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ABSTRACT Escherichia coli adapts to changing environmental osmolality to survive and 23 

maintain growth. It has been shown that GFP diffusion in cells adapted to osmotic upshifts is 24 

higher than expected from the increase in biopolymer volume fraction. To better understand 25 

the physicochemical state of the cytoplasm in adapted cells, we now follow the 26 

macromolecular crowding during adaptation with FRET-based sensors. We apply an osmotic 27 

upshift and find that, after an initial increase, the apparent crowding decreases over the 28 

course of hours, to arrive at a value lower than before the osmotic upshift. Crowding relates 29 

to cell volume until cell division ensues, after which a transition in the biochemical 30 

organization occurs. Analysis of single cells by microfluidics shows that changes in cell 31 

volume, elongation and division are most likely not the cause for the transition in 32 

organization. We further show that the decrease in apparent crowding upon adaptation is 33 

similar to the apparent crowding in energy-depleted cells. Based on our findings in 34 

combination with literature data, we suggest that adapted cells have indeed an altered 35 

biochemical organization of the cytoplasm, possibly due to different effective particle-size 36 

distributions and concomitant nanoscale heterogeneity. This could potentially be a general 37 

response to accommodate higher biopolymer fractions yet retaining crowding homeostasis, 38 

and could apply to other species or conditions as well.  39 

IMPORTANCE Bacteria adapt to ever changing environmental conditions such as osmotic 40 

stress and energy limitation. It is not well understood how biomolecules reorganize 41 

themselves inside Escherichia coli under these conditions. An altered biochemical 42 

organization would affect macromolecular crowding, which could influence reaction rates and 43 

diffusion of macromolecules. In cells adapted to osmotic upshift, protein diffusion is indeed 44 

faster than expected on the basis of the biopolymer volume fraction. We now probe the 45 

effects of macromolecular crowding in cells adapted to osmotic stress or depleted in 46 

metabolic energy with a genetically encoded fluorescence-based probe. We find that the 47 

effective macromolecular crowding in adapted and energy-depleted cells is lower than in 48 

unstressed cells, indicating major alterations in the biochemical organization of the 49 

cytoplasm.  50 
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INTRODUCTION 51 

The environment induces changes in the internal organization of a cell, for example during 52 

nutrient depletion or osmotic changes. Nutrient depletion halts diffusion of 100 nm-sized 53 

particles,(1) while osmotic stress decreases the diffusion of 10 nm-sized proteins.(2, 3) Cells 54 

adapt to environmental stresses to resume growth, but their internal structure may be 55 

changed. For instance, the lateral diffusion coefficient of GFP in cells adapted to osmotic 56 

stress is higher than expected from the biopolymer volume fraction.(4) The cytoplasmic 57 

structure, or biochemical organization, can influence GFP diffusion in various ways, for 58 

example by changing the microscopic viscosity, association of proteins with (non)specific 59 

binding partners, the presence of barriers such as membrane invaginations, or sieving 60 

effects by for example the nucleoid or transertions.(2, 4-6) Thus, the change in diffusion 61 

indicates that the biochemical organization has undergone a change, but the nature of this 62 

transition is not well understood.  63 

One important aspect of cell physiology is macromolecular crowding,(7-10) which influences 64 

lateral diffusion but also induces excluded volume effects. The steric repulsion between a 65 

high concentration of biomacromolecules (“crowders”) reduces the configurational entropy of 66 

these crowders. A biochemical reaction (“tracer”) that takes place in this environment 67 

reduces its volume to maximize the configurational entropy for the crowders. This effect can 68 

especially drive large complexes together where crowders are excluded from the volumes in 69 

between the tracers (overlap volumes). In this manner, the excluded volume provides an 70 

additional force to sort biomolecules to provide biochemical organization by favoring 71 

(supra)molecular complexes and membraneless compartments. Excluded volume effects are 72 

increased when for example: (i) the crowders are actually mobile and can increase their 73 

translational degrees of freedom; and (ii) when they are smaller in size than the tracer.(11) 74 

Thus, immobile crowders and/or crowders that are larger than the tracer is display less of the 75 

crowding effect in the classical sense but can induce confinement, where the shape of the 76 

confinement enforces a shape onto the tracer, instead of the minimum volume obtained in 77 
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classical crowding. Macromolecular crowding, or excluded volume effects, therefore does not 78 

necessarily correlate with the biopolymer volume fraction. 79 

Macromolecular crowding is one of the main parameters that changes when the volume of a 80 

cell changes, which can occur when the medium osmolality changes. Upon osmotic upshift, 81 

the cells immediately shrink and many cells counteract this by taking up potassium ions, 82 

which is best documented for E. coli.(12-14) Subsequently, E. coli synthesizes or takes up 83 

available compatible solutes, and adjusts the proteome to adapt to the osmotic upshift. 84 

