

 University of Groningen

Reversible Session-Based Concurrency in Haskell
Vries, de, Folkert; Perez, Jorge A.

Published in:
Trends in Functional Programming

DOI:
10.1007/978-3-030-18506-0_2

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Final author's version (accepted by publisher, after peer review)

Publication date:
2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Vries, de, F., & Perez, J. A. (2019). Reversible Session-Based Concurrency in Haskell. In M. Palka, & M.
Myreen (Eds.), Trends in Functional Programming (pp. 20-45). (Lecture Notes in Computer Science; Vol.
11457). Cham: Springer. https://doi.org/10.1007/978-3-030-18506-0_2

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 13-11-2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Groningen

https://core.ac.uk/display/232528561?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-030-18506-0_2
https://www.rug.nl/research/portal/en/publications/reversible-sessionbased-concurrency-in-haskell(25f3b69f-4f69-4706-9f59-ab208fbe9083).html

Reversible Session-Based Concurrency in Haskell

Folkert de Vries and Jorge A. Pérez

University of Groningen, The Netherlands

Abstract. A reversible semantics enables to undo computation steps.
Reversing message-passing, concurrent programs is a challenging and
delicate task; one typically aims at causally consistent reversible semantics.
Prior work has addressed this challenge in the context of a process model
of multiparty protocols (or choreographies). In this paper, we describe
a Haskell implementation of this reversible operational semantics. We
exploit algebraic data types to faithfully represent three core ingredients:
a process calculus, multiparty session types, and forward and backward
reduction semantics. Our implementation bears witness to the convenience
of pure functional programming for implementing reversible languages.

Keywords: Reversibility, message-passing concurrency, session types, Haskell.

1 Introduction

This paper describes a Haskell implementation of a reversible semantics for
message-passing concurrent programs. Our work is framed within a prolific line
of research, in the intersection of programming languages and concurrency the-
ory, aimed at establishing semantic foundations for reversible computing in a
concurrent setting (see, e.g., the survey [5]). When considering the interplay of
reversibility and message-passing concurrency, a key observation is that commu-
nication is governed by protocols among (distributed) partners, and that those
protocols may fruitfully inform the implementation of a reversible semantics.

In a language with a reversible semantics, computation steps can be undone.
Thus, a program can perform standard forward steps, but also backward steps.
Reversing a sequential program is not hard: it suffices to have a memory that
records information about forward steps in case we wish to return to a prior state
using a backward step. Reversing a concurrent program is much more difficult:
since control may simultaneously reside in more than one point, memories should
be carefully designed so as to record information about the steps performed in
each thread, but also about the causal dependencies between steps from different
threads. This motivates the definition of reversible semantics which are causally
consistent. A causally consistent semantics ensures that backward steps lead to
states that could have been reached by performing forward steps only [5]. Hence,
it never leads to states that are not reachable through forward steps.

Causal consistency then arises as a key correctness criterion in the definition of
reversible programming languages. The quest for causally consistent semantics for

2 F. de Vries and J.A. Pérez

Choreography (Global Type)

Projection

Located Process

Configuration

.Monitor
(Local Type)

Located Process

Configuration

Monitor
(Local Type)

Located Process

Configuration

Monitor
(Local Type)

Fig. 1. The model of multiparty, reversible communications by Mezzina and Pérez [7].

(message-passing) concurrency has led to a number of proposals that use process
calculi (most notably, the π-calculus [8]) to rigorously specify communicating
processes and their operational semantics (cf. [7] and references therein). One
common shortcoming in several of these works is that the proposed causally
consistent semantics hinge on memories that are rather heavy; as a result, the
resulting (reversible) programming models can be overly complex. This is a
particularly notorious limitation in the work of Mezzina and Pérez [7], which
addresses reversibility in the relevant context of π-calculus processes that exchange
(higher-order) messages following choreographies, as defined by multiparty session
types [3] that specify intended protocol executions. While their reversible semantics
is causally consistent, it is unclear whether it can provide a suitable basis for the
practical analysis of message-passing concurrent programs.

In this paper we describe a Haskell implementation of the reversible semantics
by Mezzina and Pérez [7] (the MP model, in the following). As such, our imple-
mentation defines a Haskell interpreter of message-passing programs written in
their reversible model. This allows us to assess in practice the mechanisms of the
MP model to enforce causally consistent reversibility. The use of a functional
programming language (Haskell) is a natural choice for developing our imple-
mentation. Haskell has a strong history in language design. Its type system and
mathematical nature allow us to faithfully capture the formal reversible semantics
and to trust that our implementation correctly preserves causal consistency. In
particular, algebraic data types (sums and products) are essential to express the
grammars and recursive data structures underlying the MP model.

Next, § 2 recalls the key notions of the MP model, useful to follow our Haskell
implementation, which we detail in § 3. § 4 explains how to run programs forwards
and backwards using our implementation. § 5 collects concluding remarks. The im-
plementation is available at https://github.com/folkertdev/reversible-debugger.

2 The MP Model of Reversible Concurrent Processes

Our aim is to develop a Haskell implementation of the MP model [7], depicted in
Fig. 1. Here we informally describe the key elements of the model, guided by a

https://github.com/folkertdev/reversible-debugger

Reversible Session-Based Concurrency in Haskell 3

running example. Interested readers are referred to Mezzina and Pérez’s paper [7]
for further details, in particular the definition and proof of causal consistency.

2.1 Overview

Fig. 1 depicts two of the three salient ingredients of the MP model: config-
urations/processes and the choreography, which represent the communicating
partners (participants) and a description of their intended governing protocol,
respectively. There is a configuration for each participant: it includes a located
process that relies on asynchronous communication and is subject to a monitor
that enables forward/backward steps at run-time and is obtained from the chore-
ography. Choreographies are defined in terms of global types as in multiparty
session types [3]. (We often use ‘choreographies’ and ‘global types’ as synonyms.)
A global type is projected onto each participant to obtain its corresponding local
type, which abstracts a participant’s contribution to the protocol. Since local
types specify the intended communication actions, they may be used as the
monitors of the located processes.

The third ingredient of the MP model, not depicted in Fig. 1, is the operational
semantics for configurations, which is defined by two reduction relations: forward
(�) and backward (). We shall not recall these relations here; rather, we will
introduce their key underlying intuitions by example—see § 2.5 below.

