

 University of Groningen

Managing technical debt through software metrics, refactoring and traceability
Charalampidou, Sofia

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Charalampidou, S. (2019). Managing technical debt through software metrics, refactoring and traceability.
[Groningen]: University of Groningen.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 13-11-2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Groningen

https://core.ac.uk/display/232529194?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.rug.nl/research/portal/en/publications/managing-technical-debt-through-software-metrics-refactoring-and-traceability(1bd01c63-542a-41df-b68d-fce19ce73e44).html

Introduction

211

APPENDIX A

A1. Supplementary Material to Chapter 6 – Primary
studies
Alaa, G., & Samir, Z. (2014). A multi-faceted roadmap of requirements traceability
types adoption in SCRUM: An empirical study. 9th International Conference on
Informatics and Systems, SW-1-SW-9.

Alhindawi, N., Meqdadi, O., Bartman, B., & Maletic, J. I. (2013). A tracelab-based
solution for identifying traceability links using LSI. 7th International Workshop on
Traceability in Emerging Forms of Software Engineering (TEFSE), 79-82.

Ali, N., Sharafi, Z., Guéhéneuc, YG., Antoniol, G. (2015). Empirical Software Engi-
neering, 20(2), 442–478.

Amar, B., Leblanc, H., Coulette, B., & Nebut, C. (2010). Using Aspect-Oriented Pro-
gramming to Trace Imperative Transformations. 14th IEEE International Enterprise
Distributed Object Computing Conference, 143-152.

Antoniol, G., Canfora, G., & De Lucia, A. (1999). Maintaining traceability during ob-
ject-oriented software evolution: a case study. Proceedings of the IEEE International
Conference on Software Maintenance (ICSM), 211-219.

Bavota, G., De Lucia, A., Oliveto, R., & Tortora, G. (2014). Enhancing software arte-
fact traceability recovery processes with link count information. Information and
Software Technology, 56(2), 163-182.

Bavota, G., De Lucia, A., Oliveto, R., Panichella, A., Ricci, F., & Tortora, G. (2013).
The role of artefact corpus in LSI-based traceability recovery. 7th International Work-

Appendix A

212

shop on Traceability in Emerging Forms of Software Engineering (TEFSE), 83-89.

Bhansali, S., Chen, W.-K., de Jong, S., Edwards, A., Murray, R., Drinić, M., Mihočka,
D., & Chau, J. (2006). Framework for instruction-level tracing and analysis of program
executions. In Proceedings of the 2nd international conference on Virtual execution
environments(VEE), ACM, New York, NY, USA, 154-163.

Bianchi, A., Fasolino, A. R., &Visaggio, G. (2000). An exploratory case study of the
maintenance effectiveness of traceability models. Proceedings of the 8th International
Workshop on Program Comprehension (IWPC), 149-158.

Borg, M., & Pfahl, D. (2011). Do better IR tools improve the accuracy of engineers'
traceability recovery? In Proceedings of the International Workshop on Machine
Learning Technologies in Software Engineering (MALETS), ACM, New York, NY,
USA, 27-34.

Borg, M., Wnuk, K., & Pfahl, D. (2012). Industrial Comparability of Student Artifacts
in Traceability Recovery Research - An Exploratory Survey, 16th European Confer-
ence on Software Maintenance and Reengineering, 181-190.

Briand, L. C., Labiche, Y., & Leduc, J. (2005). Tracing distributed systems executions
using AspectJ. 21st IEEE International Conference on Software Maintenance (ICSM),
81-90.

Briand, L. C., Labiche, Y., Yue, T. (2009). Automated traceability analysis for UML
model refinements. Information and Software Technology, 51(2), 512-527.

Briand, L., Falessi, D., Nejati, S., Sabetzadeh, M., & Yue, T. (2014). Traceability and
SysML design slices to support safety inspections: A controlled experiment. ACM
Transactions on Software Engineering Methodoly, 23(1), Article 9.

Buchmann, R.A. & Karagiannis, D. (2017). Modelling mobile app requirements for
semantic traceability. Requirements Engineering, 22(1), 41–75.

Bulbun, G., & Shahzada, H. M. A. (2016). BPMN process model checking using trace-
ability. 6th International Conference on Innovative Computing Technology (INTECH),
694-699.

Capobianco, G., De Lucia, A., Oliveto, R., Panichella, A., & Panichella, S. (2009). On
the role of the nouns in IR-based traceability recovery, 17th IEEE International Con-
ference on Program Comprehension (ICPC), 148-157.

A1. Supplementary Material to Chapter 6 – Primary studies

213

shop on Traceability in Emerging Forms of Software Engineering (TEFSE), 83-89.

Bhansali, S., Chen, W.-K., de Jong, S., Edwards, A., Murray, R., Drinić, M., Mihočka,
D., & Chau, J. (2006). Framework for instruction-level tracing and analysis of program
executions. In Proceedings of the 2nd international conference on Virtual execution
environments(VEE), ACM, New York, NY, USA, 154-163.

Bianchi, A., Fasolino, A. R., &Visaggio, G. (2000). An exploratory case study of the
maintenance effectiveness of traceability models. Proceedings of the 8th International
Workshop on Program Comprehension (IWPC), 149-158.

Borg, M., & Pfahl, D. (2011). Do better IR tools improve the accuracy of engineers'
traceability recovery? In Proceedings of the International Workshop on Machine
Learning Technologies in Software Engineering (MALETS), ACM, New York, NY,
USA, 27-34.

Borg, M., Wnuk, K., & Pfahl, D. (2012). Industrial Comparability of Student Artifacts
in Traceability Recovery Research - An Exploratory Survey, 16th European Confer-
ence on Software Maintenance and Reengineering, 181-190.

Briand, L. C., Labiche, Y., & Leduc, J. (2005). Tracing distributed systems executions
using AspectJ. 21st IEEE International Conference on Software Maintenance (ICSM),
81-90.

Briand, L. C., Labiche, Y., Yue, T. (2009). Automated traceability analysis for UML
model refinements. Information and Software Technology, 51(2), 512-527.

Briand, L., Falessi, D., Nejati, S., Sabetzadeh, M., & Yue, T. (2014). Traceability and
SysML design slices to support safety inspections: A controlled experiment. ACM
Transactions on Software Engineering Methodoly, 23(1), Article 9.

Buchmann, R.A. & Karagiannis, D. (2017). Modelling mobile app requirements for
semantic traceability. Requirements Engineering, 22(1), 41–75.

Bulbun, G., & Shahzada, H. M. A. (2016). BPMN process model checking using trace-
ability. 6th International Conference on Innovative Computing Technology (INTECH),
694-699.

Capobianco, G., De Lucia, A., Oliveto, R., Panichella, A., & Panichella, S. (2009). On
the role of the nouns in IR-based traceability recovery, 17th IEEE International Con-
ference on Program Comprehension (ICPC), 148-157.

Capobianco, G., De Lucia, A., Oliveto, R., Panichella, A., & Panichella, S. (2009).
Traceability Recovery Using Numerical Analysis. 16th Working Conference on Re-
verse Engineering, 195-204.

Charrada, E. B., Caspar, D., Jeanneret, C., & Glinz, M. (2011). Towards a benchmark
for traceability. In Proceedings of the 12th International Workshop on Principles of
Software Evolution and the 7th annual ERCIM Workshop on Software Evolu-
tion (IWPSE-EVOL), ACM, New York, NY, USA, 21-30.