Researchers showed that in E. coli over 300 genes are up- or downregulated by osmotic 85 

upshift.(15-17) E. coli further increases its RNA/protein ratio due to an increase in ribosome 86 

content when adapted to high osmotic strength,(18) possibly to compensate for the 87 

decreased rate of translation. 88 

We apply here a set of FRET-based sensors that enable quantification of macromolecular 89 

crowding during adaptation to osmotic stress. The sensors have shown excellent 90 

performance in quantification of crowding during osmotic stress in mammalian cells,(19-21) 91 

and allow detailed analysis of crowding in the bacterium Escherichia coli.(19, 22) The 92 

sensors vary in size, with crGE being the largest probe with a linker region that contains two 93 

α-helices and three random coils in between the fluorescent proteins that form a FRET pair 94 

(mCerulean3 as donor and mCitrine as acceptor). The crE6G2 sensor contains a linker with 95 

two α-helices and a small random coil, while the crG18 probe contains a single long random 96 

coil.  97 

Using these probes, we show here that macromolecular crowding increases upon osmotic 98 

upshift and returns within 2-5 hours to a level lower than the crowding prior the osmotic shift. 99 

We explain the lower effective excluded volume with the hypothesis that the biochemical 100 

organization of the cytoplasm is significantly altered, with components that exert less 101 

excluded volume effects for molecules in the size-range of our molecular probes. 102 

 103 
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MATERIALS AND METHODS 104 

Cell growth and confocal imaging. Cell preparation, growth, and imaging were performed 105 

as described in (19, 22). Briefly, the pRSET A vector containing the synthetic gene encoding 106 

either crGE, crE6G2 or crG18 was transformed into E. coli BL21(DE3). The cells were 107 

incubated at 30 °C, shaking at 200 rpm, in 10 mL MOPS medium pH 7.2 with 20mM glucose 108 

and grown overnight. The next day, the cells were diluted into 50 mL of fresh medium to 109 

OD600=0.05. When the OD600 reached 0.1 – 0.2, the cells were imaged. Subsequently, the 110 

concentration of NaCl was raised to 300 mM by addition of pre-warmed 3M NaCl in MOPS 111 

medium, and the cells were imaged to follow their recovery. The OD600 was monitored in 112 

time, and the cell culture was diluted with pre-warmed medium (MOPS medium + 300 mM 113 

NaCl) to reduce the OD600 every time from 0.3 to 0.1. For imaging, a 0.5 mL sample of cells 114 

expressing one of the probes was combined with 0.5 mL of cells that contained monovalent 115 

streptavidin in pRSET A (blank). A parallel culture was maintained under the same conditions 116 

to provide the blank cells. The combined cells were 10× concentrated by centrifugation and 117 

resuspended. Subsequently, 10 µL of the cells was transferred to a glass slide modified with 118 

(3-aminopropyl) triethoxysilane and imaged on a laser-scanning microscope (Zeiss LSM 119 

710). The probes were excited using a 405-mm LED, and the emission was split into a 450–120 

505 (mCerulean3) and 505–797 nm (FRET) channel. The fluorescence intensities for each 121 

cell were determined in ImageJ, and background originating from the blank cells was 122 

subtracted.  123 

Imaging in a microfluidics chamber. The microfluidic chamber (CellASIC ONIX Microfluidic 124 

Plates) was pre-warmed overnight at 30 °C on the laser-scanning confocal microscope. The 125 

E. coli BL21(DE3) with desired crowding probe and the control strain containing monovalent 126 

streptavidin were grown overnight to an OD600 of 0.1-0.3, which is still in the exponential 127 

growth phase, and they were then diluted to OD600=0.01 in MOPS-glucose minimal medium 128 

and subsequently loaded in the microfluidic chamber. After loading, the cells were incubated 129 

with 0.1× MOPS-glucose medium (MOPS-glucose medium diluted 10× with 0.16 M NaCl) at 130 
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30 °C for 2h. After 2h, the medium in the microfluidics was replaced by 0.1×MOPS-glucose 131 

medium that contained an additional 0.3 M NaCl on top of the 0.16 M. Alternatively, we used 132 

600 mM and 1 M sorbitol instead of the 0.3M NaCl for osmotic upshift in the microfluidic 133 

chamber. The images were collected and analyzed as described above.  134 

Cell volume determination. The volume of the cytoplasm was determined by 135 

PhotoActivated Localization Microscopy (PALM). The gene encoding LacY was fused to 136 

YPet which can switch “on” or “off” during imaging in PALM.(23) The gene encoding LacY-137 

YPet was cloned into the pACYC vector and transformed into E. coli BL21(DE3). The cells 138 

(inoculated from a single colony) were grown at 30 °C, shaking at 200 rpm, in 10 mL MOPS 139 

medium with 20 mM glucose, overnight. The next day, at OD600 = 0.2, the cells were induced 140 

with 0.1% L-rhamnose. One hour after induction, the cells were imaged by PALM microscopy 141 

before and after addition of 300 mM NaCl. 142 

Coverslips were cleaned with 5 M KOH in a sonication bath for 30 minutes, and washed with 143 

demineralized water and acetone (Aldrich). Next, the coverslips were plasma-cleaned for 10 144 

min, and subsequently coated with 2% (v/v) (3-Aminopropyl) trioxysilane (Aldrich) in acetone 145 

for 30 minutes. The coverslips were washed with demineralized water and left drying.  146 

For PALM, a home-built inverted microscope based on an Olympus IX-81 with a high 147 

numerical aperture objective (100 X, NA= 1.49, oil immersion, Olympus, UApo) was used. 148 

Solid-state lasers were from Coherent (Santa Clara, USA): 514 nm (Sapphire 514, 100 mW). 149 

Imaging was performed in semi-TIRF mode with the angle of light exiting the objective 150 

adjusted to create a light sheet restricted to the bottom few micrometers of the specimen. 151 

The fluorescence was recorded using an electron multiplying charge-coupled device (EM-152 

CCD camera) from Hamamatsu, Japan, model C9100-13. For data acquisition and analysis, 153 

LacY-YPet was continuously illuminated at 517 nm and 3000 frames were recorded with 30 154 

ms for each frame. The data was analyzed with a home-written ImageJ script, in which the 155 

reconstructed images of each fluorescent molecule are represented as a single spot at its 156 

determined coordinates, with a brightness that corresponds to the localization accuracy.(23)  157 
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Preparation of cell lysate. The E. coli BL21(DE3) cells were incubated in 10 mL MOPS with 158 

20 mM glucose at 30 °C and shaking at 200 rpm overnight, and then diluted to 1 L of fresh 159 

medium to OD600=0.02. When the OD600 reached 0.2, half of the culture was lysed 160 

immediately, while the other half was lysed after incubation for 5 h with 300 mM NaCl. To 161 

lyse the cells, the cultures were harvested by centrifugation (3000 xg, 30 minutes). The pellet 162 

was resuspended in 10 mM NaPi, 100 mM NaCl, pH 7.4, containing proteinase inhibitor 163 

(cOmplete™, Mini, EDTA-free). Cells were lysed by sonication for 2 minutes, with alternating 164 

5 seconds sonication and 5 seconds cooling, and then centrifuged (20,000xg, 10 min). The 165 

supernatant was immediately used for the fluorescence measurements.  166 

Fluorometry. Fluorescence emission spectra were measured with a Fluorolog-3 (Jobin 167 

Yvon) spectrofluorometer.  A 1.0 mL solution (10 mM NaPi, 100 mM NaCl, 2 mg/ml BSA, pH 168 

7.4) was added to a quartz cuvette and its fluorescence emission spectrum was recorded 169 

after excitation at 420 nm (A). Subsequently, purified sensor was added, mixed by pipette, 170 

and the fluorescence was recorded (B). The desired amount of small molecule or cell lysate 171 

was added, mixed by pipette, and the fluorescence was recorded again (C). The background 172 

spectrum A, prior to the addition of the probe, was subtracted from B or C. 173 

OD600 measurements during FCCP treatment. A 96-well plate (Greiner) containing four 174 

batches of each of the different culture/condition combinations (200 µL/well), with the 175 

remaining wells filled with either filter-sterilized MOPS-glucose minimal medium or MQ water. 176 

The plate was covered with gas permeable film and mounted on a plate reader (BioTek 177 

PowerWave 340). While shaking the plate at 30 °C, the absorbance at 600 nm was read 178 

every minute for 3.5 hours using Gen 5 software. After the plate reader measurement, the 179 

OD600 values were referenced to the average of the absorbance values for MQ water, for 180 

each specific time point. 181 

 182 

 183 
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RESULTS  184 

Macromolecular crowding decreases after an osmotic upshift. To determine the 185 

crowding during adaptation to an osmotic upshift, we added 300 mM NaCl to exponentially 186 

growing E. coli BL21(DE3) and allowed the cells to adapt to the increased medium 187 

osmolarity. To monitor the macromolecular crowding, we expressed the crGE probe under 188 

leaky expression of the T7 promoter, which prevents maturation artifacts as we described 189 

previously.(24) To compare our results with literature data, we performed the experiments in 190 

MOPS-glucose medium.(2, 4, 18) We find that under these conditions, the osmotic upshift 191 

initially decreases the OD600 of the cell culture, which slowly recovers to pre-upshift levels 192 

over about an hour. After this, the cultures maintain a steady growth rate throughout the 193 

experiments (Fig. 1A). 194 

We took samples from the main culture for analysis by confocal fluorescence microscopy and 195 

excited the crGE probe at 405 nm, and determined the emission between 450-505 nm for 196 

mCerulean3 and 505-795 nm for the FRET channel, as described previously.(19) Before the 197 

upshift, the FRET/mCerulean3 is 1.06 ± 0.009 (s.e.m.; n = 98; s.d.=0.07), which immediately 198 

increases to 1.12 ± 0.01 (s.e.m.; n = 98) upon addition of 300 mM NaCl (Fig. 1B). These 199 

FRET/mCerulean3 ratios are equivalent to 21 % w/w and 30 % w/w Ficoll, respectively.(19) 200 

The FRET/mCerulean3 ratio follows the OD600 by returning to the pre-upshift level within 1 h. 201 

After this, the FRET/mCerulean3 decreases further to 1.00 ± 0.006 (s.e.m.; n = 90) over an 202 

additional 1-2 h, where it remains for at least 23 h. This FRET/mCerulean3 ratio is equivalent 203 

to 13 % w/w Ficoll.(19) We maintain the cells in the exponential phase of growth by 204 

continuously refreshing the medium. The observations are similar for the crG18 sensor that 205 

contains a different linker (Fig. S1).(22) We find that addition of 100 mM NaCl does not lead 206 

to significant changes, while the addition of 500 mM NaCl provides a decrease similar to 300 207 

mM NaCl (Fig. S2). This apparent threshold coincides with the occurrence of membrane 208 

invaginations when 300 and 500 mM NaCl is added, which does not occur with 100 mM 209 

NaCl (see also (25) and (2)).   210 
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To confirm that the ratiometric FRET reports genuine changes in excluded volume, rather 211 

than e.g. binding of specific molecules to the sensors, we performed a series of control 212 

experiments. We investigated the influence of cell lysate on purified sensor (Fig. S3). We 213 

lysed E. coli with or without 300 mM NaCl and did not find an effect of the cell-free lysate of 7 214 

mg of total protein/ml on purified crG18. Hence, cytoplasmic macromolecules do not 215 

specifically interact with the sensors. The same applies for small molecule (metabolites, 216 

osmolytes) that are abundant in E. coli (19, 22, 26). To confirm that the probes are not 217 

truncated in osmotically stressed cells, we performed SDS-PAGE analysis. The gels show 218 

intact probes in control and osmotically stressed cells (Fig. S4). To assess whether the 219 

mCitrine fluorescence is not quenched by acidification of the cells during adaptation, we 220 

excited the mCitrine directly at 488 nm, and we did not find a decrease in intensity (Fig. S5). 221 

To show that the ratiometric FRET signal is independent of the maturation of the fluorescent 222 

proteins,(24) we exchanged the mCerulean3 with the faster maturing mTurquoise2 (crTC2) 223 

and obtained a qualitatively similar readout (Fig. S6). Also exchanging the acceptor to 224 

cpmVenus (crcpGE) did not lead to a different result, excluding effects specific to the 225 

fluorescent proteins.  226 

Next, we benchmarked the diffusion of the probes against GFP under conditions of osmotic 227 

stress and adaptation by fluorescence recovery after photobleaching (FRAP) (Fig. 1E). The 228 

median diffusion coefficient decreases from 5.6(±1.6) µm2/s to 1.6(±1.3), and subsequently 229 

increases 4h after addition of NaCl to 4.2 (±0.3). The changes in diffusion do not reflect the 230 

FRET of the sensor precisely, likely because factors such as immobile barriers influence 231 

diffusion differently.(27) These diffusion coefficients compare to 14.1(±3.8), 1.7(±1.1) and 232 

10.3(±3.1), respectively, for diffusion of GFP.(4) The last data value was obtained at 1.02 233 

