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Kappa Coefficients for
Missing Data

Alexandra De Raadt1, Matthijs J. Warrens1 ,
Roel J. Bosker1 and Henk A. L. Kiers1

Abstract

Cohen’s kappa coefficient is commonly used for assessing agreement between classifi-
cations of two raters on a nominal scale. Three variants of Cohen’s kappa that can
handle missing data are presented. Data are considered missing if one or both ratings
of a unit are missing. We study how well the variants estimate the kappa value for
complete data under two missing data mechanisms—namely, missingness completely
at random and a form of missingness not at random. The kappa coefficient considered
in Gwet (Handbook of Inter-rater Reliability, 4th ed.) and the kappa coefficient based on
listwise deletion of units with missing ratings were found to have virtually no bias and
mean squared error if missingness is completely at random, and small bias and mean
squared error if missingness is not at random. Furthermore, the kappa coefficient that
treats missing ratings as a regular category appears to be rather heavily biased and
has a substantial mean squared error in many of the simulations. Because it performs
well and is easy to compute, we recommend to use the kappa coefficient that is based
on listwise deletion of missing ratings if it can be assumed that missingness is com-
pletely at random or not at random.

Keywords

nominal ratings, inter-rater reliability, Cohen’s kappa, missing data, Gwet’s kappa,
listwise deletion

Introduction

In various research domains and applications, the classification of units (persons,

individuals, objects) into nominal categories is frequently required. Examples are the

1University of Groningen, Groningen, the Netherlands

Corresponding Author:

Matthijs J. Warrens, Groningen Institute for Educational Research, University of Groningen, Grote

Rozenstraat 3, 9712 TG Groningen, the Netherlands

Email: m.j.warrens@rug.nl

https://sagepub.com/journals-permissions
https://doi.org/10.1177/0013164418823249
https://journals.sagepub.com/home/epm
http://crossmark.crossref.org/dialog/?doi=10.1177%2F0013164418823249&domain=pdf&date_stamp=2019-01-16


assignment of people with mental health problems to classes of mental disorders by

a psychologist, the classification of assignments of students to assess their profi-

ciency by their teachers, the allocation of elderly people to classes representing dif-

ferent types of dementia by neurologists, and the classification of fractures from

scans. In the first example, persons who have a depressed mood and a decreased

interest or pleasure may be diagnosed with a major depressive disorder (American

Psychiatric Association, 2013). A diagnosis may provide a person more insight into

his or her problems, which is often a prerequisite for finding the right treatment.

Classification of persons into categories may also be useful for research purposes.

Groupings that were obtained using rater classification can be compared on various

outcome variables.

A nominal rating instrument has high reliability if units obtain the same classifica-

tion under similar conditions. The reliability of ratings may be poor if, for example,

the definition of categories is ambiguous or if instructions are not clear. In the latter

case, a rater may not fully understand what he or she is asked to interpret, which may

lead to a poor diagnosis. To study whether ratings are correct and of high reliability,

researchers typically ask two raters to judge the same group of units. The agreement

between ratings is then used as an indication of the reliability of the classifications of

the raters (Blackman & Koval, 2000; McHugh, 2012; Shiloach et al., 2010; Wing,

Leekam, Libby, Gould, & Larcombe, 2002).

A coefficient that is commonly used for measuring the degree of agreement

between two raters on a nominal scale is Cohen’s kappa (Andrés & Marzo, 2004;

Cohen, 1960; Conger, 2017; Maclure & Willett, 1987; Schouten, 1986; Vanbelle &

Albert, 2009; Viera & Garrett, 2005; Warrens, 2015). The coefficient is a standard

tool for assessing agreement between nominal classifications in behavioral, social,

and medical sciences (Banerjee, Capozzoli, McSweeney, & Sinha, 1999; De Vet,

Mokkink, Terwee, Hoekstra, & Knol, 2013; Sim & Wright, 2005). A major advan-

tage of kappa over the raw observed percent agreement is that the coefficient controls

for agreement due to chance (Cohen, 1960). Kappa has value 1 if there is perfect

agreement between the raters and value 0 if observed percent agreement is equal to

the agreement due to chance.

Missing data are quite common in research and can have a notable effect on the

conclusions that can be drawn from the data (Baraldi & Enders, 2010; Enders, 2010;

Peugh & Enders, 2004). In this article, data are considered missing if one or both rat-

ings of a unit are missing. Missing data may have various causes, such as dropout

during a clinical trial (Myers, 2000) or nonresponse on an appointment

(Raghunathan, 2004). Furthermore, missing data may be the result of the coding pro-

cedure. For instance, in content analysis, one rater may break up a text in more parts

than another rater. Data are missing since the second rater does not classify some of

the units that are classified by the first rater (Simon, 2006; Strijbos & Stahl, 2007).

Several variants of Cohen’s kappa for dealing with missing data have been pro-

posed in the literature (Gwet, 2012, 2014; Simon, 2006; Strijbos & Stahl, 2007). The

kappas are based on two different approaches. In the first approach, units with one or
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two missing ratings are classified into a separate ‘‘missing’’ category. This first

approach is also known as an available-case analysis. The second approach is simply

to delete (or ignore) all units with no or only one rating available and apply the ordi-

nary Cohen’s kappa. The latter approach is known as listwise or pairwise deletion in

the statistical literature (with two raters’ listwise deletion being equal to pairwise

deletion) and is probably the most commonly used approach (Peugh & Enders,

2004). The second approach is also known as a complete-case analysis.

At present, it is unclear how the different kappa coefficients for missing data are

related and what the impact of the degree and nature of the missingness is on the

degree of reliability. Strijbos and Stahl (2007) presented examples that show that dif-

ferent kappa coefficients may produce quite different values for the same data. Thus,

different conclusions about the reliability of a nominal rating instrument may be

reached depending on which kappa coefficient is used. Furthermore, it is also unclear

which kappa coefficient should be preferred in a particular research context. New

insights into the properties of the kappa coefficients for missing data are therefore

welcomed.

