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Abstract: We consider Dysonmodels, Isingmodels with slow polynomial decay, at low
temperature and show that its Gibbs measures deep in the phase transition region are not
g-measures. The main ingredient in the proof is the occurrence of an entropic repulsion
effect, which follows from the mesoscopic stability of a (single-point) interface for these
long-range models in the phase transition region.

1. Introduction

Dyson models, long-range Ising models with ferromagnetic, polynomially decaying
pair interactions, have been studied for a considerable time. After Dyson [20,21] proved
the existence of a phase transition, confirming a conjecture due to Kac and Thompson
[53], various alternative proofs and further properties were derived. One recent low-
temperature result which we will find particularly useful is the existence of phase sepa-
ration, properly defined, with an “interface point”, which is to some extent stable under
infinite-volume limits with appropriate mixed boundary conditions similar to Dobrushin
boundary conditions introduced in higher dimensions. Indeed, in [13] it was shown that
a Dyson model in a finite interval of length L, with −-boundary conditions on the left
and +-boundary conditions on the right, has an interface of “mesoscopic size” for decay
parameter values1 α+ < α < 2, once the temperature is low enough (but non-zero). This
means that with overwhelming probability its location is in the middle of the interval,
up to a Gaussian correction which grows sublinearly with L .

In this paperwe notice that this interface result implies in a fairly straightforwardman-
ner that a form of entropic repulsion occurs, in the sense that a large interval of minuses
inserted in the +-phase has twomoderately large intervals around it2 in which the system
will be in the −-phase. We use this observation to show that the low-temperature Gibbs

1 Our results will be valid only for α satisfying the lower bound α > α+—already present in [11,13,14].
In contrast to the upper bound α < 2, we believe this lower bound is technical only, as we shall see.

2 They are the “wet” regions, while frozen interval is a hard wall in a “complete wetting” situation.
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measures of the Dyson model are not g-measures: their conditional probabilities w.r.t.
the past are not necessarily continuous functions of this past. It was shown before that
there exist g-measures which are not Gibbs measures [29]; our result answers a question
raised in [26] and shows that neither class of measures contains the other one. Although
the question had been posed before, it seems to be the case that there were no precise
conjectures whether these Dyson Gibbs measures actually were g-measures or not. We
thus elucidate a somewhat unclear situation about the connection between two similar-
looking notions originating in two different fields of research (namely Mathematical
Statistical Mechanics and Dynamical Systems).

Warning The case α = 2 is somewhat different; as the fluctuations in the location of
the interface are macroscopic, rather than mesoscopic [13], our arguments do not fully
work in that case. We also note that the proof(s) and even the properties of the phase
transition for this borderline case had already required a special treatment before. The
model gives rise to a more complex situation in which an intermediate phase arises [46],
and also a discontinuity of the critical magnetisation occurs [1].

2. Definitions, Notation and Main Result

2.1. Dyson models. We consider Ising spins for configurations ω ∈ {−1,+1}Z which
have a ferromagnetic long-range pair interaction, with decay parameter 1 < α < 2, of
the (formal) form:

H(ω) = −
∑

i, j∈Z
|i − j |−αωiω j .

It has been known since [20] (and later [21,35] for α = 2) that these models at low
temperature display a phase transition. There are a non-zero spontaneous magnetisation
m = m(α, β) > 0 and two (extremal) Gibbs measures μ+ and μ− obtainable by +- or
−-boundary conditions, such that μ±[ω0] = ±m [1,11,34,51]. It is also known that
there are no non-translation-invariant extremal Gibbs measures ([39], Theorem 9.5).
This is usually interpreted as the absence of interface on a microscopic scale. However,
at mesoscopic scales, in between the microscopic and the macroscopic scales, interfaces
still may be identified [13].

To be specific, but without loss of generality, we will consider the plus measure μ+,
obtained e.g. by taking the weak limit with the homogeneous +-boundary conditions.
A similar analysis could be performed for the minus measure μ−, similarly obtained
by taking the limit with the homogeneous −-boundary conditions. In the regime we
consider, those are the only two extremal Gibbs measures.

We will also consider Dobrushin boundary conditions, where the spin of the sites
outside the interval is minus to the left and plus to the right, i.e. ωi = +1 if i ≥ 0 and
ωi = −1 if i < 0. It is known that in that case, whenwe consider the box�L = [−L , L],
there are 2L + 2 ground states. This differs from the +- and −-boundary conditions,
for which there is only one ground state. The (mostly finite-volume) Gibbs measures
obtainable by Dobrushin boundary conditions will be denoted by “μ−+”.
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2.2. Gibbs measures and g-measures.

2.2.1. General definitions and main result. In Mathematical Statistical Mechanics, in
the framework3 initiated by Dobrushin [19], and Lanford and Ruelle [57], Gibbs mea-
sures at infinite volume are probability measures, defined by conditional probabilities,4

conditioned on (sets of) configurations on the outside of finite sets �. On the exterior,
that is the complement of �, boundary conditions are frozen to provide within the finite
volume the corresponding Boltzmann–Gibbs weights in terms of Hamiltonians, in the
sense that one has for all configurations ω1, ω2 and (μ-a.e.) boundary conditions b
∈ {−1,+1}Z,

μ(ω1
�|b�c )

μ(ω2
�|b�c )

= e−β[H(ω1
�b�c )−H(ω2

�b�c )].

As we consider Ising spins, which are discrete as well as compact, continuity (in
the product topology) coincides with quasilocality. Quasilocal functions are uniform
limits of local (cylinder) functions and quasilocal measures are those measures whose
conditional probabilitiesw.r.t. the outside of finite sets always admit a regular version that
is continuous as a function of the boundary condition. Up to a “non-nullness” or “finite-
energy” condition, Gibbs measures are the quasilocal measures. See e.g. [23,39,56,67].
In fact, in the context of possibly non-Gibbsian, renormalized Gibbs measures [23,24],
the major characterisation used of the latter was precisely the lack of this quasilocality
property (as well as the main drawback, preventing many standard results).

