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General Introduction



Chronic obstructive pulmonary disease (COPD) 

Chronic obstructive pulmonary disease (COPD) is one of the major health problems 

to induce morbidity and mortality. Based on the estimates from the World Health 

Organization, 65 million people have moderate to severe COPD all over the world. It 

is predicted that COPD will become the third leading cause of death (~ 8.3 million) 

and the fifth leading cause of disability by 2030 (Barnes, 2000; Laudette et al., 2018). 

According to the Global Initiative for Chronic Obstructive Lung Disease (GOLD) 

guidelines, COPD is characterized by progressive and not fully reversible airflow 

limitation. Obstruction of small airways, emphysema, enlargement of air spaces and 

destruction of lung parenchyma, loss of lung elasticity, closure of small airways, 

fibrosis, inflammation, mucus hypersecretion, and pulmonary hypertension are the 

key features of COPD lung tissue (Barnes, 2000; Giembycz and Maurice, 2014; 

Vogelmeier et al., 2017). Currently, none of the existing medications used to treat 

COPD have been shown to improve the long-term decline of lung function. Therefore, 

novel medications are urgently needed for COPD prevention and treatment. 

Exposure to cigarette smoke (CS) is considered to be the primary cause of COPD. 

Therefore, the most effective way to prevent the development of COPD is smoke 

cessation (Bergeron and Boulet, 2006; Tønnesen, 2013). Additionally, other factors 

including exposure to indoor pollution from biomass fuels and outdoor air pollution 

including occupational dusts particularly in developing countries and genetics may 

also contribute to pathogenesis of COPD (Boswell-Smith and Spina, 2007; 

Vogelmeier et al., 2017; Wang et al., 2018). 

Pathogenesis and pathophysiology of COPD 

COPD is characterized by chronic inflammation and airway obstruction, which is not 

fully reversible (Vogelmeier et al., 2017). The inflammation in COPD most likely 

occurs in peripheral airways (bronchioles) and lung parenchyma (Barnes, 2014). It 

has been shown that patients with severe COPD have infiltration of macrophages 

and CD8+ T cells and an increased number of neutrophils in bronchial-biopsy (Di 

Stefano et al., 1998; O’Shaughnessy et al., 1997). A dramatic increase of 

macrophages and neutrophils has been observed in bronchoalveolar lavage fluid and 

induced sputum (Keatings et al., 1996; Pesci et al., 1998). Moreover, multiple 

inflammatory mediators, including lipids, chemokines, cytokines and growth factors 

also play a crucial role during COPD development (Barnes, 2014; Lamela and Vega, 

2009). Chronic inflammation is able to induce structural alterations and mucus 

hypersecretion, thereby further causing narrowing of small airways and decline in 

lung function. Epithelial cells and macrophages secrete transforming growth factor-β 

(TGF-β), which triggers fibroblast proliferation and thus contributes to tissue 

remodeling (Barnes, 2014). The inflammatory cytokines, proteases and growth 

factors produced by airway smooth muscle cells are associated with remodeling 

process and induce phenotypic changes of smooth muscle from contractile to 

proliferative phenotype (Aghasafari et al., 2018; Chung, 2005). 
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As cigarette smoke can induce oxidative stress, there is accumulating evidence that 

oxidative stress is involved in COPD (Kirkham and Barnes, 2013; Wang et al., 2018). 

Except for cigarette smoke, exogenous sources of reactive oxygen species (ROS) 

such as air pollutants, or endogenously released ROS from leukocytes and 

macrophages can also induce oxidative stress and break the balance between 

oxidant and antioxidant (Kirkham and Barnes, 2013). The activated immune cells, for 

instance neutrophils and macrophages, are able to release ROS during the 

inflammatory process(Meijer et al., 2013). Endogenously released ROS reacts with 

lipid, protein, DNA, RNA and mitochondrial DNA, thereby, leading to epithelium injury 

and contributing to COPD development (Boukhenouna et al., 2018). 

Fibrosis, which is a key feature in chronic pulmonary diseases, plays a vital role in 

COPD pathogenesis. It has been shown that epithelial-to-mesenchymal transition 

(EMT), which was triggered either by environmental stresses such as oxidative stress 

(Rhyu et al., 2005) or by extracellular mediators such as TGF-β1 (Hackett et al., 

2009), contributed to pulmonary fibrosis (Jolly et al., 2018; Rout-Pitt et al., 2018; 

Sakuma, 2017). EMT was first identified in the 1980s by Greenburg and Hay 

(Greenburg and Hay, 1986). EMT is a process in which epithelial cells gradually lose 

epithelial proteins including E-cadherin, ZO-1, which are responsible for cell-cell 

contact, and undergo transition to a more mesenchymal phenotype as they gain 

mesenchymal markers such as N-cadherin, vimentin and fibronectin (Nieto, 2011; 

Zuo et al., 2019b). Transcription factors involved during EMT process are Snail, Slug, 

Zeb and Twist (Baulida, 2017; Yang et al., 2013). In 2010, Sohal and colleagues 

demonstrated for the first time that the fibroblast protein marker S100A4 was 

significantly increased in cells within reticular basement membrane clefts of smokers 

and COPD patients compared with never-smoking control subjects by 

immunohistochemistry, indicating an active EMT process in the large airway of CODP 

patients which was highly correlated with cigarette smoke exposure (Sohal et al., 

2010). However, the role of cAMP scaffold in TGF-β1/cigarette smoke-induced EMT 

is still unclear. 

Cyclic AMP targeted therapies in COPD 

According to GOLD guidelines, the aim of therapy in COPD is to relieve symptoms, to 

reduce the frequency and severity of exacerbations and to improve health status and 

exercise performance (Vogelmeier et al., 2017). Unfortunately, no existing COPD 

medication has been conclusively shown to modify the long-term clinical outcomes. 

Cyclic AMP (cAMP) has been proven to be a promising target in COPD treatment 

due to its excellent performance on bronchodilation and anti-inflammation which is 

mediated by cAMP/ cAMP-dependent protein kinase A (PKA) and exchange proteins 

activated by cAMP (Epacs) (Dekkers et al., 2013; Oldenburger et al., 2012b; Roscioni 

et al., 2011b, 2011a; Schmidt et al., 2013). Nowadays, medicines used for COPD 

treatment relies mainly on bronchodilator therapy (β2-agonists, anticholinergics and 

theophylline), and on PDE4 inhibitors used in concert with either corticosteroid or 

bronchodilator treatment especially in COPD patients with a high risk of 

exacerbations (Giembycz and Maurice, 2014; Maji et al., 2018; Vogelmeier et al., 

2017; Wang et al., 2018). 

 

Figure 1. Compartmentalised cAMP signaling. Two distinct cAMP pools are shown in the schematic. One cAMP 

pool is generated by an AC anchored at the plasma membrane and activated by a GPCR exposed to the 

extracellular stimulus; the other one is generated by an internalized GPCR in the cytoplasm. PDEs, as key actors 

in limiting the spread of cyclic nucleotides, are responsible for cAMP hydrolysis and hence compartmentalize the 

cyclic nucleotide signal. The AKAP family, which binds to the regulatory subunits of PKA and targets PKA to 

discreet sites/macromolecular complexes, is also indicated in the schematic. GPCR, G-protein coupled receptor; 

AC, adenylyl cyclase;PDE, phosphodiesterase; PKA, cAMP-dependent protein kinase; AKAPs, A-kinase 

anchoring proteins; 

 

cAMP compartmentalization 

The first evidence for a compartmentalized cAMP signaling has been provided in the 

heart more than 40 years ago. Hayes et al. and Buxton et al. demonstrated 

differences in heart contractility when comparing hearts perfused with different 

agonists to activate the cAMP cascade. The force of heart contraction was enhanced 

with β1-adrenoceptor agonist isoproterenol, whereas there was no change in heart 

contractility when activating prostaglandin E1 receptor with PGE1, even though 

cAMP was elevated and soluble PKA activity was also increased in both cases 

(Buxton and Brunton, 1983; Hayes et al., 1979). These findings provided functional 

evidence for the selectivity of cAMP action, indicating a compartmentalized cAMP 

signaling. 

As one of the most important second messengers, cAMP localizes in well-organized 

intracellular signaling microdomains. As shown in Fig 1, cAMP is synthesized from 

adenosine triphosphate, following activation of adenylyl cyclases (ACs) (Omori and 

Kotera, 2007). Subsequently, cAMP binds to specific intracellular effector proteins, 

such as cyclic nucleotide-gated ion channels, PKA and Epacs (Oldenburger et al., 

2012a; Omori and Kotera, 2007). In addition, PDEs, as key actors in limiting the 

spread of cyclic nucleotides, are responsible for cAMP and cGMP hydrolysis and 
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hence compartmentalize the cyclic nucleotide signal. The superfamily of PDEs is 

composed of 11 families with a distinct substrate specificity, molecular structure and 

subcellular localization (Omori and Kotera, 2007; Zuo et al., 2019a). Each PDE family 

has at least one (e.g. Pde5a) and often multiple coding genes, resulting in the 

mammalian PDE superfamily being composed of more than 21 genes (Omori and 

Kotera, 2007; Page and Spina, 2012). Moreover, most PDE encoding genes have 

distinct promoters, and multiple transcriptional products which are generated by 

alternative splicing, resulting in nearly 100 different PDE messenger RNAs (Conti and 

