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CHAPTER 33 



Electroactive Materials with 
Tunable Response Based on Block 
Copolymer Self-Assembly
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The application of ferroelectric polymers, one of the key building blocks for the 

preparation of flexible electronic devices, is often accompanied with high dielectric 

losses and strong demixing from various inorganic components. Additionally, 

their lack of functionality and ability to simply tune ferroelectric response 

significantly diminishes the number of fields where they can be applied. To address 

this issue, we present a novel and effective way to introduce functionality in the 

structure of ferroelectric polymers while preserving ferroelectricity and to further 

tune the ferroelectric response by incorporating functional insulating polymer 

chains at the chain ends of ferroelectric polymer in a form of block copolymers. 

The block copolymer self-assembly into lamellar nanodomains allows confined 

crystallization of ferroelectric polymer block without hindering the degree of 

crystallinity or chain conformation. We elucidate for the first time the mechanism 

of the dipole switching in these materials. The simple adjustment of the block 

polarity lead to a significantly different switching behavior, from ferroelectric to 

antiferroelectric-like and linear dielectric. Given the simplicity and wide flexibility 

in designing molecular structure of incorporated blocks, this approach shows the 

vast potential for application in numerous fields.
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3.1 Introduction

Ever since their discovery in the early 1970s, ferroelectric polymers have been receiving 

constant attention due to their light weight, flexibility and processability. These properties 

offer numerous advances in various fields, including memory and electric energy storage 

devices, electrostatic cooling, piezo- and pyroelectric applications.[1,3,41–45] Poly(vinylidene 

fluoride) (PVDF) and its copolymers, exhibiting large polarization, high dielectric constant, 

enviable thermal and chemical stability, are the most used ferroelectric polymers.[4] 

The C-F bond orientation inside the highly polar β-crystalline phase having all dipoles 

aligned perpendicular to the main chain allows their switching under an applied electric 

field, while the high packing density of crystals prevents dipole disorientation after 

field removal, leading to a desirable hysteresis behavior.[46] The shape of the hysteresis 

loops can be efficiently tuned by modifying the crystallite size, either physically (e-beam 

irradiation) or chemically (addition of bulky comonomers like chlorotrifluoroethylene (CTFE) 

or chlorodifluoroethylene (CFE)).[47–52] The incorporation of so-called defects inside the 

crystalline structure results in antiferroelectric-like and relaxor ferroelectric materials with a 

considerably reduced remanent polarization (Pr). However, because of their polar structure, 

ferroelectric polymers suffer from increased dielectric losses, as well from a reduced DC 

electrical breakdown strength compared to nonpolar polymers.[53–55] Moreover, the low 

surface tension of fluorinated polymers induces strong demixing with a large number of 

inorganic materials, leading to severe challenges in nanocomposite preparations.[43,56] 

Up to now, the most promising strategy for simultaneously tuning the ferroelectric response 

of PVDF and its copolymers, as well as for improving their drawbacks, is the preparation 

of graft copolymers with insulating functional side chains.[8,57,58] Recently, antiferroelectric-

like behavior, preserved up to a high electric field (up to 300 MV m-1), has been reported 

by F. Guan and co-workers for P(VDF-TrFE-CTFE) graft copolymers with polystyrene at low 

grafting densities (14 wt.%).[8] Additionally, grafting of even small amounts of PS causes a 

decrease in dielectric losses together with an improvement in the breakdown strength of the 

material compared to pristine P(VDF-TrFE). Increasing the grafting density can create an even 

stronger confinement and can cause freezing of the dipole orientation, with subsequent 

transformation from a ferroelectric material into a linear dielectric.[59] It is postulated that 

low polarizability PS side chains form an insulating layer at the crystal edges and, as a result, 

less compensational polarization (Pcomp) is induced at the interface, allowing reorientation of 

the dipoles after the removal of the field. A much larger confinement of the ferroelectricity 

is achieved by grafting of poly(methacrylic ester)s side chains, due to their strong miscibility 

with PVDF.[55,57] However, the loss of the ferroelectric hysteresis loop after the incorporation of 

a functional component as a side chain becomes a critical bottleneck for implementing these 

materials in various devices where ferroelectricity should be retained. Graft copolymers, 



Chapter 3 | Electroactive Materials with Tunable Response Based on Block Copolymer Self-Assembly

78

unfortunately, exhibit a lower amount of the ferroelectric β-phase in comparison to the neat 

ferroelectric polymer, since the all-trans conformation is demonstrated to be suppressed by 

the existence of side chains, while the high stability of the formed gauche defects does not 

allow their transformation into an all-trans conformation at high electric fields resulting in 

antiferroelectric behavior already at low grafting density.[8,60] Moreover, the small number of 

commercially available ferroelectric copolymers with the possibility to grow side chains from 

their backbone limits the extensive use of graft copolymers. 

Figure 3.1 Block copolymer approach for the tunable ferroelectric response. (a) Schematic 

representation of the approach used for tuning of P(VDF-TrFE) ferroelectric properties using block 

copolymer self-assembly. The response of the block copolymers on the electric field depends 

strongly on the polarity of both blocks. (b) The synthetic approach applied for the preparation of 

P(VDF-TrFE) based block copolymers using CuAAc click-coupling of azide terminated P(VDF-TrFE) 

and alkyne terminated P2VP or PS.

a 

b 
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In this work, we elucidate an appealing approach to tailor the ferroelectric response of 

P(VDF-TrFE), based on covalently linking of functional insulating chains to the chain ends 

instead to the backbone to form ABA type triblock copolymers (Figure 3.1a). In this way, 

the degree of crystallization and chain conformation due to block copolymer self-assembly 

is unaffected by confining the crystallization inside lamellar domains. In these novel 

materials, the ferroelectric response is easily tuned by systematically varying the polarity 

of the amorphous block and TrFE content.[61] Herein, we provide insight into the factors that 

are affecting the shape of the hysteresis loops and can be used for the fine tuning of the 

ferroelectric response of the material.

