CD20 or anti-CD19 antibodies were not effective.

Targeting SIRPα did not induce tumor regression in mice
xenograftedwith Burkitt's lymphoma (Ring et al., 2017), although com-
bination with the anti-CD20 antibody rituximab resulted in synergistic
effects, and a bsAb targeting SIRPα and CD70 slowed tumor growth.
However, the bsAb yielded the same reduction in tumor growth as an
anti-SIRPα antibody combined with an anti-CD70 antibody.

6.2. Immune receptors

Following the establishment of immune checkpoint inhibitors and
combinations thereof as therapies in oncology, bsAbs are being explored
as additions or improvements to these existing therapies. Tetravalent
dual affinity retargeting (DART) construct MGD013 targets both
lymphocyteactivationgene3 (LAG-3) andPD-1bivalently; itwill beeval-
uated in a clinical trial in patients with advanced solid tumor (LaMotte-
Mohs et al., 2016). In vitro, MGD013 gave rise to increased cytokine
release by T cells compared to monotherapies or combination therapies,
indicating increased T cell activation (LaMotte-Mohs et al., 2016).

MEDI5752 is amonovalent antibody combining PD-1 and CTLA-4 in-
hibition preferentially on tumor-infiltrated lymphocytes (Dovedi et al.,
2018). This will be tested in a clinical trial in patients with advanced
solid tumors (Table S1).

IgG-like construct FS118 also blocks two pathways by targeting PD-
L1 via its Fab-fragments and LAG-3 via its Fc region (Kraman et al.,
2017). A murine counterpart of FS118, targeting murine LAG-3 and
PD-L1, induced dose-dependent anti-tumor activity (Kraman et al.,
2017) and changed the composition of immune infiltrating lympho-
cytes by increasing the ratio CD8:Tregs (Kraman et al., 2018). This con-
struct is being tested in a clinical trial in patients with advanced cancer
(Table S1).

6.3. Inhibiting angiogenesis

Instead of binding two cell membrane epitopes, the tumor environ-
ment itself can also be a target. The CrossMab construct vanucizumab

http://ClinicalTrials.gov


Table 2
Clinical results of bsAbs.

bsAb Phase Indication Dose Key results Ref

Blinatumomab (CD19 x CD3) III Adults with heavily pretreated B
cell precursor ALL (n = 376)

9 μg/d cIV over 1 week,
followed by 28 μg/d cIV for 3
weeks

Blinatumomab treated:
OS: 7.7 months, CR:44%, grade 3+ AE:
87%.
Chemotherapy treated:
OS: 4.0 months, CR:25%, grade 3+ AE:
92%.

(Kantarjian et al.,
2017)

Blinatumomab (CD19 x CD3)
+ tyrosine kinase inhibitor

Retrospective Adults with relapsed/refractory
Ph + acute lymphoblastic
leukemia (n = 9) and chronic
myeloid leukemia in blast crisis
(n = 3)

blinatumomab and a TKI
(ponatinib, n = 8; dasatinib,
n = 3; bosutinib, n = 1)

OS: not reached after 14 months,
CR: 9/12,
AE: 2/12 grade 2 cytokine release
syndrome.

(Assi et al., 2017)

Catumaxomab (EpCAM x
CD3)

II/III Malignant ascites secondary to
epithelial cancers (n = 258)

10, 20, 50 and 150 μg/day on
day 0, 3, 7, 10, respectively, via
IP infusion

Catumaxomab plus paracentesis
treated:
OS:72 days,
puncture free survival: 46 days.
Paracentesis treated:
OS: 68 days,
puncture free survival: 11 days.
AE: 23% of patients had a serious
adverse event. AE: pyrexia (60.5%),
abdominal pain (42.7%), nausea
(33.1%), vomiting (27.4%).

(Heiss et al.,
2010)

MEHD7945A/Duligotuzumab
(EGFR x HER3)

II RAS wild-type metastatic
colorectal cancer (n = 134)

Duligotuzumab 1100 mg IV
every 2 weeks + FOLFIRI
(n = 68)
Cetuximab 400 mg/m2 iv,
followed by 250 mg/m2 IV
weekly + FOLFIRI (n = 66)

Patient outcomes not improved,
development stopped.
PFS: 7.3 vs 5.7 months,
OS: 14 vs 12.4 months,
CR: 0% vs 3%.
Duligotuzumab vs cetuximab,
respectively.
AE: rash (84%), diarrhea (79%), fatigue
(62%), and nausea (50%). Similar G ≥ 3
AEs between treatment groups.