Chen, X., & Grundy, J. (2011). Improving automated documentation to code traceabil-
ity by combining retrieval techniques. In Proceedings of the 2011 26th IEEE/ACM
International Conference on Automated Software Engineering (ASE), IEEE Computer
Society, Washington, DC, USA, 223-232.

Cleland-Huang, J., Mäder, P., Mirakhorli, M., & Amornborvornwong, S. (2012).
Breaking the big-bang practice of traceability: Pushing timely trace recommendations
to project stakeholders. 20th IEEE International Requirements Engineering Conference
(RE), 231-240.

Corley, C. S., Kraft, N. A., Etzkorn, L. H., & Lukins, S. K. (2011). Recovering tracea-
bility links between source code and fixed bugs via patch analysis. In Proceedings of
the 6th International Workshop on Traceability in Emerging Forms of Software Engi-
neering (TEFSE), ACM, New York, NY, USA, 31-37.

Cornelissen, B., Zaidman, A., & van Deursen, A. (2011). A Controlled Experiment for
Program Comprehension through Trace Visualization. In IEEE Transactions on
Software Engineering, 37(3), 341-355.

Cornu, B., Barr, E. T., Seinturier, L., & Monperrus, M. (2016). Casper: Automatic
tracking of null dereferences to inception with causality traces. Journal of Systems and
Software, 122, 52-62.

Dagenais, B., Breu, S., Warr, F. W., & Robillard, M. P. (2007). Inferring structural
patterns for concern traceability in evolving software. In Proceedings of the twenty-
second IEEE/ACM international conference on Automated software engineer-
ing (ASE), ACM, New York, NY, USA, 254-263.

Dasgupta, T., Grechanik, M., Moritz, E., Dit, B., & Poshyvanyk, D. (2013). Enhancing
Software Traceability by Automatically Expanding Corpora with Relevant Documenta-
tion. IEEE International Conference on Software Maintenance (ICSM), 320-329.

Appendix A

214

De Lucia, A., Di Penta, M., Oliveto, R., Panichella, A., & Panichella, S. (2013). Apply-
ing a smoothing filter to improve IR-based traceability recovery processes: An empiri-
cal investigation. Information and Software Technology, 55(4), 741-754.

De Lucia, A., Fasano, F., Oliveto, R., & Tortora, G. (2004). Enhancing an artefact
management system with traceability recovery features. In Proceedings of the 20th
IEEE International Conference on Software Maintenance (ICSM), 306-315.

De Lucia, A., Fasano, F., Oliveto, R., & Tortora, G. (2005). ADAMS Re-Trace: a
traceability recovery tool. 9th European Conference on Software Maintenance and
Reengineering, 32-41.

De Lucia, A., Fasano, F., Oliveto, R., & Tortora, G. (2006). Can Information Retrieval
Techniques Effectively Support Traceability Link Recovery? In the 14th IEEE Interna-
tional Conference on Program Comprehension (ICPC), 307-316.

De Lucia, A., Fasano, F., Oliveto, R., & Tortora, G. (2007). Recovering traceability
links in software artifact management systems using information retrieval
methods. ACM Transactions on Software Engineering Methodolies, 16(4), Article 13.

De Lucia, A., Oliveto, R. & Tortora, G. (2009). Assessing IR-based traceability recov-
ery tools through controlled experiments. Empirical Software Engineering, 14(1), 57–
92.

De Lucia, A., Oliveto, R., & Tortora, G. (2009). The role of the coverage analysis dur-
ing IR-based traceability recovery: A controlled experiment. IEEE International
Conference on Software Maintenance, 371-380.

De Lucia, A., Oliveto, R., &Tortora, G. (2008). IR-Based Traceability Recovery Pro-
cesses: An Empirical Comparison of One-Shot and Incremental Processes. 23rd
IEEE/ACM International Conference on Automated Software Engineering, 39-48.

De Lucia, A., Oliveto, R., Zurolo, F., & Di Penta, M. (2006). Improving Comprehensi-
bility of Source Code via Traceability Information: a Controlled Experiment. 14th
IEEE International Conference on Program Comprehension (ICPC), 317-326.

Delater, A., & Paech, B. (2013). Tracing Requirements and Source Code during Soft-
ware Development: An Empirical Study, ACM / IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM), 25-34.

Di, F., & Zhang, M. (2009). An Improving Approach for Recovering Requirements-to-
Design Traceability Links, International Conference on Computational Intelligence and

A1. Supplementary Material to Chapter 6 – Primary studies

215

De Lucia, A., Di Penta, M., Oliveto, R., Panichella, A., & Panichella, S. (2013). Apply-
ing a smoothing filter to improve IR-based traceability recovery processes: An empiri-
cal investigation. Information and Software Technology, 55(4), 741-754.

De Lucia, A., Fasano, F., Oliveto, R., & Tortora, G. (2004). Enhancing an artefact
management system with traceability recovery features. In Proceedings of the 20th
IEEE International Conference on Software Maintenance (ICSM), 306-315.

De Lucia, A., Fasano, F., Oliveto, R., & Tortora, G. (2005). ADAMS Re-Trace: a
traceability recovery tool. 9th European Conference on Software Maintenance and
Reengineering, 32-41.

De Lucia, A., Fasano, F., Oliveto, R., & Tortora, G. (2006). Can Information Retrieval
Techniques Effectively Support Traceability Link Recovery? In the 14th IEEE Interna-
tional Conference on Program Comprehension (ICPC), 307-316.

De Lucia, A., Fasano, F., Oliveto, R., & Tortora, G. (2007). Recovering traceability
links in software artifact management systems using information retrieval
methods. ACM Transactions on Software Engineering Methodolies, 16(4), Article 13.

De Lucia, A., Oliveto, R. & Tortora, G. (2009). Assessing IR-based traceability recov-
ery tools through controlled experiments. Empirical Software Engineering, 14(1), 57–
92.

De Lucia, A., Oliveto, R., & Tortora, G. (2009). The role of the coverage analysis dur-
ing IR-based traceability recovery: A controlled experiment. IEEE International
Conference on Software Maintenance, 371-380.

De Lucia, A., Oliveto, R., &Tortora, G. (2008). IR-Based Traceability Recovery Pro-
cesses: An Empirical Comparison of One-Shot and Incremental Processes. 23rd
IEEE/ACM International Conference on Automated Software Engineering, 39-48.

De Lucia, A., Oliveto, R., Zurolo, F., & Di Penta, M. (2006). Improving Comprehensi-
bility of Source Code via Traceability Information: a Controlled Experiment. 14th
IEEE International Conference on Program Comprehension (ICPC), 317-326.

Delater, A., & Paech, B. (2013). Tracing Requirements and Source Code during Soft-
ware Development: An Empirical Study, ACM / IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM), 25-34.

Di, F., & Zhang, M. (2009). An Improving Approach for Recovering Requirements-to-
Design Traceability Links, International Conference on Computational Intelligence and

Software Engineering, 1-6.

Diaz, D., Bavota, G., Marcus, A., Oliveto, R., Takahashi, S., & De Lucia, A. (2013).
Using code ownership to improve IR-based Traceability Link Recovery. 21st
International Conference on Program Comprehension (ICPC), 123-132.

Díaz, J., Pérez, J., & Garbajosa J. (2015). A model for tracing variability from features
to product-line architectures: a case study in smart grids. Requirements
Engineering, 20(3), 323-343.