Osm, while our osmolarity cumulates to 0.88 Osm (the osmolarity of MOPS medium + 300 234 

mM NaCl). The difference in diffusion coefficients of crGE and GFP correspond with the 235 

differences in sizes, but, importantly, the relative changes in mobility indicate that they probe 236 

similar biochemical organization of the cytoplasm.  237 
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Macromolecular crowding relates to cell length until cells divide  238 

Macromolecular crowding should relate to the volume of a cell when the number of inert 239 

biomacromolecules is constant. To investigate whether the decrease in crowding indeed 240 

relates to volume changes and cell growth, we determined the cell length and volume during 241 

adaptation. To estimate the volume of the cells, we performed PALM measurements using 242 

the inner membrane protein LacY fused to YPet. We find that the volume decreases by 30% 243 

immediately after adding 300 mM NaCl (Fig. 1F), while three hours after the osmotic upshift 244 

the volume has recovered to ~1.8 fL, which is 82% of the value before the upshift. When 245 

measuring the length of the cells from brightfield images by confocal microscopy (Fig. 1C), 246 

we find that cells immediately become shorter by 20 % upon addition of 300 mM NaCl, and 247 

the length returns to the value before the osmotic upshift after 30 minutes. After 60-90 248 

minutes, the average cell length starts to increase. Afterwards, when most cells divide 249 

(doubling time of 2h), apparently in a synchronized manner, the average cell length 250 

decreases. After this, the average length remains short in the adapted cells. The decrease in 251 

length is more pronounced than in volume, which implies that the adapted cells have an 252 

increased diameter. Yet, the overall trend is similar for both the cell length and volume. We 253 

find that the crowding relates reciprocally with cell length and cell volume (Fig. 1D). After ~2 254 

h, which coincides with the moment the cells divide, the relation between crowding and cell 255 

volume no longer holds. We find these trends for both the crGE and the crG18 (Fig. S1). 256 

Hence, the results indicate that the crowding as anticipated is proportional to the cell volume 257 

after the osmotic upshift, but the relationship changes when cells adapt to the osmotic stress. 258 

Elongation or division are not needed to change crowding  259 

To assess whether cell elongation or division are strictly correlated with crowding during 260 

adaptation to osmotic stress, we studied individual cells in microfluidics devices. This allows 261 

comparison of cells that adapt to those that do not, and we can dissect whether or not cell 262 

division influences the levels of crowding. E. coli cells growing in 0.1× MOPS-glucose 263 

medium (supplemented with 160 mM NaCl) in microfluidic devices can be analyzed for at 264 
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least 6 h (Fig. S7).  We observed less fluctuation in apparent crowding when cells grew in 265 

0.1× MOPS-glucose compared to undiluted MOPS-glucose medium, for which we currently 266 

do not have an explanation. Exogenous morpholinopropanesulfonate (MOPS) accumulates 267 

in E. coli(29) and may disturb its physiology. We found that the growth rate in 0.1× MOPS-268 

glucose and MOPS-glucose medium are similar in a liquid culture, which is ~0.5 h-1. Hence, 269 

for all the experiments in the microfluidic chamber, we incubated the cells in 0.1× MOPS-270 

glucose, supplemented with 160 mM NaCl to obtain the same osmolarity as MOPS-glucose 271 

medium.  272 

We incubated the cells in the microfluidic chamber for 2 h, after which we replaced the 273 

medium with 0.1× MOPS-glucose with 460 mM NaCl (hence 300 mM extra). To confirm that 274 

crowding changes are independent of the type of crowding sensor, we compared the FRET 275 

signals of crGE, crE6G2 and crG18 during the osmotic upshift. We find a similar decrease in 276 

ratiometric FRET as observed in the experiments in batch culture. We further applied an 277 

osmotic upshift with sorbitol, showing a similar response as equiosmolar amounts of sodium 278 

chloride (Fig. S8). We counted the number of cells and noted that the cell number increased 279 

steadily until the osmotic upshift, after which the osmotic stress reduces the increase 280 

temporally (Fig. S9).  281 

We previously found that of the three probes crE6G2 was most sensitive to changes in 282 

macromolecular crowding.(22) Single cell analyses provides a significant amount of noise 283 

(Fig. 2AC), yet for most cells the trend in the FRET/mCerulean3 ratio could clearly be 284 

distinguished with crE6G2, allowing comparison of crowding with cell length and division time 285 

(Fig. 2B). The single cells showed a transient decrease in length in the first 5 minutes after 286 

osmotic upshift, which coincides with the presence of membrane invaginations.  After 5 to 10 287 

minutes, the cells started to elongate again. Upon addition of 300 mM NaCl, the shape of the 288 