In this article, we study how the three aforementioned kappa coefficients are

affected by different degrees of missing data. The new insights presented in this arti-

cle may help researchers choose the most appropriate kappa coefficient. It should be

noted that the kappa coefficients are based on what are referred to in the literature as

traditional methods. For other data-analytic applications, it has been shown that list-

wise and pairwise deletion methods have certain limitations (cf. Baraldi & Enders,

2010; Enders, 2010; Peugh & Enders, 2004). The deletion methods may perform well

if it can be assumed that missingness is completely at random (MCAR). However, if

MCAR cannot be assumed, deletion methods may provide distorted parameter esti-

mates. More modern approaches for handling missingness are based on maximum

likelihood and multiple imputation methods (Baraldi & Enders, 2010; Enders, 2010;

Peugh & Enders, 2004).

The article is structured as follows. Cohen’s kappa is defined in the next section.

The three kappa coefficients for dealing with missing data are defined in the

‘‘Kappas for Missing Data’’ section. We are interested in how well the three kappa

coefficients estimate the kappa value for complete data in light of missing data. In

the ‘‘Simulations’’ section, we use simulated data to get an idea of the extent of the

bias and the mean squared error (MSE) if the missingness is completely at random

or if the missingness is not at random. The final section contains a discussion.

Cohen’s Kappa

In this section, we consider Cohen’s original kappa coefficient (Cohen, 1960).

Suppose we have two raters, A and B, who have classified independently the same

group of N units into one of k categories that were defined in advance. Suppose the

data are summarized in the square contingency table P = pij

� �
, where pij denotes the

relative frequency (proportion) of units that were classified into category
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i 2 1, 2, . . . , kf g by Rater A and into category j 2 1, 2, . . . , kf g by Rater B. Table 1

is an example of P for three categories. The diagonal cells p11, p22, and p33 reflect

the agreement between the raters, while the off-diagonal cells reflect the disagree-

ment between the raters. The marginal totals or base rates pi + and p+i for

i 2 1, 2, . . . , kf g reflect how often the categories were used by the raters.

The kappa coefficient is a function of two quantities: the observed percent

agreement

Po =
Xk

i = 1

pii ð1Þ

which is the proportion of units on which both raters agree, and the expected percent

agreement

Pe =
Xk

i = 1

pi + p+i, ð2Þ

which is the value of the observed percent agreement under statistical independence

of the classifications. The observed percent agreement is generally considered artifi-

cially high. It is often assumed that it overestimates the actual agreement since some

agreement may simply occur due to chance (Bennett, Alpert, & Goldstein, 1954;

Cohen, 1960). The kappa coefficient is given by

k =
Po � Pe

1� Pe

: ð3Þ

Coefficient (3) corrects for agreement due to chance by subtracting (2) from (1). To

ensure that the maximum value of the coefficient is 1, the difference Po � Pe is

divided by its maximum value 1� Pe. Thus, Cohen’s kappa is defined as a measure

of agreement beyond chance compared with the maximum possible beyond chance

agreement (Andrés & Marzo, 2004; Conger, 2017). The value of kappa usually lies

between 0 and 1. It has value 1 if there is perfect agreement between the raters (i.e.,

Table 1. Pairwise Classifications of Units Into Three Categories.

Rater A

Rater B

Category 1 Category 2 Category 3 Total

Category 1 p11 p12 p13 p1 +

Category 2 p21 p22 p23 p2 +

Category 3 p31 p32 p33 p3 +

Total p+ 1 p+ 2 p+ 3 1
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Po = 1) and value 0 if the observed percent agreement is equal to the expected per-

cent agreement (i.e., Po = Pe).

Landis and Koch (1977) proposed the following guidelines for the interpretation

of the kappa value: 0.0 to 0.2 = slight agreement, 0.2 to 0.4 = fair agreement, 0.4 to

0.6 = moderate agreement, 0.6 to 0.8 = substantial agreement, and 0.8 to 1.0 = almost

perfect agreement. It should be noted that these guidelines, and any other set of guide-

lines, are generally considered arbitrary. Except perhaps for 0 and 1, no value of

kappa can have the same meaning in all application domains.

Various authors have reported difficulties with kappa’s interpretation. Kappa val-

ues depend on the base rates (through Pe), and kappa values corresponding to tables

with different base rates are generally not comparable (Brennan & Prediger, 1981;

Byrt, Bishop, & Carlin, 1993; Conger, 2017; Feinstein & Cicchetti, 1990; Lantz &

Nebenzahl, 1996; Maclure & Willett, 1987; Sim & Wright, 2005; Thompson &

Walter, 1988; Warrens, 2010). An overview of the different forms of marginal

dependency and associated properties of Cohen’s kappa can be found in Warrens

(2014). Despite the difficulties with its interpretation, the kappa coefficient continues

to be a standard tool for assessing agreement between two raters (Hsu & Field, 2003;

McHugh, 2012).

Kappas for Missing Data

In an ideal situation, all units would be rated by both raters. Unfortunately, in real

life, missing data can occur. In this article, we consider data missing if a unit was not

classified by both raters, or was classified by one rater only. In this section, we con-

sider three variants of Cohen’s kappa that can handle missing data.

Missing Data in a Separate Category

Table 2 is an extended version of Table 1 that includes an extra missing category.

This category is denoted by the subscript m. The cells pmi for i 2 1, 2, . . . , kf g reflect

the proportion of units that were classified into category i by Rater B but are missing

a classification by Rater A. The cells pim for i 2 1, 2, . . . , kf g are the proportions of

units that were classified into category i by Rater A but are missing a classification

by Rater B. Cell pmm is the proportion of units with two missing ratings. Furthermore,

the marginal total pm + reflects how many units were rated by Rater B but not by

Rater A. Vice versa, the marginal total p+m reflects how many units were rated by

Rater A but have no rating by Rater B.