Duan, C. & Cleland-Huang, J. (2007). Clustering support for automated tracing.
In Proceedings of the twenty-second IEEE/ACM international conference on Automat-
ed software engineering (ASE), ACM, New York, NY, USA, 244-253.

Eaddy, M., Aho, A. V., Antoniol, G., & Guéhéneuc, Y. -G. (2008). CERBERUS: Trac-
ing Requirements to Source Code Using Information Retrieval, Dynamic Analysis, and
Program Analysis. 16th IEEE International Conference on Program Comprehension,
53-62.

Egyed, A., Graf, F., & Grunbacher, P. (2010). Effort and Quality of Recovering Re-
quirements-to-Code Traces: Two Exploratory Experiments. 18th IEEE International
Requirements Engineering Conference, 221-230.

Espinoza, A., & Garbajosa, J. (2008). A Proposal for Defining a Set of Basic Items for
Project-Specific Traceability Methodologies. 32nd Annual IEEE Software Engineering
Workshop, 175-184.

Figueiredo, E., Galvao, I., Khan, S. S., Garcia, A., Sant'Anna, C., Pimentel, A., Medei-
ros, A. L., Fernandes, L., Batista, T., Ribeiro, R., van den Broek, P. M., Aksit, M.,
Zschaler, S., & Moreira, A. (2009). Detecting architecture instabilities with concern
traces: An exploratory study. Joint Working IEEE/IFIP Conference on Software Archi-
tecture & European Conference on Software Architecture, 261-264.

Fittkau, F., Finke, S., Hasselbring, W., & Waller, J. (2015). Comparing Trace Visuali-
zations for Program Comprehension through Controlled Experiments, 23rd Interna-
tional Conference on Program Comprehension, IEEE, 266-276.

Gang, Y., Xianjun, L., Zhongwen L., & Jie, Y. (2011). Fault localization with intersec-
tion of control-flow based execution traces. 3rd International Conference on Computer
Research and Development, 430-434.

Gayer, S., Herrmann, A., Keuler, T., Riebisch, M., & Antonino, P. O. (2016).

Appendix A

216

Lightweight Traceability for the Agile Architect, In Computer, 49(5), 64-71.

Gethers, M., Oliveto, R., Poshyvanyk, D., & Lucia, A. D. (2011). On integrating or-
thogonal information retrieval methods to improve traceability recovery. 27th IEEE
International Conference on Software Maintenance (ICSM), 133-142.

Ghabi, A., & Egyed, A. (2011). Observations on the connectedness between require-
ments-to-code traces and calling relationships for trace validation. 26th IEEE/ACM
International Conference on Automated Software Engineering (ASE), 416-419.

Ghabi, A., & Egyed, A. (2012). Code patterns for automatically validating require-
ments-to-code traces. Proceedings of the 27th IEEE/ACM International Conference on
Automated Software Engineering, 200-209.

Ghabi, A., & Egyed, A. (2015). Exploiting traceability uncertainty among artifacts and
code. Journal of Systems and Software, 108, 178-192

Ghanam, Y., & Maurer, F. (2009). Extreme Product Line Engineering: Managing
Variability and Traceability via Executable Specifications. Agile Conference, 41-48.

Gotel, O., & Finkelstein, A. (1997). Extended requirements traceability: results of an
industrial case study. Proceedings of the 3rd IEEE International Symposium on Re-
quirements Engineering (ISRE), 169-178.

Grechanik, M., McKinley, K. S., & Perry, D. E. (2007). Recovering and using use-
case-diagram-to-source-code traceability links. In Proceedings of the the 6th joint
meeting of the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering (ESEC-FSE), ACM, New
York, NY, USA, 95-104.

Guo, J., Monaikul, N., Plepel, C., & Cleland-Huang, J. (2014). Towards an intelligent
domain-specific traceability solution. In Proceedings of the 29th ACM/IEEE interna-
tional conference on Automated software engineering (ASE), ACM, New York, NY,
USA, 755-766.

Hammad, M., Collard, M.L. & Maletic, J.I. (2011). Automatically identifying changes
that impact code-to-design traceability during evolution. Software Quality Journal,
19(1), 35–64.

Hayashi, S., Yoshikawa, T., & Saeki, M. (2010). Sentence-to-Code Traceability Re-
covery with Domain Ontologies. Asia Pacific Software Engineering Conference, 385-

A1. Supplementary Material to Chapter 6 – Primary studies

217

Lightweight Traceability for the Agile Architect, In Computer, 49(5), 64-71.

Gethers, M., Oliveto, R., Poshyvanyk, D., & Lucia, A. D. (2011). On integrating or-
thogonal information retrieval methods to improve traceability recovery. 27th IEEE
International Conference on Software Maintenance (ICSM), 133-142.

Ghabi, A., & Egyed, A. (2011). Observations on the connectedness between require-
ments-to-code traces and calling relationships for trace validation. 26th IEEE/ACM
International Conference on Automated Software Engineering (ASE), 416-419.

Ghabi, A., & Egyed, A. (2012). Code patterns for automatically validating require-
ments-to-code traces. Proceedings of the 27th IEEE/ACM International Conference on
Automated Software Engineering, 200-209.

Ghabi, A., & Egyed, A. (2015). Exploiting traceability uncertainty among artifacts and
code. Journal of Systems and Software, 108, 178-192

Ghanam, Y., & Maurer, F. (2009). Extreme Product Line Engineering: Managing
Variability and Traceability via Executable Specifications. Agile Conference, 41-48.

Gotel, O., & Finkelstein, A. (1997). Extended requirements traceability: results of an
industrial case study. Proceedings of the 3rd IEEE International Symposium on Re-
quirements Engineering (ISRE), 169-178.

Grechanik, M., McKinley, K. S., & Perry, D. E. (2007). Recovering and using use-
case-diagram-to-source-code traceability links. In Proceedings of the the 6th joint
meeting of the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering (ESEC-FSE), ACM, New
York, NY, USA, 95-104.

Guo, J., Monaikul, N., Plepel, C., & Cleland-Huang, J. (2014). Towards an intelligent
domain-specific traceability solution. In Proceedings of the 29th ACM/IEEE interna-
tional conference on Automated software engineering (ASE), ACM, New York, NY,
USA, 755-766.

Hammad, M., Collard, M.L. & Maletic, J.I. (2011). Automatically identifying changes
that impact code-to-design traceability during evolution. Software Quality Journal,
19(1), 35–64.

Hayashi, S., Yoshikawa, T., & Saeki, M. (2010). Sentence-to-Code Traceability Re-
covery with Domain Ontologies. Asia Pacific Software Engineering Conference, 385-

394.

Hayes, J.H., Dekhtyar, A., Sundaram, S.K., Ashlee Holbrook, E., Vadlamudi, S., &
April, A. (2007). REquirements TRacing On target (RETRO): improving software
maintenance through traceability recovery. Innovations in Systems and Software
Engineering, 3(3), 193–202

Hegedüs, Á., Horváth, Á., Ráth, I., Rizzi Starr, R., & Varró, D. (2016). Query-driven
soft traceability links for models. Software & System Modeling,15(3), 733–756.

Heindl, M., & Biffl, S. (2005). A case study on value-based requirements tracing.
In Proceedings of the 10th European software engineering conference held jointly with
13th ACM SIGSOFT international symposium on Foundations of software engineer-
ing (ESEC/FSE), ACM, New York, NY, USA, 60-69.

