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Abstract
Mind-wandering refers to the process of thinking task-unrelated thoughts while performing a task. The dynamics of mind-
wandering remain elusive because it is difficult to track when someone’s mind is wandering based only on behavior. The goal of
this study is to develop a machine-learning classifier that can determine someone’s mind-wandering state online using electroen-
cephalography (EEG) in a way that generalizes across tasks. In particular, we trained machine-learning models on EEG markers to
classify the participants’ current state as either mind-wandering or on-task. To be able to examine the task generality of the classifier,
two different paradigms were adopted in this study: a sustained attention to response task (SART) and a visual search task. In both
tasks, probe questions asking for a self-report of the thoughts at that moment were inserted at random moments, and participants’
responses to the probes were used to create labels for the classifier. The 6 trials preceding an off-task response were labeled as mind-
wandering, whereas the 6 trials predicting an on-task response were labeled as on-task. The EEG markers used as features for the
classifier included single-trial P1, N1, and P3, the power and coherence in the theta (4–8 Hz) and alpha (8.5–12 Hz) bands at PO7,
Pz, PO8, and Fz. We used a support vector machine as the training algorithm to learn the connection between EEGmarkers and the
current mind-wandering state. We were able to distinguish between on-task and off-task thinking with an accuracy ranging from
0.50 to 0.85.Moreover, the classifiers were task-general: The average accuracy in across-task prediction was 60%, which was above
chance level. Among all the extracted EEG markers, alpha power was most predictive of mind-wandering.

Keywords Mind-wandering . Spontaneous thought . Single-trial ERP . EEG . Support vector machine . Sustained attention to
response task . Alpha oscillations

Mind-wandering—also referred to as task-unrelated
thinking—is a common phenomenon. It is associated with
both advantages and problems in our daily life. While
disrupting performance of the ongoing task, mind-wandering
could also help with future planning and problem solving
(Smallwood & Schooler, 2015). Throughout the literature,

researchers have studied this mental phenomenon through dif-
ferent perspectives and defined it in different ways. The most
straightforward definition of mind-wandering might be Boff-
task thought^ or Btask-unrelated thought^ (Barron, Riby,
Greer, & Smallwood, 2011; McVay & Kane, 2009). Here,
mind-wandering is defined by its content—which is irrelevant
to the ongoing task. This definition mostly fits our daily ex-
perience. However, the task-unrelated thought definition is
perhaps too general, in that it also contains thoughts that are
triggered by environmental distractors such as sounds or
smells. Some researchers do not consider such stimulus-
driven thoughts as mind-wandering and restrict mind-
wandering to Bstimulus-independent thought^ (Smallwood
& Schooler, 2015). They focus on the importance of the gen-
eration of these thoughts, which they argue should be self-
generated (Schooler et al., 2011; Smallwood & Schooler,
2015). Other researchers believe that what is crucial about
mind-wandering is that it is spontaneous and not constrained
by anything (Christoff, Irving, Fox, Spreng, & Andrews-
Hanna, 2016). For the purposes of the current study, we define
mind wandering as self-generated, task-unrelated thought.
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Several explanations of self-generated, task-unrelated
thought have been put forward. The prominent executive
attentional framework of mind-wandering predicts that men-
tal effort devoted to the primary task is reduced because
mind-wandering processes consume part of the cognitive
resources (Smallwood & Schooler, 2006, 2015). Indeed, in
event-related potential (ERP) studies, an electrophysiological
index of cognitive processing—the P3—was shown to be
reduced when participants engaged in mind-wandering pro-
cesses, compared with when they were in an on-task state
(Smallwood, Beach, Schooler, & Handy, 2008).
Furthermore, functional magnetic resonance imaging
(fMRI) studies have shown that mind-wandering is associ-
ated with the involvement of the executive network regions
(Christoff, Gordon, Smallwood, Smith, & Schooler, 2009).
However, although the frontoparietal network was active,
activation during mind-wandering was less than during the
on-task state (Christoff et al., 2016; Kirschner, Kam, Handy,
& Ward, 2012; Mittner et al., 2014).

The relation between mind-wandering and executive
functions is more complex, however. For instance, working
memory capacity plays a role in resisting mind-wandering
(Robison & Unsworth, 2015). Furthermore, while for people
with low working memory capacity mind-wandering tends
to occur independently of the context, people with higher
working memory capacity tend to mind-wander more strate-
gically (Robison & Unsworth, 2017). In a similar vein,
mind-wandering has been divided into intentional and unin-
tentional mind-wandering, which have different neural cor-
relates and functional consequences. Some studies have
found that intentional mind-wandering occurs more often
in easy task conditions compared with difficult conditions.
On the contrary, unintentional mind-wandering occurs more
often in difficult conditions than in easy ones (Seli, Risko, &
Smilek, 2016).

An interesting finding is that mind-wandering not only con-
sumes cognitive resources but also inhibits the perceptual pro-
cessing of the external stimuli, a phenomenon that has been
referred to as Bperceptual decoupling^ (Schooler et al., 2011).
Mind-wandering was shown to be accompanied by reduced P1
and N1 (Kam et al., 2011). Since both P1 and N1 are very early
ERP components indexing processing during the sensory input
stage, their reduction is taken as evidence supporting an inhib-
itory effect of mind-wandering on external perception. This
inhibitory effect might be a possible way of protecting the
internal train of thought against getting interrupted (Kam &
Handy, 2013), but this is still speculative. Following this idea,
mind-wandering has also been referred to as Bdecoupled
thought,^ as in, decoupled from the environment.