Gwet’s Kappa

Gwet (2014) proposed a kappa variant that can be explained by means of Table 2. In

Gwet’s formulation, only units with two reported ratings are included in the calcula-

tion of the observed percent agreement. But units with one reported rating and one
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missing rating are used in the computation of the expected percent agreement. Units

with two missing ratings are excluded from the calculation altogether. The missing

data are used to obtain a more precise estimation of the expected percent agreement.

The observed percent agreement is defined as

Pog =

Pk
i = 1 piiPk

i = 1

Pk
j = 1 pij

: ð4Þ

In contrast to the observed percent agreement, the expected percent agreement takes

into account (almost) all units in the sample. As illustrated in Table 2, the row totals

pi + and the column totals p+i are defined such that they also include units that have

missing ratings. The expected percent agreement is defined as

Peg =

Pk
i = 1 pi + p+i

(1� pm + )(1� p+m)
: ð5Þ

The product in the denominator in (5) only includes units that were classified by

Rater A and Rater B, respectively. It is important to note that formula (5) is different

from the expected percent agreement presented in Gwet (2012, 2014). Formula (5)

can be found on the erratum webpage of the book published in 2014 (www.agrees-

tat.com/book4/errors_4ed.html).

Using (4) and (5), Gwet’s kappa coefficient is given by

kg =
Pog � Peg

1� Peg

: ð6Þ

In Gwet’s view, missing ratings by both raters on the same unit do not add to the

overall agreement. For this reason, all units associated with the cell pmm are excluded

from the analysis in Gwet’s formulation. Formulas (4), (5), and (6) are applied to

Table 2 with pmm = 0.

Table 2. Pairwise Classifications of Units Into Three General Categories and One Category
for Missing Ratings.

Rater A

Rater B

Category 1 Category 2 Category 3 Missing Total

Category 1 p11 p12 p13 p1m p1 +

Category 2 p21 p22 p23 p2m p2 +

Category 3 p31 p32 p33 p3m p3 +

Missing pm1 pm2 pm3 pmm pm +

Total p+1 p+2 p+3 p+m 1
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Regular Category Kappa

Another way to deal with missing data is to consider the missing category as a regu-

lar category (Strijbos & Stahl, 2007). In this case, units with only one missing rating

are considered and treated as disagreements, whereas units with two missing ratings

are treated as agreements. In this case, the observed percent agreement is defined as

Por =
Xk

i = 1

pii + pmm, ð7Þ

while the expected percent agreement is defined as

Per =
Xk

i = 1

pi + p+i + pm + p+m: ð8Þ

The so-called regular category kappa is then given by

kr =
Por � Per

1� Per

: ð9Þ

Alternatively, one could define kr as the ordinary kappa applied to ratings into k + 1

categories, where ‘‘missing’’ is considered as the (k + 1)th category (Strijbos & Stahl,

2007).

Listwise Deletion Kappa

A third way to deal with missing data is simply to delete (or ignore) all units that were

not classified by both raters and apply the ordinary Cohen’s kappa to the units with

two ratings (Strijbos & Stahl, 2007). In statistics, this approach is also known as list-

wise deletion or a complete-case analysis (Baraldi & Enders, 2010; Enders, 2010;

Peugh & Enders, 2004). Therefore, the kappa variant that is based on this approach

will be referred to as listwise deletion kappa, and will be denoted by kl. The formulas

for Cohen’s kappa were presented in the ‘‘Cohen’s Kappa’’ section.

Simulations

We used simulated data to study how close the values of Gwet’s kappa, regular cate-

gory kappa, and listwise deletion kappa are to the kappa value for complete data. The

latter value will be denoted by kT . How we generated the data will be described first.

Procedure and Design

We carried out a number of simulations under different conditions, according to the

following procedure. We started with an initial agreement table with complete data
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for N = 100 units. To create missing data, we modified a rating as missing when a

random draw from the uniform ½0, 1� distribution exceeded a particular threshold.

This threshold was varied such that the expected percentage of modifications was

5%, 10%, 15%, 20%, 25%, and 30% per rater. For instance, if the expected percent-

age of modifications was 30% per rater, then each rater had approximately 30 miss-

ing ratings. In total, there are approximately 60 missing ratings and 200 observations;

thus, approximately 30% ratings were missing. Next, the values of the three kappa

coefficients were determined.

The above steps were repeated 10,000 times. Across the thus constructed 10,000

data sets, we determined the bias for each type of kappa coefficient:

bias =
1

10, 000

X10, 000

i = 1

(ki � kT ): ð10Þ

and the mean squared error (MSE)

MSE =
1

10, 000

X10, 000

i = 1

(ki � kT )2: ð11Þ

Furthermore, the standard errors of the bias and MSE were also included to get an

impression of the fluctuation of bias and MSE across possible repetitions of the

simulation.

For the simulations, we differentiated between eight initial tables with complete

data, four of size 232 and four of size 333. The proportions and corresponding

kappa values of the four tables of size 232 are presented in Table 3. The analogous

statistics for the four tables of size 333 are presented in Table 4. Each set of four

tables consists of two symmetric and two asymmetric tables, and two tables with a

high kappa value (6:80) and a medium kappa value (6:40). The tables were chosen

such that they cover a wide range of possible real-life situations.

We used two different missing data mechanisms—namely, missingness com-

pletely at random (MCAR) and a form of missingness not at random (MNAR). With

Table 3. Proportions and Kappa Values of the Four Initial Tables of Size 232.

Element

Initial table

3.1 3.2 3.3 3.4

p11 .45 .35 .51 .40
p12 .05 .15 .10 .33
p21 .05 .15 .00 .00
p22 .45 .35 .39 .27
kT .80 .40 .80 .40
Symmetric? Yes Yes No No
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MCAR, each rating has an equal chance to be relabeled as missing, whereas with

MNAR, we allowed only ratings associated with the first category to become missing,

and each of these has a chance to be relabeled as missing equal to the set modification

percentage. So one can expect approximately this percentage of missing within the

first category ratings, and no missings elsewhere.