In our one-dimensional setting, a basis of neighborhoods for a configuration ω in the
configuration space � := {−1,+1}Z can be chosen of the form

NL(ω) =
{
σ ∈ � : σ�L = ω�L , σ�c

L
arbitrary

}
, L ∈ N,

where �L := [−L , L] is the set {−L ,−L + 1, . . . , L − 1, L}, and ω�L the restriction
of ω to the sites in �L . For any integers N > L , we shall also consider particular open
subsets of neighborhoods N +

N ,L(ω) (resp. N−
N ,L(ω)) on which the configuration is +

(resp. −) on the annulus �N\�L for N > L:

N +
N ,L(ω) = {

σ ∈ NL(ω) : σ�N \�L = +�N \�L

} (
resp. N−

N ,L(ω)
)

,

where for � ⊂ Z, +� is the configuration in � in which all the spins are plus. Similarly
we define the one-sided equivalent objects, such as N +,left

N ,L (ω) (resp. N−,left
N ,L (ω)) when

the N spins to the left of the interval �L are constrained to be plus (resp. minus).
Considering the latticeZ as a bi-infinite sequence of “times”, it is tempting to consider

measures on � as stochastic processes (and to transfer the Gibbs property to some
Markovian-like or almost-Markovian property). This equivalence holds in particular
under conditions of weak coupling, such as when a Dobrushin uniqueness condition
holds, for example for long-range Dyson models at high temperature, as well as for
short-range models in which the coupling between two infinite half-lines is uniformly
bounded. In the latter case the equivalence holds at all temperatures. However, it is far
from obvious if such a description is always easily possible (see e.g. [26,27,29]). In
fact, the non-equivalence between one-sided and two-sided conditionings, which we

3 The so-called DLR approach as described also for example in [23,33,39,47,62].
4 When not described more precisely, conditional probabilities always are defined only almost-surely.
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will demonstrate in detail later, serves as a warning to a too easy identification. Gibbs
measures in dimension one are thus those measures for which there exists a family—
called a “specification” [39]—of continuous probability kernels γL with L ∈ N which
prescribes its (regular) conditional probabilities jointly w.r.t. the past and future via
μ

[
ω�L |ω�c

L
] = γL(ω). Or, in a more Markovian-like description,

μ
[
σ−L = ω−L , . . . , σL = ωL | . . . σ−L−1 = ω−L−1, σL+1 = ωL+1, . . .] = γL(ω). (1)

Thanks to their quasilocality properties, Gibbs measures are the non-null measures for
which the γL are continuous functions of ω. In this case, it is possible to reconstruct all
the conditional probabilities (1) from the single-site conditional probabilities at time 0,
given for μ a.e. ω by

γ0(ω) := Eμ

[
σ0|F{0}c

]
(ω)

or, more shortly γ0(ω) := μ
[
σ0|F{0}c

]
(ω). We shall encounter later the past and future

σ -algebras F<0 and F>0 generated by the projections indexed by negative and positive
integers. The function γ0 is aF{0}c -measurable function andwhen themeasure is a Gibbs
measure, this function is continuous, jointly in past and future.

In Dynamical Systems, g-measures are defined in a similar way, combining topo-
logical and measurable notions, but the transition functions (the “g−”functions) now
have to be continuous functions of the past only. One requires continuity of single-site
one-sided conditional probabilities and says that μ is a g-measure if there exists a (past-
measurable) continuous and non-null function g0 which gives “one-sided” conditional
probabilities, that is, non-null conditional probabilities for events localised on the right
halfline (“future”), given a boundary condition fixed only to the left (“past”).

Let T : {−1,+1}(−∞,0] → {−1,+1}(−∞,0] be the shift defined by (T x)n = xn−1.
We denote by P the class of positive functions g : {−1,+1}(−∞,0] → (0, 1] such that

∑

y∈T−1x

g(y) = 1, for all x ∈ {−1,+1}(−∞,0). (2)

These functions are called g-functions. Since {−1,+1}(−∞,0] ismetrizable,we can define
continuity of a g-function.

Definition 1. A probability measure is a g-measure, if there is a non-null continuous
g-function g0, defined on the left (“past”) half-line configuration space, such that, for
each ω0 ∈ {−1,+1} and μ a.e. b = (b j ) j<0 ∈ {−1,+1}(−∞,0),

μ[ω0|F<0](b) := Eμ

[
1σ0=ω0 |F<0

]
(b) = g0(bω0). (3)

For translation-invariant measures, it is extended to any site i with conditional prob-
abilities w.r.t. to the past at site i given by gi = g, while in the absence of translation
invariance, other functions gi ’s are introduced to get G-measures [9,10]. The complete
formalism—providing all conditional probabilities w.r.t. to the past—can be restored
under extra conditions via the notion of a “Left Interval Specification” (LIS) [26,27].
We focus here on the single-site properties that define g-functions and g-measures in a
translation-invariant context.

Note that such extensions of (one-sided) Markov properties have been studied under
different names in various areas of mathematics for a long time, such as Chains with
infinite connections [2], Chains of infinite order [43], Variable Length Markov Chains
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[63], uniform martingales [54], etc. For a number of papers addressing g-measures
and related properties, see e.g. [3,4,7,9,10,18,32,36–38,44,45,49,50,68]. When the
interactions are finite-range, g-measures are Markov chains. These coincide with Gibbs
measures, which then are Markov fields, expressible in two-sided conditional proba-
bilities, see e.g. [39, Chapter 3]. In fact, this equivalence applies for a large class of
interactions which satisfy a strong uniqueness condition [26,27]. However, if we require
only continuity of the conditional probabilities, there exist g-measures which are not
Gibbs measures [29].