Beavo, 2007; Otero et al., 2014). In addition, the communication between β2-

adrenoreceptor, cAMP effectors, PDEs and other downstream targets are 

coordinated by A-kinase anchoring proteins (AKAPs) (shown in Fig 1) (Beene and 

Scott, 2007; Carnegie et al., 2009; Han et al., 2015; Poppinga et al., 2014). Members 

of the AKAPs family bind to the regulatory subunits of PKA and target PKA to discreet 

sites/macromolecular complexes, thereby playing a central role in the regulation of 

cAMP compartmentalization (Beene and Scott, 2007). 

Scope of the thesis 

The main objective of this thesis is to explore the role of compartmentalized cAMP 

signaling in the pathogenesis of COPD, focusing on PDE subfamilies and AKAPs. 

Using in vitro, ex vivo and in vivo approaches, we investigate the potential therapeutic 

targets in cAMP signaling pathways and link it with the current therapies available on 

the market. 

In chapter 2, we provide an overview of Epac function and cAMP scaffolds in the 

heart and the lung. We highlight recent studies in heart and lung pertaining to cAMP 

compartmentalization, which provides more insights in understanding the role of 

cAMP scaffolds in different organs. 

In chapter 3, we review the regulation of several PDEs (PDE3, PDE4, PDE5, PDE7 

and PDE8) and demonstrate the roles of their selective inhibitors in chronic 

pulmonary diseases (COPD and asthma). In addition, the combination of different 

PDE inhibitors is also described, thereby providing a more comprehensive overview 

of the up-to-date research findings. 

In chapter 4, we describe a new method to monitor cAMP dynamics in the airway by 

combining Förster resonance energy transfer (FRET) and precision cut lung slices 

(PCLS). Using this novel setup, the effect of cigarette smoke on cAMP hydrolyzing 

enzymes, PDE3 and PDE4, is studied. We show that cigarette smoke upregulates 

the activity and expression of both PDE3 and PDE4, which in turn, induces changes 

of intracellular cAMP dynamics. Moreover, these findings from PCLS are further 

confirmed using human bronchial epithelial cells and airway smooth muscle cells 

transfected with the cAMP biosensor adenovirus, indicating the different strategies in 

epithelial cells and airway smooth muscle cells with cAMP hydrolysis. In addition, 

functional changes of PDE3 and PDE4 after cigarette smoke exposure are examined 

by airway contractility and ciliary beating frequency (CBF) test. This study provides 

strong evidence of the underlying changes induced by cigarette smoke regarding 

PDE3 and PDE4, providing increased impetus towards the development of improved 

dual PDE3/4 inhibitors for clinical use in smoke-related airway diseases. 

In chapter 5, we discuss the scientific and therapeutic value of a recently published 

research paper in American Journal of Respiratory Cell and Molecular Biology “PDE8 

is expressed in human airway smooth muscle and selectively regulates cAMP 

signaling by β2-AR-AC6”. PDE8, an IBMX insensitive PDE, can be inhibited by PF-

04957325, which is a highly potent and selective PDE8 inhibitor developed by Pfizer. 

The role of PDE8 was demonstrated by Johnstone et al. for the first time in human 

airway smooth muscle cells. We highlight the findings on the transcript, protein and 

functional presence of PDE8 and β2-AR-AC6-PDE8 signalosome which is expressed 

in caveolae. 

In chapter 6, we review the recent knowledge about the role of cAMP scaffolds and 

oxidative stress in EMT process. How cAMP scaffolds (PDEs and AKAPs) and their 

distinguished signalosomes in different subcellular compartments may contribute to 

COPD is described here. 

In chapter 7, we investigate the role of cAMP compartments during TGF-β1/ 

cigarette smoke induced EMT by modulating intracellular AKAPs. The contribution of 

PKA-AKAP complexes to EMT process is studied using the peptide st-Ht31, which 

inhibits the interaction between RII subunits of PKA and AKAP. Among more than 50 

members, specific attention focuses on Ezrin, AKAP95 and Yotiao. The role of Ezrin, 

AKAP95 and Yotiao on EMT process is studied by small interfering RNA. 

In chapter 8, the nasal and bronchial brushes and lung tissues from never-smokers, 

ex-smokers and current smokers are used to study the effect of cigarette smoke on 

PDE3 and PDE4 protein expression. In addition, human mRNA is isolated from 

bronchial and nasal brushings of never-smokers and healthy smokers. 

In chapter 9, we provide a summary of our work, give future perspective of cAMP 

studies, and also describe the challenges. 
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