In addition to the two missing data mechanisms, we differentiated between two

situations. In the first situation, both raters have missing ratings and each rater had

an equal chance that ratings can be relabeled as missing. In the second situation, only

Rater A had missing ratings.

In summary, the simulation study design consists of eight initial tables of two dif-

ferent sizes (232 and 333), two missing data mechanisms (MCAR and MNAR), two

rater conditions (missing ratings for both raters, or only for Rater A), and six missing

percentages (5%� 30%). For each case of the design, we generated 10,000 data sets,

and for each data set, we determined the values of the three kappa coefficients, the

associated bias, and MSE.

Results for 232 Tables

The results for the initial tables of size 232 are presented in Tables 5 to 8. In each

table, the first column (IT) gives the initial table from Table 3 used to simulate the

data, while the second column (%M) gives the percentage of missing data.

Furthermore, the values of the bias are in the third, fourth, and fifth columns,

whereas the values of the MSE are in the sixth, seventh, and eighth columns. The

corresponding standard errors are presented within parentheses after each value.

Tables 5 and 7 present the results for the case of MCAR, and Tables 6 and 8 for

the case of MNAR. Moreover, Tables 5 and 6 present the results for the case of

Table 4. Proportions and Kappa Values of the Four Initial Tables of Size 333.

Element

Initial table

4.1 4.2 4.3 4.4

p11 .28 .20 .35 .28
p12 .04 .10 .09 .15
p13 .02 .05 .02 .06
p21 .04 .10 .00 .00
p22 .28 .20 .24 .21
p23 .01 .05 .02 .20
p31 .02 .05 .00 .00
p32 .01 .05 .00 .00
p33 .30 .20 .28 .10
kT .79 .40 .80 .40
Symmetric? Yes Yes No No
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missing ratings for both raters, and Tables 7 and 8 the case of missing ratings for

only Rater A.

It turns out that regular category kappa is biased downward in all cases of Tables

5 to 8 and that the bias increases with the missingness. Furthermore, the bias of regu-

lar category kappa is in almost all simulated cases the most extreme, in the absolute

sense, of the three kappa coefficients. If we compare the kappa values of the initial

232 tables and keep everything else constant, then, in all cases, the bias is more sub-

stantial if the kappa value is high (6:80) than if it is low (6:40). The simulations

show that we have some sort of floor effect for the bias if the original kappa value is

already low. The bias of regular category kappa is already quite substantial in most

cases when only 10% of the ratings are missing. Moreover, in all simulated cases,

the bias is often more than 2.20 if 30% of the ratings are missing.

In virtually all simulated cases, regular category kappa has the highest MSE of the

three kappa coefficients. If we compare the kappa values of the initial 232 tables and

Table 5. Bias and MSE for 10,000 Simulations With MCAR for Both Raters.

IT %M

Bias MSE

kg kr kl kg kr kl

3.1 5 .000 (.000) 2.138 (.000) .000 (.000) .000 (.000) .021 (.000) .000 (.000)
10 .000 (.000) 2.244 (.001) 2.001 (.000) .001 (.000) .063 (.000) .001 (.000)
15 .000 (.000) 2.331 (.001) 2.001 (.000) .001 (.000) .113 (.000) .001 (.000)
20 –.001 (.000) 2.400 (.001) 2.001 (.000) .002 (.000) .164 (.001) .002 (.000)
25 .000 (.001) 2.457 (.001) 2.001 (.001) .003 (.000) .213 (.001) .003 (.000)
30 .001 (.001) 2.505 (.001) 2.002 (.001) .004 (.000) .260 (.001) .004 (.000)

3.2 5 .000 (.000) 2.069 (.000) .000 (.000) .001 (.000) .006 (.000) .001 (.000)
10 .000 (.000) 2.123 (.001) 2.001 (.000) .002 (.000) .017 (.000) .002 (.000)
15 .000 (.001) 2.165 (.001) 2.001 (.000) .003 (.000) .030 (.000) .003 (.000)
20 .001 (.001) 2.200 (.001) 2.001 (.000) .005 (.000) .043 (.000) .005 (.000)
25 .001 (.001) 2.229 (.001) 2.002 (.001) .007 (.000) .056 (.000) .007 (.000)
30 .000 (.001) 2.251 (.001) 2.002 (.001) .009 (.000) .067 (.000) .009 (.000)

3.3 5 .000 (.000) 2.138 (.000) .000 (.000) .000 (.000) .021 (.000) .000 (.000)
10 .000 (.000) 2.246 (.001) .000 (.000) .001 (.000) .063 (.000) .001 (.000)
15 .000 (.000) 2.331 (.001) .000 (.000) .001 (.000) .113 (.000) .001 (.000)
20 .000 (.000) 2.401 (.001) 2.001 (.000) .002 (.000) .164 (.001) .002 (.000)
25 .000 (.001) 2.457 (.001) 2.001 (.001) .003 (.000) .213 (.001) .003 (.000)
30 .001 (.001) 2.506 (.001) 2.002 (.001) .004 (.000) .261 (.001) .004 (.000)

3.4 5 .000 (.000) 2.063 (.000) .000 (.000) .001 (.000) .005 (.000) .001 (.000)
10 .000 (.000) 2.114 (.000) .000 (.000) .002 (.000) .015 (.000) .001 (.000)
15 .001 (.001) 2.154 (.000) .000 (.000) .002 (.000) .026 (.000) .002 (.000)
20 .000 (.001) 2.188 (.001) .000 (.001) .004 (.000) .038 (.000) .003 (.000)
25 .000 (.001) 2.217 (.001) 2.001 (.001) .005 (.000) .050 (.000) .004 (.000)
30 .001 (.001) 2.240 (.001) .000 (.001) .007 (.000) .061 (.000) .005 (.000)

Note. MSE = mean squared error; MCAR = missingness completely at random; IT = initial table.

De Raadt et al. 567



keep everything else constant, then, in all cases, the MSE is similar as for the bias,

more substantial if the kappa value is high than if it is low.