2.2 Configurations and Processes

The language of processes is a π-calculus with labeled choice, communication of
abstractions, and function application: while labeled choice is typical of session
π-calculi [2], the latter constructs are typical of higher-order process calculi,
which combine features from functional and concurrent languages [9]. The syntax
of processes P,Q, . . . is as follows:

P,Q ::=u!〈V 〉.P send value V on name u, then run P

| u?(x).P receive a value on name u, bind it to x, then run P

| u / {li.Pi}i∈I select a label lj (j ∈ I), broadcast this choice, run Pj

| u . {li : Pi}i∈I receive a label lj (j ∈ I), run Pj

| P ‖ Q parallel composition of P and Q

| X | µX.P variable and process recursion

| V u function application

| (ν n)P name restriction: make n local (or private) to P

| 0 terminated process

In u / {li.Pi}i∈I and u . {li : Pi}i∈I , we use I to denote some finite index set.
The higher-order character of our process language may be better understood

4 F. de Vries and J.A. Pérez

by considering that the syntax of values (V,W, . . .) includes name abstractions
λx.P , where P is a process. Formally we have:

u,w ::= n | x, y, z n, n′ ::= a, b | s[p] v, v′ ::= tt | ff | · · ·
V,W ::= a, b | x, y, z | v, v′ | λx. P

where u,w, . . . range over names (n, n′, . . .) and variables (x, y, . . .). We distin-
guish between shared and session names, ranged over a, b, c, . . . and s, s′, . . .,
respectively. Shared names are public names used to establish a protocol (see
below); once established, the protocol runs along a session name, which is private
to participants. We use p, q, . . . to denote participants, and use session names
indexed by participants; we write, e.g., s[p]. We also use v, v′, . . . to denote base
values and constants. Values V include shared names, first-order values, and name
abstractions. Notice that values need not include (indexed) session names: session
name communication (delegation) is representable using abstraction passing [4].

The syntax of configurations M,N, . . . builds upon that of processes; indeed,
we may consider configurations as compositions of located processes:

M,N ::= ` {a!〈x〉.P} | ` {a?(x).P}

|M ‖ N | (ν n)M | 0
| `[p] : *C ; P + | s[p]bH · x̃ · σc

♠ | s : (hi ? ho) | kb(V u) , `c

Above, identifiers `, `′ denote a location or site. The first two constructs enable
protocol establishment: ` {a!〈x〉.P} is the request of a service identified by shared
name a implemented by P , whereas ` {a?(x).P} denotes service acceptance.
Establishing an n-party protocol on service a then requires one configuration
requesting a synchronizing with n− 1 configurations accepting a. Constructs for
composing configurations, name restriction, and inaction, given in the second
row, are standard. The third row above defines four constructs that appear only
at run-time and enable reversibility:

– `[p] : *C ; P + is a running process: location ` hosts a process P that implements
participant p, and C records labeled choices enforced so far.

– s[p]bH · x̃ · σc
♠ is amonitor where: s[p] is the indexed session being monitored;

H is a local type with history (see below); x̃ is a set of free variables; and
the store σ records their values. The tag ♠ says whether the running process
tied to the monitor is involved in a backward step (♠ = �) or not (♠ = ♦).

– s : (hi ? ho) is the message queue of session s, composed of an input part hi

and an output part ho. Messages sent by output prefixes are placed in the
output part; an input prefix takes the first message in the output part and
moves it to the input part. Hence, messages in the queue are not consumed
but moved between the two parts of the queue.

– Finally, the running function kb(V u) , `c serves to reverse the β-reduction
resulting from the application V u. In kb(V u) , `c, ` is the location where
the application resides, and k is a freshly generated identifier.

Reversible Session-Based Concurrency in Haskell 5

These intuitions are formalized by the operational semantics of the MP model,
which we do not discuss here; see Mezzina and Pérez’s papers [7,6] for details.

2.3 Global and Local Types

As mentioned above, multiparty protocols are expressed as global types (G,G′, . . .),
which can be projected onto local types (T, T ′, . . .), one per participant. The
syntax of value, global, and local types follows [3]:

U,U ′ ::= bool | nat | · · · | T→�
G,G′ ::= p→ q : 〈U〉.G | p→ q : {li : Gi}i∈I | µX.G | X | end

T, T ′ ::= p!〈U〉.T | p?〈U〉.T | p⊕{li : Ti}i∈I | p&{li : Ti}i∈I | µX.T | X | end

Value types U include first-order values, and type T→� for higher-order values:
abstractions from names to processes (where � denotes the type of processes).

Global type p→ q : 〈U〉.G says that p sends a value of type U to q, and then
continues as G. Given a finite index set I and pairwise different labels li, global
type p→ q : {li : Gi}i∈I specifies that p may choose label li, send this selection
to q, and then continue as Gi. In both cases, p 6= q. Recursive and terminated
protocols are denoted µX.G and end, respectively.

Global types are sequential, but may describe implicit parallelism. As a
simple example, the global type G = p→ q : 〈bool〉.r→ s : 〈nat〉.end is defined
sequentially, but describes two independent exchanges (one involving p and q,
the other involving r and s) which could be implemented in parallel. In this line,
G may be regarded to be equivalent to G′ = r→ s : 〈nat〉.p→ q : 〈bool〉.end

Local types are used in the monitors introduced above. Local types p!〈U〉.T
and p?〈U〉.T denote, respectively, an output and input of value of type U by p.
Type p&{li : Ti}i∈I says that p offers different labeled alternatives; conversely,
type p⊕{li : Ti}i∈I says that p may select one of such alternatives. Recursive
and terminated local types are denoted µX.T and end, respectively.

A distinguishing feature of the MP model are local types with history (H,H ′).
A type H is a local type equipped with a cursor (denoted ^̂) used to distinguish
the protocol actions that have been already executed (the past of the protocol)
from those that are yet to be performed (the future of the protocol).

2.4 Projection

The projection of a global type G onto a participant p, denoted G↓p, is defined
in Fig. 2. The definition is self-explanatory, perhaps except for choice. Intuitively,
projection ensures that a choice between p and q should not implicitly determine
different behavior for participants different from p and q, for which any different
behavior should be determined by some explicit communication. This is a con-
dition adopted by the MP model but also by several other works, as it ensures
decentralized implementability of multiparty session types. Our implementation
relies on broadcasts to communicate choices to all protocol participants; this

6 F. de Vries and J.A. Pérez

(p→ q : 〈U〉.G)↓r =


q!〈U〉.(G↓r) if r = p
p?〈U〉.(G↓r) if r = q
(G↓r) if r 6= q, r 6= p

(p→ q : {li : Gi}i∈I)↓r=


q⊕{li : (Gi ↓r)}i∈I if r = p
p&{li : Gi ↓r}i∈I if r = q
(G1 ↓r) if r 6= q, r 6= p and

∀i, j ∈ I.Gi ↓r= Gj ↓r

(µX.G)↓r =
{
µX.G↓r if r occurs in G
end otherwise

X ↓r = X end↓r= end

Fig. 2. Projection of a global type G onto a participant r [7,6].

reduces the need for explicit communications in global types. Projection consis-
tently handles the combination of recursion and choices in global types. In the
particular case in which a branch of a choice in the global type may recurse back
to the beginning, the local types for all involved participants will be themselves
recursive; this ensures that participants will jump back to the beginning of the
protocol in a coordinated way.

2.5 Example: Three-Buyer Protocol
We illustrate the forward and backward reduction semantics, denoted � and .
To this end, we recall the running example by Mezzina and Pérez [7], namely
a reversible variant of the Three-Buyer protocol (cf., e.g., [1]) with abstraction
passing (delegation).

The Protocol as Global and Local Types The protocol involves three buyers
(Alice (A), Bob (B), and Carol (C)) who interact with a Vendor (V) as follows:
1. Alice sends a book title to Vendor, which replies back to Alice and Bob with

a quote. Alice tells Bob how much she can contribute.
2. Bob notifies Vendor and Alice that he agrees with the price, and asks Carol to

assist him in completing the protocol. To delegate his remaining interactions
with Alice and Vendor to Carol, Bob sends her the code she must execute.

3. Carol continues the rest of the protocol with Vendor and Alice as if she were
Bob. She sends Bob’s address (contained in the code she received) to Vendor.

4. Vendor answers to Alice and Carol (representing Bob) with the delivery date.

This protocol may be formalized as the following global type G:

G = A→ V : 〈title〉.V→ {A, B} : 〈price〉.A→ B : 〈share〉.B→ {A, V} : 〈OK〉.
B→ C : 〈share〉.B→ C : 〈{{�}}〉.B→ V : 〈address〉.V→ B : 〈date〉.end

Reversible Session-Based Concurrency in Haskell 7

Above, p → {q1, q2} : 〈U〉.G stands for p → q1 : 〈U〉.p → q2 : 〈U〉.G (and
similarly for local types). We write {{�}} to denote the type end→�, associated
to a thunk λx. P with x 6∈ fn(P), written {{P}}. A thunk is an inactive process,
which is activated by applying to it a dummy name of type end, denoted ∗. Also,
price and share are base types treated as integers; title, OK, address, and date are
base types treated as strings. The projections of G onto local types are as follows:

G↓V = A?〈title〉.{A, B}!〈price〉.B?〈OK〉.B?〈address〉.B!〈date〉.end
G↓A = V!〈title〉.V?〈price〉.B!〈share〉.B?〈OK〉.end
G↓B = V?〈price〉.A?〈share〉.{A, V}!〈OK〉.C!〈share〉.C!〈{{�}}〉.V!〈address〉.V?〈date〉.end
G↓C = B?〈share〉.B?〈{{�}}〉.end

Process Implementations and Their Behavior We now give processes for
each participant:

Vendor = d!〈x :G↓V〉.x?(t).x!〈price(t)〉.x!〈price(t)〉.x?(ok).x?(a).x!〈date〉.0
Alice = d?(y :G↓A).y!〈‘Logicomix’〉.y?(p).y!〈h〉.y?(ok).0
Bob = d?(z :G↓B).z?(p).z?(h).z!〈ok〉.z!〈ok〉.z!〈h〉.z!

〈
{{z!〈‘9747’〉.z?(d).0}}

〉
.0

Carol = d?(w :G↓C).w?(h).w?(code).(code ∗)

where price(·) returns a value of type price given a title. Observe how Bob’s
implementation sends part of its protocol to Carol as a thunk. The whole system,
given below, is obtained by placing these processes in locations `1, . . . , `4:

M = `1 {Vendor} ‖ `2 {Alice} ‖ `3 {Bob} ‖ `4 {Carol}

We now use configuration M to discuss the reduction relations � and ; below
we shall refer to forward and backward reduction rules defined in Mezzina and
Pérez’s paper [7, § 2.2.2].

From M , the session starts with an application of Rule (Init), which defines
a forward reduction that, by means of a synchronization on shared name d,
initializes the protocol by creating running processes and monitors:

M� (ν s)
(
`1[V] : *0 ; V1{s[V]/x}+ ‖ s[V]b ^̂G↓V · x · [x 7→ d]c♦

‖ `2[A] : *0 ; A1{s[A]/y}+ ‖ s[A]b ^̂G↓A · y · [y 7→ d]c♦

‖ `3[B] : *0 ; B1{s[B]/z}+ ‖ s[B]b ^̂G↓B · z · [z 7→ d]c♦

‖ `4[C] : *0 ; C1{s[C]/w}+ ‖ s[C]b ^̂G↓C · w · [w 7→ d]c♦ ‖ s : (ε ? ε)
)

= M1

where V1{s[V]/x}, A1{s[A]/y}, B1{s[B]/z}, and C1{s[C]/w} stand for the continuation
of processes Vendor, Alice, Bob, and Carol after the service request/accept.
Observe that s is a fresh session name created after initialization; we write
{s[V]/x} to denote a substitution of variable x with session name s[V].

8 F. de Vries and J.A. Pérez

From M1 we could either undo this forward reduction (using Rule (RInit))
or execute the communication from Alice to Vendor, using Rules (Out) and (In)
as follows:

M1� (ν s)(`2[A] : *0 ; s[A]?(p).s[A]!〈h〉.s[A]?(ok).0+

‖ s[A]bV!〈title〉. ^̂ V?〈price〉.B!〈share〉.B?〈OK〉.end · y · [y 7→ d]c♦

‖ N2 ‖ s : (ε ? (A , V , ‘Logicomix’))) = M2

where N2 stands for processes/monitors for Vendor, Bob, and Carol (not involved
in the reduction). In M2, the message from A to V now appears in the output
part of the queue. An additional forward step completes the synchronization:

M2� (ν s)(`1[V] : *0 ; s[V]!〈price(t)〉.s[V]!〈price(t)〉.s[V]?(ok).s[V]?(a).s[V]!〈date〉.0+

‖ s[V]bA?〈title〉. ^̂ {A, B}!〈price〉.TV · x, t · σ3c♦ ‖ N3

‖ s : ((A , V , ‘Logicomix’) ? ε)) = M3

where σ3 = [x 7→ d], [t 7→ ‘Logicomix’], TV = B?〈OK〉.B?〈address〉.B!〈date〉.end,
and N3 stands for the rest of the system. Note that the cursors (^̂) in the local
types with history of the monitors s[V] and s[A] have moved; also, the message
from A to V is now in the input part of the queue.

We now illustrate reversibility: to return to M1 from M3 we need three
backward reduction rules: (RollS), (RIn), and (ROut). First, Rule (RollS)
modifies the tags of monitors s[V] and s[A], from ♦ to �:

M3 (ν s)(`1[V] : *0 ; s[V]!〈price(t)〉.s[V]!〈price(t)〉.s[V]?(ok).s[V]?(a).s[V]!〈date〉.0+

‖ s[V]bA?〈title〉. ^̂ {A, B}!〈price〉.TB · x, t · σ3c�

‖ `2[A] : *0 ; s[A]?(p).s[A]!〈h〉.s[A]?(ok).0+

‖ s[A]bT4 [^̂ V?〈price〉.B!〈share〉.B?〈OK〉.end] · y · [y 7→ d]c�

‖ N4 ‖ s : ((A , V , ‘Logicomix’) ? ε)) = M4

where T4 [•] = V!〈title〉.• is a type context (with hole •) and, as before, N4
represents the rest of the system.

M4 has several possible forward and backward reductions. One particular
backward reduction is the one that uses Rule (RIn) to undo the input at V:

M4 (ν s)(`1[V] : *0 ; s[V]?(t).s[V]!〈price(t)〉.

s[V]!〈price(t)〉.s[V]?(ok).s[V]?(a).s[V]!〈date〉.0+

‖ s[V]b ^̂ A?〈title〉.{A, B}!〈price〉.TB · x · [x 7→ d]c♦

‖ `2[A] : *0 ; s[A]?(p).s[A]!〈h〉.s[A]?(ok).0+

‖ s[A]bT4 [^̂ V?〈price〉.B!〈share〉.B?〈OK〉.end] · y · [y 7→ d]c�

‖ N4 ‖ s : (ε ? (A , V , ‘Logicomix’))) = M5

Reversible Session-Based Concurrency in Haskell 9

As a result, the message from A to V is back again in the output part of the queue.
The following backward reduction uses Rule (ROut) to undo the output at A:

M5 (ν s)(`1[V] : *0 ; s[V]?(t).s[V]!〈price(t)〉.s[V]!〈price(t)〉.

s[V]?(ok).s[V]?(a).s[V]!〈date〉.0+

‖ s[V]b̂^A?〈title〉.{A, B}!〈price〉.TB · x · [x 7→ d]c♦

‖ `2[A] : *0 ; s[A]!〈‘Logicomix’〉.s[A]?(p).s[A]!〈h〉.s[A]?(ok).0+

‖ s[A]b̂^V!〈title〉.V?〈price〉.B!〈share〉.B?〈OK〉.end · y · [y 7→ d]c♦

‖ N4 ‖ s : (ε ? ε)) = M6

Clearly, M6 = M1. Summing up, the forward reductions M1�M2�M3 can be
reversed by the backward reductions M3 M4 M5 M6 = M1.

Abstraction Passing (Delegation) To illustrate abstraction passing, let us
assume that M3 above performs forward reductions until the configuration:

M7 = (ν s)(`3[B] : *0 ; s[B]!
〈
{{s[B]!〈‘9747’〉.s[B]?(d).0}}

〉
.0+

‖ s[B]bT7 [^̂ C!〈{{�}}〉.V!〈address〉.V?〈date〉.end] · z, p, h · σ7c♦

‖ `4[C] : *0 ; s[C]?(code).(code ∗)+

‖ s[C]bT8 [^̂ B?〈{{�}}〉.end] · w, h · σ8c♦ ‖ N5 ‖ s : (h7 ? ε))

where {{s[B]!〈‘9747’〉.s[B]?(d).0}} is a thunk (to be activated with the dummy
value ∗) and T7 [•], σ7, T8 [•], σ8, and h7 capture past interactions as follows:

T7 [•] = V?〈price〉.A?〈share〉.{A, V}!〈OK〉.C!〈share〉.•
σ7 = [z 7→ d], [p 7→ price(‘Logicomix’)], [h 7→ 120]

T8 [•] = B?〈share〉. • σ8 = [w 7→ d], [h 7→ 120]
h7 = (A , V , ‘Logicomix’)
◦ (V , A , price(‘Logicomix’)) ◦ (V , B , price(‘Logicomix’))
◦ (A , B , 120) ◦ (B , A , ‘ok’) ◦ (B , V , ‘ok’) ◦ (B , C , 120)

If M7� �M8 to enable a (forward) synchronization we would have:

M8 = (ν s)(`3[B] : *0 ; 0+

‖ s[B]bT7 [C!〈{{�}}〉. ^̂ V!〈address〉.V?〈date〉.end] · z, p, h · σ7c♦

‖ `4[C] : *0 ; (code ∗)+ ‖ s[C]bT8 [B?〈{{�}}〉. ^̂ end] · w, h, code · σ9c♦

‖ N5 ‖ s : (h7 ◦ (B , C , {{s[B]!〈‘9747’〉.s[B]?(d).0}}) ? ε))

10 F. de Vries and J.A. Pérez

where σ9 = σ8[code 7→ {{s[B]!〈‘9747’〉.s[B]?(d).0}}]. We now may obtain the actual
code sent from B to C:

M8� (ν s)(ν k)(`4[C] : *0 ; s[B]!〈‘9747’〉.s[B]?(d).0+‖ N6

‖ s[B]bT7 [C!〈{{�}}〉. ^̂ V!〈address〉.V?〈date〉.end] · z, p, h · σ7c♦

‖ kb(code ∗) , `4c ‖ s[C]bT8 [B?〈{{�}}〉.k. ^̂ end] · w, h, code · σ9c♦

‖ s : (h7 ◦ (B , C , {{s[B]!〈‘9747’〉.s[B]?(d).0}}) ? ε)) = M9

where N6 is the rest of the system. Notice that this reduction has added a running
function on a fresh k, which is also used in the type stored in the monitor s[C].

The reduction M8�M9 completes the code mobility from B to C: the now
active thunk will execute B’s protocol from C’s location. Observe that Bob’s
identity B is “hardwired” in the sent thunk; there is no way for C to execute the
code by referring to a participant different from B.

3 Implementing the MP model in Haskell

We represent the process calculus, global types, local types, and the information
for reversal as syntax trees. Local types are obtained by from the global type
via projection, which we implement following § 2.4, whereas processes and global
types are written by the programmer. For this reason, we want to provide a
convenient way to specify them as domain-specific languages (DSLs).

3.1 DSLs with the Free monad

Free monads are a common way of defining DSLs in Haskell, mainly because
they allow the use of do-notation to write programs in the DSL.

data Free f a
= Pure a
| Free (f (Free f a))

A simple practical example is a stack-based calculator:

data Operation next
= Push Int next
| Pop (Maybe Int -> next)
| End
deriving (Functor)

type Program next = Free Operation next
type TerminatingProgram = Program Void

We define a data type with our instructions, and make sure it has a Functor
instance (i.e., there exists a function fmap :: (a -> b) -> Operation a ->
Operation b). This instance is automatically derived using the DeriveFunctor

Reversible Session-Based Concurrency in Haskell 11

language extension. Given an instance of Functor, Free returns the free monad
on that functor. In this example, the free monad on Operation describes a list
of instructions.

In general, a value of type ‘Free Operation a’ describes a program with
holes: an incomplete program with placeholder values of type a in the position
of some continuations. Composition allows filling in the holes with (possibly
incomplete) subprograms. The holes are places where the Pure constructor
occurs in the program. When evaluating, we want to have a tree without holes.
We can levarage the type system to guarantee that Pure does not occur in the
programs we evaluate by using Void.

Void is the data type with zero values (similar to the empty set). Thus, a
value of the type Free Operation Void cannot be of the shape Pure _, because
it requires a value of type Void. An alternative approach is to use existential
quantification, which requires enabling a language extension.

We define wrappers around the constructors for convenience. The liftF
function takes a concrete value of our program functor (ProgramF a) and turns
it into a free value (Free ProgramF a, i.e., Program a). The helpers are used to
write programs with do-notation:

-- specialized version of liftF for Free
liftF :: (Functor f) => f a -> Free f a
push :: Int -> Program ()
push v = liftF (Push v ())
pop :: Program (Maybe Int)
pop = liftF (Pop id)
terminate :: TerminatingProgram
terminate = liftF End
program :: TerminatingProgram
program = do

push 5
push 4
Just a <- pop
Just b <- pop
push (a + b)
terminate

Finally, we expose a function to evaluate the structure (but only if it is finite).
Typically, a Free monad is transformed into some other monad, which in turn is
evaluated. Here we can first transform into State, and then evaluate that.

interpret :: TerminatingProgram -> State [Int] ()
interpret instruction =

case instruction of
Pure _ ->

-- cannot occur
return ()

Free End ->

12 F. de Vries and J.A. Pérez

return ()
Free (Push a next) -> do

State.modify (\state -> a : state)
interpret next

Free (Pop toNext) -> do
state <- State.get
case state of

x:xs -> do
State.put xs
interpret (toNext (Just x))

[] ->
interpret (toNext Nothing)

evaluate :: TerminatingProgram -> [Int]
evaluate = flip execState [] . interpret

3.2 Implementing Processes

The implementation uses an algebraic data type to encode all the process con-
structors in the process syntax of P given in § 2.2. Apart from the process-level
recursion, Program is a direct translation of that process syntax:

type Participant = String
type Identifier = String

data ProgramF value next
-- communication primitives
= Send

{ owner :: Participant
, value :: value
, continuation :: next
}

| Receive
{ owner :: Participant
, variableName :: Identifier
, continuation :: next
}

-- choice primitives
| Offer Participant [(String, next)]
| Select Participant [(String, value, next)]

-- other constructors
| Parallel next next
| Application Identifier value
| NoOp
deriving (Functor)

Reversible Session-Based Concurrency in Haskell 13

As already discussed, processes exchange values. With respect to the syntax
of values V,W discussed in § 2.2, the Value type, given below, has some extra
constructors which allow us to write more interesting examples: we have added
integers, strings, and basic integer and comparison operators. We use VReference
to denote the variables present in the formal syntax for V . The Value type also
includes the label used to differentiate the different cases of offer and select
statements.

data Value
= VBool Bool
| VInt Int
| VString String
| VUnit
| VIntOperator Value IntOperator Value
| VComparison Value Ordering Value
| VFunction Identifier (Program Value)
| VReference Identifier
| VLabel String

We need some extra concepts to actually write programs with this syntax.

Delegation via Abstraction Passing. Delegation occurs when a participant
can send (part of) its protocol to be fulfilled (i.e., implemented) by another
participant. This mechanism was illustrated in the example in § 2.5, where Carol
acts on behalf of Bob by receiving and executing his code. For further illustration
of the convenience of this mechanism, consider a load balancing server: from the
client’s perspective, the server handles the request, but actually the load balancer
delegates incoming requests to workers. The client does not need to be aware of
this implementation detail. Recall the definition of ProgramF, given just above:

data ProgramF value next
-- communication primitives
= Send

{ owner :: Participant
, value :: value
, continuation :: next
}

| ...

The ProgramF constructors that move the local type forward (send/receive,
select/offer) have an owner field that stores whose local type they should be
checked against and modify. In the formal definition of the MP model, the
connection between local types and processes/participants is enforced by the
operational semantics. The owner field is also present in TypeContext, the data
type we define for representing local types in § 3.4.

As explained in § 2.2, each protocol participant has its own monitor with its
own store. Because these stores are not shared, all variables occurring in the

14 F. de Vries and J.A. Pérez

arguments to operators and in function bodies must be dereferenced before a
value can be safely sent over a channel.

A Convenient DSL. Many of the ProgramF constructors require an owner;
we can thread the owner through a block with a wrapper around Free. We use
StateT containing the owner and a counter to generate unique variable names.

newtype HighLevelProgram a =
HighLevelProgram

(StateT (Participant, Int)
(Free (ProgramF Value)) a)
deriving

(Functor, Applicative, Monad
, MonadState (Participant, Int)
, MonadFree (ProgramF Value))

uniqueVariableName :: HighLevelProgram String
uniqueVariableName = do

(participant, n) <- State.get
State.put (participant, n + 1)
return $ "var" ++ show n

send :: Value -> HighLevelProgram ()
send value = do

(participant, _) <- State.get
liftF (Send participant value ())

receive :: HighLevelProgram Value
receive = do

(participant, _) <- State.get
variableName <- uniqueVariableName
liftF (Receive participant variableName ())
return (VReference variableName)

terminate :: HighLevelProgram a
terminate = liftF NoOp

-- other helpers omitted for brevity

compile :: Participant -> HighLevelProgram Void -> Program Value
compile participant (HighLevelProgram program) = do

runStateT program (participant, 0)

We can now implement the Vendor from the three-buyer example as:

vendor :: HighLevelProgram a
vendor = do

Reversible Session-Based Concurrency in Haskell 15

t <- H.receive
H.send (price t)
H.send (price t)
...
terminate

3.3 Global Types

Following Fig. 1, our implementation uses a global type specification to obtain
a local type (of type LocalType), one per participant, by means of projection.
This is implemented as described in § 2.4. Much like the process syntax, the
specification of the global types discussed in § 2.3 closely mimics the formal
definition:

type GlobalType participant u a =
Free (GlobalTypeF participant u) a

type TerminatingGlobalType participant u =
GlobalType participant u Void

data GlobalTypeF participant u next
= Transaction

{ from :: participant
, to :: participant
, tipe :: u
, continuation :: next
}

| Choice
{ from :: participant
, to :: participant
, options :: Map String next
}

| End
| RecursionPoint next
| RecursionVariable
| WeakenRecursion next
deriving (Functor)

where we use ‘tipe’ because ‘type’ is a reserved keyword in Haskell.
Constructors RecursionPoint, RecursionVariable, and WeakenRecursion

are required to support nested recursion; they are taken from van Walree’s
work [10]. A RecursionPoint is a point in the protocol to which we can jump
back later. A RecursionVariable triggers jumping to a previously encoun-
tered RecursionPoint. By default, it will jump to the closest and most re-
cently encountered RecursionPoint, but WeakenRecursion makes it jump one
RecursionPoint higher; encountering two weakens will jump two levels higher,
etc.