Helming, J., Koegel, M., & Naughton, H. (2009). Towards traceability from project
management to system models. ICSE Workshop on Traceability in Emerging Forms of
Software Engineering, 11-15.

Jaber, K., Sharif, B., & Liu, C. (2013) A Study on the Effect of Traceability Links in
Software Maintenance. In IEEE Access, vol. 1, 726-741.

Jain, R., Ghaisas, S., & Sureka, A. (2014). SANAYOJAN: a framework for traceability
link recovery between use-cases in software requirement specification and regulatory
documents. In Proceedings of the 3rd International Workshop on Realizing Artificial
Intelligence Synergies in Software Engineering (RAISE), ACM, New York, NY, USA,
12-18.

Jalbert, N., & Sen, K. (2010). A trace simplification technique for effective debugging
of concurrent programs. In Proceedings of the eighteenth ACM SIGSOFT international
symposium on Foundations of software engineering (FSE), ACM, New York, NY,
USA, 57-66.

Javed, M. A., & Zdun, U. (2015). On the effects of traceability links in differently
sized software systems. In Proceedings of the 19th International Conference on Evalu-
ation and Assessment in Software Engineering (EASE), ACM, New York, NY, USA, ,
Article 11 .

Javed, M. A., Stevanetic, S., & Zdun, U. (2015). Cost-Effective Traceability Links for
Architecture-Level Software Understanding: A Controlled Experiment. In Proceedings
of the ASWEC 2015 24th Australasian Software Engineering Conference (ASWEC),

Appendix A

218

ACM, New York, NY, USA, 69-73.

Javed, M. A., Stevanetic, S., & Zdun, U. (2016). Towards a pattern language for con-
struction and maintenance of software architecture traceability links. In Proceedings of
the 21st European Conference on Pattern Languages of Programs (EuroPlop), ACM,
New York, NY, USA, Article 24.

Javed, M. A., & Zdun, U. (2014). The Supportive Effect of Traceability Links in
Change Impact Analysis for Evolving Architectures – Two Controlled Experiments.
International Conference on Software and Systems Reuse (ICSR). Lecture Notes in
Computer Science, vol 8919. Springer, Cham

Ji, W., Berger, T., Antkiewicz, M., & Czarnecki, K. (2015). Maintaining feature trace-
ability with embedded annotations. In Proceedings of the 19th International Confer-
ence on Software Product Line (SPLC), ACM, New York, NY, USA, 61-70.

Jiang, H., Nguyen, T. N., Chen, I., Jaygarl H., & Chang, C. K. (2008). Incremental
Latent Semantic Indexing for Automatic Traceability Link Evolution Management.
23rd IEEE/ACM International Conference on Automated Software Engineering, 59-68.

Jiang, S., Zhang, H., Wang, Q., & Zhang, Y. (2010). A Debugging Approach for Java
Runtime Exceptions Based on Program Slicing and Stack Traces. 10th International
Conference on Quality Software, 393-398.

Jirapanthong, W. & Zisman, A. (2009). XTraQue: traceability for product line systems.
Software & System Modeling, 8(1), 117–144.

Khan, S. S., & Lock, S. (2009). Concern tracing and change impact analysis: An ex-
ploratory study. ICSE Workshop on Aspect-Oriented Requirements Engineering and
Architecture Design, 44-48.

Kitamura, M., Takagi, M., Yamada, K., & Sasaki, J. (2013). A representation method
to simplify traceability links between software artifacts. 12th IEEE International Con-
ference on Intelligent Software Methodologies, Tools and Techniques (SoMeT), 135-
140.

Knethen, A. (2001). A trace model for system requirements changes on embedded
systems. In Proceedings of the 4th International Workshop on Principles of Software
Evolution (IWPSE), ACM, New York, NY, USA, 17-26.

Kong, W., & Hayes, J. H. (2011). Proximity-based traceability: An empirical valida-
tion using ranked retrieval and set-based measures. Workshop on Empirical

A1. Supplementary Material to Chapter 6 – Primary studies

219

ACM, New York, NY, USA, 69-73.

Javed, M. A., Stevanetic, S., & Zdun, U. (2016). Towards a pattern language for con-
struction and maintenance of software architecture traceability links. In Proceedings of
the 21st European Conference on Pattern Languages of Programs (EuroPlop), ACM,
New York, NY, USA, Article 24.

Javed, M. A., & Zdun, U. (2014). The Supportive Effect of Traceability Links in
Change Impact Analysis for Evolving Architectures – Two Controlled Experiments.
International Conference on Software and Systems Reuse (ICSR). Lecture Notes in
Computer Science, vol 8919. Springer, Cham

Ji, W., Berger, T., Antkiewicz, M., & Czarnecki, K. (2015). Maintaining feature trace-
ability with embedded annotations. In Proceedings of the 19th International Confer-
ence on Software Product Line (SPLC), ACM, New York, NY, USA, 61-70.

Jiang, H., Nguyen, T. N., Chen, I., Jaygarl H., & Chang, C. K. (2008). Incremental
Latent Semantic Indexing for Automatic Traceability Link Evolution Management.
23rd IEEE/ACM International Conference on Automated Software Engineering, 59-68.

Jiang, S., Zhang, H., Wang, Q., & Zhang, Y. (2010). A Debugging Approach for Java
Runtime Exceptions Based on Program Slicing and Stack Traces. 10th International
Conference on Quality Software, 393-398.

Jirapanthong, W. & Zisman, A. (2009). XTraQue: traceability for product line systems.
Software & System Modeling, 8(1), 117–144.

Khan, S. S., & Lock, S. (2009). Concern tracing and change impact analysis: An ex-
ploratory study. ICSE Workshop on Aspect-Oriented Requirements Engineering and
Architecture Design, 44-48.

Kitamura, M., Takagi, M., Yamada, K., & Sasaki, J. (2013). A representation method
to simplify traceability links between software artifacts. 12th IEEE International Con-
ference on Intelligent Software Methodologies, Tools and Techniques (SoMeT), 135-
140.

Knethen, A. (2001). A trace model for system requirements changes on embedded
systems. In Proceedings of the 4th International Workshop on Principles of Software
Evolution (IWPSE), ACM, New York, NY, USA, 17-26.

Kong, W., & Hayes, J. H. (2011). Proximity-based traceability: An empirical valida-
tion using ranked retrieval and set-based measures. Workshop on Empirical

Requirements Engineering (EmpiRE), 45-52.

Krka, I., Brun, Y, & Medvidovic, N. (2014). Automatic mining of specifications from
invocation traces and method invariants. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE), ACM, New
York, NY, USA, 178-189.

Lafet´, R. F., & Maia, M. (2011). An Empirical Assessment of the Use of Execution
Traces in Software Maintenance, 25th Brazilian Symposium on Software Engineering,
154-163.

Li, M., & Liu, S. (2014). Reviewing Formal Specification for Validation Using Anima-
tion and Trace Links. 21st Asia-Pacific Software Engineering Conference, 263-270.

Li, M., & Liu, S. (2014). Traceability-Based Formal Specification Inspection. 8th
International Conference on Software Security and Reliability (SERE), 167-176.

Lin, Y., & Zhou, X. (2012). A Traceability Approach to Constructing Feature Model
from Use Case Models. International Conference on Computer Science and Service
System, 545-548.