In Tables 5 to 8, we see that the results for Gwet’s kappa and listwise deletion

kappa are very similar. Both kappa coefficients are virtually unbiased in case of

MCAR and only slightly biased in case of MNAR. Furthermore, the associated MSE

values are generally very small—that is, � :009 for all simulations in Tables 5 to 8.

In terms of bias and MSE, Gwet’s kappa and listwise deletion kappa clearly outper-

form regular category kappa in all simulated cases.

Finally, there are only slight differences between the symmetric and asymmetric

cases, whether only one rater or both raters had missing ratings, and between the two

missing data mechanisms. An exception is that regular category kappa is more biased

in the case of MCAR compared with MNAR. Moreover, all standard errors are

smaller than :002, which suggests that the bias and MSE estimates in these simula-

tions have a high degree of accuracy.

Table 6. Bias and MSE for 10,000 Simulations With MNAR for Both Raters.

IT %M

Bias MSE

kg kr kl kg kr kl

3.1 5 .000 (.000) 2.072 (.000) .000 (.000) .000 (.000) .006 (.000) .000 (.000)
10 .001 (.000) 2.132 (.000) 2.001 (.000) .000 (.000) .019 (.000) .000 (.000)
15 .001 (.000) 2.180 (.000) 2.002 (.000) .001 (.000) .034 (.000) .001 (.000)
20 .002 (.000) 2.219 (.000) 2.003 (.000) .001 (.000) .050 (.000) .001 (.000)
25 .003 (.000) 2.253 (.001) 2.007 (.000) .001 (.000) .066 (.000) .001 (.000)
30 .005 (.000) 2.277 (.001) 2.011 (.000) .001 (.000) .080 (.000) .002 (.000)

3.2 5 .000 (.000) 2.036 (.000) .000 (.000) .000 (.000) .002 (.000) .000 (.000)
10 .000 (.000) 2.066 (.000) 2.001 (.000) .001 (.000) .005 (.000) .000 (.000)
15 .002 (.000) 2.090 (.000) 2.003 (.000) .001 (.000) .009 (.000) .001 (.000)
20 .003 (.000) 2.109 (.000) 2.004 (.000) .002 (.000) .014 (.000) .001 (.000)
25 .004 (.001) 2.126 (.000) 2.009 (.000) .003 (.000) .018 (.000) .001 (.000)
30 .008 (.001) 2.138 (.000) 2.012 (.000) .003 (.000) .021 (.000) .002 (.000)

3.3 5 .000 (.000) 2.080 (.000) .001 (.000) .000 (.000) .007 (.000) .000 (.00)
10 .000 (.000) 2.145 (.000) .001 (.000) .000 (.000) .023 (.000) .000 (.000)
15 .001 (.000) 2.197 (.000) .001 (.000) .001 (.000) .041 (.000) .001 (.000)
20 .002 (.000) 2.239 (.000) .001 (.000) .001 (.000) .059 (.000) .001 (.000)
25 .004 (.000) 2.272 (.001) 2.001 (.000) .001 (.000) .077 (.000) .001 (.000)
30 .005 (.000) 2.299 (.001) 2.003 (.000) .001 (.000) .092 (.000) .002 (.000)

3.4 5 .000 (.000) 2.037 (.000) .001 (.000) .000 (.000) .002 (.000) .000 (.000)
10 .001 (.000) 2.066 (.000) .002 (.000) .001 (.000) .005 (.000) .000 (.000)
15 .002 (.000) 2.091 (.000) .004 (.000) .001 (.000) .009 (.000) .001 (.000)
20 .003 (.000) 2.112 (.000) .003 (.000) .002 (.000) .014 (.000) .001 (.000)
25 .005 (.000) 2.127 (.000) .003 (.000) .002 (.000) .018 (.000) .002 (.000)
30 .010 (.000) 2.140 (.000) .001 (.000) .003 (.000) .021 (.000) .002 (.000)

Note. MSE = mean squared error; MNAR = missingness not at random; IT = initial table.
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Results for 333 Tables

The results for the initial tables of size 333 are presented in Tables 9 to 12. In

each table, the first column (IT) gives the initial table from Table 4 used to simu-

late the data, while the second column (%M) gives the degree of missing data.

Furthermore, the values of the bias are in the third, fourth, and fifth columns,

whereas the values of the MSE are in the sixth, seventh, and eighth columns. The

corresponding standard errors are presented within parentheses after each value.

Tables 9 and 11 presents the results for the case of MCAR, and Tables 10 and 12

for the case of MNAR.

The results in Tables 9 to 12 for the 333 initial tables are in many respects compa-

rable with the results in Tables 5 to 8 for the 232 initial tables. We found only more

extreme results in the situation of MNAR and for missings for only one rater for the

232 initial tables compared with the 333 initial tables.

Table 7. Bias and MSE for 10,000 Simulations With MCAR for Rater A Only.

IT %M

Bias MSE

kg kr kl kg kr kl

3.1 5 .000 (.000) 2.076 (.000) .000 (.000) .000 (.000) .007 (.000) .000 (.000)
10 .000 (.000) 2.144 (.000) .000 (.000) .000 (.000) .023 (.000) .000 (.000)
15 .000 (.000) 2.208 (.000) .000 (.000) .001 (.000) .045 (.000) .001 (.000)
20 .000 (.000) 2.265 (.000) .000 (.000) .001 (.000) .073 (.000) .001 (.000)
25 .000 (.000) 2.318 (.000) 2.001 (.000) .001 (.000) .104 (.000) .001 (.000)
30 .000 (.000) 2.368 (.000) .000 (.000) .002 (.000) .138 (.000) .002 (.000)

3.2 5 .000 (.000) 2.038 (.000) .000 (.000) .000 (.000) .002 (.000) .000 (.000)
10 .000 (.000) 2.072 (.000) .000 (.000) .001 (.000) .006 (.000) .001 (.000)
15 .000 (.000) 2.104 (.000) 2.001 (.000) .002 (.000) .012 (.000) .002 (.000)
20 .000 (.000) 2.132 (.000) .000 (.000) .002 (.000) .019 (.000) .002 (.000)
25 .001 (.001) 2.159 (.000) 2.001 (.001) .003 (.000) .027 (.000) .003 (.000)
30 .000 (.001) 2.184 (.000) 2.002 (.001) .004 (.000) .036 (.000) .004 (.000)