In general, there is not that much known in the phase transition region where the
interactions are necessarily long-range. Phase transitions in the Gibbs measure context
have been known to occur since Dyson, and in the g-measure context they are also
known to be possible [3,7,18,32,45]. Nevertheless, there seems little known about the
equivalence of the Gibbs measure property and the g-measure property in any such
general context. In higher dimension, one could interpret the “Local Markov Property”
as a Gibbs property and the “Global Markov Property” (see e.g. [31]) to some extent as
the equivalent of the g-measure property. It is known that there are measures having the
Local, but not the Global Markov Property [42,48,70]. Here we will show the somewhat
analogous result that the Gibbs measures of the Dyson model are not g-measures.

Discontinuity of any candidate g+ to represent a g-function for μ+—i.e. discon-
tinuity of any possible version of a suitable chosen conditional probability—will be
a consequence of the next lemma, proved using an entropic repulsion phenomenon,
which we obtain as a fairly direct corollary of the interface localisation result of [13].
To use these results of Cassandro et al., we will require the same technical lower bound
α+ = 3 − log 3

log 2 ∈]1, 2[ as they needed. In the following lemma, μ+,ω
Z+

[·] denotes expec-
tations under a constrained measure μ

+,ω
Z+

, defined in the next section.

Lemma 1. Consider the alternating configuration ωalt = (
(ωalt)i

)
i∈Z defined by

(ωalt)i = (−1)i , and take a Dyson model with polynomial decay α+ < α < 2 at
sufficiently low temperature. Then, there exist L0 ≥ 1 and δ > 0 such that for any
L > L0 there is an N > L, with LN 1−α = o(1), such that for every two configurations
ω+ ∈ N +,left

N ,L (ωalt) and ω− ∈ N−,left
N ,L (ωalt),

∣∣∣μ+,ω+

Z+
[σ0] − μ

+,ω−
Z+

[σ0]
∣∣∣ > δ. (4)

As a corollary, we obtain our main result:

Theorem 1. Forμ being either the plus or the minus phase of a Dyson model with expo-
nent α+ < α < 2 at sufficiently low temperature, the one-sided conditional probability
μ[ω0|F<0](·) is essentially discontinuous atωalt. Therefore, none of the Gibbs measures
μ for the Dyson model in this phase transition region5 is a g-measure.

Remark 1. We use the term Gibbs measure in the Statistical Mechanics sense, as defined
by Dobrushin, Lanford, and Ruelle [19,57]. In the Dynamical Systems community,
often a somewhat different notion of Gibbs measure is defined following Sinai, Ruelle,
and Bowen [6,64,66], by providing uniformly bounded approximations of the measure
on cylinders as exponential Boltzmann–Gibbs weights defined via (a slightly different
notions) potentials. In Symbolic Dynamics, yet another notion is introduced either via

5 Note that we again impose the technical restriction α+ < α < 2 on the decay parameter.
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Perron–Frobenius operators or via variational principles and a corresponding notion of
equilibrium states. Compare e.g. [4] with sometimes different (non-)lattices, and again
different notions of potentials compared to the ones used in Mathematical Statistical
Mechanics. This yields different, typicallymore restrictive, classes ofmeasures, inwhich
phase transitions are usually excluded due to the corresponding interaction being too
short-range (in statistical mechanics terms). For example, a potential with summable
variations defined on {−1,+1}N admits a unique equilibrium measure, see [6,64].

Remark 2. As discussed in [26,27], which discuss a lot of the history, the terminology
“g-measures” was introduced by Keane [55], but the notion is older. In those papers
also the observation is made and exploited that the g-measure property is a kind of one-
sided Gibbs property. However, this analogy appears to work properly mostly in various
uniqueness regimes, as we illustrate here.

2.2.2. Gibbs vs. g-measures forDysonmodels in the phase transition region. Tobemore
specific, we consider configurations lying in the infinite probability space (�,F , ρ) =
(E, E, ρ0)

Z where E = {−1,+1} is equipped with the a priori product measure ρ0 =
1
2δ−1 + 1

2δ+1. For a configuration ω ∈ � and any � ⊂ Z, we consider the restriction
ω� and the corresponding configuration spaces at volume � as the product probability
spaces (��,F�, ρ�) defined in a standard way. To specify the two-sided conditional
probabilities of our Dyson measures, we consider the set S of finite subsets of Z and
introduce the following, in particular Gibbsian, specification (see e.g. [25,28,39,41,62,
65] for more details about specifications):

Definition 2. Let β > 0 be the inverse temperature. We call a Dyson specification the
collection of probability kernels γ D = (γ D

� )�∈S from F�c to �� defined by

γ D
� (dω|τ) = 1

Z τ
�

eβ
∑

i �= j,i∈�, j∈Z 1
|i− j |α ωiω j ρ� ⊗ δτ�c (dω) (5)

where the normalization Z τ
� is the usual partition function.

Let G(γ D) be the set of probability measures μ on (�,F , ρ) satisfying the DLR
equation

μγ D
� = μ (6)

for every � ∈ S.
The specification γ D is monotonicity-preserving (or FKG): for all � ∈ S and any f

bounded increasing, so is γ D
� f . The extremal (maximal and minimal) elements of this

partial order “≤” already allow us to define the extremal elements of G(γ D).

Proposition 1 [20,30,35,44]. The weak limits

μ−(·) := lim
�

γ D
� (·|−) and μ+(·) := lim

�
γ D
� (·|+) (7)

are well-defined, translation-invariant and extremal elements of G(γ D). For any f
bounded increasing, any other measure μ ∈ G(γ D) satisfies

μ−[ f ] ≤ μ[ f ] ≤ μ+[ f ]. (8)

For longer ranges 1 < α ≤ 2, a phase transition holds for (5): there exists βD
c > 0 such

that, for all β > βD
c , we have μ− �= μ+ and moreover, at sufficiently low temperatures

G(γ D) = [μ−, μ+].
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To get a candidate to represent the g-functions, i.e. the conditional probabilities w.r.t.
the past, one needs to extend (5) to possibly infinite sets S, because the complement of the
past—our future—is infinite. Although we are far from the uniqueness regime, this has
nevertheless been shown to be possible in our context following a general construction
of [30], made for attractive and right-continuous6 specifications.