Linsbauer, L., Lopez-Herrejon, E. R., & Egyed, A. (2013). Recovering traceability
between features and code in product variants. In Proceedings of the 17th International
Software Product Line Conference (SPLC), ACM, New York, NY, USA, 131-140.

Liu, D., & Xu, S. (2009). A Tool Suite for Java Program Tracing and Feature Loca-
tion. 10th ACIS International Conference on Software Engineering, Artificial Intelli-
gences, Networking and Parallel/Distributed Computing, 469-474.

Liu, D., Marcus, A., Poshyvanyk, D., & Rajlich, V. (2007). Feature location via infor-
mation retrieval based filtering of a single scenario execution trace. In Proceedings of
the twenty-second IEEE/ACM international conference on Automated software engi-
neering (ASE), ACM, New York, NY, USA, 234-243.

Lohar, S., Amornborvornwong, S., Zisman, A., & Cleland-Huang, J. (2013). Improv-
ing trace accuracy through data-driven configuration and composition of tracing fea-
tures. In Proceedings of the 9th Joint Meeting on Foundations of Software Engineer-
ing (ESEC/FSE), ACM, New York, NY, USA, 378-388.

Lormans, M., & van Deursen, A. (2006). Can LSI help reconstructing requirements
traceability in design and test?, In Conference on Software Maintenance and Reengi-

Appendix A

220

neering (CSMR), 10 -56.

Lou, J.-G., Fu, Q., Yang, S., Li, Y., & Wu, B. (2010). Mining program workflow from
interleaved traces. In Proceedings of the 16th ACM SIGKDD international conference
on Knowledge discovery and data mining (KDD), ACM, New York, NY, USA, 613-
622.

Mäder, P. & Cleland-Huang, J. A visual language for modeling and executing tracea-
bility queries. Software & System Modeling, 12(3), 537–553.

Mäder, P., & Egyed, A. (2011). Do software engineers benefit from source code navi-
gation with traceability? — An experiment in software change management. 26th
IEEE/ACM International Conference on Automated Software Engineering (ASE), 444-
447.

Mäder, P., & Egyed, A. (2012).Assessing the effect of requirements traceability for
software maintenance, 28th IEEE International Conference on Software Maintenance
(ICSM), 171-180.

Mäder, P., & Egyed, A. (2015). Do developers benefit from requirements traceability
when evolving and maintaining a software system? Empirical Software Engineering,
20(2), 413-441.

Mäder, P., & Gotel, O. (2012). Towards automated traceability maintenance. Journal
of Systems and Software, 85(10), 2205-2227.

Mäder, P., Gotel, O., & Philippow, I. (2008). Rule-Based Maintenance of Post-
Requirements Traceability Relations. 16th IEEE International Requirements
Engineering Conference, 23-32.

Mader, P., Gotel, O., & Philippow, I. (2009). Motivation Matters in the Traceability
Trenches. 17th IEEE International Requirements Engineering Conference, 143-148.

Mahmoud, A. & Niu, N. (2014). Supporting requirements to code traceability through
refactoring. Requirements Engineering, 19(3), 309–329.

Mahmoud, A. & Niu, N. (2015). On the role of semantics in automated requirements
tracing. Requirements Engineering, 20(3), 281–300.

Mahmoud, A., & Niu, N. (2011). Source code indexing for automated tracing.
In Proceedings of the 6th International Workshop on Traceability in Emerging Forms
of Software Engineering (TEFSE), ACM, New York, NY, USA, 3-9.

A1. Supplementary Material to Chapter 6 – Primary studies

221

neering (CSMR), 10 -56.

Lou, J.-G., Fu, Q., Yang, S., Li, Y., & Wu, B. (2010). Mining program workflow from
interleaved traces. In Proceedings of the 16th ACM SIGKDD international conference
on Knowledge discovery and data mining (KDD), ACM, New York, NY, USA, 613-
622.

Mäder, P. & Cleland-Huang, J. A visual language for modeling and executing tracea-
bility queries. Software & System Modeling, 12(3), 537–553.

Mäder, P., & Egyed, A. (2011). Do software engineers benefit from source code navi-
gation with traceability? — An experiment in software change management. 26th
IEEE/ACM International Conference on Automated Software Engineering (ASE), 444-
447.

Mäder, P., & Egyed, A. (2012).Assessing the effect of requirements traceability for
software maintenance, 28th IEEE International Conference on Software Maintenance
(ICSM), 171-180.

Mäder, P., & Egyed, A. (2015). Do developers benefit from requirements traceability
when evolving and maintaining a software system? Empirical Software Engineering,
20(2), 413-441.

Mäder, P., & Gotel, O. (2012). Towards automated traceability maintenance. Journal
of Systems and Software, 85(10), 2205-2227.

Mäder, P., Gotel, O., & Philippow, I. (2008). Rule-Based Maintenance of Post-
Requirements Traceability Relations. 16th IEEE International Requirements
Engineering Conference, 23-32.

Mader, P., Gotel, O., & Philippow, I. (2009). Motivation Matters in the Traceability
Trenches. 17th IEEE International Requirements Engineering Conference, 143-148.

Mahmoud, A. & Niu, N. (2014). Supporting requirements to code traceability through
refactoring. Requirements Engineering, 19(3), 309–329.

Mahmoud, A. & Niu, N. (2015). On the role of semantics in automated requirements
tracing. Requirements Engineering, 20(3), 281–300.

Mahmoud, A., & Niu, N. (2011). Source code indexing for automated tracing.
In Proceedings of the 6th International Workshop on Traceability in Emerging Forms
of Software Engineering (TEFSE), ACM, New York, NY, USA, 3-9.

Mahmoud, A., Niu, N., & Xu, S. (2012). A semantic relatedness approach for tracea-
bility link recovery. 20th IEEE International Conference on Program Comprehension
(ICPC), 183-192.

Maia, M. A., & Lafeta, R. F. (2013). On the impact of trace-based feature location in
the performance of software maintainers. Journal of Systems and Software, 86(4),
1023-1037.

Mao, C., Tervonen, I., & Chen, J. (2011). Diagnosing Web Services System Based on
Execution Traces Pattern Analysis. 8th IEEE International Conference on e-Business
Engineering, 207-214.

Marcus, A., & Maletic, J. I. (2003). Recovering documentation-to-source-code tracea-
bility links using latent semantic indexing. 25th International Conference on Software
Engineering, 125-135.

Maro, S., Anjorin, A., Wohlrab, R., & Steghöfer, J. (2016). Traceability maintenance:
Factors and guidelines. 31st IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE), 414-425.

Marques, A., Ramalho, F., & Andrade, W. L. (2015). Towards a requirements tracea-
bility process centered on the traceability model. In Proceedings of the 30th Annual
ACM Symposium on Applied Computing (SAC), ACM, New York, NY, USA, 1364-
1369.

McMillan, C., Poshyvanyk, D., & Revelle, M. (2009). Combining textual and structur-
al analysis of software artifacts for traceability link recovery, ICSE Workshop on
Traceability in Emerging Forms of Software Engineering, 41-48.

Mirakhorli, M., & Cleland-Huang, J. (2011). Transforming trace information in archi-
tectural documents into re-usable and effective traceability links. In Proceedings of the
6th International Workshop on SHAring and Reusing Architectural
Knowledge (SHARK). ACM, New York, NY, USA, 45-52.