Mind-wandering is typically studied experimentally by
using the experience-sampling methodology. In experience-
sampling experiments, probe questions are randomly inserted
in the task of interest, asking for subjects’ self-report about

their thoughts and feelings, which is then used to mark dis-
crete time points as mind-wandering. Such self-reports are
necessary, because mind-wandering occurs automatically
and implicitly by definition, so that researchers cannot control
it through experimental manipulations. Instead, they can only
detect it. The thought probe methodology has obvious draw-
backs as well: (1) probes interrupt the ongoing train of
thought, causing unwanted interference, and (2) because of
this interference, probes cannot be used too often, with the
result that continuous detection of mind-wandering can hardly
be realized. In other words, the dynamics of mind-wandering
cannot be studied merely through experience sampling.

If there were a neurophysiological measure to differentiate
between mind-wandering and on-task behavior without the
need for interruptions, the problems mentioned above would
disappear. While there is promising work along these lines
using a combination of fMRI and eye tracking (Mittner
et al., 2014), no mind-wandering classifiers have been built
for EEG. This leads us to the primary goal of this study: to
train a machine-learning classifier that can detect mind-
wandering based on electroencephalography (EEG) data.
Based on the associated features of mind-wandering—re-
duced task-relevant cognitive processing and reduced sensory
processing—we propose EEG markers reflecting those pro-
cesses to be candidate features for the classifier. These are the
bilateral occipital P1 and N1 as indices of visual perceptual
processing, parietal P3 as an indication of manipulations in
working memory during task performance, the power of the
alpha band (8.5–12 Hz) as an index of sensory processing
when being examined at parietal-occipital electrodes
(Ergenoglu et al., 2004), the power of the theta band (4–8
Hz) as an indication of task-relevant processing and cognitive
control (Cavanagh & Frank, 2014; Harper, Malone, & Iacono,
2017), and the phase coherence between electrodes as an
index of the interregional communication during task perfor-
mance (Cavanagh, Cohen, & Allen, 2009).

Two tasks were employed in the current research to ensure
generalizability of the classifier. The first task, the sustained
attention to response task (SART), has been used in several
mind-wandering studies. Subjects should respond to the fre-
quently appearing nontarget stimulus and withhold their re-
sponse to the infrequently appearing targets. Mind-wandering
is likely to emerge here because the task is easy and boring.
Previous studies using the SART demonstrated decreased ac-
curacy when subjects were mind-wandering (e.g., Kam et al.,
2011; McVay & Kane, 2013; Smallwood et al., 2008; van
Vugt & Broers, 2016). To examine the task dependency of
the EEG markers identified, we also included another para-
digm in this study that contrasted with the SART in relying
more on processing of external stimuli: a visual search task.
To classify trials into mind-wandering and on-task states, we
used the experience sampling method in both tasks to obtain
subjective judgments of the participant’s mental states.
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Method

Subjects

A total of 30 subjects took part in the experiment. Subjects
reported normal or corrected-to-normal vision and were pro-
ficient in written and spoken English. After the preprocessing,
EEG data of 12 subjects were not entered the further analyses
as they had fewer than 30 trials in one of the mental states per
task. This was caused by artifacts in the recorded EEG signal
in combination with fewer reports in one of the two mental
states. The data reported are from the remaining 18 subjects
(13 females, ages 18–30 years,M = 23.33, SD = 2.81 ). One of
them was left-handed. For the participants included, at least
72% of the collected trials remained. In the SART, the mean
trial count was 97.33 (SD = 40.14) in the on-task class and
98.33 (SD = 37.50) in mind-wandering. In the visual search
task, the mean trial count was 132.90 (SD = 42.15) for on-task
and 89.61 (SD = 44.99) for mind-wandering. The research
was conducted following the Declaration of Helsinki.
Subjects gave written informed consent. They were paid 40
euros total for participation in two experimental sessions of
2.5 hours each.

Procedure

The experiment included two sessions, each lasting approxi-
mately 2.5 h, including the EEG setup time. Participants per-
formed the experiment in a sound-attenuating booth. The tasks
were programmed and presented in OpenSesame (Mathôt,

Schreij, & Theeuwes, 2012). EEG was continuously recorded
during the tasks with a Biosemi 128-channel system.

In the SART, white stimuli were presented in the center of
the screen against a black background (see Fig. 1a). Each trial
began with a fixation cross for a uniformly sampled period
between 1.5 s ~ 2.1 s. Each word stimulus appeared for
300 ms followed by a 900-ms mask. The intertrial interval
was 3 s. Word stimuli subtended a visual angle of approxi-
mately 0.75° vertically and 1.5° ~ 10.5° horizontally.
Participants were instructed to press Bm^ whenever they saw
a frequent lowercase word (i.e., nontarget) that occurred 89%
of the time and to withhold responding when they saw a rare
uppercase word (i.e., target) that occurred 11% of the time.

In the visual search task, blue stimuli were presented in the
center of the screen against a black background. At the beginning
of each block, there was an instruction about the target to search.
Each trial began with a fixation cross for a period of 1.5 s ~ 2.1 s.
Each search panel appears for 3 s with a visual angle of 7.47° ×
7.47° both horizontally and vertically. Participants were
instructed to tell whether a target was presented by pressing the
left arrow for Byes^ and the right arrow for Bno.^ There was an
equal probability of the target-present and the target-absent trials.