Definition 3. A “Global Specification” � on Z is a family of probability kernels � =
(�S)S⊂Z on (�,F) from FSc to �S such that for any S subset of Z:

1. �S(B|ω) = 1B(ω) for all ω ∈ � when B ∈ FSc .
2. For all S1 ⊂ S2 ⊂ Z, �S2�S1 = �S2 .

We write μ ∈ G(�) if for all A ∈ F and any S ⊂ Z,

μ[A|FSc ](ω) = �S(A|ω), μ−a.e. ω. (9)

Theorem 2 [24,30]. Consider the Dyson model on Z at inverse temperature β > 0, i.e.
the specification γ D given by (5) and its extremal Gibbs measure μ+ defined by (7). A
global specification �+ such that μ+ ∈ G(�+) can be given as follows :

• For S = � finite, for all ω ∈ �, set �+
�(dσ |ω) := γ D

� (dσ |ω).

• For S infinite, for all ω ∈ �, set �+
S(dσ |ω) := μ

+,ω
S ⊗ δωSc (dω) where μ

+,ω
S is the

constrained measure on (�S,FS) defined as the (well-defined) weak limit

μ
+,ω
S (dσS) := lim

↑S γ D
 (dσ | +SωSc ). (10)

A similar construction yields a global specification �− so that μ− ∈ G(�−).

These constructions allow us to consider, for given pasts, the expression of the g-
functions as the magnetisations of Dyson models under various conditionings,see Equa-
tion (11) below, and studying continuity will reduce to studying possible phase transition
under constraints combined with the study of the stability of interfaces.

Starting fromμ+,we introduce g+ to be the candidate to be the g-function representing
(a version of) the single-site conditional probabilities (3) as a function of the past. Just
as in [24,30], we introduce thus for any “past” configuration ω ∈ �:

g+(ω) := μ+ [ω0|F<0](ω) .

Using the expression of Theorem 2 in terms of global specifications and constrained
measures with S = Z+ = {0, 1, 2, 3, . . .}, one gets, μ+-a.s. (ω):

g+(ω) = �+
S[ω0|ω] = μ

+,ω
S ⊗ δωSc [ω0] (11)

where μ
+,ω
S is the constrained measure on (�S,FS) defined in (10).

Previous works and specific properties7 insure μ+ is then indeed “specified” by g+,
in the sense that it is invariant by its left action: μ+g+ = μ+.

NoteAnon-continuous (= non-regular) g-function gives rise to ameasure which is NOT
a g-measure. To be a “proper” g-function of the past, we would need that in addition to
consistency, the function g+ is regular, i.e. essentially continuous (for which all possible
discontinuity points can be removed by modifications on negligible sets).

6 Right- or left-continuity corresponds to “continuity in the direction + or −”, see e.g. [60].
7 Attractivity and right-continuity, see previous footnote and also [24,30].
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Similarly to e.g. [24], where two of us exhibited (two-sided) discontinuity points
by considering an alternating configuration ωalt, we will prove that for L large and N
large compared to L , the putative g-function g+ can take significantly different values
on sub-neighborhoodsN±,left

N ,L (ωalt) ⊂ NL(ωalt). Thanks to monotonicity-preservation,
the constrained measure is explicitly built as the weak limit (10) obtained by taking
S = Z+ and by +-boundary conditions fixed after freezing (fixing) an ω in the past.

It is enough to consider this limit along intervals In = [0, n]∩Z in the original space.
To disprove the g-measure property for the plus phase μ+ of our Dyson model, we

will need to prove that a particular, in our case alternating, configuration ωalt is a non-
removable point of discontinuity. To do so, one has to find within its neighborhood two
sub-neighborhoods (or at least two subsets of configurations of positive μ+ measure),
on which the value of g+ drastically changes when modified arbitrarily far away. We
consider first finite-volume approximations of the constrained measure μ

+,ω
Z+ built as the

weak limit 10) with +-boundary condition by taking intervals In arbitrarily large, larger
than any other finite volumes encountered in this paper.

Consider the sub-neighborhoodsN±,left
N ,L (ωalt) for L < N , whose sizewill be adjusted

later. All together, this leads us to consider a partially frozen Dyson model, either frozen
into + outside In , or into − in the “annulus” [−N ,−L], and the alternating one ωalt in
[−L ,−1].

By (11) and (10), for a μ+-a.s. given ω, the value taken by g+ will be the infinite-
volume limit of the magnetisation of the finite-volume Gibbs measure of a Dyson-model
on [0, n], with the same decay α < 2 and ω-dependent inhomogeneous external fields
hx [ω], x ≥ 0. In this minus case, for configurations ω := ω− on the sub-neighborhood
N−,left

N ,L (ωalt), one gets external fields (see Fig. 1)

∀x ≥ 0, hx [ω] =
L∑

k=1

(−1)k

(k + x)α
−

N∑

k=L+1

1

(k + x)α
+

∑

k≥N

ω−k

(k + x)α
+

∑

k≥n

1

(k + x)α
,

while for ω := ω+ ∈ N +,left
N ,L (ωalt), we get:

∀x ≥ 0, hx [ω] =
L∑

k=1

(−1)k

(k + x)α
+

N∑

k=L+1

1

(k + x)α
+

∑

k≥N

ω−k

(k + x)α
+

∑

k≥n

1

(k + x)α
.