16 F. de Vries and J.A. Pérez

We use Monad.Free to build a DSL for defining global types:

message :: participant -> participant -> tipe
-> GlobalType participant tipe ()

message from to tipe = liftF (Transaction from to tipe ())

messages :: participant -> [participant]
-> tipe -> GlobalType participant tipe ()

messages sender receivers tipe = go receivers
where go [] = Pure ()

go (x:xs) = Free (Transaction sender x tipe $ go xs)

oneOf :: participant -> participant
-> [(String, GlobalType participant u a)]
-> GlobalType participant u a

oneOf selector offerer options =
Free (Choice selector offerer (Map.fromList options))

recurse :: GlobalType p u a -> GlobalType p u a
recurse cont = Free (RecursionPoint cont)

weakenRecursion :: GlobalType p u a -> GlobalType p u a
weakenRecursion cont = Free (WeakenRecursion cont)

recursionVariable :: GlobalType p u a
recursionVariable = Free RecursionVariable

end :: TerminatingGlobalType p u
end = Free End

Example 1 (Nested Recursion). The snippet below illustrates nested recursion.
There is an outer loop that will perform a piece of protocol or end, and an inner
loop that sends messages from A to B. When the inner loop is done, control flow
returns to the outer loop:

import GlobalType as G

G.recurse $ -- recursion point 1
G.oneOf A B

[("loop"
, G.recurse $ -- recursion point 2

G.oneOf A B
[("continueLoop", do

G.message A B "date"
-- jumps to recursion point 2
G.recursionVariable

Reversible Session-Based Concurrency in Haskell 17

)
, ("endInnerLoop", do

-- jumps to recursion point 1
G.weakenRecursion G.recursionVariable

)
]

)
, ("end", G.end)
]

Similarly, the global type for three-buyer example (cf. § 2.5) can be written as:
-- a data type representing the participants
data MyParticipants = A | B | C | V

deriving (Show, Eq, Ord, Enum, Bounded)
-- a data type representing the used types
data MyType = Title | Price | Share | Ok | Thunk | Address | Date

deriving (Show, Eq, Ord)
-- a description of the protocol
globalType :: TerminatingGlobalType MyParticipants MyType
globalType = do

message A V Title
messages V [A, B] Price
message A B Share
messages B [A, V] Ok
message B C Share
message B C Thunk
message B V Address
message V B Date
end

3.4 A Reversible Semantics
Having shown implementations for processes and global types, we now explain
how to implement the reversible operational semantics for the MP model, which
was illustrated in § 2.5. We should define structures that allow us to move back
to prior program states, reversing forward steps.

To enable backward steps, we need to store some information when we move
forward, just as enabled by the configurations in the MP model (cf. § 2.2). Indeed,
we need to track information about the local type and the process. To implement
local types with history, we define a data type called TypeContext: it contains
the actions that have been performed; for some of them, it also stores extra
information (e.g., owner). For the process, we need to track four things:

1. Used variable names in receives. Recall the process implementation for the
vendor in the three-buyer example in § 2.5:

Vendor = d!〈x : G↓V〉.x?(t).x!〈price(t)〉.x!〈price(t)〉.x?(ok).x?(a).x!〈date〉.0

18 F. de Vries and J.A. Pérez

We can implement this process as:
vendor :: HighLevelProgram a
vendor = do

t <- H.receive
H.send (price t)
H.send (price t)
...
terminate

The rest of the program depends on the assigned name. So, e.g., when we
evaluate the t <- H.receive line (moving to configuration M3, cf. § 2.5), and
then revert it, we must reconstruct a receive that assigns to t, because the
following lines depend on name t.

2. Function calls and their arguments. Consider the reduction from configuration
M7 to M8, as discussed in § 2.5. Once the thunk is evaluated, producing
configurationM8, we lose all evidence that the code produced by the evaluation
resulted from a function application. Without this evidence, reversing M8
will not result in M7. Indeed, we need to keep track of function applications.
Following the semantics of the MP model, the function and its argument are
stored in a map indexed by a unique identifier k. The identifier k itself is
also stored in the local type with history to later associate the type with a
specific function and argument. The reduction from M8 to M9, discussed in
§ 2.5, offers an example of this tracking mechanism in the formal model.
Notice that a stack would seem a simpler solution, but it can give invalid
behavior. Say that a participant is running in two locations, and the last-
performed action at both locations is a function application. Now we want to
undo both applications, but the order in which to undo them is undefined: we
need both orders to work. Only using a stack could mix up the applications.
When the application keeps track of exactly which function and argument it
used the end result is always the same.

3. Messages on the channel. We consider again the implementation of the first
three steps of the protocol:
alice :: HighLevelProgram a
alice = do

H.send (VString "Logicomix")
...

vendor :: HighLevelProgram a
vendor = do

t <- H.receive
...

After Alice sends her message, it has to be stored to successfully undo the
sending action. Likewise, when starting from configuration M3 and undoing
the receive, the value must be placed back into the queue.
Our implementation closely follows the formal semantics of the MP model. As
discussed in § 2.2, the message queue has an input and an output part. This

Reversible Session-Based Concurrency in Haskell 19

allows to describe how a message moves from the sender into the output queue.
Reception is represented by moving the message to the input queue, which
serves as a history stack. When the receive is reversed, the queue pops the
message from its stack and puts it at the output queue again. Reversing the
send moves the message from the output queue back to the sender’s program.

4. Unused branches. When a labeled choice is made and then reverted, we want
all our options to be available again. In the MP model, choices made so far
are stored in a stack denoted C, inside a running process (cf. § 2.2).
The following code shows how we store these choices:
type Zipper a = ([a], a, [a])

data OtherOptions
= OtherSelections (Zipper (String, Value, Program Value))
| OtherOffers (Zipper (String, Program Value))

We need to remember which choice was made; the order of the options is
important. We use a Zipper to store the elements in order and use the central
‘a’ to store the choice that was made.

3.5 Putting it all together

With all the definitions in place, we can now define the forward and backward
evaluation of our system. The reduction relations � and , discussed and
illustrated in § 2.5, are implemented with the types:

forward :: Location -> Session ()
backward :: Location -> Session ()

These functions take a Location (the analogue of the locations ` in the
formal model) and try to move the process at that location forward or backward.
The Session type contains the ExecutionState, the state of the session (all
programs, local types, variable bindings, etc.). The Except type indicates that
errors of type Error can be thrown (e.g., when an unbound variable is used):

type Session a = StateT ExecutionState (Except Error) a

The configurations of the MP model (cf. § 2.2) are our main reference to store
the execution state. Some data is bound to its location (e.g., the current running
process), while other data is bound to its participant (e.g., the local type). The
information about a participant is grouped in a type called Monitor:

data Monitor value tipe =
Monitor

{ _localType :: LocalTypeState tipe
, _recursiveVariableNumber :: Int
, _recursionPoints :: [LocalType tipe]
, _usedVariables :: [Binding]

20 F. de Vries and J.A. Pérez

, _applicationHistory :: Map Identifier (value, value)
, _store :: Map Identifier value
}
deriving (Show, Eq)

data Binding =
Binding

{ _visibleName :: Identifier
, _internalName :: Identifier
}

deriving (Show, Eq)

Some explanations follow:
– _localType contains TypeContext and LocalType stored as a tuple. This

tuple gives a cursor into the local type, where everything to the left is the
past and everything to the right is the future.

– The next two fields keep track of recursion in the local type. We use the
_recursiveVariableNumber is an index into the _recursionPoints list:
when a RecursionVariable is encountered we look at that index to find the
new future local type.

– _usedVariables and _applicationHistory are used in reversal. As men-
tioned in § 3.4, used variable names must be stored so we can use them when
reversing. We store them in a stack keeping both the original name given
by the programmer and the generated unique internal name. For function
applications we use a Map indexed by unique identifiers that stores function
and argument.

– _store is a variable store with the currently defined bindings. Variable
shadowing (when two processes of the same participant define the same
variable name) is not an issue: variables are assigned a name that is guaranteed
unique.

We can now define ExecutionState: it contains some counters for generating
unique variable names, a monitor for every participant, and a program for every
location. Additionally, every location has a default participant and a stack for
unchosen branches:

data ExecutionState value =
ExecutionState

{ variableCount :: Int
, locationCount :: Int
, applicationCount :: Int
, participants :: Map Participant (Monitor value String)
, locations :: Map Location

(Participant , [OtherOptions], Program value)
, queue :: Queue value
, isFunction :: value -> Maybe (Identifier,Program value)
}

Reversible Session-Based Concurrency in Haskell 21

The message queue is global and thus also lives in the ExecutionState. Finally,
we need a way of inspecting values, to see whether they are functions and if so,
to extract their bodies for application.

3.6 Causal Consistency?

As mentioned in § 1, causal consistency is a key correctness criterion for a
reversible semantics: this property ensures that backward steps always lead to
states that could have been reached by moving forward only. The global type
defines a partial order on all the communication steps. The relation of this partial
order is a causal dependency. Stepping backward is only allowed when all its
causally dependent actions are undone.

The reversible semantics of the MP model, summarized in § 2, enjoys causal
consistency for processes running a single global protocol (i.e., a single session).
Rather than typed processes, the MP model describes untyped processes whose
(reversible) operational semantics is governed by local types. This suffices to
prove causal consistency, but also to ensure that process reductions correspond
to valid actions specified by the global type. Given this, one may then wonder,
does our Haskell implementation preserve causal consistency?

In the semantics and the implementation, this causal dependency becomes a
data dependency. For instance, a send can only be undone only when the queue
is in a state that can only be reached by first undoing the corresponding receive.
Only in this state is the appropriate data of the appropriate type available. Being
able to undo a send thus means that the corresponding receive has already been
reversed, so it is impossible to introduce causal inconsistencies.

Because of the encoding of causal dependencies as data dependencies, and
the fact that these data dependencies are preserved in the implementation, we
claim that our Haskell implementation respects the formal semantics of the MP
model, and therefore that it preserves the causal consistency property.

4 Running and Debugging Programs

Finally, we want to be able to run our programs. Our implementation offers
mechanisms to step through a program interactively, and run it to completion.

We can step through the program interactively in the Haskell REPL envi-
ronment. When the ThreeBuyer example is loaded, the program is in a state
corresponding to configuration M1 from § 2.5. We can print the initial state of
our program:

> initialProgram
locations: fromList [("l1",("A",[],Free (Send {owner = "A", ...

Next we introduce the stepForward and stepBackward functions. They use
mutability, normally frowned upon in Haskell, to avoid having to manually keep
track of the updated program state like in the snippet below:

22 F. de Vries and J.A. Pérez

state1 = stepForwardInconvenient "l1" state0
state2 = stepForwardInconvenient "l1" state1
state3 = stepForwardInconvenient "l1" state2

Manual state passing is error-prone and inconvenient. We provide helpers
to work around this issue (internally, those helpers use IORef). We must first
initialize the program state:

> import Interpreter
> state <- initializeProgram initialProgram

We can then use stepForward and stepBackward to evaluate the program: we
advance Alice at l1 to reach M2 and then the vendor at l4 to reach M3:

> stepForward "l1" state
locations: fromList [("l1",("A",[],Free (Receive {owner = "A", ...
> stepForward "l4" state
locations: fromList [("l1",("A",[],Free (Receive {owner = "A", ...

When the user tries an invalid step, an error is displayed. For instance, in
state M3, where l1 and l4 have been moved forward once (like in the snippet
above), l1 cannot move forward (it needs to receive but there is nothing in the
queue) and not backward (l4, the receiver, must undo its action first).

> stepForward "l1" state
*** Exception: QueueError "Receive" EmptyQueue
CallStack (from HasCallStack):

error, called at ...
> stepBackward "l1" state
*** Exception: QueueError "BackwardSend" EmptyQueue state
CallStack (from HasCallStack):

error, called at ...

Errors are defined as:

data Error
= UndefinedParticipant Participant
| UndefinedVariable Participant Identifier
| SynchronizationError String
| LabelError String
| QueueError String Queue.QueueError
| ChoiceError ChoiceError
| Terminated

To fully evaluate a program, we use a round-robin scheduler that calls forward
on the locations in order. A forward step can produce an error. There are two
error cases that we can recover from:

Reversible Session-Based Concurrency in Haskell 23

– blocked on receive, either QueueError _ InvalidQueueItem or QueueError
_ EmptyQueue: the process wants to perform a receive, but the expected item
is not at the top of the queue yet. In this case we proceed evaluating the
other locations so they can send the value that the faulty location expects.
Above, ‘_’ means that we ignore the String field used to provide better error
messages. Because no error message is generated, that field is not needed.

– location terminates with Terminated: the execution has reached a NoOp.
In this case we do not want to schedule this location any more.

Otherwise we continue until there are no active (non-terminated) locations left.
Running until completion (or error) is also available in the REPL:

> untilError initialProgram
Right locations: fromList [("l1",("A",[],Free NoOp)), ...

Note that this scheduler can still get into deadlocks, for instance consider
these two equivalent global types:

globalType1 = do
message A V Title
message V B Price
message V A Price
message A B Share

globalType2 = do
message A V Title
message V A Price
message V B Price
message A B Share

Above, the second and third messages (involving Price) are swapped. The
communication they describe is the same, but in practice they are very different.
The first example will run to completion, whereas the second can deadlock because
A can send a Share before V sends the Price. B expects the price from V first, but
the share from A is the first in the queue. Therefore, no progress can be made.

In general, a key issue is that a global type is written sequentially, while it may
represent implicit parallelism, as explained in § 2.3. Currently, our implementation
just executes the global type with the order given by the programmer. It should
be possible to execute communication actions in different but equivalent orders;
these optimizations are beyond the scope of our current implementation.

5 Discussion and Concluding Remarks

5.1 Benefits of pure functional programming

It has consistently been the case that sticking closer to the formal model gives
better code. The abilities that Haskell gives for directly specifying formal state-
ments are invaluable. A key invaluable feature is algebraic data types (ADTs,

24 F. de Vries and J.A. Pérez

also known as tagged unions or sum types). Compare the formal definition given
in § 2.3 and the Haskell data type for global types.

G,G′ ::= p→ q : 〈U〉.G | p→ q : {li : Gi}i∈I | µX.G | X | end

data GlobalTypeF u next
= Transaction {..} | Choice {..} | RecursionPoint next
| RecursionVariable | End
| WeakenRecursion next

The definitions correspond almost directly: the WeakenRecursion constructor
is added to support nested recursion, which the formal model does not explicitly
represent. Moreover, we know that these are all the ways to construct a value
of type GlobalTypeF and can exhaustively match on all the cases. Functional
languages have had these features for a very long time. Secondly, purity and
immutability are very useful in implementing and testing the reversible semantics.

In a pure language, given functions f :: a -> b and g :: b -> a to prove
that f and g are inverses it is enough to prove that f · g and g · f both compose
to the identity. In an impure language, even if these equalities are observed we
cannot be sure that there were no side-effects. Because we do not need to consider
a context (the outside world) in a pure language, checking that reversibility works
is as simple as comparing initial and final states for all backward reduction rules.

5.2 Concluding Remarks

We presented a functional implementation of the (reversible) MP model [7] using
Haskell. By embedding this reversible semantics we can now execute our example
programs automatically and inspect them interactively.

We have seen that the MP model can be split into three core components:
(i) a process calculus, (ii) multiparty session types (global and local types), and
(iii) forward and backward reduction semantics. The three components can be
cleanly represented as recursive Haskell data types. We are confident that other
features developed in Mezzina and Pérez’s work [7] (in particular, an alternative
semantics for decoupled rollbacks) can easily be integrated in the development
described here. Relatedly, the implementation process has shown that sticking
to the formal model leads to better code; there is less space for bugs to creep
in. Furthermore, Haskell’s mathematical nature means that the implementation
inspired by the formal specification is easy (and often idiomatic) to express. Finally,
we have discussed how Haskell allows for the definition of flexible embedded
domain-specific languages, and makes it easy to transform between different
representations of our programs (using among others Monad.Free).

Acknowledgments. Many thanks to the anonymous reviewers and to the
TFP’18 co-chairs (Michał Pałka and Magnus Myreen) for their useful remarks
and suggestions, which led to substantial improvements. Pérez is also affili-
ated to CWI, Amsterdam, The Netherlands and to the NOVA Laboratory for

Reversible Session-Based Concurrency in Haskell 25

Computer Science and Informatics (supported by FCT grant NOVA LINCS
PEst/UID/CEC/04516/2013), Universidade Nova de Lisboa, Portugal.

This research has been partially supported by the Undergraduate School
of Science and the Bernoulli Institute of the University of Groningen. We also
acknowledge support from the COST Action IC1405 “Reversible computation –
Extending horizons of computing”.

References

1. Coppo, M., Dezani-Ciancaglini, M., Padovani, L., Yoshida, N.: A gentle introduction
to multiparty asynchronous session types. In: Bernardo, M., Johnsen, E.B. (eds.)
Formal Methods for Multicore Programming. LNCS, vol. 9104, pp. 146–178. Springer
(2015), http://www.di.unito.it/~dezani/papers/cdpy15.pdf

2. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type
discipline for structured communication-based programming. In: Hankin,
C. (ed.) ESOP’98. LNCS, vol. 1381, pp. 122–138. Springer (1998).
https://doi.org/10.1007/BFb0053567

3. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types.
In: Necula, G.C., Wadler, P. (eds.) POPL 2008. pp. 273–284. ACM (2008).
https://doi.org/10.1145/1328438.1328472

4. Kouzapas, D., Pérez, J.A., Yoshida, N.: On the relative expressiveness of higher-
order session processes. In: Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632, pp.
446–475. Springer (2016). https://doi.org/10.1007/978-3-662-49498-1_18

5. Lanese, I., Mezzina, C.A., Tiezzi, F.: Causal-consistent reversibility. Bulletin of the
EATCS 114 (2014), http://eatcs.org/beatcs/index.php/beatcs/article/view/305

6. Mezzina, C.A., Pérez, J.A.: Causally consistent reversible choreographies. CoRR
abs/1703.06021 (2017), http://arxiv.org/abs/1703.06021

7. Mezzina, C.A., Pérez, J.A.: Causally consistent reversible choreographies: a monitors-
as-memories approach. In: Vanhoof, W., Pientka, B. (eds.) Proceedings of the
19th International Symposium on Principles and Practice of Declarative Pro-
gramming, Namur, Belgium, October 09 - 11, 2017. pp. 127–138. ACM (2017).
https://doi.org/10.1145/3131851.3131864, http://doi.acm.org/10.1145/3131851.
3131864

8. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, Parts I and II.
Info.& Comp. 100(1) (1992)

9. Sangiorgi, D.: Asynchronous process calculi: the first- and higher-order paradigms.
Theor. Comput. Sci. 253(2), 311–350 (2001). https://doi.org/10.1016/S0304-
3975(00)00097-9, http://dx.doi.org/10.1016/S0304-3975(00)00097-9

10. van Walree, F.: Session types in Cloud Haskell. Master’s thesis, University of Utrecht
(2017), https://dspace.library.uu.nl/handle/1874/355676

http://www.di.unito.it/~dezani/papers/cdpy15.pdf
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1007/978-3-662-49498-1_18
http://eatcs.org/beatcs/index.php/beatcs/article/view/305
http://arxiv.org/abs/1703.06021
https://doi.org/10.1145/3131851.3131864
http://doi.acm.org/10.1145/3131851.3131864
http://doi.acm.org/10.1145/3131851.3131864
https://doi.org/10.1016/S0304-3975(00)00097-9
https://doi.org/10.1016/S0304-3975(00)00097-9
http://dx.doi.org/10.1016/S0304-3975(00)00097-9
https://dspace.library.uu.nl/handle/1874/355676

	Reversible Session-Based Concurrency in Haskell