Mirakhorli, M., & Cleland-Huang, J. (2016). Detecting, Tracing, and Monitoring Ar-
chitectural Tactics in Code. In IEEE Transactions on Software Engineering, 42(3),
205-220.

Mishra, A., & Misra, A. K. (2011). Formal Aspects of Specification and Validation of
Dynamic Adaptive System by Analyzing Execution Traces. 8th IEEE International
Conference and Workshops on Engineering of Autonomic and Autonomous Systems,

Appendix A

222

49-58.

Mohan, K., Xu, P., Cao, L., & Ramesh, B. (2008). Improving change management in
software development: Integrating traceability and software configuration manage-
ment. Decision Support Systems, 45(4), 922-936.

Moros, B., Toval, A., Rosique, F., & Sánchez, P. (2013). Transforming and tracing
reused requirements models to home automation models. Information and Software
Technology, 55(6), 941-965.

Nejati, S., Sabetzadeh, M., Falessi, D., Briand, L., & Coq, T. (2012). A SysML-based
approach to traceability management and design slicing in support of safety certifica-
tion: Framework, tool support, and case studies. Information and Software Technology,
54(6), 569-590.

Neumuller, C., & Grunbacher, P. (2006). Automating Software Traceability in Very
Small Companies: A Case Study and Lessons Learne. 21st IEEE/ACM International
Conference on Automated Software Engineering (ASE), 145-156.

Niu, N., Wang, W., & Gupta, A. (2016). Gray links in the use of requirements tracea-
bility. In Proceedings of the 24th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering (FSE), ACM, New York, NY, USA, 384-395.

Pandanaboyana, S., Sridharan, S., Yannelli, J., & Hayes, J. H. (2013). REquirements
TRacing On target (RETRO) enhanced with an automated thesaurus builder: An empir-
ical study. 7th International Workshop on Traceability in Emerging Forms of Software
Engineering (TEFSE), 61-67.

Panichella, A., De Lucia, A., & Zaidman, A. (2015). Adaptive User Feedback for IR-
Based Traceability Recovery. 8th IEEE/ACM International Symposium on Software
and Systems Traceability, 15-21.

Panichella, A., McMillan, C., Moritz, E., Palmieri, D., Oliveto, R., Poshyvanyk, D., &
De Lucia, A. (2013). When and How Using Structural Information to Improve IR-
Based Traceability Recovery. 17th European Conference on Software Maintenance
and Reengineering, 199-208.

Parizi, R. M. (2016). On the gamification of human-centric traceability tasks in soft-
ware testing and coding. 14th IEEE International Conference on Software Engineering
Research, Management and Applications (SERA), 193-200.

Pradel, M., & Gross, T. R. (2009). Automatic Generation of Object Usage Specifica-

A1. Supplementary Material to Chapter 6 – Primary studies

223

49-58.

Mohan, K., Xu, P., Cao, L., & Ramesh, B. (2008). Improving change management in
software development: Integrating traceability and software configuration manage-
ment. Decision Support Systems, 45(4), 922-936.

Moros, B., Toval, A., Rosique, F., & Sánchez, P. (2013). Transforming and tracing
reused requirements models to home automation models. Information and Software
Technology, 55(6), 941-965.

Nejati, S., Sabetzadeh, M., Falessi, D., Briand, L., & Coq, T. (2012). A SysML-based
approach to traceability management and design slicing in support of safety certifica-
tion: Framework, tool support, and case studies. Information and Software Technology,
54(6), 569-590.

Neumuller, C., & Grunbacher, P. (2006). Automating Software Traceability in Very
Small Companies: A Case Study and Lessons Learne. 21st IEEE/ACM International
Conference on Automated Software Engineering (ASE), 145-156.

Niu, N., Wang, W., & Gupta, A. (2016). Gray links in the use of requirements tracea-
bility. In Proceedings of the 24th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering (FSE), ACM, New York, NY, USA, 384-395.

Pandanaboyana, S., Sridharan, S., Yannelli, J., & Hayes, J. H. (2013). REquirements
TRacing On target (RETRO) enhanced with an automated thesaurus builder: An empir-
ical study. 7th International Workshop on Traceability in Emerging Forms of Software
Engineering (TEFSE), 61-67.

Panichella, A., De Lucia, A., & Zaidman, A. (2015). Adaptive User Feedback for IR-
Based Traceability Recovery. 8th IEEE/ACM International Symposium on Software
and Systems Traceability, 15-21.

Panichella, A., McMillan, C., Moritz, E., Palmieri, D., Oliveto, R., Poshyvanyk, D., &
De Lucia, A. (2013). When and How Using Structural Information to Improve IR-
Based Traceability Recovery. 17th European Conference on Software Maintenance
and Reengineering, 199-208.

Parizi, R. M. (2016). On the gamification of human-centric traceability tasks in soft-
ware testing and coding. 14th IEEE International Conference on Software Engineering
Research, Management and Applications (SERA), 193-200.

Pradel, M., & Gross, T. R. (2009). Automatic Generation of Object Usage Specifica-

tions from Large Method Traces. IEEE/ACM International Conference on Automated
Software Engineering, 371-382.

Pruski, P., Lohar, S., Goss, W. Rasin, A., Cleland-Huang, J. (2015). TiQi: answering
unstructured natural language trace queries. Requirements Engineering, 20(3), 215–
232.

Qusef, A., Bavota, G., Oliveto, R., De Lucia, A., & Binkley, D. (2011). SCOTCH:
Test-to-code traceability using slicing and conceptual coupling. 27th IEEE
International Conference on Software Maintenance (ICSM), 63-72.

Qusef, A., Oliveto, R., & De Lucia, A. (2010). Recovering traceability links between
unit tests and classes under test: An improved method. IEEE International Conference
on Software Maintenance (ICSM), 1-10.

Rafati, A., Peck Lee, S., Parizi, R. M., & Zamani, S. (2015). A test-to-code traceability
method using .NET custom attributes. In Proceedings of the 2015 Conference on re-
search in adaptive and convergent systems (RACS), ACM, New York, NY, USA, 489-
496.

Rahimi, M., Goss, W., & Cleland-Huang, J. (2016). Evolving Requirements-to-Code
Trace Links across Versions of a Software System. IEEE International Conference on
Software Maintenance and Evolution (ICSME), 99-109.

Regan, G., Flood, D.,& McCaffery, F. (2016). Research Findings from an Industrial
Trial of a Traceability Assessment and Implementation Framework. IEEE/ACM Inter-
national Conference on Software and System Processes (ICSSP), 91-95.

Rempel, P., & Mäder, P. (2015). A quality model for the systematic assessment of
requirements traceability. 23rd IEEE International Requirements Engineering
Conference (RE), 176-185.

Rempel, P., Mäder, P., & Kuschke, T. (2013). Towards feature-aware retrieval of re-
finement traces. 7th International Workshop on Traceability in Emerging Forms of
Software Engineering (TEFSE), 100-104.

Roehm, T., Nosovic, S., & Bruegge, B. (2015).Automated extraction of failure repro-
duction steps from user interaction traces. 22nd IEEE International Conference on
Software Analysis, Evolution, and Reengineering (SANER), 121-130.

Saiedian, H., Kannenberg, A. & Morozov, S. (2013). A streamlined, cost-effective
database approach to manage requirements traceability. Software Quality Journal,

Appendix A

224

21(1), 23-28.