We are reduced to study the magnetisation under a generalisation of the long-range
RFIM (Random Field Ising Model), now with a possibly dependent and/or biased, dis-
ordered external field, whose distribution is linked to the original measure μ itself

−L−N n

−−−+++ + ++

++

0

−−−− ++

0−L−N n

+++++++++ + −−− +++

Fig. 1. Left ± Neighborhoods of ωalt
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−L n−N

−−−−−++ + + ++ + + + + +↓
hx(ω) < 0

↓
hx(ω) > 0

0

−− ++

−L n−N

+++++++ + + ++ + + + + +↓
hx(ω) > 0

↓
hx(ω) > 0

0

−− ++

Fig. 2. Inhomogeneous ω-dependent external fields

via the distribution of the past. In such situations, when the fields are homogeneous
one can sometimes use correlation inequalities and uniqueness via Lee–Yang [58] type
arguments—as were e.g. used to prove essential discontinuities for the decimation of
Dyson model in [24]—but here our main difficulty is that this external field will change
signs, depending on the value of x ∈ [0, n]. For n, L , N (L) large enough, it starts to be
negative at 0 (due to its left-neighborhood frozen into minus in our alternating config-
uration) and, due to the +-boundary procedure far away, it becomes positive for x large
(see Fig. 2).

Nevertheless, on the neighborhoodN−,left
N ,L , the inhomogeneous magnetic field hx (ω)

will stay negative far enough to the past so that a −-phase is still felt at the origin in
the limits, while on the neighborhood N +,left

N ,L , a +-phase is always selected for N and
L of adjusted size. In the former case, we need to evaluate the effect of large, possibly
huge, interval ofminuses on its outside, faraway through an intermediate neutral interval,
reminiscent of the phenomenon of entropic repulsion in wetting phenomena (see e.g.
[61], or [40] for similar terminology in the setting of random polymers). To prove the
essential discontinuity and in some sense “some” wetting beyond the origin through the
alternating region, we first use the interface result of [13] (see also [12]) to state and
prove in Section 3 a wetting result that we relate to entropic repulsion.

2.3. Interfaces in Dyson models. We will thus derive our entropic repulsion argument
from the interface result of [13]. We start by describing and summarizing the latter
and in particular briefly recall the contour construction based on triangles that was
first described in [11] to formalize the contour argument of [35]. Then we describe the
Peierls estimate they obtain in this one-dimensional long-range context. In addition,
this triangle construction also allows an unambiguous notion of interface in the phase
transition region, as we describe now.

Let L ≥ 1, and consider � = �L = [−L , L]. Define the dual lattice �∗ = � +
1
2 as the set � shifted by 1/2. Given a configuration ω ∈ {−1,+1}�, let us define
configurations of triangles. A spin-flip point is a site i in �∗ such that ωi− 1

2
�= ωi+ 1

2
.

For each spin-flip point i , let us consider the interval
[
i − 1

100 , i +
1

100

] ⊂ R and choose
a real number ri in this interval such that, for every four distinct points ri1 , ri2 , ri3 , ri4
we have |ri1 − ri2 | �= |ri3 − ri4 |. The ri ’s will be the bases of the triangles, and the last
condition is asked to avoid ambiguity in the construction of the triangle.

For each spin-flip point i , we start growing a “∨-line” at ri where this ∨-line is
embedded in R

2 with angles π/4 and 3π/4. If at some time two ∨-lines starting from
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different spin-flip points touch, the other two lines starting from those two spin-flip
points stop growing, and are removed without forming a triangle. Then we repeat this
procedure. This process can also be seen in the followingway: for each ri , draw a straight
vertical line passing through it. Take the smallest distance between these lines, call the
correponding ri and r j the spin-flip points of these lines, and draw a isosceles triangle
with base angle π/4. Then, remove the lines associated to ri and r j . Re-start.

Note that, for homogeneous boundary conditions, since the number of spin-flip points
is even, every ri is a vertex of some triangle. On another hand, if we consider the
Dobrushin boundary condition, then the number of spin-flip points is odd, and so there
exists a unique spin-flip point which is not the vertex of any triangle. This point is called
the “interface point”.

Thefirst notion of interface point in this long-range one-dimensional context appeared
in [52] in the terms of a “thick interface”, and afterwards [13] defined the interface point
according to the construction above.

Let

TL =
{
−1 − 1

2L
,−1 +

1

2L
, . . . ,− 1

2L
,
1

2L
, . . . , 1 +

1

2L

}
,

and consider the Dobrushin boundary condition with all spins to the left of � fixed to
be minus and all spins to the right of � fixed to be plus. Given a configuration ω in �,
let I ∗ ≡ I ∗(ω) ∈ �∗ be the interface point of the configuration ω, and given θ ∈ TL ,
denote by

S�,θ = {ω : I ∗ = θL}
the set of spin configurations in � for which the interface point is situated in θL . Note
that this forms a partition of � (if θ �= θ ′, then S�,θ ∩ S�,θ ′ = ∅). We use it to define
for each θ ∈ TL the probability to have an interface in θL by

μ−+
� [I ∗ = θL] = Z−+

θ,�

Z−+
�

,

where the partitions functions Z−+
θ,� = ∑

ω∈S�,θ
e−βH−+

� (ω) and Z−+
� = ∑

θ∈TL Z−+
θ,�

are defined via the Hamiltonian H−+
� in volume�with Dobrushin boundary conditions.

For i ∈ �, the conditional expectation of ωi , given I ∗ = θL , is

μ−+
θ,�[ωi ] := μ−+

� [ωi |I ∗ = θL] = 1

Z−+
θ,�

∑

ω∈S�,θ

ωi e
−βH−+

� (ω).