(Hill et al., 2018)

MEHD7945A/Duligotuzumab
(EGFR x HER3)

II Head and neck squamous cell
carcinoma (n = 121)

Duligotuzumab: 1100 mg iv
every 2 weeks (n = 59)
Cetuximab: 400 mg/m2 iv,
followed by 250 mg/m2 iv
weekly (n = 62)

PFS: 4.2 vs 4.0 months,
OS: 7.2 vs 8.7 months,
CR: 2% vs 18%.
Duligotuzumab vs cetuximab,
respectively.

AE: rash, infections diarrhea, fatigue,
and nausea. G ≥ 3 AEs in the
duligotuzumab arm (61%) versus
cetuximab arm (51%)

(Fayette et al.,
2016)

AFM13 (CD30 x CD16A) I Relapsed or refractory Hodgkin's
lymphoma (n = 28)

Weekly infusion for 4 weeks.
0.01, 0.04, 0.15, 0.5, 1.5, 4.5,
and 7.0 mg/kg body weight

PR: 11.5%, SD: 50%.
AE: fever (53.6%), chills (39.3%),
headache (28.6%), nausea and
nasopharyngitis (17.9%), and infusion
reaction, rash, vomiting, and
pneumonia (14.3%). MTD not reached.

(Rothe et al.,
2015)

AMG110 (EpCAM x CD3) I Relapsed or refractory solid
tumors (n = 65)

1–96 μ/day cIVfor ≥28 days MTD: 24 μ/day.
SD: 18/64.
AE: Diarrhea (46%), pyrexia (43%),
peripheral edema (40%), nausea (39%),
vomiting (34%), abdominal pain (32%),
AE ≥ G: 95%.

(Kebenko et al.,
2018)

AMG211 (CEA x CD3) I Relapsed of refractory
gastrointestinal adenocarcinoma
(n = 44)

0.2–12.8 μg/day cIV for 1–3
weeks.

Disease progression in 33/44 pts.
AE: fatigue, nausea, abdominal pain,
pyrexia and diarrhea.

(Moek et al.,
2018)

BI836880 (VEGF x Ang-2) I Advanced or metastatic solid
cancer (n = 29)

Schedule 1: 40–1000 mg every
three weeks.
Schedule 2:40–180 mg every
week.

MTD/RP2D: 720 mg every three weeks.
PR: 7%,
SD: 31%.
AE: Hypertension (86%), asthenia
(48%), nausea (45%) and vomiting
(38%).

(Le Tourneau,
Claus, et al.,
2018; Le
Tourneau,
Tabernero, et al.,
2018)

BIS-1 (EpCAM x CD3) I Malignant peritoneal or pleural
effusion (n = 9)

Autologous activated T
lymphocytes in the presence of
BIS-1 were locally infused in
patients with peritoneal or
pleural effusion.

Effusions showed a reduction or
complete disappearance of tumor cells
24 h after start of treatment.

(Kroesen et al.,
1997)

Renal cell cancer (RCC) (n = 14) RCC patients received 1, 3 or 5
μg/kg BIS-1 (without Fc
region) accompanied with SC
interleukin-2 therapy.

For BIS-1 without Fc region, no
responses were seen.
AE: Severe toxicity observed at 3 and 5
μg/kg

(continued on next page)
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Table 2 (continued)

bsAb Phase Indication Dose Key results Ref

CD20Bi (CD20 x CD3) I Lymphoma and myeloma
(n = 12)

5, 10, 15, 20 or 40 × 109 T cells
incubated with CD20Bi per
infusion

AE: chills, fever, hypotension, fatigue.
MTD not reached.

(Lum et al.,
2013)

DT2219 (CD19 x CD22) I Refractory B cell malignancies
(n = 25)

0.5, 1.25, 2.5, 5, 10, 20, 40, 60,
80 μg/kg/day every other day
for 4 total doses (days 1, 3, 5,
and 8)

CR:1/25, PR: 1/25
RP2D: 40–80 μg/kg/day.
AE: weight gain (range, 5%–14% of
baseline), peripheral edema, and
hypoalbuminemia consistent with
capillary leak syndrome, grade 1–2
fever, and fatigue.

(Bachanova et al.,
2015)

EGFRBi
(EGFR x CD3)

I Advanced pancreatic and colon
cancer (n = 5)

10, 20 or 40 × 109 T cells
incubated with EGFRBi by
infusion

OS: 14.5 months,
AE: grade 1–2 headaches, fevers, chills
and blood pressure changes.
MTD not reached.

(Lum, 2015)

EGFR-nanocell-paclitaxel I Advanced solid tumors (n = 28) 1 × 108, 1 × 109, 3 × 109, 1, 1.5,
2, 5 × 1010 nanocells per
weekly infusion, 5 weeks

SD:10/22 patients,
MTD: 1 × 1010, RP2D: 5 × 109 nanocells
per infusion.
AE: grade 4 lymphopenia (2/28), grade
4 elevated aminotransferase (1/28) and
grade 4 elevated alanine transaminase
(1/28). Common AE: transient chills
(16/28, 57%) and pyrexia (13/28, 46%).

(Solomon et al.,
2015)

EGFR-nanocell-doxorubicin I/II Recurrent glioblastoma (n= 16) 1 × 109, 2 × 109, 5 × 109, and 8
× 109 nanocells per weekly
infusion, 8 weeks

OS: 9 months and 21 days, SD: 28%,
RP2D: 8 × 109 nanocells per infusion.
No DLT observed.
AE: nausea (7/16), fever (5/16), and
chills or rigors (5/16).

(Whittle et al.,
2015)

F6–734/hMN14–734 (CEA x
DTPA)

Retrospective Metastatic medullary thyroid
cancer (n = 29) versus control
metastatic medullary thyroid
cancer (n = 39)

20–50 mg of
anti-CEA/anti–DTPA-indium
murine BsMAb F6–734, 4 days
later the hapten labeled with
1.4 to 4.1 GBq of 131iodine.
Or 40 or 75 mg/m2 humanized
anti-CEA/murine anti–
DTPA-indium BsMAb
(hMN14–734), 5 days later 2.7
GBq of 131iodine labeled
hapten.

100% increase in serum calcitonin
doubling times (defined as biologic
responder) and bone-marrow
involvement are prognostic indicators
in patients.
OS biologic responders: 159 months,
OS non-responders: 109 months,
OS untreated: 61 months.
AE: grade 4 thrombocytopenia (5/29)
and grade 4 neutropenia (4/29)

(Chatal et al.,
2006)

FBTA05 (CD20 x CD3) I recurrent or refractory B cell
malignanciesRecurrent or
refractory B cell malignanciess
Pediatric recurrent or refractory
B cell malignancies (n = 10)

Individual treatment
schedules. Doses from 10 to
300 μg weekly or 10–100 μg
daily.

CR: 5/10,
PR: 1/10,
SD: 3/10.
AE: acute infusion reactions, fatigue,
hypotension.

(Schuster et al.,
2015)

HER2Bi (HER2 x CD3) I Metastatic breast cancer
(n = 22)

5, 10, 20 or 40 × 109 T cells
incubated with HER2Bi per
infusion

SD: 13/22, PD: 9/22,
OS HER2 3+ patients: 36.2 months,
OS HER2 0–2+: 27.4 months.
AE: grade 3 chills and grade 3
headaches. Nausea/diarrhea: 9/22
patients.
MTD not reached.

(Lum et al.,
2015)

IMCgp100 (gp100 x CD3) I Metastatic uveal melanoma
(n = 19)

Week 1: 20 μg iv, once.
Week 2: 30 μg iv, once.
Week 3 and beyond: 60, 70,
80, 75 μg per week

MTD/R2PD: 75 μg.
SD:12/19.
AE: pruritus (84%), pyrexia (84%),
fatigue (74%), hypotension (15%),
peripheral edema (63%).

(Sato et al., 2017)

IMCgp100 (gp100 x CD3) I Advanced melanoma (n = 31) 5 ng/kg to 900 ng/kg IV every
week or daily

MTD: 600 ng/kg weekly iv
PR: 4/26,
SD: 12/26,
AE: rash (100%), pruritus (64%),
pyrexia (50%), and periorbital edema
(46%).

(Middleton et al.,
2016)

LY3164530 (MET x EGFR) I Advanced or metastatic cancer
(n = 29)

Schedule 1:300–1250 mg
every 2 weeks.
Schedule 2: 500–600 mg
weekly.

Development stopped due to toxicity
and lack of potential predictive
biomarker.

MTD schedule 1:1000 mg
MTD schedule 2: 500 mg
OR: 10.3%,
SD: 17.2%.
AE: Acneiform (84%), hypomagnesemia
(55.2%), paronychia (34.5%).

(Patnaik et al.,
2018)

MCLA-128
(HER2 x HER3)

I/II Advanced solid tumors (n = 28) 40–900 mg every 3 weeks IV
over 1–2 h
Phase 2 part, at RP2D

No DLT observed. RP2D: 750 mg every
3 weeks.
Phase 2: 8 patients with HER2
amplified metastatic breast cancer.
PR:1/8, SD: 5/8,
AE: infusion related effects (40%), G1–2

(Alsina et al.,
2017)
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Table 2 (continued)

bsAb Phase Indication Dose Key results Ref

diarrhea (13%), rash (13%), fatigue
(13%).

MDX-447 (EGFR x CD64) I Advanced solid tumors (n = 64) 1–40 mg/m2, IV weekly.
1 to 15 mg/m2 in combination
with G-CSF (3 μg/kg) sc

MTD MDX-447 alone: 30 mg/m2

CR: 0, PR: 0
AE: 633 administrations, 41 grade 3 or
4 event containing: hypotension (7),
dyspnea (5), pain (3), hypertension
(3), headache (2), fever (2), diarrhea
(2), thrombocytopenia (2), and
hyperglycemia (2).

(Fury, Lipton,
Smith, Winston,
& Pfister, 2008)

MM-111 (HER2 x HER3) I HER2+ cancers (n = 86) 10, 20, 30 and 40 mg/kg,
weekly

MTD not reached.
RP2D: 20 mg/kg weekly and 40 mg
every 3 weeks.
CR:1/74, PR: 18/74, SD: 26/74.

(Richards et al.,
2014)

MM-141 (IGF-1R x HER3) I Hepatocellular carcinoma,
relapsed or refractory solid
tumors (n = 42)

Weekly doses of 6, 12 or 20
mg/kg, or biweekly doses of 40
mg/kg. Cohort expansion at 20
mg/kg/week group

Patients with detectable serum levels of
free IGF-1 prior to the start of therapy
remained on study longer than those
with undetectable levels (9 vs 15.7
weeks).
SAE in N20% of patients: nausea,
vomiting, decreased appetite and
headache.

(Isakoff et al.,
2016)

OMP-305B83 (DLL4 x VEGF) I Previously treated solid cancers
(n = 49)

0.5–10 mg/kg every 3 weeks PR: 1/39,
SD: 14/39.
AE: systemic hypertension (54%),
fatigue (20%), headache (24%), anemia
(13%), dyspnea (11%).

(Jimeno et al.,
2016)

RG7802, RO6958688 (CEA x
CD3)

I Advanced CEA+ solid tumors
(n = 118)

Group 1: 0.05–600 mg,
Group 2: combined with 1200
mg atezolizumab (anti-PDL1):
5–160 mg per week

Group 1: PR: 2/31, AE: pyrexia (56%),
infusion related reaction (50%),
diarrhea (40%).
DLTs: G3 dyspnea, G3 diarrhea, G4
colitis and G5 respiratory failure.
Group 2: PR: 3/14, no additive
toxicities.

(Argilés et al.,
2017; Segal et al.,
2017; Tabernero
et al., 2017)

RO6874813 (FAP x DR5) I Advanced solid tumors (n = 32) 0.5–45 mg/kg every week or
every other week

MTD: not reached.
PR: 1/31,
SD: 6/31.
AE: fatigue (21.9%), nausea (15.6%),
and infusion-related reactions (9.4%).
AEs ≥ G3: anemia (3.6%) and asthenia
(3.6%)

(Bendell et al.,
2018)

TargoMIRs (EGFR x
EDV-miR16)

I Malignant pleural mesothelioma
(n = 27)

5 × 109, 7 × 109, and 9 × 109

TargomiRs either once or twice
weekly IV.
After eight patients, all
subsequent patients 1 × 109

TargomiRs.

MTD: 5 × 109 TargomiRs.
PR: 1/22,
SD: 15/22.
AE: transient lymphopenia (25/26),
temporal hypophosphatemia (17/26).