Tasks included 12 blocks (six blocks for each task in each
session). A SART block has 135 trials and a visual search block
has 140 trials. The timeline of each trial is depicted in Fig. 1.

The subjects were seated at a distance of approximately
60 cm in front of the display. They were instructed to remain
still, keep their eyes focused on the screen, and refrain from
blinking while performing the tasks. The sequence of task ad-
ministration was counterbalanced across subjects and sessions.

a

b

Fig. 1 Experimental procedure. a In the SART, every trial started with a
fixation cross, followed by a word for 300 ms and a mask for 900 ms.
There was a 3-s blank as the intertrial interval (ITI). Two types of stimuli
are illustrated: a lowercase word (tea) as the go stimuli, and an uppercase
word (OFTEN) as the no-go stimulus, which was the target. Probes

always occurred after a no-go trial. b In the visual search task, every
trial started with a fixation cross, followed by a search panel for 3 s.
Two consecutive probes were separated by 7 ~ 24 trials. A visual search
target was present on half of the trials and absent on the other half. NT =
nontarget; SP = search panel. (Color figure online)

Cogn Affect Behav Neurosci (2019) 19:1059–1073 1061



Subjects were given breaks between blocks while the experi-
menter checked and corrected the electrode impedances.

Stimuli

Thematerials for the SARTwere 283 English words of regular
usage, for example, geographical locations (e.g., America),
nature (e.g., sea), time (e.g., evening), and other categories
(see Appendix A for the full list of words). Word length
ranged from two to 14 letters. The words were taken from a
previous study of mind-wandering (van Vugt & Broers,
2016).

In the visual search task, materials were square search
panels consisting of 4–8 squares or circles of equal size. The
target to search could be either a square or circle, and a target
was present on half of the trials.

Experience-sampling thought probes

Both tasks were interrupted by probe questions, asking sub-
jects to report their thoughts at that moment. Subjects could
choose one of six options: (1) I entirely concentrated on the
ongoing task; (2) I evaluated aspects of the task (e.g., my
performance or how long it takes); (3) I thought about person-
al matters; (4) I was distracted by my surroundings (e.g.,
noise, temperature, my physical condition); (5) I was
daydreaming, thinking of task unrelated things; (6) I was not
paying attention, but my thought wasn’t anywhere specifical-
ly. These thought probes were derived from our previous ex-
periments (Huijser, van Vugt, & Taatgen, 2018). Participants
answered the questions by pressing the corresponding number
on the keyboard.

In the SART, probes always appeared after a no-go trial.
There were 54 probe questions in each task. Two consecutive
probes were separated by 7–24 trials, which meant thought
probes occurred roughly every 34–144 seconds.

EEG recording and offline processing

Continuous EEG was recorded by a Biosemi 128-channel
system with six additional electrodes used to detect eye move-
ments and measure mastoid signals. The sampling rate was
512 Hz. An electrode next to the vertex electrode was used as
the reference during recording. Impedances were kept below
40 kΩ. Off-line EEG preprocessing was performed with the
EEGLAB toolbox (Version13.6.5b; Delorme & Makeig,
2004) in MATLAB (Version 2013b).

For off-line analysis, continuous data were rereferenced to
the average signal of mastoids, band-pass filtered (0.5–40Hz),
down-sampled to 256 Hz, and segmented into epochs of
1,600 ms (400 ms before and 1,200 ms after stimulus onset).
Bad channels were identified by visual inspection (channels
with excessive spikes or with a noisier signal than surrounding

channels) and replaced through spherical interpolation before
artifact rejection. We performed infomax independent compo-
nent analysis (ICA) for ocular artifact detection and removal.
Additionally, data segments were inspected visually to screen
for artifacts.

Data analysis

Trial classification

Six trials proceeding each probe were analyzed, accounting
for roughly 30–36 seconds.1 This practice followed the as-
sumption that the periodic fluctuations in attention might be
supported by very low frequency (0.01–0.1 Hz) coherence
within the default mode network (Sonuga-Barke &
Castellanos, 2007), and, typically mind-wandering would per-
sist for more than a single trial (Bastian & Sackur, 2013).
Trials selected were either labeled as mind-wandering or on-
task state based on subjects’ responses to the probes. Probe
Responses 1 (I entirely concentrated on the ongoing task) and
2 (I evaluated aspects of the task) were defined as a task-
related mental activity. Responses 3 (I thought about personal
matters) and 5 (I was daydreaming, thinking of task unrelated
things) indicated self-generated task-unrelated thoughts; thus,
they were considered as mind-wandering.2 There were two
particular cases that did not fit either category. Response 4 (I
was distracted by my surroundings) indicated off-task thought
triggered by the external environment or from body sensa-
tions. This kind of thinking is usually classified as distraction
instead ofmind-wandering (Christoff et al., 2016). In addition,
Response 6 (I was not paying attention, but my thought wasn’t
anywhere specifically) indicates a mind-blanking state with-
out involvement in self-generated thoughts (Ward & Wegner,
2013). These responses were excluded from further analyses.
These thought categories accounted for 1.85%–30.56% of the
total reports across subjects (M = 16.05%, SD = 8.86%).

1 We used six trials preceding each probe to have a large enough sample size.
The assumption underlying this method is that the 30 seconds before each
probe reflected the same mental state. Considering the possibility that the
mind-wandering and on-task states have a shorter duration, we also performed
the same analysis on the data of three trials before each probe, accounting for
roughly 15–18 seconds. The results are shown in Appendix B: The classifier
trained on three preceding trials did not outperform the classifier trained on the
six preceding trials.
2 This classification is not the only possibility. For instance, it has been argued
that the second option indicates mind-wandering, because Bevaluating aspects
of the task^ could interfere with primary task performance, just like mind-
wandering. However, our primary goal is to build a task-general EEG marker
of mind-wandering. Mental activity related to task evaluation might be disrup-
tive in simple tasks, but it could be helpful in more complex tasks that involve
strategic planning or adjusting behavior based on feedback. Given this reason,
we classified Option 2—BI evaluated aspects of the task^—as an on-task state.
That said, we also included results based on the other possible categorization,
with Answer 1 as on-task and Answer 2, 3, and 5 as mind-wandering in
Appendix C.
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Behavioral measures

We computed accuracy and average response time of
the correct trials for each mental state for each task
for each subject. Performance in different mental states
was compared using paired t tests. Effect size was re-
ported as Cohen’s d.

Single-trial ERP

To detect EEG components in each trial, we used the single-
trial ERP methodology (Bostanov, 2004; Bostanov &
Kotchoubey, 2006). Different from traditional ERP analysis,
which averages the signal across trials for noise removal,
single-trial ERP first builds an ideal ERP waveform using a
Mexican hat function:

ψ tð Þ ¼ 1−16t2
� �

e−8t
2 ð1Þ

and computes its cross-covariance with the single-trial EEG
signal

W s; tð Þ ¼ 1
ffiffi
s

p ∫
∞

−∞
f τð Þψ τ−t

s

� �
dτ : ð2Þ

Like a template-matching process, the computation in-
volves two arguments: the time lag t indicates the peak posi-
tion of the computed ERP waveform; the scale s indicates the
breadth of the computed waveform along the x-axis
(approximately the wavelength; see Fig. 2a). By using a set
of s and r values, the resultingWs can be plotted in a contour
plot with t as the x-axis and s as the y-axis. The local extreme
W indicates the best matching template of the signal and theW
at this point gives the measure of the single-trial ERP ampli-
tude (see Fig. 2b–c).

The ERP components of interest are the lateral parietal-
occipital P1 and N1, and the parietal P3. We computed P1 as
the positive extreme between 50 ms and 150 ms at A10 and
B7 in the Biosemi 128-channel system (approximately PO7
and PO8 in the 10–20 system; Di Russo, Martínez, Sereno,
Pitzalis, & Hillyard, 2002) and N1 as the negative extreme
between 100 ms and 200 ms at the same channels (Hopf,
Vogel, Woodman, Heinze, & Luck, 2002). P3 was measured
as the positive local extreme between 250 ms and 600 ms at
A19 (approximately Pz in the 10–20 system). Each compo-
nent in each trial can be described by a set of three values: the
amplitude W, the time lag t, and the scale s.

Time-frequency analysis

The clean EEG signal at A10, A19, B7, and C21 (ap-
proximately PO7, Pz, PO8, and Fz in the 10–20 system)
was band-pass filtered and Hilbert transformed to be

decomposed into alpha (8.5–12 Hz) and theta (4–8
Hz) bands. Channels were selected based on their cen-
tral positions in frontal (C21), parietal (A19), and bilat-
eral occipital areas (A10 and B7).

For each band, the filter kernel was constructed by
the MATLAB function firls(). The ideal filter was
Bplateau-shaped^ in a way that the frequency range in
the band were the Bhighland^ (set as 1) and the sur-
rounding frequency were Bflat^ (set as 0). The transition
widths were 20%. The length of each filter kernel was
long enough to ensure at least three cycles of the lowest
frequency in each band. The constructed filter by firls()
were checked through computing its sum of squared

Fig. 2 a Mexican-hat wavelet (t = 446, s = 1,188), using the parameters
detected as the local extreme in c. b An example of EEG epoch time-
locked to stimulus onset. c The resulting W-value matrix shown in a
contour map when doing the template matching using the trial in b. The
local extreme detected in the time window of 250 ms ~ 600 ms indicates
the single-trial P3. (Color figure online)
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errors (SSE) compared with the ideal filter to ensure it
is below 1. After applying the kernel to the EEG signal,
the data were Hilbert-transformed by the MATLAB
function hilbert() to convert to the analytical signal
(each data point is in complex form) so that the further
computation based on the power or phase information
can be performed (Cohen, 2014, Chapter 14). Hilbert
transforms allow for the most accurate computation of
the signal’s phase, which is crucial for computing oscil-
latory synchrony.

After transforming the band-pass filtered data into an
analytical signal, power was computed as the square of
the absolute value at each time point. Coherence was
indicated by the intersite phase clustering (ISPC).
ISPC were computed through taking the average of
phase angle differences between electrodes over time
(Cohen, 2014, Chapter 26):

ISPC f ¼ jn−1 ∑
n

t¼1
ei ϕxt−ϕytð Þj; ð3Þ

in which n is the number of time points. ϕxand ϕy are
phase angles from electrode x and y at frequency f.

Both power and ISPC at each time point were averaged in
two periods: baseline (−400–0 ms) and after stimulus onset
(0–600 ms) separately.

Machine learning

We included the measures of single-trial P1, N1, and P3 as
well as power and ISPC at the selected channels in alpha and
theta bands as markers for our classifier. In total, we had 25
potential predictors (see Fig. 5) for the classification of mental
states in each trial. The machine-learning algorithm used is the
support vector machine (SVM) because of its high perfor-
mance in EEG classification (Lotte, Congedo, Lecuyer,
Lamarche, & Arnaldi, 2007). Moreover, SVM does not as-
sume that the relationship between labels and predictors is
linear.3 Given that we did not have a specific assumption
about the relationship between EEG markers and mind-
wandering states, we considered SVM to bemore appropriate.
Markers were z-transformed before entering the classifier.
SVM learning was performed using the e1071 package in R.
A radial kernel (RBF) was performed to allow for the possi-
bility of a nonlinear separating boundary. The optimal regu-
larization parameterC and the RBF parameter γwere obtained
through grid search.

Considering individual differences in EEG patterns,
model fitting was performed on each individual. If the
data sample size was imbalanced between classes
(e.g., if one had a mind-wandering rate of 70%, then
70% of the data were labeled as mind-wandering and
30% as on-task), we copied the cases from the minor-
ity class to make the training sample balanced
(random oversampling; Chawla, 2005). Models were
v a l i d a t e d by l e av e - on e - ou t c r o s s v a l i d a t i o n
(LOOCV). LOOCV is a validation method that in
each loop of training, one case from the whole data
sample is left to be tested while the rest of the cases
form the training sample. The training loop iterates
until all the cases have been tested. Performance
was measured as prediction accuracy, sensitivity, and
specificity. Sensitivity is also called the true positive
rate. It is calculated as the proportion of positives that
are correctly classified as such (i.e., the percentage of
mind-wandering trials that are correctly classified as
the mind-wandering state). Specificity is also called
the true negative rate. It is the proportion of negatives
that are correctly classified as such (i.e., the percent-
age of on-task trials that are correctly classified as the
on-task state). Across-task prediction was performed
by training data on one task and testing the obtained
model on the data of the other task.

Furthermore, to investigate the respective contribu-
tions of the EEG markers, we trained models using each
marker separately. In this modeling process, we pooled
the normalized data from both tasks before training and
tested them using LOOCV.

Results

Behavioral results

Regarding the probes, participants reported (1) being
entirely concentrated on the ongoing task for 29.76%
(SD = 17.25) of probes, (2) evaluating aspects of the
task for 16.48% (SD = 9.95) of probes, (3) thinking
about personal matters for 22.35% (SD = 17.19) of
probes, (4) being distracted by their surroundings for
11.16% (SD = 7.81) of probes, (5) being daydreaming
for 15.37% (SD = 9.86) of probes, and (6) not paying
attention for 4.88% (SD = 5.62) of probes.

The reportedmind-wandering rate during task performance
varied strongly across participants (M = 0.38, SD = 0.15,
range: 0.16–0.82). The reported mind-wandering rate was
lower in the visual search task than in the SART (0.34 vs.
0.42), t(17) = 3.62, p = .002, d = 0.85).

Figure 3 shows the behavioral performance differ-
ence between mind-wandering and on-task state

3 We have also tried a linear classifier—logistic regression—which is sup-
posed to find some simpler Bcutoff^ rule that can classify mind-wandering
versus on-task state in a way like Bhigher P3 = on-task^ and Blower P3 =
mind-wandering.^ The results can be found in Appendix D. To summarize,
logistic regression models performed worse than SVM generally. The results
support the need to use the nonlinear power of the SVM.
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(mind-wandering minus on-task). Negative values in
the accuracy plot indicate worse performance in
mind-wandering than in on-task. Positive values in
the response-time plot indicate slower reaction in
mind-wandering than in on-task state. The trends in
t he p lo t s we r e con f i rmed by pa i r ed t t e s t s .
Specifically, response accuracy in mind-wandering de-
creased significantly in the visual search task (0.95 vs.
0.97), t(17) = −2.30, p = .034, d = 0.54, and margin-
ally in the SART (0.93 vs. 0.95), t(17) = −2.05, p =
.056, d = 0.48. Response time in mind-wandering in-
creased in the visual search task (687 ms vs. 654 ms)
t(17) = 2.59, p = .019, d = 0.61, while in the SART
the difference between mind-wandering and on-task
was not significant (444 ms vs. 462 ms) t(17) =
−1.88, p = .077, d = 0.44.

Classification results

Machine-learning performance for each subject is
shown in Fig. 4. For LOOCV, in which training and
testing was based on different subsets of the same data
set, the prediction accuracy ranged from 0.50 to 0.85
across individual models (M = 0.64 for the SART, M =
0.69 for the visual search task). For the across-task
prediction, we trained models on the basis of the
SART data and tested them on data of the visual
search task (SART-VS) and vice versa (VS-SART).
The obtained prediction accuracy ranged from 0.39 to
0.84 (M = 0.60 for SART-VS, M = 0.59 for VS-
SART). The obtained sensitivity (the percentage of
mind-wandering trials that are correctly classified as

the mind-wandering state) and specificity (the percent-
age of on-task trials that are correctly classified as the
on-task state) varied considerably across individuals.
Sensitivity ranged from zero to one with a mean of
0.42. Specificity ranged from zero to one with a mean
of 0.64. Overall, the prediction accuracy is significant-
ly above the chance level of 0.5. A t test conducted
between the obtained accuracy and 0.5 confirmed this
difference in the LOOCV results: t(17) = 7.26, p <
.001, d = 1.71 in the SART, and t(17) = 7.30, p <
.001, d = 1.72 in the visual search task, as well as
in the across-task prediction: t(17) = 3.26, p = .005,
d = 0.77 in SART-VS, and t(17) = 3.29, p = .004, d =
0.78 in VS-SART.

Through visually inspecting the Fig. 4b, we found
the classifier had a bias. In order to find out the possi-
ble cause, we did a supplementary Spearman’s rank cor-
relation analysis between mind-wandering rate, sensitiv-
ity, and specificity. This analysis showed that sensitivity
was positively correlated with the mind-wandering rate
during both tasks, r(16) = .80, p < .001 in the SART;
r(16) = .83, p < .001 in the visual search task, while
the specificity was negatively correlated with the mind-
wandering rate, r(16) = −.75, p < .001 in the SART;
r(16) = −.86, p < .001 in the visual search task (see
Fig. 5).

Contributions of individual markers

To find the most predictive EEG marker, we fit models
for each EEG marker separately on the full data set
including both tasks and performed cross-validation to

Fig. 3 Behavioral results by task. Bars show the behavioral difference
(MW minus OT) between conditions. Error bars indicate the 95%
confidence interval. ACC = accuracy; RT = response time; MW =

mind-wandering; OT = on-task; SART = sustained attention to response
task; VS = visual search task
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test the resulting models. Similar to the how we did the
whole model fitting process, we found the best param-
eters (C and γ) of each single-EEG-marker model by
means of a grid search.

Overall, the performance of each single-marker
model was above chance level, which was confirmed
by t tests (ts > 3.24, ps < .005; see Fig. 6). The
accuracy of the full model including all EEG markers
was 0.64 (SD = 0.09) on average. Most individual
EEG marker models did not reach the performance
of the whole model (ts < −2.34, ps < .032) except
for the frontal alpha power (alpha C21): t(17) =
−0.87, p = .393, and the left occipital alpha power
(alpha A10): t(17) = −1.68, p = .11. The equivalent
performance between the frontal or left occipital alpha
power alone and the whole model was further

confirmed by tests of equivalence (Robinson &
Froese, 2004). In the equivalence test between alpha
C21 and the whole model, the mean difference was
−0.03 and the 95% confidence interval of the two
one-sided t test (TOST) was −0.06 to 0. In the equiv-
alence test between alpha A10 and the whole model,
the mean difference was −0.01 and the 95% TOST
interval was −0.03 to 0.01. In both cases, the null
hypothesis of statistical difference was rejected.

To see how these markers differed between the two
conditions, we plotted the ERP wave graphs computed
by both the traditional averaging method and the
single-trial algorithm for mind-wandering and on-task
states separately. The average levels of power and
ISPC during baseline and after-stimulus onset for
mind-wandering and on-task are also shown in Fig. 7.

Fig. 4 Classifier performance for each participant shown by (a)
prediction accuracy obtained from the within-task leave-one-out cross
validation (LOOCV) and across-task predictions, and (b) accuracy,

sensitivity, and specificity. Maroon horizontal dashed line in a indicates
chance level. (Color figure online)
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In the ERP markers, a statistically significant differ-
ence between on-task and mind-wandering was found
with both traditional P3 and single-trial P3 (see
Table 1). A difference between on-task and mind-
wandering in right occipital P1 (P1 B7) was only
found with the single-trial analysis but not with the
traditional ERP averaging method. Conversely, the dif-
ference between on-task and mind-wandering on the
right occipital N1 (N1 B7) was only found with the
traditional ERP analysis but not with the single-trial
ERP. Note that the peak of N1 obtained through
single-trial ERP was slightly earlier (around 180 ms)
than the true center of the N1 (around 200 ms).
However, for the P1 and the P3, both the single-trial
and the traditional ERP centered at almost the same
time position. Possible causes for any of the discrep-
ancies are discussed later.

Toward each of the band frequency markers, we
performed a two-way repeated ANOVA with state

(MW vs. OT) and time (baseline vs. after-stimulus on-
set) as the within-subjects factors. A statistically sig-
nif icant difference between on-task and mind-
wandering was found in frontal alpha power (alpha
C21), F(1, 17) = 6.37, p = .021, ηg

2 = 0.23; parietal
alpha power (alpha A19), F(1, 17) = 9.72, p = .006,
ηg

2 = 0.30; and the coherence between the parietal and
the left occipital sites in the theta band (theta A19–
A10), F(1, 17) = 7.55, p = .014, ηg

2 = 0.16. Neither
a main effect of time (baseline vs. after-stimulus on-
set), nor any interaction were found.

Discussion

Our study aimed to find task-independent electrophys-
iological markers that can differentiate mind-wandering
from the on-task state. To achieve this goal, we had
participants perform both an inhibition control task that

Fig. 5 Correlation between mind-wandering rate, sensitivity, and
specificity. Shaded area indicates the 95% confidence interval. SART =
sustained attention to response task; VS = visual search task. A mind-

wandering rate of 1 indicates the participant is mind-wandering every
time a probe is presented, whereas a mind-wandering rate of 0 indicates
the participant is never mind-wandering when the probe is presented
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is frequently used to study mind-wandering—the
SART—and a visual search task. As in previous stud-
ies, we found that mind-wandering disrupted task per-
formance in general. In the SART, this disruption man-
ifested in a trend of decreased accuracy when the par-
ticipant was mind-wandering. In the visual search task,
both accuracy and response time indicated worse per-
formance during the mind-wandering state.