Moreover, the expectation of ωi in terms of in terms of μ−+
θ,�[ωi ] is

μ−+
�L

[ωi ] =
∑

θ∈TL
μ−+

θ,�L
[ωi ]μ−+

�L
(I ∗ = θL). (12)

These constructions of triangles and associated contours are used in [13] to get cluster
expansions of partition functions that yield first the following proposition, which will
be an essential tool for us. Let Z−

� be the partition function on � with minus boundary
condition, and let ζ(α) = ∑∞

k=1
1
kα be the Riemann zeta function.
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Proposition 2 (Cassandro, Merola, Picco, Rozikov—2014). For all α ∈ (α+, 2), there
exists β0 ≡ β0(α)> 0 such that for all β > β0 and θ ∈ TL, the following occurs:

log Z−+
θ,� − log Z−

�

= −cL(α)L2−α + e−2β(ζ(α)+J ) L2−α

(2 − α)(α − 1)
fα(θ)(1 ± e−c1(α)β)(1 + o(L)),

where fα(θ) = (1+ θ)2−α + (1− θ)2−α , cL and c1 are two positive constants depending
on α, once we require that the nearest-neighbor interaction J = J (1) � 1.

The constraint J = J (1) � 1 should be superfluous in our paper and in all subsequent
papers after [11]. In fact, there are some further applications to inhomogeneous situations
where this large nearest-neighbour condition already was removed, see [5].

The restriction of α > α+ appears since in [11] the proof of the phase transition of
the Dyson model by a contour argument needs it,8 while the contours introduced are
based on the triangles defined above.

From Proposition 2 and the observation that, at finite volume �, for any x∗ ∈ �,

μ−+
θ,�[ωx∗ ] = d

dg
(log Zg,x∗

θ,� )

∣∣∣
g=0

where for any g ∈ R, Zg,x∗
θ,� = ∑

σ�∈S�,θ
e−βH−+

� (σ�)+gσx∗ , Cassandro et al. also obtained
in [13] the following estimate for important conditional magnetisations, which will
provide our first step towards wetting and entropic repulsion in the next section:

Proposition 3 (Cassandro, Merola, Picco, Rozikov—2014). For all α ∈ (α+, 2], there
exists β0 ≡ β0(α) such that for all β > β0, μ

−+
θ,�[ωi ] = ±1 if i = θL ± 1

2 and

μ−+
θ,�[ωi ] =

[
1 − 2e−2β(ζ(α)+J )e

2β
α−1

1
|i−θL|α−1

[
1 +O(e−c1β)

] [
1 + o

(
1

L

)]]

×
[
1i>θL+ 1

2
− 1i<θL− 1

2

]
.

Moreover, Cassandro et al. [13] also showed the following estimate for the magneti-
sation with +-boundary condition.

Theorem 3. For all α ∈ (α+, 2), there exists a β0 ≡ β0(α) and a strictly positive
constant c1 such that for all β ≥ β0, uniformly with respect to � ⊂ Z, � finite, for all
i ∈ � we have

μ+
�[ωi ] = 1 −

[
2e−2β(ζ(α)+J )

(
1 ± e−c1(α)β

)
(1 + o (1))

]
. (13)

Thus, after taking the thermodynamic limit, the magnetisation satisfies the following
inequality at low temperature,

1 −
[
2e−2β(ζ(α)+J )

(
1 + e−c1(α)β

)]

≤ μ+[ωi ] ≤ 1 −
[
2e−2β(ζ(α)+J )

(
1 − e−c1(α)β

)]
. (14)

8 Although for the existence of a transition the validity can be extended to the whole range of phase-
transition decays by FKG arguments. This does not work for inhomogeneous situations such as disordered
systems [14] or interface fluctuations [13].
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From Propositions 2 and 3, the main result of Cassandro et al. [13] concludes that the
interface point is located in the middle of the interval of �, up to a Gaussian correction
which grows sublinearly in L . This means that the correction describes mesoscopic fluc-
tuations. In particular, this implies that macroscopic fluctuations are extremely improb-
able.

Theorem 4. For all α ∈ (α+, 2), there exists β0 ≡ β0(α) such that for all β > β0, if we
denote I ∗

Lα/2 = I∗
α then for all s ∈ R,

lim
L→∞ μ−+

� (I∗
α ≤ s) =

∫ s

−∞
γσ(β,α)(z) d z, (15)

where γσ (t) is the Gaussian density with mean zero and variance σ 2 = σ 2(β, α),

γσ (t) = 1

σ
√
2π

e− 1
2 · t2

σ2 , (16)

and, for β ≥ β0, the variance σ 2(β, α) can be expressed as

σ 2(β, α) = 1

2
e2β(J+ζ(α))(1 ± e−c1(α)β)−1. (17)

By Theorem 4 we can compute the following limit,

lim
L→∞ μ−+

� (|I∗
α| ≤ s) = lim

L→∞ μ−+
� (−s ≤ I∗

α ≤ s)

= lim
L→∞ μ−+

� (I∗
α ≤ s) − μ−+

� (I∗
α ≤ −s)

=
∫ s

−s
γσ(β,α)(z) d z.

3. Entropic Repulsion: Wetting Transition

For a fixed N > 1, we will consider the plus phaseμ+, conditioned on the event−−N ,−1
of there being an interval [−N ,−1] of minus spins.We claim that there are two intervals

of length of order L , namely [−N − (1−sL
α
2 −1

)
2 L ,−N − 1], and [0, (1−sL

α
2 −1

)
2 L], left

and right of the fixed interval, such that for N � L both large enough, satisfying
LN 1−α = o(1), the magnetisation of the spins in � conditioned on the event −−N ,−1
is negative, whenever � is in one of those intervals. These intervals play the role of a
“completely wet region” in a wetting transition.9 In other words,

Proposition 4. Let α ∈ (α+, 2) and β0 ≡ β0(α) from Theorem 4. Then, there exists
β1 > β0 such that, for any β > β1, there exist s = s(β, α), λ = λ(β, α, s) > 0 and
L0 ≡ L0(α, β) ≥ 1 such that, for any L > L0, there exists N0(L) > L such that, for
any N ≥ N0(L),

μ+(ωi |−−N ,−1) ≤ −λm, (18)

for every i ∈ [−N − (1−sL
α
2 −1

)
2 L ,−N − 1] ∪ [0, (1−sL

α
2 −1

)
2 L], where m = 〈ω0〉+ > 0.

9 Note that this wetting is a positive-temperature effect. Indeed, at zero temperature the interface with
Dobrushin boundary conditions is homogeneously distributed, and a frozen interval of minuses, inserted in a
plus configuration, will have only pluses to the left and to the right.
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Proof. Fix α ∈ (α+, 2) and β0 ≡ β0(α) from Proposition 2. We will first prove the

statement for i ∈ [0, (1−sL
α
2 −1

)
2 L].

The main idea of our proof is to choose N large enough for the total influence of all
spins left of the interval to be bounded by a (small) constant, so that one can neglect
boundary effects beyond −N by equivalence of boundary conditions as in [8]. Then
inside the interval of length L , the interface separating the plus and minus phases is with
large probability within the same window as with the Dobrushin boundary conditions. If
afterwards we move the plus-boundary to the right, the location of the interface can also
move only to the right, that is away from the frozen interface (by an FKG argument).

To make this precise we proceed as follows. Since μ+ is translation-invariant, it is
enough to show

μ+(ωi |−−N ,−L−1) ≤ −λm, (19)

for every i ∈ �L := [−L , −L−sL
α
2

2 ] and N > L + 1 large enough. From Theorem 4, if
we would consider the interval � = [−L , L] with Dobrushin boundary condition, the
interface point will with overwhelming probability lie about halfway, with fluctuations
which are “mesoscopic”, that is, there exists β0 > 0 such that, for every β > β0 and
s ≥ 0,

lim
L→∞ μ−+

�

(∣∣I ∗∣∣ ≤ sLα/2
)

=
∫ s

−s
γσ(β,α)(z) d z. (20)

Thus, for a fixed ε > 0, there exists Lε ≥ 1 such that, for every L ≥ Lε,
∣∣∣∣μ

−+
�

(∣∣I ∗∣∣ ≤ sLα/2
)

−
∫ s

−s
γσ(β,α)(z) d z

∣∣∣∣ < ε. (21)

Let us take i ∈ �L . Note that, for every θ ∈ TL with −sLα/2 ≤ θL ≤ sLα/2, we have

|i − θL|α−1 ≥
(
L − sLα/2

2

)α−1

. (22)

By Proposition 3 and Inequality (14), for every β ≥ β0,

μ−+
θ,�(ωi ) ≤ −1 + (1 − m)e

2β
α−1

(
2

L−sLα/2

)α−1 [
1 + O(e−c1β)

1 − e−c1β

]
[1 + o (1)] . (23)

For each δ > 0, there exist βδ > β0 such that, for every β > βδ , there exists Lβ ≥ 1
such that, for every L ≥ Lβ ,

e
2β

α−1

(
2

L−sLα/2

)α−1 [
1 + O(e−c1β)

1 − e−c1β

]
[1 + o (1)] < 1 + δ. (24)

Since m(β) → 1 as β → ∞, there exists β1 > βδ such that, for every β ≥ β1,

μ−+
θ,�(ωi ) ≤ −1 + (1 − m)(1 + δ) < 0. (25)

Define

�s,L = {θ ∈ TL : |θ | ≤ sLα/2−1}. (26)
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By (12), (21) and (25), for every i ∈ �L , with β ≥ β1 and L ≥ max{Lε, Lβ},

μ−+
� (ωi ) =

∑

θ∈�s,L

μ−+
θ,�(ωi )μ

−+
� (I ∗ = θL) +

∑

θ /∈�s,L

μ−+
θ,�(ωi )︸ ︷︷ ︸

≤1

μ−+
� (I ∗ = θL)

≤ (−1 + (1 − m)(1 + δ))

(∫ s

−s
γσ(β,α)(z) d z − ε

)

+ ε + 1 −
∫ s

−s
γσ(β,α)(z) d z.

Choose s0 ≥ 0 such that, for s ≥ s0,

1 −
∫ s

−s
γσ(β,α)(z) d z < ε. (27)

We have

μ−+
� (ωi ) ≤ −m

∫ s

−s
γσ(β,α)(z) d z + εm + δ(1 − m)

(∫ s

−s
γσ(β,α)(z) d z − ε

)

+2ε. (28)

Choose ε > 0 and δ > 0 small enough (and so β, L , s large enough) such that

εm + δ(1 − m)

(∫ s

−s
γσ(β,α)(z) d z − ε

)
+ 2ε <

m

2

∫ s

−s
γσ(β,α)(z) d z. (29)

Thus,

μ−+
� (ωi ) ≤ −m

2

∫ s

−s
γσ(β,α)(z) d z < 0. (30)

For any N > L + 1, if we lift the constraint that all spins are minus to the left of site
−N , the total energy due to the boundary condition changing inside the interval �L is
bounded by

∣∣∣∣∣∣

∑

j<−N

L∑

i=−L

1

|i − j |α ωiω j

∣∣∣∣∣∣
≤ 3

α − 1
LN 1−α. (31)

Let us denote by ω+ be the plus configuration ω+
i = +1 for every i ∈ Z, and by ω−

be the minus configuration ω−
i = −1 for every i ∈ Z. Consider �̃ = [−N , L]. For a

fixed ω such that ωi = −1 with i ∈ [−N ,−L − 1],

H+
�̃
(ω) = H−+

� (ω) − 2
∑

i∈�
j<−N

Ji jωiω
+
j + CL ,N , (32)
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where CL ,N does not depend on ω. For i ∈ �L ,

μ+
�̃
(ωi |−−N ,−L−1) =

μ−+
�

⎛

⎝ωi exp

⎛

⎝2β
∑

k∈�, j<−N

Jk jωkω
+
j

⎞

⎠

⎞

⎠

μ−+
�

⎛

⎝exp

⎛

⎝2β
∑

k∈�, j<−N

Jk jωkω
+
j

⎞

⎠

⎞

⎠

. (33)

Let us recall that μ−+
� (ωi ) < 0. By (31), there exists N0(L) > L + 1 such that, for every

N ≥ N0(L),

μ+
�̃
(ωi |−−N ,−L−1) <

1

2
μ−+

� (ωi ). (34)

Thus, by (30),

μ+
�̃
(ωi |−−N ,−L−1) < −m

4

∫ s

−s
γσ(β,α)(z) d z = −λm, (35)

where

λ = 1

4

∫ s

−s
γσ(β,α)(z) d z. (36)

Due to the FKG property, for any  containing �̃, we have

μ+
(ωi |−−N ,−L−1) ≤ μ+

�̃
(ωi |−−N ,−L−1), (37)

for all i ∈ �L . Therefore, for any site i ∈ �L , there exists L0 ≥ 1 such that, for L > L0
and N ≥ N0(L),

μ+(ωi |−−N ,−L−1) < −λm. (38)

For the wetting of sites i in the other interval [−N − (1−sL
α
2 −1

)
2 L ,−N −1], we consider

the Gibbs measure with reverse Dobrushin boundary condition μ+−, i.e., ωi = 1 if
i < 0, and ωi = −1 if i ≥ 0, and apply the same argument as above. Thus, for N large
enough,

μ+(ωi |−1,N ) < −λm (39)

for every i ∈ [− (1−sL
α
2 −1

)
2 L , 0], where −1,N is the event of there being an interval

[1, N ] of minus spins. Since the Dyson model is translation-invariant, when we shift all
sites by −N , we are done (see Fig. 3). ��
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−N − (1−sL
α
2 −1)

2 L
−N − 1 0 (1−sL

α
2 −1)

2 L

− phase
− − −− − −

− phase

Fig. 3. Wetting transition at low temperature

4. Lack of the g-Measure Property: Proof

In this section, we provide the proof of Theorem 1.
The main idea is first to decouple the spins in a subinterval [1, L1] of the “wet” minus

interval of length o(L), such that L1 is large, but small compared to L . As the energy
difference due to the decoupling is small compared to the energy cost of moving the
interface, the location of the interface as analyzed in [13] does not change, when viewed
on scale L . If then, in the next step, the decoupled region is frozen in an alternating
configuration and recoupled, this causes an extra finite-energy term—as compared to
being decoupled—which again will hardly influence the location of the interface (and
thus the size of the wet region).

Let us first present a lemma.

Lemma 2. Let α ∈ (1, 2) and L1 > 1. Consider the observable in � given by

B(ω) =
∑

j /∈[−L1,−1]

∑

i∈[−L1,−1]

(−1)i

|i − j |α ω j . (40)

Then, there exists c > 0 such that supω |B(ω)| = ‖B‖ ≤ c, where c does not depend on
L1.

Proof. From (40),

‖B‖ ≤
∑

j /∈[−L1,−1]
|R j |, (41)

with

R j =
∑

i∈[−L1,−1]

(−1)i

|i − j |α . (42)

As R j is an alternating series with terms tending to zeromonotonically in absolute value,
the absolute value of its sum is not larger than that of its first term

|R j | ≤ 1

| − 1 − j |α . (43)

Hence,

‖B‖ ≤
∑

k≥1

1

kα
:= c, (44)

as we desired. ��
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Proof of Lemma 1. For a fixed α ∈ (α+, 2) and L1 > 1, let us consider the interaction
set ϒL1 = {{i, j} ∈ Z

2 : i �= j, {i, j} ⊂ [−L1,−1] or {i, j} ∩ [−L1,−1] = ∅}, i.e.,
we remove the interactions between [−L1,−1] and its complement. For a finite subset
� containing [−L1,−1] denote the Hamiltonian

H τ
�,1(ω) = −

∑

{i, j}∈ϒL1
i, j∈�

|i − j |−αωiω j −
∑

{i, j}∈ϒL1
i∈�, j /∈�

|i − j |−αωiτ j , (45)

where τ is a boundary condition. Denote by μτ
�,1 be corresponding Gibbs measures

μτ
�,1(ω) = 1

Z τ
�,1

e−βH τ
�,1(ω)

.

Note that the cost of the total energy to remove these bonds is bounded by

∣∣H τ
�(ω) − H τ

�,1(ω)
∣∣ =

∣∣∣∣∣∣∣∣

∑

j<−L1
j>−1

∑

−L1≤i≤−1

|i − j |−αωiω j

∣∣∣∣∣∣∣∣
≤ cL2−α

1 (46)

for every finite subset � containing [−L1,−1], for some constant c > 0. Consider
β > β2 from Proposition 4, L = L(L1) satisfying L1 = o(L), and the interval 2L =
[−L1, 2L − L1].

By Theorem 4 and (46), we have

lim
L→∞ μ−+

2L ,1
(θ ≤ sL−1+ α

2 ) ≥
∫ s

−∞
γσ(β,α)(z) d z. (47)

Hence the location of the interface point will not be majorly effected and, by Propo-

sition 3, we have μ−+
2L ,1

[ωi ] < −λm for every i ∈ L = [−L1,
(1−sL

α
2 −1

)
2 L − L1].

Using the same argument as in Proposition 4, for β3 ≡ β3(α) and β > β3, for L with
L1 = o(L) and N > N (L) such that LN 1−α = o(1), the magnetisation of each spin in

[0, (1−sL
α
2 −1

)
2 L − L1] ∪ [−N − (1−sL

α
2 −1

)
2 L ,−N − 1] is negative when we constrain

the frozen interval [−N ,−L1 − 1] to be minus, i.e., considering �′′
L = [−N , 2L − L1],

μ+
�′′

L ,1
[ωi |−−N ,−L1−1] ≤ −λm. (48)

Now, denote by AL1 the set of configurations that are alternating in [−L1,−1]. Since
μ+

�′′
L ,1

[ωi |−−N ,−L1−1] = μ+
�′′

L ,1
[ωi | −−N ,−L1−1 ∩AL1 ],

for every i ