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A2. Supplementary Material to Chapter 6 – Additional 
Data for Research Questions 
RQ1: Detailed presentation of connected artifacts (and the respective phases they 
belong to) 

The tables below present further information about the top-5 most frequently traced 
software artifact types. Specifically, there is one table for each artifact, which 
shows the count of studies in which this artifact has been linked with other types of 
artifacts (as well as the development phases these artifacts belong to). We note that 
the tables present only pairs that have been found in at least 5 studies. 

Table A2.1: Count of studies connecting Requirements to other artifacts 

Artifact 1 Artifact 2 Development 
Phases 

Count 

Requirements 

Source Code 

R 

I 21 
Classes I 14 
Test Cases T 10 
Methods I 5 
Design Models D 5 
Requirements R 5 

 

Table A2.2: Count of studies connecting Source Code (in general) to other artifacts 

Artifact 1 Artifact 2 
Development 
Phases 

Count 

Source Code 

Requirements 

I 

R 21 
Test Cases T 7 
Specifications - 5 
Features R 5 
Design Models D 4 
UML Diagrams D 4 
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Table A2. 3: Count of studies connecting Classes to other artifacts 

Artifact 1 Artifact 2 
Development 
Phases 

Count 

Classes 

Use Cases 

I 

R 15 
Requirements R 14 
Test Cases T 10 
Interaction Diagrams D 6 
Features R 4 

 

Table A2.4: Count of studies connecting UML diagrams to other artifacts 

Artifact 1 Artifact 2 
Development 
Phases 

Count 

UML Diagrams 

Source code 

D 

I 4 
Requirements R 2 
Use Cases R 2 
Classes I 2 

 

Table A2. 5: Count of studies connecting Use Cases to other artifacts 

Artifact 1 Artifact 2 
Development 
Phases 

Count 

Use Cases 

Classes 

D 

I 15 
Interaction Diagrams D 6 
Test Cases T 6 
Source code I 4 
Requirements R 3 
Features R 3 
Methods I 3 
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Table A2. 3: Count of studies connecting Classes to other artifacts 

Artifact 1 Artifact 2 
Development 
Phases 

Count 

Classes 

Use Cases 

I 

R 15 
Requirements R 14 
Test Cases T 10 
Interaction Diagrams D 6 
Features R 4 

 

Table A2.4: Count of studies connecting UML diagrams to other artifacts 

Artifact 1 Artifact 2 
Development 
Phases 

Count 

UML Diagrams 

Source code 

D 

I 4 
Requirements R 2 
Use Cases R 2 
Classes I 2 

 

Table A2. 5: Count of studies connecting Use Cases to other artifacts 

Artifact 1 Artifact 2 
Development 
Phases 

Count 

Use Cases 

Classes 

D 

I 15 
Interaction Diagrams D 6 
Test Cases T 6 
Source code I 4 
Requirements R 3 
Features R 3 
Methods I 3 

 

 

 

RQ4: View on the development phases and the exact artifacts being examined by 
using different research methods 

Table A2. 6 below shows the top-5 (when applicable) pairs of development phases 
studied by using each empirical research method 

Table A2. 6: Pairs of development phases studied using the different research 
methods 

Research Method 
Development 
Phases 

Count 

Case study R-I 60 
R-R 30 

 R-D 26 
I-T 23 
D-I 20 

Experiment R-I 48 
D-I 40 
R-D 31 
D-D 23 
I-I 13 

Proof of Concept R-I 8 
D-I 8 
R-D 8 
I-T 6 
I-I 5 

Survey R-D 1 
R-R 1 
R-I 1 
R-T 1 
I-T 1 

Simulation R-R 2 
R-I 1 
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Table A2.7 shows the most frequently traced pairs of software artifacts and how 
they are distributed based on the empirical research method used when studied. 

 

Table A2.7: Research methods used for studding the most frequently traced pairs 
of software artifacts 

Artifact 1 Artifact 2 

C
as

e 
St

ud
y 

E
xp

er
im

en
t 

Pr
oo

f o
f C

on
ce

pt
 

Su
rv

ey
 

Requirements Source Code 12 5 4 1 

Use Cases Classes 9 6   

Requirements Classes 6 7 1  

Classes Test Cases 6 3 1  

Requirements Test Cases 6 2 1 1 

Source Code Test Cases 7   1 

Interaction Diagrams Test Cases 4 2   

Interaction Diagrams Classes 3 4   

Use Cases Test Cases 3 3   

Use Cases Interaction Diagrams 3 4   

High Level Require-
ments 

Low Level Requirements 5 1   

Source Code Specifications 3 2   

Features Source Code 4  1  

Requirements Methods 2 3   

Requirements Design Models 2 2  1 
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