FRET/mCerulean3 response of individual cells is similar to that of ensemble measurements. 289 

Although the single cell FRET/mCerulean3 data are noisy, we infer that cell division is not 290 

strictly correlated with the macromolecular crowding: Cell division appears to be rather 291 

 on M
arch 13, 2019 by guest

http://jb.asm
.org/

D
ow

nloaded from
 

http://jb.asm.org/


 

12 
 

stochastic and unrelated to the FRET/mCerulean3 curve, which is similar for most of the 292 

cells. Furthermore, when we compiled data of cells that grew and compared those that did 293 

not grow, we do not observe a significant difference in crowding levels (Fig. 2D). In both 294 

cases we find the decrease to be significant (p<0.05, student´s t test). Hence, elongation and 295 

division do not necessarily drive the decrease in crowding upon adaptation to 300 mM NaCl, 296 

but they coincide with the crowding changes on the population level. 297 

Energy decoupling also decreases crowding 298 

Next, we determined the crowding in cells that were deprived of energy by using a 299 

protonophore (FCCP) to dissipate the electrochemical proton gradient, and thereby deplete 300 

the cells of ATP. Energy-depleted E. coli cells undergo a transition in their internal 301 

organization that hampers diffusion of 100 nm-sized but not 10 nm-sized particles.(1) Our 302 

probes are in the 10 nm size range, that is, our probes behave as a disordered protein with a 303 

distance between the centers of the fluorescent proteins of ~5-10 nm. Therefore, if crowding 304 

would be the only factor influencing diffusion, 10 nm particles should not experience a 305 

change in crowding because their diffusion does not change. If, on the other hand, native 306 

biomacromolecules are assembled into larger structures, e.g. resulting in a transition of the 307 

cytoplasm from a fluid into a more solid-like “colloidal glassy” state (1, 30), an inert 10 nm 308 

particle could experience less crowding. Such a state could be enhanced by the depletion of 309 

ATP, because ATP has been implicated as biological hydrotrope to enhance the solubility of 310 

proteins (31).  311 

Because the effectiveness of protonophores depends on various factors (e.g. membrane 312 

concentration, E. coli strain, carbon source, medium pH), we first assessed the FCCP 313 

concentration required to halt cell growth and found that 100 µM was necessary under our 314 

experimental conditions (Fig. 3A). Next, we applied FCCP to exponentially growing E. coli 315 

cells that contained the crGE probe, and measured the FRET/mCerulean3 ratios (Fig. 3B). 316 

The measurements were performed within two minutes after addition of FCCP. We find that 317 

the FRET/mCerulean3 ratio drops upon addition of FCCP and reaches values comparable to 318 
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those of cells adapted to 300 mM NaCl. We thus conclude that the effective excluded volume 319 

probed by crGE of 300 mM NaCl-adapted and energy-depleted cells are similar.  320 

DISCUSSION 321 

We have used previously developed crowding sensors to probe changes in excluded volume 322 

of E. coli cells upon osmotic stress and energy depletion. We show that the effective 323 

excluded volume of E. coli increases upon osmotic upshift, but subsequently decreases to 324 

values below those of unstressed cells. We find that in the first 1-2h the changes in crowding 325 

relate in a reciprocal manner to the cytoplasmic volume. When cells adapt to osmotic upshift 326 

conditions (300 mM NaCl), the apparent crowding levels become lower than those of 327 

unstressed cells.  328 

Simply based on the biopolymer volume fraction, one would expect an increased 329 

macromolecular crowding in cells that have adapted to growth at increased osmolarities. Yet, 330 

Konopka et al. already showed for the first time that the diffusion of GFP was too high 331 

compared to what was expected from the biopolymer volume fraction.(4) This in combination 332 

with our result confirms that the biopolymer volume fraction is not the sole determinant of 333 

crowding effects, which can be expected from theory(8) and suggests that there is a 334 

structural change in the cytoplasm. Indeed, the group of Hwa recently showed that cells 335 

adapted to hyperosmotic stress have a higher ribosome to overall protein ratio than before 336 

osmotic stress.(18) This could explain the altered dependence on the volume fraction: 337 