Having established that mind wandering occurred in
both tasks and caused disruptions in task performance,
we then attempted to predict mind-wandering based on
EEG markers. On average, classification accuracy was
above chance level. Moreover, even though classifica-
tion accuracy was not very high, it was task-general:
it was possible to train a classifier on one task and
use the obtained model to predict the mind-wandering
state on another task. Results of our research confirm
the potential to use EEG-based machine-learning classi-
fiers to detect mind-wandering, without having to first
train on the new tasks. In that way, the detection of
mind-wandering could be less interfering and interrup-
tive, allowing us to understand better when, how, and
why mind-wandering occurs.

However, several cautionary remarks should be made.
Although we were able to classify mind-wandering
across tasks, general classification accuracy was still
relatively low. This is probably due to the difficult dis-
tinction we are trying to make, compared with other
EEG classification studies. Whereas most studies focus
on classifying different experimental conditions (e.g.,
Borst, Schneider, Walsh, & Anderson, 2013), in this
study we try to classify two different mental states with-
in a single task. Although there were small behavioral
differences between the mind-wandering and on-task
states, our participants did not stop performing their
primary task while mind-wandering, which made the
two states highly similar. Unfortunately, this means that
the current results cannot be directly used in clinical or

Fig. 6 a Performance of single-marker classifiers shown as mean
accuracy across individuals. Whole model at the bottom refers to the
modeling performance with all the EEG markers listed above as
predictors. Error bars indicate 95% confidence interval. Black vertical

dashed line indicates the chance level. b Selected channels to examine
in the 128-channel Biosemi system in the upper panel and their
approximate locations in the 10–20 system in the lower panel. (Color
figure online)

Fig. 7 Visualization of the EEG markers in the mind-wandering (MW)
and on-task (OT) state. a Group averaged ERP wave graph computed by
both the single-trial algorithm and the traditional averaging method.
Shaded area in the waveform shows the standard error. b Group mean
of the normalized power and intersite-phase clustering (ISPC) of baseline
(−400 ms ~ 0 ms) and after-stimulus onset (ASO, 0 ms ~ 600 ms). Error
bar indicates one standard error of the mean. (Color figure online)
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industrial applications. If it were to be applied in some
industr ia l appl icat ion or medical pract ice l ike
neurofeedback, performing spatial filtering on EEG
might be helpful (Blankertz , Tomioka, Lemm,
Kawanabe, & Muller, 2008) because it extracts more
discriminable EEG markers, which might improve the
prediction accuracy. However, spatially filtered EEG
markers are not suitable for neurophysiological interpre-
tations because they are computed with the aim of
achieving maximum difference between conditions and
therefore do not allow us to draw any conclusions about
the relative contributions of different EEG markers to
mind-wandering.

Second, the unbalanced sensitivity and specificity
showed that the models were biased toward detecting
one of the two classes (see Fig. 4b). In some individ-
ual models, the classifier was good at detecting mind-
wandering cases but poor at detecting on-task cases
(high sensitivity and low specificity). In some other
individual models the classifier was good at detecting
on-task cases but poor at detecting mind-wandering
cases (low sensitivity and high specificity). In a corre-
lation analysis, we found that individual differences in
bias were strongly associated with the amount of mind-
wandering during task performance (see Fig. 5). In
other words, the more frequently they were mind-wan-
dering, the more biased the model was toward detect-
ing the mind-wandering cases—the trained models
were better at detecting the majority class. However,
since we balanced the sample size in each class before

training the SVM, this cannot be the result of learning
the probability of each class. A possibility is that sub-
jects held different standards when they decided their
attentional states. Those who engaged more with the
primary task might tend to decide their momentary
attentional state as on-task. On the contrary, those
who engaged more with the mind-wandering process
might tend to report off-task thinking. The blurred line
between on-task and mind-wandering state when giving
self-reports might cause the data to be imprecisely la-
beled, which further influenced the machine learning
result.

In the future, it might be better to have participants
rate their attentional levels on a scale rather than to
choose between several options. For example, a scale
could range from −5 to 5, with −5 indicating the most
certain off-task state, 5 indicating the most certain on-
task state, and 0 indicating having difficulty to decide.
In that way, trials rated 0 could be omitted due to par-
ticipants’ inability to decide their momentary attentional
state. Furthermore, researchers could only analyze those
confidently rated cases like the ones with an absolute
value above 3, so that it might increase the reliability of
the labels.

Our research goes beyond previous studies of how
mind-wandering is reflected in EEG activity by using
a data-driven method to find what EEG marker is
most predictive. While each of the EEG markers in-
dividually can be used as a classifier after training,
only frontal and the left-occipital alpha power reached
a level of performance that was comparable to the
complete model. Considering the computational ad-
vantage with fewer predictors, this result suggests it
may be possible to build a simplified EEG classifier
of mind-wandering with only the power in the alpha
band at several representative sensors placed at frontal
and parietal-occipital sites. However, note that the
multifeature SVM did reach the highest accuracy
overall (see Fig. 6), and outperformed all logistic re-
gression classifiers (see Fig. 12 in Appendix D). This
suggests that classification does not rely on a linear
boundary, and that it is not possible to switch to a
simple linear classifier.