3.3 5 .000 (.000) 2.075 (.000) .000 (.000) .000 (.000) .007 (.000) .000 (.000)
10 .000 (.000) 2.145 (.000) .000 (.000) .000 (.000) .023 (.000) .000 (.000)
15 .000 (.000) 2.207 (.000) .000 (.000) .001 (.000) .045 (.000) .001 (.000)
20 .000 (.000) 2.265 (.000) .000 (.000) .001 (.000) .073 (.000) .001 (.000)
25 .000 (.000) 2.318 (.000) .000 (.000) .001 (.000) .104 (.000) .001 (.000)
30 .001 (.000) 2.368 (.000) 2.001 (.000) .002 (.000) .138 (.000) .002 (.000)

3.4 5 .000 (.000) 2.035 (.000) .000 (.000) .000 (.000) .002 (.000) .000 (.000)
10 .000 (.000) 2.067 (.000) .000 (.000) .001 (.000) .005 (.000) .001 (.000)
15 .000 (.000) 2.097 (.000) 2.001 (.000) .001 (.000) .010 (.000) .001 (.000)
20 .001 (.000) 2.123 (.000) .000 (.000) .002 (.000) .016 (.000) .001 (.000)
25 .000 (.000) 2.149 (.000) .000 (.000) .002 (.000) .023 (.000) .002 (.000)
30 .000 (.001) 2.173 (.000) .000 (.000) .003 (.000) .031 (.000) .002 (.000)

Note. MSE = mean squared error; MCAR = missingness completely at random; IT = initial table.
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Regular category kappa is again biased downward in all cases, and the bias

increases with the missingness. Furthermore, the bias and MSE are more substantial

if the kappa value is high (6:80) than if it is low (6:40) (possible floor effect). In

many of the simulated cases, the bias is more extreme than .10, and the MSE is often

comparatively high too.

In terms of bias and MSE, both Gwet’s kappa and listwise deletion kappa per-

form quite well in many simulated cases. Both kappa coefficients are virtually

unbiased in case of MCAR. However, there is some bias in case of MNAR (see

Tables 10 and 12). In general, the MSE values are again very small—that is,

� :006 for all tables.

Discussion

In this article, we considered and compared three kappa coefficients for nominal

scales that can handle missing data. We referred to these kappas as Gwet’s kappa

Table 8. Bias and MSE for 10,000 Simulations With MNAR for Rater A Only.

IT %M

Bias MSE

kg kr kl kg kr kl

3.1 5 .000 (.000) 2.039 (.000) .000 (.000) .000 (.000) .002 (.000) .000 (.000)
10 .000 (.000) 2.075 (.000) 2.001 (.000) .000 (.000) .007 (.000) .000 (.000)
15 .000 (.000) 2.112 (.000) 2.002 (.000) .000 (.000) .014 (.000) .000 (.000)
20 .000 (.000) 2.145 (.000) 2.002 (.000) .000 (.000) .023 (.000) .000 (.000)
25 .000 (.000) 2.176 (.000) 2.004 (.000) .000 (.000) .033 (.000) .001 (.000)
30 .000 (.000) 2.208 (.000) 2.006 (.000) .001 (.000) .045 (.000) .001 (.000)

3.2 5 .000 (.000) 2.019 (.000) .000 (.000) .000 (.000) .001 (.000) .000 (.000)
10 .000 (.000) 2.038 (.000) 2.001 (.000) .000 (.000) .002 (.000) .000 (.000)
15 .000 (.000) 2.055 (.000) 2.001 (.000) .001 (.000) .004 (.000) .001 (.000)
20 .000 (.000) 2.072 (.000) 2.004 (.000) .001 (.000) .006 (.000) .001 (.000)
25 –.001 (.000) 2.089 (.000) 2.006 (.000) .001 (.000) .009 (.000) .002 (.000)
30 .000 (.000) 2.103 (.000) 2.008 (.000) .001 (.000) .012 (.000) .002 (.000)

3.3 5 .004 (.000) 2.043 (.000) .005 (.000) .000 (.000) .003 (.000) .000 (.000)
10 .008 (.000) 2.084 (.000) .010 (.000) .000 (.000) .008 (.000) .000 (.000)
15 .013 (.000) 2.122 (.000) .015 (.000) .001 (.000) .016 (.000) .001 (.000)
20 .018 (.000) 2.158 (.000) .020 (.000) .001 (.000) .026 (.000) .001 (.000)
25 .024 (.000) 2.193 (.000) .025 (.000) .001 (.000) .039 (.000) .002 (.000)
30 .029 (.000) 2.225 (.000) .031 (.000) .002 (.000) .053 (.000) .002 (.000)

3.4 5 .006 (.000) 2.020 (.000) .009 (.000) .000 (.000) .001 (.000) .000 (.000)
10 .013 (.000) 2.039 (.000) .019 (.000) .001 (.000) .002 (.000) .001 (.000)
15 .020 (.000) 2.056 (.000) .029 (.000) .001 (.000) .004 (.000) .002 (.000)
20 .028 (.000) 2.074 (.000) .038 (.000) .002 (.000) .006 (.000) .002 (.000)
25 .037 (.000) 2.090 (.000) .050 (.000) .003 (.000) .009 (.000) .004 (.000)
30 .048 (.000) 2.106 (.000) .061 (.000) .005 (.000) .012 (.000) .005 (.000)

Note. MSE = mean squared error; MNAR = missingness not at random; IT = initial table.
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(Gwet, 2014), regular category kappa, and listwise deletion kappa (Strijbos & Stahl,

2007). Data are considered missing if one or both ratings of a person or object are

missing. In Gwet’s kappa, formulation of the missing data are used in the computa-

tion of the expected percent agreement to obtain more precise estimates of the mar-

ginal totals. Regular category kappa treats the missing category as a regular category.

Listwise deletion kappa is only applied to units with two ratings (complete-case

analysis).

In this study, we found that both Gwet’s kappa and listwise deletion kappa outper-

form regular category kappa in all simulated cases in terms of bias and MSE. Overall,

both kappa coefficients are virtually unbiased in case of MCAR and only slightly

biased in case of MNAR. Furthermore, the MSE of Gwet’s kappa and listwise dele-

tion kappa is generally very small. Therefore, if one of the two missing data models

studied in this article can be assumed to hold, both kappa coefficients can be used.

If we have to pick one, we recommend to use listwise deletion kappa, because its

value is easier to compute. Listwise deletion kappa can be obtained by performing a

Table 9. Bias and MSE for 10,000 Simulations With MCAR for Both Raters.

IT %M

Bias MSE

kg kr kl kg kr kl

4.1 5 .000 (.000) 2.107 (.000) .000 (.000) .000 (.000) .013 (.000) .000 (.000)
10 .000 (.000) 2.197 (.000) 2.001 (.000) .001 (.000) .041 (.000) .001 (.000)
15 .000 (.000) 2.273 (.001) 2.001 (.000) .001 (.000) .078 (.000) .001 (.000)
20 .000 (.000) 2.339 (.001) 2.001 (.000) .002 (.000) .118 (.000) .002 (.000)
25 –.001 (.000) 2.395 (.001) 2.002 (.000) .002 (.000) .159 (.000) .002 (.000)
30 .000 (.001) 2.445 (.001) 2.002 (.001) .003 (.000) .203 (.001) .003 (.000)

4.2 5 .000 (.000) 2.054 (.000) .000 (.000) .001 (.000) .004 (.000) .001 (.000)
10 .000 (.000) 2.099 (.000) .000 (.000) .001 (.000) .011 (.000) .001 (.000)
15 –.001 (.000) 2.139 (.000) 2.001 (.000) .002 (.000) .021 (.000) .002 (.000)
20 .000 (.001) 2.171 (.000) 2.002 (.001) .003 (.000) .032 (.000) .003 (.000)
25 .000 (.001) 2.200 (.001) 2.002 (.001) .004 (.000) .043 (.000) .004 (.000)
30 .000 (.001) 2.225 (.001) 2.002 (.001) .006 (.000) .054 (.000) .006 (.000)

4.3 5 .000 (.000) 2.110 (.000) .000 (.000) .000 (.000) .013 (.000) .000 (.000)
10 .000 (.000) 2.201 (.000) .000 (.000) .001 (.000) .043 (.000) .001 (.000)
15 .000 (.000) 2.279 (.001) .000 (.000) .001 (.000) .080 (.000) .001 (.000)
20 .000 (.000) 2.345 (.001) 2.001 (.000) .001 (.000) .122 (.000) .001 (.000)
25 .000 (.000) 2.403 (.001) 2.002 (.000) .002 (.000) .166 (.000) .002 (.000)
30 .000 (.001) 2.453 (.001) 2.002 (.001) .003 (.000) .209 (.001) .003 (.000)

4.4 5 .000 (.000) 2.053 (.000) .000 (.000) .001 (.000) .003 (.000) .000 (.000)
10 .000 (.000) 2.098 (.000) 2.001 (.000) .001 (.000) .011 (.000) .001 (.000)
15 .001 (.000) 2.135 (.000) .000 (.000) .002 (.000) .020 (.000) .002 (.000)
20 .000 (.001) 2.168 (.000) 2.002 (.000) .003 (.000) .030 (.000) .002 (.000)
25 .000 (.001) 2.196 (.001) 2.001 (.001) .004 (.000) .041 (.000) .003 (.000)
30 .000 (.001) 2.221 (.001) 2.003 (.001) .005 (.000) .052 (.000) .005 (.000)

Note. MSE = mean squared error; MCAR = missingness completely at random; IT = initial table.
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complete case analysis with Cohen’s ordinary kappa. Thus, this kappa coefficient for

missing data can be computed with any software program that has implemented a

routine for Cohen’s kappa. We generally advise against the use of regular category

kappa, since the coefficient has unacceptable bias in just too many different

situations.

We want to warn readers that they do not use the version of the expected

percent agreement of Gwet’s kappa printed in Gwet (2012) and Gwet (2014) but,

instead, use the version presented in this article (formula 5) which is the one that

can be found on the erratum webpage of the book published in 2014 (www.agrees-

tat.com/book4/errors_4ed.html). In unreported simulation studies, we found that

using the kappa as printed in Gwet (2012) and in Gwet (2014) leads to a substan-

tial upward bias in many of the simulated cases. These results are available on

request.

This research was limited to two general-purpose missing data mechanisms.

Furthermore, the research was limited to complete data tables that have two or three

Table 10. Bias and MSE for 10,000 Simulations With MNAR for Both Raters.

IT %M

Bias MSE

kg kr kl kg kr kl

4.1 5 .002 (.000) 2.036 (.000) .002 (.000) .000 (.000) .002 (.000) .000 (.000)
10 .004 (.000) 2.066 (.000) .004 (.000) .000 (.000) .005 (.000) .000 (.000)
15 .007 (.000) 2.094 (.000) .006 (.000) .000 (.000) .010 (.000) .000 (.000)
20 .011 (.000) 2.116 (.000) .009 (.000) .001 (.000) .015 (.000) .001 (.000)
25 .014 (.000) 2.135 (.000) .011 (.000) .001 (.000) .019 (.000) .001 (.000)
30 .019 (.000) 2.150 (.000) .014 (.000) .001 (.000) .024 (.000) .001 (.000)