(van Zandwijk
et al., 2017)

TF2 + IMP288 (CEA x
IMP288)

I CEA+ colorectal cancers
(n = 20)

Imaging with 111indium to
confirm tumor targeting.
If targeting confirmed, then
treated with 2.5–7.4 GBq
177lutetium.
TF2: 75-150 mg,
1 or 5 days later
IMP288: 25–100 μg

Rapid imaging possible, tumor to tissue
ratio N 20:1 after 24 h. No tumor
responses observed.
AE: grade 3/4 thrombocytopenia
(1/20), and grade 3 lymphopenia
(1/20).

(Schoffelen et al.,
2013)

TF2 + IMP288 (CEA x
IMP288)

I Medullary thyroid carcinoma
(n = 15)

60-120 nmol TF2,
3–6 nmol IMP288, 24-42 h
between injections. Positron
emission tomography:1–2 h
after injection

Imaging protocol.
30 h between injection and
TF2/IMP288 ratio of 20 is optimal.

(Bodet-Milin
et al., 2016)

Vanucizumab (Ang-2 x
VEGF-A)

I Cisplatin resistant ovarian
cancer (n = 41)

30 mg/kg IV every 2 weeks PR: 29% (12/41),
SD: 53% (21/41).
AE: hypertension (53%), asthenia
(39%), constipation (34%), abdominal
pain (32%), peripheral
(24%)/lymphedema (19%), vomiting
(24%), diarrhea (19%). AEs ≥ G3:
hypertension (10/24%), pyelonephritis
(3/7%), GI-perforation, peritonitis,
intestinal obstruction, pulmonary
embolism, dyspnea (2/5%).

(Oaknin et al.,
2015)

ZW25 (HER2 x HER2) I HER2+ cancers (n = 9) 5, 10 mg/kg. 15 mg/kg planned PR: 2/8, SD:1/8.
AE: infusion reaction (5/9), diarrhea
(4/9), fatigue (3/9).

(Meric-Bernstam
et al., 2017)

IV, intravenously; IP, intraperitoneal; SC, subcutaneously; OR, overall response; CR, complete response; PR, partial response; SD, stable disease; OS, overall survival; DLT, dose limiting tox-
icity; MTD maximum tolerable dose; AE, adverse event; RP2D, recommended phase 2 dose; G1–4, grade 1–4.
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inhibits angiogenesis by depleting angiogenin-2 (Ang-2) and vascular
endothelial growth factor-A (VEGF-A) in the tumor environment. The
bsAb OMP-305B83 targets delta-like ligand 4 and VEGF. In this con-
struct, both bsAbs are Fc-bearing since a long half-life is paramount to
effective depletion of factors.

Vanucizumab inhibited tumor growth and metastasis in mice bear-
ing multiple syngeneic, patient-derived and xenograft tumor models
(Kienast et al., 2013). It also increased activation of intratumoral im-
mune cells leading to upregulated PD-L1 expression by endothelial
cells (again in multiple syngeneic mouse models) (Schmittnaegel
et al., 2017). In this approach, adding anti-PD-1 antibody treatment to
vanucizumab increased survival providing further rational to evaluate
this bsAb in combination with immunotherapies (Table 3).
6.4. Increasing specificity

The bsAb RO6874813, a 2:2 CrossMab, involves a different approach.
It has affinity for the death receptor (DR) 5, one of the activating TNF-
related apoptosis-inducing ligand receptors on tumor cells, and for fi-
broblast activation protein (FAP) on cancer-associated fibroblasts. In
contrast to previous attempts with antibodies to activate DR5 on
tumor cells, this bsAb enhances specificity to the tumor by using the af-
finity for the cancer-associated fibroblasts (Brünker et al., 2016). In
in vitro and in human xenograft mouse models with fibroblasts com-
bined with different carcinomas or a patient-derived sarcoma, the effi-
cacy of this bsAb depended on the presence of cancer-associated
fibroblasts. In in vivomodels, the bsAb inhibited tumor growthmore ef-
fectively than the anti-DR5 therapy (Brünker et al., 2016).
Table 3
BsAbs in clinical trials in combination with immune modulators.

bsAb Immunotherapy Phase Indication

ABT-165 (DLL4 x
VEGF)

ABBV-181 (anti-PD-1 mAb) I Advanced

AFM13 (CD30 x
CD16A)

Pembrolizumab (anti-PD-1 mAb) I Hodgkin l

BI836880 (Ang2 x
VEGF)

BI754091 (anti-PD-1 mAb) I Non-squa

Blinatumomab (CD19
x CD3)