Santos, J. C. S., Mirakhorli, M., Mujhid, I., & Zogaan, W. (2016). BUDGET: A Tool
for Supporting Software Architecture Traceability Research. 13th Working IEEE/IFIP
Conference on Software Architecture (WICSA), 303-306.

Sardinha, A., Yu, Y., Niu, N., & Rashid, A. (2012). EA-tracer: identifying traceability
links between code aspects and early aspects. In Proceedings of the 27th Annual ACM
Symposium on Applied Computing (SAC), ACM, New York, NY, USA, 1035-1042.

Schroter, A., Schröter, A., Bettenburg, N., & Premraj, R. (2010). Do stack traces help
developers fix bugs? 7th IEEE Working Conference on Mining Software Repositories
(MSR), 118-121.

Sena Marques, M. R., Siegert, E., & Brisolara, L. (2014). Integrating UML, MARTE
and sysml to improve requirements specification and traceability in the embedded do-
main. 12th IEEE International Conference on Industrial Informatics (INDIN), 176-
181.

Settimi, R., Cleland-Huang, J., Ben Khadra, O., Mody, J., Lukasik, W., & DePalma, C.
(2004). Supporting software evolution through dynamically retrieving traces to UML
artifacts, Proceedings of the 7th International Workshop on Principles of Software
Evolution, 49-54.

Shahid, M., & Ibrahim, S. (2016). Change impact analysis with a software traceability
approach to support software maintenance. 13th International Bhurban Conference on
Applied Sciences and Technology (IBCAST), 391-396.

Shin, Y., & Cleland-Huang, J. (2012). A comparative evaluation of two user feedback
techniques for requirements trace retrieval. In Proceedings of the 27th Annual ACM
Symposium on Applied Computing (SAC), ACM, New York, NY, USA, 1069-1074.

Shin, Y., Hayes, J. H., & Cleland-Huang, J. (2015). Guidelines for Benchmarking Au-
tomated Software Traceability Techniques. 8th IEEE/ACM International Symposium
on Software and Systems Traceability, 61-67.

Spanoudakis, G., Zisman, A., Pérez-Miñana, E., & Krause, P. (2004). Rule-based gen-
eration of requirements traceability relations. Journal of Systems and Software, 72(2),
105-127.

Sundaram, S.K., Hayes, J.H., Dekhtyar, A. et al. (2010). Assessing traceability of soft-

A1. Supplementary Material to Chapter 6 – Primary studies

225

21(1), 23-28.

Santos, J. C. S., Mirakhorli, M., Mujhid, I., & Zogaan, W. (2016). BUDGET: A Tool
for Supporting Software Architecture Traceability Research. 13th Working IEEE/IFIP
Conference on Software Architecture (WICSA), 303-306.

Sardinha, A., Yu, Y., Niu, N., & Rashid, A. (2012). EA-tracer: identifying traceability
links between code aspects and early aspects. In Proceedings of the 27th Annual ACM
Symposium on Applied Computing (SAC), ACM, New York, NY, USA, 1035-1042.

Schroter, A., Schröter, A., Bettenburg, N., & Premraj, R. (2010). Do stack traces help
developers fix bugs? 7th IEEE Working Conference on Mining Software Repositories
(MSR), 118-121.

Sena Marques, M. R., Siegert, E., & Brisolara, L. (2014). Integrating UML, MARTE
and sysml to improve requirements specification and traceability in the embedded do-
main. 12th IEEE International Conference on Industrial Informatics (INDIN), 176-
181.

Settimi, R., Cleland-Huang, J., Ben Khadra, O., Mody, J., Lukasik, W., & DePalma, C.
(2004). Supporting software evolution through dynamically retrieving traces to UML
artifacts, Proceedings of the 7th International Workshop on Principles of Software
Evolution, 49-54.

Shahid, M., & Ibrahim, S. (2016). Change impact analysis with a software traceability
approach to support software maintenance. 13th International Bhurban Conference on
Applied Sciences and Technology (IBCAST), 391-396.

Shin, Y., & Cleland-Huang, J. (2012). A comparative evaluation of two user feedback
techniques for requirements trace retrieval. In Proceedings of the 27th Annual ACM
Symposium on Applied Computing (SAC), ACM, New York, NY, USA, 1069-1074.

Shin, Y., Hayes, J. H., & Cleland-Huang, J. (2015). Guidelines for Benchmarking Au-
tomated Software Traceability Techniques. 8th IEEE/ACM International Symposium
on Software and Systems Traceability, 61-67.

Spanoudakis, G., Zisman, A., Pérez-Miñana, E., & Krause, P. (2004). Rule-based gen-
eration of requirements traceability relations. Journal of Systems and Software, 72(2),
105-127.

Sundaram, S.K., Hayes, J.H., Dekhtyar, A. et al. (2010). Assessing traceability of soft-

ware engineering artifacts. Requirements Engineering, 15(3), 313–335.

Sureka, A., Lal, S., & Agarwal, L. (2011). Applying Fellegi-Sunter (FS) Model for
Traceability Link Recovery between Bug Databases and Version Archives. 18th Asia-
Pacific Software Engineering Conference, 146-153.

Tabares, M. S., Moreira, A., Anaya, R., Arango, F., & Araujo, J. (2007). A Traceability
Method for Crosscutting Concerns with Transformation Rules, Early Aspects. ICSE
Workshops in Aspect-Oriented Requirements Engineering and Architecture Design
(EARLYASPECTS), 7-7.

Taniguchi, K., Ishio, T., Kamiya, T., Kusumoto, S., & Inoue, K. (2005). Extracting
sequence diagram from execution trace of Java program. 8th International Workshop
on Principles of Software Evolution (IWPSE), 148-151.

Toda, T., Kobayashi, T., Atsumi, N., & Agusa, K. (2013). Grouping Objects for Exe-
cution Trace Analysis Based on Design Patterns. 20th Asia-Pacific Software
Engineering Conference (APSEC), 25-30.

von Knethen, A. (2002). Change-oriented requirements traceability. Support for evolu-
tion of embedded systems. In Proceedings of the International Conference on Software
Maintenance (ICSM), 482-485.

Wang, W., Niu, N., Liu, H., & Wu, Y. (2015). Tagging in Assisted Tracing. 8th
IEEE/ACM International Symposium on Software and Systems Traceability, 8-14.

Wang, X., Gu, Q., Zhang, X., Chen, X., & Chen, D. (2009). Fault Localization Based
on Multi-level Similarity of Execution Traces. 16th Asia-Pacific Software Engineering
Conference, 399-405.

Wieloch, M., Amornborvornwong, S., & Cleland-Huang, J. (2013). Trace-by-
classification: A machine learning approach to generate trace links for frequently oc-
curring software artifacts. 7th International Workshop on Traceability in Emerging
Forms of Software Engineering (TEFSE), 110-114.

Wohlrab, R., Steghöfer, J., Knauss, E., Maro, S., & Anjorin, A. (2016). Collaborative
Traceability Management: Challenges and Opportunities. 24th IEEE International
Requirements Engineering Conference (RE), 216-225.

Wong, C., Xiong, Y., Zhang, H., Hao, D., Zhang, L., & Mei, H. (2014). Boosting Bug-
Report-Oriented Fault Localization with Segmentation and Stack-Trace Analysis. IEEE

Appendix A

226

International Conference on Software Maintenance and Evolution, 181-190.