3.2 Experimental section

3.2.1 Synthesis of block copolymers

300 mL of 4-(chloromethyl)benzoyl peroxide (0.1 g, 0.3 mmol) solution in an anhydrous 

acetonitrile was introduced into a Parr (model 4568) high pressure reactor and purged 

with N2 to completely remove oxygen from the system. Subsequently, 4 bar of TrFE (6 

bar for P(VDF50-TrFE50)) and 15 bar of VDF were transferred in the reactor, followed by an 

increase of the temperature to 90 °C. The reaction was allowed to proceed for 4 hours 

under constant stirring. The reaction was stopped by fast cooling to room temperature and 

depressurization of the reaction mixture to remove unreacted monomers. The solvent was 

removed in vacuo and the obtained solid was precipitated form DMF in MeOH:water (1:1) 

and washed twice with methanol and multiple times with dichloromethane to remove the 

initiator residues. The molar ratio between VDF and TrFE was determined using 1H-NMR 

spectra from following equations:

 (1)

 (2)
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%𝑉𝑉𝐷𝐷𝐹𝐹 =
𝑛𝑛𝑉𝑉𝐷𝐷𝐹𝐹

𝑛𝑛𝑉𝑉𝐷𝐷𝐹𝐹 + 𝑛𝑛𝑇𝑇𝑟𝑟𝐹𝐹𝐸𝐸
 

%𝑇𝑇𝑟𝑟𝐹𝐹𝐸𝐸 =
𝑛𝑛𝑇𝑇𝑟𝑟𝐹𝐹𝐸𝐸

𝑛𝑛𝑉𝑉𝐷𝐷𝐹𝐹 + 𝑛𝑛𝑇𝑇𝑟𝑟𝐹𝐹𝐸𝐸
 

𝑛𝑛𝑇𝑇𝑟𝑟𝐹𝐹𝐸𝐸 = '𝐶𝐶𝐹𝐹𝑯𝑯
6

5

 

𝑛𝑛𝑉𝑉𝐷𝐷𝐹𝐹 =
1
2
× ) * 𝑉𝑉𝐷𝐷𝐹𝐹ℎ𝑒𝑒𝑎𝑎𝑑𝑑 −𝑡𝑡𝑎𝑎𝑖𝑖𝑙𝑙

3.4

2.9

+ * 𝑉𝑉𝐷𝐷𝐹𝐹ℎ𝑒𝑒𝑎𝑎𝑑𝑑 −ℎ𝑒𝑒𝑎𝑎𝑑𝑑

2.6

2.3

9 

In this work, we elucidate an appealing approach to tailor the ferroelectric response of P(VDF-TrFE), 

based on covalently linking of functional insulating chains to the chain ends instead to the backbone 

to form A-B-A type triblock copolymers (Figure 3.1a). In this way, the degree of crystallization and chain 

conformation due to block copolymer self-assembly is unaffected by confining the crystallization inside 

lamellar domains. In these novel materials, the ferroelectric response is easily tuned by systematically 

varying the polarity of the amorphous block and TrFE content.[61] Herein, we provide insight into the 

factors that are affecting the shape of the hysteresis loops and can be used for the fine tuning of the 

ferroelectric response of the material. 

3.2 Experimental section 

3.2.1 Synthesis of block copolymers 

300 mL of 4-(chloromethyl)benzoyl peroxide (0.1 g, 0.3 mmol) solution in an anhydrous acetonitrile 

was introduced into a Parr (model 4568) high pressure reactor and purged with N2 to completely 

remove oxygen from the system. Subsequently, 4 bar of TrFE (6 bar for P(VDF50-TrFE50)) and 15 bar of 

VDF were transferred in the reactor, followed by an increase of the temperature to 90 °C. The reaction 

was allowed to proceed for 4 hours under constant stirring. The reaction was stopped by fast cooling 

to room temperature and depressurization of the reaction mixture to remove unreacted monomers. 

The solvent was removed in vacuo and the obtained solid was precipitated form DMF in MeOH:water 

(1:1) and washed twice with methanol and multiple times with dichloromethane to remove the 

initiator residues. The molar ratio between VDF and TrFE was determined using 1H-NMR spectra from 

following equations: 

                                                                                    (1) 

                                                                                                                         (2) 

where,  

 

 

 

Pristine P(VDF70-TrFE30) used for ferroelectric measurements was synthesized using 0.05 g of the 

initiator. 1H-NMR (400 MHz, acetone-d6): δ = 8.07 (d, –ArH), 7.65 (d, –ArH), 6.10-5.12 (m, –CF2CHF–), 

4.80 (s, –PhCH2Cl), 4.68 (m, –COOCH2CF2–), 3.10-2.70 (m, –CF2CH2–CF2CH2–, head-to-tail), 2.40-2.20 

(m, –CF2CH2–CH2CF2–, tail-to-tail). 19F-NMR of prepared polymers is depicted in Figure 3.2. The polymer 

%𝑉𝑉𝐷𝐷𝐹𝐹 =
𝑛𝑛𝑉𝑉𝐷𝐷𝐹𝐹

𝑛𝑛𝑉𝑉𝐷𝐷𝐹𝐹 + 𝑛𝑛𝑇𝑇𝑟𝑟𝐹𝐹𝐸𝐸
 

%𝑇𝑇𝑟𝑟𝐹𝐹𝐸𝐸 =
𝑛𝑛𝑇𝑇𝑟𝑟𝐹𝐹𝐸𝐸

𝑛𝑛𝑉𝑉𝐷𝐷𝐹𝐹 + 𝑛𝑛𝑇𝑇𝑟𝑟𝐹𝐹𝐸𝐸
 

𝑛𝑛𝑇𝑇𝑟𝑟𝐹𝐹𝐸𝐸 = '𝐶𝐶𝐹𝐹𝑯𝑯
6

5

 

𝑛𝑛𝑉𝑉𝐷𝐷𝐹𝐹 =
1
2
× ) * 𝑉𝑉𝐷𝐷𝐹𝐹ℎ𝑒𝑒𝑎𝑎𝑑𝑑 −𝑡𝑡𝑎𝑎𝑖𝑖𝑙𝑙

3.4

2.9

+ * 𝑉𝑉𝐷𝐷𝐹𝐹ℎ𝑒𝑒𝑎𝑎𝑑𝑑 −ℎ𝑒𝑒𝑎𝑎𝑑𝑑

2.6

2.3

9 

In this work, we elucidate an appealing approach to tailor the ferroelectric response of P(VDF-TrFE), 

based on covalently linking of functional insulating chains to the chain ends instead to the backbone 

to form A-B-A type triblock copolymers (Figure 3.1a). In this way, the degree of crystallization and chain 

conformation due to block copolymer self-assembly is unaffected by confining the crystallization inside 

lamellar domains. In these novel materials, the ferroelectric response is easily tuned by systematically 

varying the polarity of the amorphous block and TrFE content.[61] Herein, we provide insight into the 

factors that are affecting the shape of the hysteresis loops and can be used for the fine tuning of the 

ferroelectric response of the material. 

3.2 Experimental section 

3.2.1 Synthesis of block copolymers 

300 mL of 4-(chloromethyl)benzoyl peroxide (0.1 g, 0.3 mmol) solution in an anhydrous acetonitrile 

was introduced into a Parr (model 4568) high pressure reactor and purged with N2 to completely 

remove oxygen from the system. Subsequently, 4 bar of TrFE (6 bar for P(VDF50-TrFE50)) and 15 bar of 

VDF were transferred in the reactor, followed by an increase of the temperature to 90 °C. The reaction 

was allowed to proceed for 4 hours under constant stirring. The reaction was stopped by fast cooling 

to room temperature and depressurization of the reaction mixture to remove unreacted monomers. 

The solvent was removed in vacuo and the obtained solid was precipitated form DMF in MeOH:water 

(1:1) and washed twice with methanol and multiple times with dichloromethane to remove the 

initiator residues. The molar ratio between VDF and TrFE was determined using 1H-NMR spectra from 

following equations: 

                                                                                    (1) 

                                                                                                                         (2) 

where,  

 

 

 

Pristine P(VDF70-TrFE30) used for ferroelectric measurements was synthesized using 0.05 g of the 

initiator. 1H-NMR (400 MHz, acetone-d6): δ = 8.07 (d, –ArH), 7.65 (d, –ArH), 6.10-5.12 (m, –CF2CHF–), 

4.80 (s, –PhCH2Cl), 4.68 (m, –COOCH2CF2–), 3.10-2.70 (m, –CF2CH2–CF2CH2–, head-to-tail), 2.40-2.20 

(m, –CF2CH2–CH2CF2–, tail-to-tail). 19F-NMR of prepared polymers is depicted in Figure 3.2. The polymer 

%𝑉𝑉𝐷𝐷𝐹𝐹 =
𝑛𝑛𝑉𝑉𝐷𝐷𝐹𝐹

𝑛𝑛𝑉𝑉𝐷𝐷𝐹𝐹 + 𝑛𝑛𝑇𝑇𝑟𝑟𝐹𝐹𝐸𝐸
 

%𝑇𝑇𝑟𝑟𝐹𝐹𝐸𝐸 =
𝑛𝑛𝑇𝑇𝑟𝑟𝐹𝐹𝐸𝐸

𝑛𝑛𝑉𝑉𝐷𝐷𝐹𝐹 + 𝑛𝑛𝑇𝑇𝑟𝑟𝐹𝐹𝐸𝐸
 

𝑛𝑛𝑇𝑇𝑟𝑟𝐹𝐹𝐸𝐸 = '𝐶𝐶𝐹𝐹𝑯𝑯
6

5

 

𝑛𝑛𝑉𝑉𝐷𝐷𝐹𝐹 =
1
2
× ) * 𝑉𝑉𝐷𝐷𝐹𝐹ℎ𝑒𝑒𝑎𝑎𝑑𝑑 −𝑡𝑡𝑎𝑎𝑖𝑖𝑙𝑙

3.4

2.9

+ * 𝑉𝑉𝐷𝐷𝐹𝐹ℎ𝑒𝑒𝑎𝑎𝑑𝑑 −ℎ𝑒𝑒𝑎𝑎𝑑𝑑

2.6

2.3

9 

In this work, we elucidate an appealing approach to tailor the ferroelectric response of P(VDF-TrFE), 

based on covalently linking of functional insulating chains to the chain ends instead to the backbone 

to form A-B-A type triblock copolymers (Figure 3.1a). In this way, the degree of crystallization and chain 

conformation due to block copolymer self-assembly is unaffected by confining the crystallization inside 

lamellar domains. In these novel materials, the ferroelectric response is easily tuned by systematically 

varying the polarity of the amorphous block and TrFE content.[61] Herein, we provide insight into the 

factors that are affecting the shape of the hysteresis loops and can be used for the fine tuning of the 

ferroelectric response of the material. 

3.2 Experimental section 

3.2.1 Synthesis of block copolymers 

300 mL of 4-(chloromethyl)benzoyl peroxide (0.1 g, 0.3 mmol) solution in an anhydrous acetonitrile 

was introduced into a Parr (model 4568) high pressure reactor and purged with N2 to completely 

remove oxygen from the system. Subsequently, 4 bar of TrFE (6 bar for P(VDF50-TrFE50)) and 15 bar of 

VDF were transferred in the reactor, followed by an increase of the temperature to 90 °C. The reaction 

was allowed to proceed for 4 hours under constant stirring. The reaction was stopped by fast cooling 

to room temperature and depressurization of the reaction mixture to remove unreacted monomers. 

The solvent was removed in vacuo and the obtained solid was precipitated form DMF in MeOH:water 

(1:1) and washed twice with methanol and multiple times with dichloromethane to remove the 

initiator residues. The molar ratio between VDF and TrFE was determined using 1H-NMR spectra from 

following equations: 

                                                                                    (1) 

                                                                                                                         (2) 

where,  

 

 

 

Pristine P(VDF70-TrFE30) used for ferroelectric measurements was synthesized using 0.05 g of the 

initiator. 1H-NMR (400 MHz, acetone-d6): δ = 8.07 (d, –ArH), 7.65 (d, –ArH), 6.10-5.12 (m, –CF2CHF–), 

4.80 (s, –PhCH2Cl), 4.68 (m, –COOCH2CF2–), 3.10-2.70 (m, –CF2CH2–CF2CH2–, head-to-tail), 2.40-2.20 

(m, –CF2CH2–CH2CF2–, tail-to-tail). 19F-NMR of prepared polymers is depicted in Figure 3.2. The polymer 



Chapter 3 | Electroactive Materials with Tunable Response Based on Block Copolymer Self-Assembly

80

Pristine P(VDF70-TrFE30) used for ferroelectric measurements was synthesized using 0.05 g 

of the initiator. 1H-NMR (400 MHz, acetone-d6): δ = 8.07 (d, –ArH), 7.65 (d, –ArH), 6.10-5.12 

(m, –CF2CHF–), 4.80 (s, –PhCH2Cl), 4.68 (m, –COOCH2CF2–), 3.10-2.70 (m, –CF2CH2–CF2CH2–, 

head-to-tail), 2.40-2.20 (m, –CF2CH2–CH2CF2–, tail-to-tail). 19F-NMR of prepared polymers 

is depicted in Figure 3.2. The polymer was finally dried in vacuo at 45 °C to obtain white 

product. Pristine P(VDF70-TrFE30) used for ferroelectric measurement was synthesized using 

0.05 g of the initiator. 

Chlorine-terminated P(VDF-TrFE) and 10 mol eq. of NaN3 compared to the end groups were 

dissolved in DMF and stirred overnight at 60 °C. The polymer solution was concentrated and 

precipitated three times in MeOH:water (1:1). Subsequent drying of the light-yellow polymer 

in vacuo at 45 °C yielded azide terminated P(VDF-TrFE). 1H-NMR (400 MHz, acetone-d6): δ = 8.07 

(d, –ArH), 7.65 (d, –ArH), 6.10-5.12 (m, –CF2CHF–), 4.60 (s, –PhCH2N3), 4.68 (m, –COOCH2CF2–), 

3.10-2.70 (m, –CF2CH2–CF2CH2–, head-to-tail), 2.40-2.20 (m, –CF2CH2–CH2CF2–, tail-to-tail).

Alkyne terminated P2VP is prepared as follows. Monomer 2-Vinylpyridine (5 mL, 84 mmol), 

2-(dodecylthiocarbonothioylthio)-2-methylpropionic acid propargyl ester (RAFT agent) and 

AIBN (at molar ratio 390:1:0.1) were dissolved in 4 mL of anhydrous DMF and placed in a pre-

dried Schlenk tube. The reaction mixture was degassed via at least three freeze-pump-thaw 

cycles and placed in an oil bath at 70 °C. After 6 h, DMF was removed and the THF solution 

was precipitated in a large excess of n-hexane. The precipitation procedure was repeated 

two times to fully remove unreacted species. The obtained light orange powder was dried 

under vacuum at room temperature for 1 day. 1H-NMR (400 MHz, CDCl3): δ = 8.10-8.55 (m, 

ArH), 7.22-7.65 (m, ArH), 6.80-7.20 (m, ArH), 6.10-6.75 (m, ArH), 4.83 (m, –S(C=S)S-CH(Ar)–), 4.09 

Figure 3.2 19F-NMR spectra in acetone-d6 of chlorine terminated P(VDF70-TrFE30) and P(VDF50-TrFE50).

-80 -100 -120 -140 -160 -180 -200 -220

  (ppm)
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CF2 of VDF and TrFE 
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(m, –COO-CH2–), 2.71 (s, –CH, alkyne), 2.4-1.4 (m, –CH2CH(Ar) –), 0.95-0.65 (m, –alkyl). GPC: 

Mn=11500 g mol-1, Ð=1.21.

Alkyne terminated PS is prepared using following procedure. Styrene monomer (9.6 mL, 84 

mmol), RAFT agent and AIBN in a molar ratio 700:1:0.1 were added to a dried Schlenk tube. 

After three freeze-pump-thaw cycles, the reaction mixture was placed in an oil bath at 70 °C 

and stirred for the next 10 h. The reaction was terminated by rapid cooling using liquid N2 

and the polymer was isolated by precipitation from DMF into a 20-fold excess of methanol. 

The polymer was collected via filtration and reprecipitated two more times from chloroform 

by methanol. The resulting polymer was dried overnight in vacuo at room temperature to 

remove all traces of residual solvent. 1H-NMR (400 MHz, CDCl3): δ = 7.40-6.25 (m, C6H5), 4.83 

(m, –S(C=S)S-CH(Ar)–), 4.09 (m, –COO-CH2–), 3.27 (–CH2-S(C=S)S–), 2.71 (s, –CH, alkyne) , 2.40-

1.20 (m, –CH2CH(Ar)-),  0.99-0.81 (m, –alkyl). GPC: Mn=12800 g mol-1, Ð=1.20.   

A general route for the preparation of P(VDF-TrFE)-based block copolymers is described 

below. The azide terminated P(VDF-TrFE) (300 mg, 0.016 mmol) and 1.3 equivalents of 

P2VP or PS compared to end groups of (PVDF-TrFE) were added into dried Schlenk tube. 

Subsequently, 4 eq of copper(I) bromide was introduced and a degassing procedure (three 

repetitive cycles of evacuating and backfilling with N2) was performed. The polymers and 

the metal catalyst were dissolved in 4 mL of anhydrous DMF, followed by the addition of 

PMDETA (30 µl, 0.14 mmol). The reaction was allowed to stir for 3 days in case of PS and 4 

days for P2VP at 60 °C, after which it was terminated. The crude reaction mixture was filtered 

twice using short neutral alumina column in order to remove copper catalyst. The solution 

was concentrated under reduced pressure and precipitated from THF in a 20-fold excess 

of hexane for P2VP-b-P(VDF-TrFE)-b-P2VP and MeOH:water (1:1) for the block copolymers 

containing PS. The light-brown product was collected via filtration and dried overnight in 

vacuo at room temperature. The unreacted P2VP or PS were removed from the product 

by washing with a selective solvent. Methanol was used as a selective solvent for P2VP-

b-P(VDF-TrFE)-b-P2VP, while diethyl ether showed to be effective for the removal of PS 

homopolymer. The product collected after purification was dried in vacuo at 45 °C to give 

pure block copolymers.

3.2.2 Polymer film preparation

All the polymers were dissolved in 4 mL DMF (10 mg mL-1) and after passing through 0.45 

µm PTFE filter casted in an aluminum pan (ø 3 mm). The solvent was allowed to evaporate 

at 45 °C over two days. Subsequently, the film was heated to 170 °C during 5 min to induce 

microphase separation. After fast cooling down using air and water lift-off, ca. 20 µm thick 

free-standing films were obtained. Polymer films annealed at 120 °C were first peeled off 

and subsequently annealed for 30 min inside the vacuum oven.
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3.2.3 Polymer characterization
1H Nuclear Magnetic Resonance (1H-NMR) spectra were recorded on a 400 MHz Varian (VXR) 

spectrometer at room temperature. 

The molecular weight and the dispersity (Ð) of pristine polymers and corresponding block 

copolymers were determined using triple detection method (refractive index, viscosity and 

light scattering) using THF, stabilized with BHT, as the eluent at a flow rate 1.0 mL min-1 at 35 

°C. The separation was carried out by utilizing two PLgel 5 µm MIXED-C, 300 mm columns 

(Agilent Technologies) calibrated with narrow dispersity polystyrene standards (Agilent 

Technologies and Polymer Laboratories). 

Differential Scanning Calorimetry (DSC) thermograms were recorded on a TA Instruments 

DSC Q1000 by heating the sample to 170 °C, and subsequently cooling down to room 

temperature at 10 °C min-1. 

Small-angle X-ray scattering (SAXS) and Wide-angle X-ray scattering (WAXS) measurements 

were carried out at the Dutch-Belgium Beamline (DUBBLE) station BM26B of the European 

Synchrotron Radiation Facility (ESRF) in Grenoble, France, particularly optimized for polymer 

investigation.[30,31,62]The sample-to-detector distance was ca. 3.5 m for SAXS, ca. 28 cm for 

WAXS and an X-ray wavelength λ = 0.97 Å was used. SAXS images were recorded using 

a Pilatus 1M detector while WAXS images were recorded using a Pilatus 100KW detector, 

both with pixel size 172x172 µm x µm. The scattering angle scale was calibrated using the 

known peak position from a standard silver behenate sample. The scattering intensity is 

reported as a function of the scattering vector q = 4π/λ(sin θ) with 2θ being the scattering 

angle and λ the wavelength of the X-rays. Deconvolution of the WAXS profiles was achieved 

using MATLAB. The experimental profiles were deconvoluted by using the sum of a linear 

background, and three to four pseudo-Voigt peaks describing the scattering from the 

amorphous and the different crystalline phases.

Transmission electron microscopy (TEM) was performed on a Philips CM12 transmission 

electron microscope operating at an accelerating voltage of 120 kV. A piece of the block 

copolymer film was embedded in epoxy resin (Epofix, Electron Microscopy Sciences) 

and microtomed using a Leica Ultracut UCT-ultramicrotome in order to prepare ultrathin 

sections (ca. 80 nm). No additional staining of the samples was performed. 

3.2.4 Hysteresis loop measurements

The D-E hysteresis measurements were performed using a state-of-the-art ferroelectric-

piezoelectric tester aixACCT equipped with a Piezo Sample Holder Unit with a high voltage 

amplifier (0-10 kV). The AC electric field with a triangular wave form at frequency of 10 Hz 
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was applied over polymer films immersed in silicon oil to avoid arcing and sparking due 

to the high voltage. The 100 nm thick gold electrodes (ca. 12.5 mm2) with 5 nm chromium 

adhesion layer were evaporated onto both sides.

3.3 Results and Discussion

The synthetic route applied for the preparation of PVDF-based block copolymers based 

on the use of functionalized benzoyl peroxide as the initiator of the polymerization is 

depicted on Figure 3.1b.[63–66] A successful preparation of chlorine terminated P(VDF-TrFE) is 

confirmed using 1H-NMR, where end group signals of phenyl protons at 8.07 and 7.65 ppm 

and methylene protons next to the chlorine atom at 4.80 ppm are detected. The chlorine 

atoms are fully substituted with azide groups after stirring the polymer with sodium azide 

in DMF overnight, which is verified with a shift of methylene protons signal from 4.85 to 4.60 

ppm (Figure 3.3a).

The azide terminated telechelic P(VDF-TrFE) is subsequently used for the preparation of 

the block copolymers using copper(I)-catalyzed azide-alkyne cyclo-addition reaction with 

alkyne terminated P2VP or PS made by reversible addition-fragmentation chain transfer 

(RAFT).[25,67–70] After the reaction is completed, the signal of the methylene protons next 

to the azide group of (PVDF-TrFE) is fully relocated from 4.60 to 5.80 ppm underneath the 

peak of TrFE units, verifying the full conversion of P(VDF-TrFE) end groups and successful 

preparation of the block copolymers (Figure 3.3b,c). Figure 3.3d shows the gel permeation 

chromatography (GPC) traces of P(VDF-TrFE), PS, P2VP and their block copolymers. It is 

evident that after the reaction, a negative peak of P(VDF-TrFE) and the peaks of P2VP and 

PS are no longer detectable. Instead, new signals corresponding to the block copolymer 

are observed at lower retention volumes, demonstrating the successful synthesis of pure 

block copolymers. The molecular characteristics of the synthesized polymers are depicted 

in Table 3.1.

Block copolymer films are prepared by solvent casting the samples from DMF (1.0 wt.%) at 

45 °C and subsequent thermal annealing at 170 °C for 5 min in order to reach the equilibrium 

structure. The films are then cooled down to induce crystallization and to obtain ∼20 μm 

thick films. Figure 3.4 shows the small-angle X-ray scattering (SAXS) profiles of the block 

copolymers in the melt at 170 °C and at room temperature after crystallization together 

with the transmission electron microscopy (TEM) images recorded after crystallization.
[30,31] Based on an almost symmetrical composition (with about 60 vol.% of P(VDF-TrFE)), a 

lamellar morphology of the phase separated melt is expected.[71] Indeed, the SAXS profiles 

of both block copolymers with P2VP (VDF:TrFE=70:30 and VDF:TrFE=50:50) at 170 °C display 
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three relatively strong signals located at positions q*:2q*:3q* corresponding to a lamellar 

morphology. The periodicity of the lamellar morphology can be obtained by the position 

of the first maximum q*=0.17 nm-1 by using the Bragg’s law L=2π/q*=37 nm. Upon cooling 

from the phase separated melt, the microphase separation driving force is stronger than 

crystallization, leading to crystallization inside the lamellar nanodomains. No change 

in the shape of the SAXS profiles upon crystallization is observed, confirming confined 

crystallization and the conservation of the melt morphology. However, the size of the 

lamellar spacing is found to decrease to L=34 nm as a result of the density increase upon 

Figure 3.3 (a) 1H-NMR spectra in DMSO-d6 of chlorine and azide terminated P(VDF-TrFE). (b) 
1H-NMR spectra of telechelic P(VDF-TrFE) and corresponding block copolymers with P2VP and PS; 

P(VDF-TrFE), PS and P2VP peaks are highlighted with dark gray, light gray and blue, respectively. 

(c) Enlarged 1H-NMR spectra demonstrates complete shift of the methylene protons signal at 4.60 

ppm and full conversion of P(VDF-TrFE) azide end groups. (d) GPC of P(VDF-TrFE) and its block 

copolymers. All elugrams are obtained in THF at a flow rate 1.0 mL min-1 at 35 °C. In THF P(VDF-TrFE) 

gives negative R. I. signal due to its low dn/dc value.
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crystallization. The non-stained TEM images also show the well-ordered lamellar structure 

with the dark layers corresponding to the crystalline P(VDF-TrFE) and a domain spacing 

that corresponds to the length scales obtained by SAXS. Compared to block copolymers 

with P2VP, the samples prepared with non-polar PS demonstrate a considerably different 

behavior. The TEM image depicts the formation of P(VDF-TrFE) nanospheres dispersed in the 

PS matrix without apparent long-range order, as observed in Figure 3.4d. This structure is 

the consequence of a lower χ interaction parameter between P(VDF-TrFE) and PS compared 

to P2VP. Still, the glass transition temperature (Tg) of PS was high enough to prevent the 

break-out of crystallization and to confine P(VDF-TrFE) segments inside spherical domains. 

Differential scanning calorimetry (DSC) allows us to get a better insight into the crystallization 

mechanism of P(VDF-TrFE) inside block copolymer nanodomains. DSC of pristine P(VDF70-

TrFE30) shows two exothermic peaks (Figure 3.4g). The peak at the higher temperature 

corresponds to the crystallization of the fluorinated blocks into the paraelectric phase 

(TCr=119.5 °C), while the peak at 52.1 °C is related to a paraelectric-to-ferroelectric Curie 

transition (TC).[72] An increase in TrFE amount leads to the disappearance of the Curie transition, 

and only a crystallization peak at 130 °C is detected.[65] The DSC traces of all block copolymers 

with a lamellar morphology do not demonstrate a large difference in shape compared to 

the neat P(VDF-TrFE) copolymers. Impurities forming crystallization nuclei inside lamellar 

forming block copolymers are present in every lamella inducing heterogeneous nucleation 

that is followed by long-range crystal growth. As a result, crystallization starts at low or no 

undercooling.[39,40] In contrast to this, a reduction of the TCr is observed for the PS-b-P(VDF70-

TrFE30)-b-PS, suggesting strong confined crystallization of the fluorinated blocks inside the 

spherical domains. The significant degree of undercooling for the crystallization inside 

isolated spherical domains is a direct consequence of a different crystallization mechanism. 

In addition to the fact that the crystallization inside the nanospheres is highly frustrated, the 

Table 3.1 Molecular characterization data for P(VDF-TrFE) and its block copolymers

Sample

Molecular 
weight

(g mol-1)
Ð fP(VDF-TrFE

c)

(wt.%)
TCr

(°C)
TC

(°C)
Crystallinityd)

(%)
Crystallinitye)

(%)
P(VDF70-TrFE30) 28000a) 1.45 100 119.5 52.1 38 38

P2VP-b-P(VDF70-
TrFE30)-b-P2VP 32800b) 1.80 70 119.2 51.0 22 36.5

PS-b-P(VDF70-
TrFE30)-b-PS 35900b) 1.95 65 80.0 54.5 17 34

P2VP-b-P(VDF50-
TrFE50)-b-P2VP 34300b) 1.72 70 127.0 n.a. 37 52.5

a) Determined using GPC, b) Molecular weight calculated from Mn,GPC  values of P(VDF-TrFE) taking in the account ratio between 
the blocks using 1H-NMR, the molecular weight of P(VDF-TrFE) used for the synthesis of block copolymers was 22500 g mol-1 
c) Weight fraction of P(VDF-TrFE) determined using 1H-NMR, d) Overall crystallinity calculated from WAXS, e) True crystallinity 
values after normalization to the P(VDF-TrFE) volume percentage.
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number of spherical domains highly exceeds the number of impurities, so a homogeneous 

nucleation process dictates the crystallization, causing the reduction of TCr from 120 °C to 

80 °C.[40,73]

Considering that block copolymers of P(VDF70-TrFE30) with PS and P2VP show different 

morphologies in the melt and, therefore, different crystallization nature, the difference 

in their switching behavior will not simply be a consequence of the difference in polarity. 

Figure 3.4 (a) SAXS profiles of the block copolymers prove the confinement of the crystallization 

inside the nanodomains formed in the melt state. TEM images of (b) P2VP-b-P(VDF70-TrFE30)-b-

P2VP, (c) P2VP-b-P(VDF50-TrFE50)-b-P2VP and (d) PS-b-P(VDF70-TrFE30)-b-PS after crystallization from 

the melt demonstrate different segregation strength between blocks. No staining of the block 

copolymers is required as sufficient density contrast exists between crystalline P(VDF-TrFE) and 

amorphous blocks. Annealing of (e) the solvent casted PS-b-P(VDF70-TrFE30)-b-PS with asymmetric 

lamellar morphology at 120 °C results in (f) the increase of the crystalline layer thickness without 

changing the overall lamellar period. (g) DSC cooling curve of the pristine P(VDF-TrFE) and 

corresponding block copolymers, obtained at a cooling rate 10 °C min-1.  
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Fortunately, the lamellar morphology of both block copolymers is obtained via solvent 

casting from DMF and subsequent thermal annealing at 120 °C between the Curie and the 

melting temperature. During solvent casting asymmetric lamellar structures are formed 

with thin crystalline PVDF-TrFE layers (Figure 3.4e), due to the exclusion of structural defects 

from the crystalline phase formed during casting from DMF. Annealing in the more mobile 

paraelectric phase allows defects to rearrange and to increase the sample crystallinity.[74,75] 

Consequently, the growth of crystalline layer is observed (Figure 3.4f) while the high Tg 

(Tg≈100 °C) of both PS and P2VP prevents the change of the lamellar periodicity, as proven 

by temperature resolved SAXS (Figure 3.5). As a result of the thermal annealing process, 

symmetrical lamellar morphologies with increased crystallinity are obtained for both block 

copolymers, allowing the comparison of the ferroelectric properties of BCPs with the same 

morphology but different chemical composition (i.e. polarity of the non-fluorinated block).

In order to better understand the influence of the incorporation of the amorphous polymer 

on the crystalline behavior of block copolymers, the crystalline structure was investigated 

by wide-angle X-ray scattering (WAXS) (Figure 3.6). The pristine P(VDF70-TrFE30) exhibits a 

so-called low temperature ferroelectric phase (LTFE) with the (110/200)LTFE reflection located 

at 14.1 nm-1, characteristic for the all-trans crystal conformation.[76] A similar shape of the 

WAXS profile and the same crystalline phase are observed for both block copolymers (with 

P2VP and PS) after annealing in the paraelectric phase. However, the inclusion of extra 

TrFE units inside the P(VDF-TrFE) backbone induces changes in the crystalline nature of the 

polymer. The deconvolution of the crystalline peak from P2VP-b-P(VDF50-TrFE50) -b -P2VP 

Figure 3.5 Temperature resolved (a) WAXS and (b) SAXS profiles of PS-b-P(VDF70-TrFE30)-b-PS 

during annealing in the paraelectric phase at 120 °C for 30 min. The sample is heated/cooled at a 

heating/cooling rate 10 °C min-1. The same findings are obtained for P2VP-b-P(VDF70-TrFE30)-b-P2VP 

block copolymers.
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reveals two crystalline phases present inside the sample. The reflection located at 13.5 nm-1 

corresponds to the cooled ferroelectric phase (CLFE) that consists mostly of trans sequences 

with some gauche defects.[74,76] It is important to note that the (110/200) d-spacing, which 

strongly influences the dipole switching mechanism, displays an increase from 0.445 nm 

to 0.465 nm after the incorporation of more TrFE units. The second crystalline peak located 

at 13.1 nm-1 is related to the high temperature paraelectric phase (HTPE) with d-spacing 

of 0.485 nm. These findings are in agreement with the results obtained by Lovinger et al. 

for TrFE rich P(VDF-TrFE) copolymers.[77] Ferroelectric properties of a material are primarily 

related to its overall crystallinity and, therefore, these values are calculated from WAXS 

ignoring the dilution effect of the amorphous component summarized in Table 3.1. As 

expected, the crystallinity of block copolymers is reduced compared to the pristine P(VDF-
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Figure 3.6 WAXS profiles of (a) P(VDF70-TrFE30), (b) P2VP-b-P(VDF70-TrFE30)-b-P2VP, (c) PS-b-

P(VDF70-TrFE30)-b-PS, (d) P2VP-b-P(VDF50-TrFE50)-b-P2VP. Peak fitting is performed to determine the 

crystalline phases and overall crystallinity of the polymer samples. The experimental profiles were 

deconvoluted by using the sum of a linear background, and few pseudo-Voigt peaks describing the 

scattering from the amorphous and the different crystalline phases. 
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TrFE) due to the inclusion of ca. 30 wt.% of non-crystalline P2VP and PS into the calculation. 

After considering the dilution effect of the amorphous blocks, a negligible reduction in 

crystallinity is observed for all block copolymers. Such a minor reduction of crystallinity 

compared to the pristine polymer is a consequence of strong phase separation between 

blocks. Therefore, the higher miscibility between the PS and P(VDF70-TrFE30) blocks (which 

again reflects a lower χ parameter) is most probably the cause of the reduced crystallinity 

compared to block copolymer with P2VP. 

Ferroelectric properties of the P(VDF-TrFE) and its block copolymers are studied by D-E loop 

measurements using a bipolar triangular wave form at a frequency of 10 Hz (Figure 3.7a). 

Figure 3.7b depicts the bipolar D-E loops for P(VDF70-TrFE30). Upon applying an electric field, 

chain rotation and alignment of the dipoles occurs in the direction of the field. However, 

the dipole disorientation rate is reduced due to a high packing density of PVDF crystals 

and a strong coupling force between neighboring domains, leading to a broad hysteresis 

loop. The alignment of the crystalline dipoles induces a local polarization Pin that is 

compensated with the polarization at the crystalline-amorphous interface-compensational 

polarization (Pcomp).[8,61] While the charge separation at the electrodes, together with the 

compensational polarization, creates a polarization field (Epol), the Pin results in the formation 

of a depolarization field (Edep) in the opposite direction. The dipole reversal process and the 

shape of the ferroelectric loop are a direct consequence of the relationship between these 

two local fields.[61] In the case P(VDF70-TrFE30), Edep turns out to be always lower than Epol above 

the coercive field, resulting in rectangular shaped ferroelectric loops.

The incorporation of P2VP chains at both ends of P(VDF70-TrFE30) and their phase separation 

do not induce drastic changes in the shape of the D-E loops, as shown in Figure 3.7c. 

However, a slightly higher coercive field and lower polarization compared to the pristine 

P(VDF-TrFE) are observed. Importantly, the same switching behavior is obtained for 

samples prepared via thermal annealing in the melt and in the paraelectric phase. P2VP 

has medium polarizability (εr,P2VP=5.5 at 10 Hz)[78], lower than that of the amorphous P(VDF-

TrFE). Consequently, compensational polarization at the crystalline-amorphous interface is 

reduced, resulting in a decrease in the electric field Epol. However, due to the small reduction 

of the dielectric constant of the amorphous phase, Epol is still higher than the depolarization 

field Edep, at all applied fields, which preserves the ferroelectric properties. 

The difference in the dielectric constant between two lamellar layers gives rise to an uneven 

distribution of the electric field inside them.[79] The nominal field in the crystalline layer is 

lower than the applied external electric field. Thus, higher fields compared to the pure P(VDF-

TrFE) have to be applied in order to achieve dipole flipping. Nevertheless, the formation of 

the crystalline-amorphous layered structure increases the distance between ferroelectric 
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crystalline domains, while the number of the adjacent domains is reduced. This generates 

weakened coupling and easier switching between ferroelectric domains. Consequently, 

-300 -200 -100 0 100 200 300
-8

-6

-4

-2

0

2

4

6

8
 

 

D
  (
C

/c
m

2 )

Field  (MV/m)

-300 -200 -100 0 100 200 300

-12

-8

-4

0

4

8

12

I (
A

)

Field  (MV/m)

 

 

-300 -200 -100 0 100 200 300
-6

-4

-2

0

2

4

6

 

 

D
  (
C

/c
m

2 )

Field  (MV/m)

-300 -200 -100 0 100 200 300

-3

-2

-1

0

1

2

3

I (
A

)

Field  (MV/m)

 

 

-300 -200 -100 0 100 200 300
-8

-6

-4

-2

0

2

4

6

8

 

 

D
  (
C

/c
m

2 )

Field  (MV/m)

-300 -200 -100 0 100 200 300

-4

-2

0

2

4

I (
A

)

Field  (MV/m)

 

 

-300 -200 -100 0 100 200 300
-6

-4

-2

0

2

4

6

 

 
D

  (
C

/c
m

2 )

Field  (MV/m)

 

 

-300 -200 -100 0 100 200 300

-6

-4

-2

0

2

4

6

I (
A

)
 

 

Field  (MV/m)

P(VDF70-TrFE30) P2VP-b-P(VDF70-TrFE30)-b-P2VP 

PS-b-P(VDF70-TrFE30)-b-PS 

b c 

d e 

a 

P2VP-b-P(VDF50-TrFE50)-b-P2VP 

Figure 3.7 (a) Schematic representation of the measurement setup and devices used for the 

measurement of the hysteresis loop shape. An AC voltage is applied over a polymer sample 

sandwiched between gold electrodes. The obtained bipolar D-E hysteresis loops for (b) P(VDF70-

TrFE30), (c) P2VP-b-P(VDF70-TrFE30)-b-P2VP, (d) PS-b-P(VDF70-TrFE30)-b-PS, (e) P2VP-b-P(VDF50-TrFE50)-

b-P2VP, obtained at different applied electric fields until electric breakdown. For the better 

understanding of the switching mechanism, I-E curves are depicted in the inset. Note that all block 

copolymers demonstrated higher breakdown strength compared to the pristine P(VDF-TrFE).
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the opposite influence of both factors on dipole switching creates only a slight increase 

of the coercive field. Additionally, less coupled ferroelectric domains and high amount of 

dielectric P2VP (30 wt.%) are the main reasons for the reduced polarization in comparison 

to the parent P(VDF-TrFE). 