Nivolumab (anti-PD-1 mAb) ipilimumab
(anti CTLA4 mAb)

I B acute ly

Blinatumomab (CD19
x CD3)

Pembrolizumab (anti-PD-1 mAb) I B acute ly

Blinatumomab (CD19
x CD3)

Pembrolizumab (anti-PD-1 mAb) I Relapsed o

Blinatumomab (CD19
x CD3)

Pembrolizumab (anti-PD-1 mAb) I/II Recurrent

Blinatumomab (CD19
x CD3)

Pembrolizumab (anti-PD-1 mAb) I Pediatric a
acute leuk

BTCT4465A (CD20 x
CD3)

Atezolizumab (anti-PD-1 mAb) I Chronic ly

HER2Bi (HER2 x CD3) Pembrolizumab (anti-PD-1 mAb) I/II Metastatic
HER2Bi (HER2 x CD3) Pembrolizumab (anti-PD-1 mAb) II Prostate c
IMCgp100 (gp100 x
CD3)

Durvalumab (anti-PD-L1 mAb)
tremelimumab (anti-CTLA4 mAb)

I Malignant

MGD007 (gpA33x
CD3)

MGA012 (anti PD-1 mAb) I/II Relapsed o

MGD009 (B7-H3 x
CD3)

MGA012 (anti PD-1 mAb) I Relapsed o

REGN1979 (CD20 x
CD3)

REGN2810 (anti-PD-1 mAb) I Lymphom

Vanucizumab (Ang-2
x VEGF-A)

Selicrelumab (anti-CD40 mAb) I Advanced

Vanucizumab (Ang-2
x VEGF-A)

Atezolizumab (anti-PD-L1 mAb) I Neoplasm

RO6958688/RG7802
(CEA x CD3)

Atezolizumab (anti-PD-L1 mAb) I Advanced

RO6958688/RG7802
(CEA x CD3)

Atezolizumab (anti-PD-L1 mAb) I/II Metastatic

RO7082859 (CD20 x
CD3)

Atezolizumab (anti-PD-L1 mAb) I Relapsed r
7. Remaining challenges

The approval of blinatumomab and emicizumab have stimulated the
influx of bsAbs into clinical trials (Fig. 4). Continuous administration of
small bsAbs, like blinatumomab, is necessary to maintain a constant
blood level when treating patients (Portell et al., 2013). One way to cir-
cumvent this drawback is by prolonging the half-life of the bsAbs by
adding an Fc region (Arvedson et al., 2017; L. Liu et al., 2017;
Lorenczewski et al., 2017).

At present, two popular small bsAb platforms, the BiTE and theDART
construct, both have an Fc region extended version in clinical trials
(Fig. 1C). AMG757, targeting DLL3 and CD3, is a BiTE-Fc; MGD007
and MGD009, targeting glycoprotein A33 and CD3 and B7-H3 and
CD3, respectively, are DART-Fc constructs. All these bsAbs target solid
tumors. MGD007 has recently completed a phase 1 clinical trial in pa-
tients with relapsed or refractory metastatic colorectal carcinoma
(NCT02248805). The results have not been published. However, the
study design of the MGD007 illustrates the advantage of a longer half-
life; weekly and three-weekly treatment regimens are used, while the
DART molecule MGD006, targeting CD123 and CD3, is administered
via continuous IV infusion to patients with AML (NCT02152956). An in-
creasing number of novel bsAbs entering clinical trials have an Fc region
(Fig. 4).

Moreover, blinatumomab is administered via stepwise dosing to
mitigate toxicity (Topp et al., 2015). The severe toxicity of this construct
is caused by systemic cytokine release called cytokine release syndrome
and is commonly found in T cell-engaging therapies (Maude, Barrett,
Teachey, & Grupp, 2014). Besides stepwise dosing, corticosteroids are
NCT number Status

solid tumors NCT01946074 Active, not
recruiting

ymphoma NCT02665650 Active, not
recruiting

mous, Non-small-cell lung cancer NCT03468426 Recruiting

mphoblastic leukemia NCT02879695 Recruiting

mphoblastic leukemia NCT03160079 Recruiting

r refractory diffuse large B cell lymphoma NCT03340766 Recruiting

of refractory acute lymphoblastic leukemia NCT03512405 Not yet
recruiting

nd young adult patients with relapsed or refractory
emia or lymphoma

NCT03605589 Not yet
recruiting

mphocytic leukemia, Non-Hodgkin lymphoma NCT02500407 Recruiting

breast cancer NCT03272334 Recruiting
ancer NCT03406858 Recruiting
melanoma NCT02535078 Recruiting