Yamada, S., Ugumori, M., & Kusumoto, S. (2010). A Software Tag Generation System
to Realize Software Traceability. Asia Pacific Software Engineering Conference, 423-
432

Yoshikawa, T., Hayashi, S., & Saeki, M. (2009). Recovering traceability links between
a simple natural language sentence and source code using domain ontologies, IEEE
International Conference on Software Maintenance, 551-554.

Zhang, H., Jiang, S., & Jin, R. (2011). An improved static program slicing algorithm
using stack trace. 2nd IEEE International Conference on Software Engineering and
Service Science, 563-567.

Zhou, X., Huo, Z., Huang, Y., & Xu, J. (2008). Facilitating Software Traceability Un-
derstanding with ENVISION. 32nd Annual IEEE International Computer Software and
Applications Conference, Turku, 295-302.

Ziftci, C., & Krüger, I. (2013). Test intents: enhancing the semantics of requirements
traceability links in test cases. In Proceedings of the 28th Annual ACM Symposium on
Applied Computing (SAC), ACM, New York, NY, USA, 1272-1277.

Zou, X., Settimi, R. & Cleland-Huang, J. (2010). Improving automated requirements
trace retrieval: a study of term-based enhancement methods. Empirical Software
Engineering, 15(2), 119–146.

Zou, X., Settimi, R., & Cleland-Huang, J. (2006). Phrasing in Dynamic Requirements
Trace Retrieva. 30th Annual International Computer Software and Applications
Conference (COMPSAC), 265-272.

A2. Supplementary Material to Chapter 6 – Additional Data for Research Questions

227

International Conference on Software Maintenance and Evolution, 181-190.

Yamada, S., Ugumori, M., & Kusumoto, S. (2010). A Software Tag Generation System
to Realize Software Traceability. Asia Pacific Software Engineering Conference, 423-
432

Yoshikawa, T., Hayashi, S., & Saeki, M. (2009). Recovering traceability links between
a simple natural language sentence and source code using domain ontologies, IEEE
International Conference on Software Maintenance, 551-554.

Zhang, H., Jiang, S., & Jin, R. (2011). An improved static program slicing algorithm
using stack trace. 2nd IEEE International Conference on Software Engineering and
Service Science, 563-567.

Zhou, X., Huo, Z., Huang, Y., & Xu, J. (2008). Facilitating Software Traceability Un-
derstanding with ENVISION. 32nd Annual IEEE International Computer Software and
Applications Conference, Turku, 295-302.

Ziftci, C., & Krüger, I. (2013). Test intents: enhancing the semantics of requirements
traceability links in test cases. In Proceedings of the 28th Annual ACM Symposium on
Applied Computing (SAC), ACM, New York, NY, USA, 1272-1277.

Zou, X., Settimi, R. & Cleland-Huang, J. (2010). Improving automated requirements
trace retrieval: a study of term-based enhancement methods. Empirical Software
Engineering, 15(2), 119–146.

Zou, X., Settimi, R., & Cleland-Huang, J. (2006). Phrasing in Dynamic Requirements
Trace Retrieva. 30th Annual International Computer Software and Applications
Conference (COMPSAC), 265-272.

A2. Supplementary Material to Chapter 6 – Additional
Data for Research Questions
RQ1: Detailed presentation of connected artifacts (and the respective phases they
belong to)

The tables below present further information about the top-5 most frequently traced
software artifact types. Specifically, there is one table for each artifact, which
shows the count of studies in which this artifact has been linked with other types of
artifacts (as well as the development phases these artifacts belong to). We note that
the tables present only pairs that have been found in at least 5 studies.

Table A2.1: Count of studies connecting Requirements to other artifacts

Artifact 1 Artifact 2 Development
Phases

Count

Requirements

Source Code

R

I 21
Classes I 14
Test Cases T 10
Methods I 5
Design Models D 5
Requirements R 5

Table A2.2: Count of studies connecting Source Code (in general) to other artifacts

Artifact 1 Artifact 2
Development
Phases

Count

Source Code

Requirements

I

R 21
Test Cases T 7
Specifications - 5
Features R 5
Design Models D 4
UML Diagrams D 4

Appendix A

228

Table A2. 3: Count of studies connecting Classes to other artifacts

Artifact 1 Artifact 2
Development
Phases

Count

Classes

Use Cases

I

R 15
Requirements R 14
Test Cases T 10
Interaction Diagrams D 6
Features R 4

Table A2.4: Count of studies connecting UML diagrams to other artifacts

Artifact 1 Artifact 2
Development
Phases

Count

UML Diagrams

Source code

D

I 4
Requirements R 2
Use Cases R 2
Classes I 2

Table A2. 5: Count of studies connecting Use Cases to other artifacts

Artifact 1 Artifact 2
Development
Phases

Count

Use Cases

Classes

D

I 15
Interaction Diagrams D 6
Test Cases T 6
Source code I 4
Requirements R 3
Features R 3
Methods I 3

A2. Supplementary Material to Chapter 6 – Additional Data for Research Questions

229

Table A2. 3: Count of studies connecting Classes to other artifacts

Artifact 1 Artifact 2
Development
Phases

Count

Classes

Use Cases

I

R 15
Requirements R 14
Test Cases T 10
Interaction Diagrams D 6
Features R 4

Table A2.4: Count of studies connecting UML diagrams to other artifacts

Artifact 1 Artifact 2
Development
Phases

Count

UML Diagrams

Source code

D

I 4
Requirements R 2
Use Cases R 2
Classes I 2

Table A2. 5: Count of studies connecting Use Cases to other artifacts

Artifact 1 Artifact 2
Development
Phases

Count

Use Cases

Classes

D

I 15
Interaction Diagrams D 6
Test Cases T 6
Source code I 4
Requirements R 3
Features R 3
Methods I 3

RQ4: View on the development phases and the exact artifacts being examined by
using different research methods

Table A2. 6 below shows the top-5 (when applicable) pairs of development phases
studied by using each empirical research method

Table A2. 6: Pairs of development phases studied using the different research
methods

Research Method
Development
Phases

Count

Case study R-I 60
R-R 30

 R-D 26
I-T 23
D-I 20

Experiment R-I 48
D-I 40
R-D 31
D-D 23
I-I 13

Proof of Concept R-I 8
D-I 8
R-D 8
I-T 6
I-I 5

Survey R-D 1
R-R 1
R-I 1
R-T 1
I-T 1

Simulation R-R 2
R-I 1

Appendix A

230

Table A2.7 shows the most frequently traced pairs of software artifacts and how
they are distributed based on the empirical research method used when studied.

Table A2.7: Research methods used for studding the most frequently traced pairs
of software artifacts

Artifact 1 Artifact 2

C
as

e
St

ud
y

E
xp

er
im

en
t

Pr
oo

f o
f C

on
ce

pt

Su
rv

ey

Requirements Source Code 12 5 4 1

Use Cases Classes 9 6

Requirements Classes 6 7 1

Classes Test Cases 6 3 1

Requirements Test Cases 6 2 1 1

Source Code Test Cases 7 1

Interaction Diagrams Test Cases 4 2

Interaction Diagrams Classes 3 4

Use Cases Test Cases 3 3

Use Cases Interaction Diagrams 3 4

High Level Require-
ments

Low Level Requirements 5 1

Source Code Specifications 3 2

Features Source Code 4 1

Requirements Methods 2 3

Requirements Design Models 2 2 1

	Appendix A