Figure 3.7e reveals the D-E loops of P2VP-b-P(VDF50-TrFE50)-b-P2VP, characterized with double 

hysteresis loops and low remanent polarization typical for antiferroelectric materials. In order 

to better understand the switching mechanism inside this material, we examined the shape 

of the current-electric field (I-E) curve (inset of the Figure 3.7e). Using the I-E measurement, 

every polarization reversal step is visualized, providing us with extra information about the 

mechanism. Instead of only one switching event, as for P2VP-b-P(VDF70-TrFE30)-b-P2VP, two 

peaks in the I-E curve can be distinguished. Providing evidence that the presence of P2VP 

lamellae does not impede dipole alignment and disorientation, antiferroelectric-like nature 

of this block copolymer is a result of a different crystalline structure of P(VDF50-TrFE50), as 

well as reduced dipole moment per chain (dipole moment of TrFE (1.4 D) is 1.5 times lower 

than of β-PVDF units). As explained before on the basis of WAXS results, two coexisting 

crystalline phases, cooled ferroelectric and paraelectric, are found in this block copolymer. 

The (110/200) d-spacing of both phases is higher than the spacing between ferroelectric 

all-trans crystals. As a consequence, the crystal packing density is lowered allowing easier 

dipole and chain flipping. Therefore, the peak on the I-E curve appearing at a lower electric 

field (14.5 MV m-1) corresponds to the fast alignment of dipoles from the paraelectric 

crystalline phase. The second peak on the I-E curve is closely related to the dipole switching 

inside the cooled ferroelectric phase. Additionally, during forward poling at high enough 

fields Epol is higher than Edep allowing dipoles to orient along the field direction. Upon reverse 

poling, the reduction of Pcomp, caused by the lower dipole moment per chain per repeat 

unit compared to PVDF70-TrFE30 leads to a scenario in which Edep becomes higher than Epol at 

low fields. Hence, the removal of the electric field is accompanied by dipole disorientation, 

which induces propeller shape antiferroelectric-like behavior. The maximum polarization of 

this sample is slightly reduced compared to the ferroelectric block copolymer, due to the 

higher amount of lower dipole moment TrFE units. 

An exchange of P2VP with PS of the same molecular weight generates considerably different 

switching characteristics (Figure 3.7d). D-E loops become narrower, resembling linear 

dielectric behavior, with almost zero remanent polarization and the maximum polarization 

lower than for P2VP-b-P(VDF70-TrFE30)-b-P2VP. Moreover, no peaks corresponding to dipole 

flipping are detected on I-E curves. PS and P2VP have the same Tg and similar elastic modulus 

values that are proven to influence the rate of dipole reversal.[57] The main difference that 

can affect the switching process is their polarity (εr,PS=2.5 vs εr,P2VP=5.5 at 10 Hz)[78], caused 

by the replacement of carbon atom with a nitrogen in the aromatic side ring. As already 
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mentioned, the Pcomp is a function of the number of polarizable dipoles and their polarizability. 

Therefore, Pcomp is reduced in the block copolymer with non-polar PS and, as a consequence, 

Epol is lowered. It is proven already that Edep has its origin in the crystalline phase and is not 

influenced by the chemical structure of the amorphous part of the material.[8] Particularly for 

this block copolymer, the values of Edep are above the values of Epol at all measured electric 

fields, causing no switching of dipoles along the direction of the field. In fact, dipoles are 

only allowed to wiggle locally giving low values of the maximum polarization. The same 

behavior and the absence of ferroelectric switching have been already observed for P(VDF-

TrFE-CTFE)-g-PS graft copolymers and P(VDF-TrFE)/polycarbonate nanolayer films, proving 

that the same type of nanoconfinement can be induced by block copolymers with a non-

polar block.[54,59]

3.4 Conclusion

We designed a simple method for the preparation of ferroelectric polymers with improved 

and tunable properties using a block copolymer approach. In this work, P(VDF-TrFE)-based 

block copolymers are synthesized and their dipole switching behavior is elucidated. The 

results demonstrate that the main parameter that affects the switching nature of block 

copolymers is the polarity of the amorphous block. The choice of the block strongly 

influences the value of the compensational polarization at the amorphous-crystalline 

interface, responsible for the dipole reversal. The use of a polar P2VP block that phase 

separates from P(VDF-TrFE) is critical for the preservation of ferroelectricity inside block 

copolymers. Conversely, linear dielectric properties with narrow hysteresis loops and 

almost zero remanent polarization were demonstrated after the incorporation of non-

polar PS blocks. Due to the low polarizability of the PS interfacial layer, a reduction of the 

compensational polarization was caused, as well as a decrease of the polarization field 

below the values of the depolarization field. Additionally, when more TrFE units (≥50 mol 

%) are included in P2VP-b-P(VDF-TrFE)-b-P2VP, instead of only the ferroelectric phase, a 

mixture of paraelectric and ferroelectric phase is obtained, resulting in an antiferroelectric-

like behavior. The incorporation of the functional insulating block does not only grant 

the tunable response of the ferroelectric polymer, but can potentially deliver additional 

benefits to the material, such as improved dispersion of nanoobjects[12,80] or any other 

functional component using supramolecular approaches[81], the preparation of nanoporous 

ferroelectric materials after selective removal of amorphous block[11], better adhesion to 

the electrodes[82,83], reduced conducting and dielectric losses[59] and better film formation. 

Although still exemplified on the proof-of-concept materials, these findings pave the way 

for developing improved functional materials for advanced electronic and energy storage 

applications by using linear ferroelectric block copolymers.
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