r refractory metastatic colorectal cancer NCT03531632 Recruiting

r refractory cancer NCT03406949 Recruiting

a NCT02651662 Recruiting

/metastatic solid tumors NCT02665416 Recruiting

s NCT01688206 Completed

/metastatic solid tumors NCT02650713 Recruiting

non-small-cell lung cancer NCT03337698 Recruiting

efractory B non-Hodgkin's lymphoma NCT03533283 Recruiting
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Fig. 4.BsAbs indevelopment and registered in clinical trials at ClinicalTrials.gov in cancer patients. Lines display the number of constructs usedper year and the bsAbs are displayed as dots.
Their location in the chart indicates the construct used and the starting date of their first clinical trial.
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also used to reduce cytokine release syndrome (Lee et al., 2014; Maude
et al., 2014).

Recently, in humanized mice bearing a B cell lymphoma, pretreat-
mentwith an anti-CD20 antibody led to decreased toxicity after admin-
istration of a CD20- and CD3-targeting CrossMab bsAb, as measured by
cytokine levels (Bacac et al., 2018). In that study design, the B cells in the
peripheral blood and secondary lymphoid organs are depleted by the
pretreatment, thus preventing their undesired activation and avoiding
cytokine release by the immune-cell engaging bsAb (Bacac et al., 2018).

In addition, a recent studywith a syngeneic mouse tumormodel has
shown a difference in distribution of HER2-targeting bsAbs with differ-
ent affinity for CD3 (Mandikian et al., 2018). High affinity for CD3
reduced the systemic exposure and shifted uptake towards lymphoid
tissues (Mandikian et al., 2018). Another study showed that the side
effects of a bsAb engaging CD3 and C-type lectin-like molecule-1 are
dependent on the CD3 affinity: the high-affinity variant induced high
levels of cytokine release in cynomolgus monkeys (Leong et al., 2017).

These findings highlight the need for extensive pharmacokinetic
studies of novel constructs like bsAbs, for example bymeans of molecu-
lar imaging. The design of bispecific antibody constructs is a challenge
because the biodistribution of the drug is determined by both parts of
the construct in combination with all other pharmacodynamics proper-
ties of the construct. Although there are many ways to measure phar-
macokinetics of new drugs, molecular imaging the only non-invasive
way.

Molecular imaging studies could be used to make predictive models
for the pharmacokinetics of parts of bispecific constructs and develop
optimal dosing strategies. This is especially relevant for all the differing
constructs that have yet to be evaluated in clinical trials. An example of
molecular imaging used for pharmacokinetics research is the develop-
ment of a zirconium-89 labeled AMG211 tracer for positron emission
tomography (Waaijer et al., 2018). AMG211 is a BiTE targeting CEA
and CD3. In a phase I trial with patients with advanced gastrointestinal
adenocarcinomas, metastases were imaged using this approach. There
was heterogeneous tumor uptake within and between patients as well
as CD3-specific uptake in lymphoid tissue (Moek et al., 2019).
8. Conclusion

As evidenced by the clinical trials evaluating these drugs, there is
major interest in bsAbs as a treatment for cancer given. One bsAb is cur-
rently used in clinical practice, but none are undergoing phase 3 clinical
trials for the treatment of cancer. Most of these bsAbs under evaluation
have the same mechanism of action: the engagement of immune cells
with tumor cells. For delivering payloads, the enthusiasm for using
bsAbs seems to have been tempered due to the advent of facile conjuga-
tion methods such as click-chemistry. Preclinical studies suggest that
antitumor efficacy of immune-cell engaging bsAbs will increase when
combined with immune modulators such as anti-PD1 and anti-PD-L1
antibodies. The first clinical results confirm this, but more data is
needed. The differing and novel constructs of bsAbs that will enter clin-
ical trials also constitute a strong argument for the use of molecular im-
aging to reveal its in-vivo behavior. In recent history, the bsAb has been
a versatile tool but besides blinatumomab it has not yet resulted in a
clinical breakthrough. However, due to the increasing ease of produc-
tion and their unique mechanisms of action, bsAbs can potentially be
tailored to become a valuable addition to the oncology arsenal.

http://ClinicalTrials.gov
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