4.2 5 .002 (.000) 2.018 (.000) .002 (.000) .000 (.000) .001 (.000) .000 (.000)
10 .005 (.000) 2.033 (.000) .005 (.000) .000 (.000) .002 (.000) .000 (.000)
15 .008 (.000) 2.046 (.000) .007 (.000) .001 (.000) .003 (.000) .001 (.000)
20 .012 (.000) 2.057 (.000) .010 (.000) .001 (.000) .004 (.000) .001 (.000)
25 .016 (.000) 2.067 (.000) .013 (.000) .001 (.000) .005 (.000) .001 (.000)
30 .020 (.000) 2.074 (.000) .016 (.000) .001 (.000) .006 (.000) .001 (.000)

4.3 5 .001 (.000) 2.045 (.000) .002 (.000) .000 (.000) .003 (.000) .000 (.000)
10 .003 (.000) 2.083 (.000) .003 (.000) .000 (.000) .008 (.000) .000 (.000)
15 .005 (.000) 2.115 (.000) .005 (.000) .000 (.000) .014 (.000) .000 (.000)
20 .007 (.000) 2.143 (.000) .006 (.000) .001 (.000) .022 (.000) .000 (.000)
25 .010 (.000) 2.164 (.000) .008 (.000) .001 (.000) .028 (.000) .001 (.000)
30 .012 (.000) 2.182 (.000) .010 (.000) .001 (.000) .035 (.000) .001 (.000)

4.4 5 –.007 (.000) 2.027 (.000) 2.005 (.000) .000 (.000) .001 (.000) .000 (.000)
10 –.013 (.000) 2.050 (.000) 2.011 (.000) .001 (.000) .003 (.000) .000 (.000)
15 –.020 (.000) 2.070 (.000) 2.018 (.000) .001 (.000) .006 (.000) .001 (.000)
20 –.027 (.000) 2.087 (.000) 2.025 (.000) .001 (.000) .008 (.000) .001 (.000)
25 –.033 (.000) 2.101 (.000) 2.033 (.000) .002 (.000) .011 (.000) .002 (.000)
30 –.040 (.000) 2.112 (.000) 2.041 (.000) .002 (.000) .014 (.000) .003 (.000)

Note. MSE = mean squared error; MNAR = missingness not at random; IT = initial table.
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categories. It may be the case that the kappa coefficients perform differently under

other missing data mechanisms or for higher numbers of categories. This is a topic

for future research. However, we believe that it is likely that the results found in this

article also apply to cases with higher numbers of categories, because the pattern of

results did not change much when going from two to three categories.

The research presented in this article was limited to three kappa coefficients that

have been proposed in the literature for handling missing data (Gwet, 2012; Simon,

2006; Strijbos & Stahl, 2007). The coefficients are based on approaches that are con-

sidered traditional methods in the missing data analysis literature (Baraldi & Enders,

2010; Enders, 2010; Peugh & Enders, 2004). Modern approaches to missing data are

based on maximum likelihood and multiple imputation (see, e.g., Lang & Wu, 2017).

Applying the modern methods to the context of assessing interrater agreement is an

important topic for future research.

Table 11. Bias and MSE for 10,000 Simulations With MCAR for Rater A Only.

IT %M

Bias MSE

kg kr kl kg kr kl

4.1 5 .000 (.000) 2.057 (.000) .000 (.000) .000 (.000) .004 (.000) .000 (.000)
10 .000 (.000) 2.113 (.000) .000 (.000) .000 (.000) .014 (.000) .000 (.000)
15 .000 (.000) 2.165 (.000) .000 (.000) .001 (.000) .029 (.000) .000 (.000)
20 .000 (.000) 2.214 (.000) .000 (.000) .001 (.000) .048 (.000) .001 (.000)
25 –.001 (.000) 2.262 (.000) .000 (.000) .001 (.000) .071 (.000) .001 (.000)
30 .000 (.000) 2.309 (.000) 2.001 (.000) .001 (.000) .098 (.000) .001 (.000)

4.2 5 .000 (.000) 2.029 (.000) .000 (.000) .000 (.000) .001 (.000) .000 (.000)
10 .000 (.000) 2.057 (.000) 2.001 (.000) .001 (.000) .004 (.000) .001 (.000)
15 .000 (.000) 2.083 (.000) .000 (.000) .001 (.000) .008 (.000) .001 (.000)
20 .000 (.000) 2.108 (.000) 2.001 (.000) .001 (.000) .013 (.000) .001 (.000)
25 .000 (.000) 2.133 (.000) 2.001 (.000) .002 (.000) .019 (.000) .002 (.000)
30 –.001 (.000) 2.156 (.000) 2.002 (.000) .002 (.000) .026 (.000) .002 (.000)

4.3 5 .000 (.000) 2.058 (.000) .000 (.000) .000 (.000) .004 (.000) .000 (.000)
10 .000 (.000) 2.114 (.000) .000 (.000) .000 (.000) .014 (.000) .000 (.000)
15 .000 (.000) 2.168 (.000) .000 (.000) .000 (.000) .030 (.000) .000 (.000)
20 .000 (.000) 2.219 (.000) .000 (.000) .001 (.000) .050 (.000) .001 (.000)
25 .000 (.000) 2.268 (.000) 2.001 (.000) .001 (.000) .074 (.000) .001 (.000)
30 .000 (.000) 2.315 (.000) 2.001 (.000) .001 (.000) .101 (.000) .001 (.000)

4.4 5 .000 (.000) 2.028 (.000) .000 (.000) .000 (.000) .001 (.000) .000 (.000)
10 .000 (.000) 2.055 (.000) .000 (.000) .001 (.000) .004 (.000) .000 (.000)
15 .000 (.000) 2.081 (.000) .000 (.000) .001 (.000) .007 (.000) .001 (.000)
20 .000 (.000) 2.106 (.000) .000 (.000) .001 (.000) .012 (.000) .001 (.000)
25 .000 (.000) 2.130 (.000) 2.001 (.000) .002 (.000) .018 (.000) .002 (.000)
30 .000 (.000) 2.153 (.002) 2.001 (.002) .002 (.000) .025 (.000) .002 (.000)

Note. MSE = mean squared error; MCAR = missingness completely at random; IT = initial table.
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