Ribosomes are about 20 nm in diameter while our probes contain a disordered domain and 338 

are in the range of 5-10 nm, and thus should exert less of a classical excluded volume effect 339 

compared to a smaller protein crowder. Moreover, if the ribosome is attached to mRNA, its 340 

effective size is much larger and it would not diffuse freely, which is needed for classical 341 

crowding effects. The group of Holt recently investigated the size-dependence of crowding 342 

induced by ribosomes in yeast cells (32) and showed that an increased ribosome 343 

concentration reduced the lateral diffusion of particles in a size-dependent manner: 40 nm 344 

particles had a lower diffusion coefficient than 20 nm particles, while diffusion of 5 nm sized 345 
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particles was not influenced. Thus, an increase in ribosome to overall protein ratio at the 346 

same biopolymer volume fraction would diminish the crowding effect. 347 

The reciprocal relation between the cell volume and crowding during the first 1-2 hours after 348 

the osmotic upshift shows that the macromolecular crowding behaves in a manner that one 349 

would expect from concentrating and diluting a solution of inert crowders. After this, or 350 

concomitantly, a major change in the biochemical transition may occur and the relation 351 

between cell volume and apparent crowding no longer holds. We cannot make a precise 352 

comparison of these time scales with literature data given that the media, strain, and 353 

magnitude of the upshift varies between experiments. But compatible solutes have a 354 

significant influence, a role that the MOPS in our medium could assume.(29) The initial 355 

response of cell elongation or volume growth after osmotic upshifts has been reported to 356 

occur within a few minutes,(33-35) similar to what we observed in microfluidics for cell length. 357 

The time course of the crowding transition of 1-2 hours is in the range of biopolymer 358 

synthesis (and changing the proteome) and proceeds throughout the cell division stage. 359 

Therefore, even though cell elongation resumes rapidly after shock, a new proteome needs 360 

to be synthesized to arrive at a new crowding homeostasis over longer periods. The change 361 

in crowding may be assisted by the biosynthesis of e.g. trehalose, which has been reported 362 

to accumulate to maximum values in up to an hour in E. coli grown in medium without 363 

compatible solutes.(36) Although the DNA content can increase under hyperosmotic 364 

stress,(37) especially under higher osmotic shocks than we use, we do not consider the DNA 365 

a classical crowder due to its large size and immobility. However, DNA could have an indirect 366 

effect by reducing the total available volume for other crowders or act through confinement 367 

mechanisms. Together, the kinetics of cell length and crowding suggest that the crowding 368 

changes are initially governed by cell volume, after which the cytoplasm arrives at a new 369 

state through biopolymer synthesis. 370 

Although we consider an increase in the ribosome fraction of the total biopolymer content a 371 

likely source of the decrease in effective macromolecular crowding, other phenomena could 372 
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contribute. For example, we show here that energy dissipation decreases the effective 373 

excluded volume as well, which is an effect that occurs within 2 minutes, which is too fast for 374 

major changes in the proteome or/and ribosome content. Here, we achieve perhaps a state 375 

where the cytoplasm is more gel-like or colloidal glassy and thus leaves more uncrowded 376 

spaces for the probes to occupy.(38) Moreover, even if the sensor and the cytoplasm were 377 

homogeneously mixed, crowder self-associations would decrease the excluded volume 378 

effect of the crowders.(11) Such a state could be enhanced by the absence of ATP that 379 

potentially acts as a hydrotope and solubilizes the proteome.(31) Hence, different 380 

biochemical states of the cytoplasm could yield the same effective excluded volume.  381 

CONCLUSION 382 

Cells adapt to external stress to maintain cell growth. We mapped the changes in 383 

macromolecular crowding during adaptation to an osmotic upshift, a condition previously 384 

shown to alter the biochemical organization of the cell. We show that the cells indeed arrive 385 

at a new state where the effect of the excluded volume is decreased, which may be caused 386 

by alteration in the particle size distribution in the cytoplasm or change in biochemical 387 

organization. This would provide a mechanism to adopt higher biopolymer volume fractions 388 

while maintaining an effective crowding homeostasis with excluded volume effects tuned by 389 

the particle size and/or mobility. 390 
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 490 

Figure 1. Response of E. coli BL21(DE3) containing the crGE probe in pRSET A to the 491 

addition of 300 mM NaCl. A. The ln(OD600) decreases after the upshift and subsequently 492 

increases linearly over time (passing the pre-upshift OD600 after ~1h). The OD600 is corrected 493 

for continuous dilution of the culture to maintain the OD600 between 0.1 and 0.3. The data fits 494 

a linear curve with R2=0.99, indicating exponential growth throughout the course of the 495 

experiment. B. The FRET/mCerulean3 ratio of the crGE probe as measured by confocal 496 

fluorescence microscopy. The ratios immediately increase after osmotic upshift and decrease 497 

after one hour to levels lower than prior to the osmotic upshift. All data is for at least 60 E. 498 

coli cells, with a FRET/mCerulean3 standard deviation of ~0.05 and a standard error of 499 