To understand why these EEG markers can be used
to predict mind-wandering, we compared their mea-
sures between the mind-wandering and the on-task
classes (see Fig. 7). As mentioned above, it should
be noted that a straightforward Bcutoff^ is unlikely to
fully explain the relationship that the SVM found.
Considering the possibility that SVM can find a non-
linear separating boundary, the state effect that we
depicted in Fig. 7 (e.g., alpha A19: mind-wandering
> on-task) might only be a likelihood that the SVM

Table 1 T-test statistics for the comparisons of ERP markers between
on-task and mind-wandering, for ERPs computed by both the single-trial
algorithm and the traditional averaging method

Single-trial ERP

Component Electrode t p d

P1
(120 ms ~ 130 ms)

A10 ns

B7 2.2 .041 0.36

N1
(175 ms ~ 185 ms)

A10 ns

B7 ns

P3
(400 ms ~ 500 ms)

A19 3.97 <.001 0.59

Traditional ERP

Component Electrode t p d

P1
(120 ms ~ 130 ms)

A10 ns

B7 ns

N1
(195 ms ~ 205 ms)

A10 ns

B7 2.78 .012 0.31

P3
(400 ms ~ 500 ms)

A19 3.56 .002 0.50

The time window indicates the interval on the basis of which the mean
amplitude was computed. ns = nonsignificant
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used as part of a more complex pattern. This also
explains why the SVM can still build classifiers upon
those EEG markers that did not show significant men-
tal state differences (e.g., alpha ISPC B7–C21). SVM
might have found a nonlinear boundary in the data
space formed by such markers.

The set of EEG markers that significantly predicted
mind-wandering also informs psychological theories
about the mechanisms underlying mind-wandering. For
example, the relative reduction in P1 and N1—indices
of early sensory processing—support the idea that mind-
wandering state is associated with inhibition of sensory
processes (Bperceptual decoupling^). Besides, the rela-
tive reduction of P3, as an indication of the devoted
mental efforts to the primary task, in the mind-
wandering state is compatible with the cognitive
decoupling hypothesis.

Here, the single-trial ERP algorithm showed the ad-
vantage in building an efficient classifier through
Bpicking^ out the signal from noise within each EEG
epoch. The traditional P1 failed to show the subtle dif-
ference between on-task and mind-wandering, which
was similar to the finding in a recent study by
Gonçalves et al. (2018). However, the single-trial P1
magnified this difference and was able to show an ef-
fect. An exception to the advantage of the single trial
ERP was the seeming absence of a difference between
on-task and mind-wandering in the single-trial N1. This
lack of an effect is probably related to the poor choice
of the time window that we set for N1. After mapping
the cross-covariance of the EEG signal and the wavelets
into the contour map, we looked for N1 as the local
minimum in the time window of 100–200 ms, which
resulted in N1s that were all centered before 200 ms.
However, judging by the traditional N1 graph, the real
N1 peak should be around 200 ms, which means the
upper limit of the time window we used to look for
N1 might have been too small. A better window would
be 100–230 ms. This also explains the earlier peak po-
sition of the single-trial N1 in Fig. 7. Thus, the
Bunsatisfactory performance^ of single-trial N1 cannot
refute the promising application of this method in ana-
lyzing EEG data at the single trial level.

Besides the ERP markers, alpha power at both pari-
etal and frontal sites showed statistically significant dif-
ferences between on-task and mind-wandering, where
mind-wandering was associated with enhanced alpha
power. Our findings are consistent with previous studies
that found that smaller alpha power predicted higher
levels of attentiveness (Macdonald, Mathan, & Yeung,
2011) and were associated with an active attentional
suppression mechanism (Kelly, Lalor, Reilly, & Foxe,
2006).

A surprising finding was that theta coherence be-
tween the parietal and left occipital sites (theta A19–
A10) increased with mind-wandering. In contrast, pre-
vious findings associated theta coherence with being
more on-task, making it difficult to explain our effect.
It is possible that the neural communication between
the parietal and occipital cortical area in the theta band
might undertake certain complementary functions when
sensory inhibition is ongoing in the mind-wandering
state so that the task can st i l l be performed.
However, further evidence is required to validate this
theory.

Another potential future direction in studying EEG
markers of mind-wandering could be to investigate the
relationship between the separate markers that we iden-
tified and broadband EEG power. According to research
by Miller, Honey, Hermes, Rao, and Ojemann (2014),
power spectral changes can be divided into rhythmic
and nonrhythmic EEG. The nonrhythmic part, which is
also called the broadband spectral change, is hypothe-
sized to reliably track task engagement. Given that we
found significant relationships between EEG features in
several different frequency bands, broadband EEG may
be a suitable addition to the biomarker of mind-
wandering.

To sum up, our research demonstrates the potential
for predicting mind-wandering using interpretable
electrophysiological markers combined with machine
learning. The classifier we developed is task-indepen-
dent, as we achieved prediction accuracy above
chance level in across-task predictions. While each
of the EEG markers alone can already detect mind-
wandering, we found that alpha power performed
equivalently to the whole model and is therefore the
most suitable candidate for building a simplified EEG
classifier of mind-wandering. This research also sup-
ports the idea that mind-wandering is associated with
sensory and cognitive decoupling. If our results can
be replicated in larger samples, they could potentially
be used to detect mind-wander ing in real - l i fe
situations.
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