~0.009. C. Osmotic upshift results in a decrease in median cell length as measured by 500 

fluorescence microscopy (same cells as in panel B), which is followed by an increase in 501 

length of the synchronized cells until division starts, resulting in smaller cells compared to 502 

pre-upshift conditions. D. Data from panel B and C combined showing the relation (linear 503 
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approximation: R2=0.82) between the FRET/mCerulean3 ratio and the median cell length 504 

(black circles), which holds until the cells divide. After that, the FRET/mCerulean3 remains 505 

low (red circles), which is after t=3h in panel B and C. E. Lateral diffusion of the crGE probe 506 

in unstressed, and 300 mM NaCl stressed and adapted cells. The FRAP measurements 507 

were carried out as described previously.(28) Displayed are the box plots generated for 508 

measurements of 10-20 cells, each from the same culture to allow comparison. Box 509 

represents 25-75% of the data range, whiskers is within the 1.5 interquartile range, bar in the 510 

box is median, square is average, and stars are outliers.  F. Cell volume changes during 511 

hyperosmotic stress. E. coli BL21(DE3) expressing LacY-YPet was used and the contours 512 

from single-molecule localizations by PALM were used to obtain the volumes of the cells 513 

(see caption). Untreated cells are measured at t = -1h in MOPS-glucose; to capture the data 514 

point at t = 0h, the cells were resuspended in MOPS medium without potassium and glucose 515 

to prevent recovery, and subsequently treated with 300 mM NaCl. For time points 3, 4 and 516 

5h cells were left to adapt to 300 mM NaCl in regular MOPS-glucose medium. For each data 517 

point, ~30 cells were imaged and analyzed (*P<0.05, **P<0.005, paired sample t-test). 518 
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 523 

Figure 2. Single cell analysis in microfluidics, monitored by confocal microscopy. At 2h, the 524 

medium flown into the chamber that holds the cells was changed from 0.1×MOPS +160 mM 525 

NaCl to 0.1×MOPS +460 mM NaCl (net increase 300 mM NaCl). The E. coli BL21(DE3) cells 526 

contained the crE6G2 sensor in pRSET A. A. Fluorescence intensity of a single cell over 527 

time; the emission from the mCerulean3 and the FRET channel are shown. B. Cell length of 528 

the same cell analyzed in panel A, showing elongation and cell division and a small transient 529 

decrease in cell length following the osmotic upshift at t=2h. The time between cell divisions 530 

varies significantly. C. The FRET/mCerulean3 ratio of the same cell, showing a qualitatively 531 

similar time course of the crowding as in the batch experiments. D. Average of the population 532 

of cells that grow after osmotic upshift (n=9) compared with cells that do not grow (n=4). 533 

Shaded areas are the corresponding standard deviations.  534 
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 535 

Figure 3. Crowding of energy-depleted E. coli as probed by crGE. A. The effect of FCCP on 536 

the growth of E. coli BL21(DE3) in MOPS minimal medium supplemented with glucose. Error 537 

bars are four technical repeats. B. Application of 100 µM of FCCP results in an immediate 538 

drop in the FRET/mCerulean3 ratio. Three independent biological repeats are displayed; 539 

error bars are error in the fit of FRET versus mCerulean3 intensity over about 100 cells. 540 

 541 

 542 

 543 

 544 

 545 

 546 

 547 

 548 

 on M
arch 13, 2019 by guest

http://jb.asm
.org/

D
ow

nloaded from
 

http://jb.asm.org/


 

22 
 

 549 

Figure 4. Changes in biochemical organization that affect crowding in cells. A. Adaptation to 550 

osmotic stress and energy depletion changes both the size and spatial distribution of the 551 

macromolecules. B. Working mechanism behind probe compression: The excluded volume 552 

excluded (orange) reduces due to crowding. This is caused by i) increasing the translational 553 

degrees of freedom for the crowders; and ii) an osmotic pressure difference (depletion force) 554 

between the bulk and the crowder-inaccessible volume within the probe. C. Immobile 555 

crowders do not affect the behavior described in Fig 4B. Additionally, spatial heterogeneity 556 

increases the distance between probe and crowder and reduces frequency of collision. D. At 557 

similar volume fraction, smaller crowders provide more entropy gain by virtue of number 558 

density and larger osmotic pressure differences. 559 

 560 
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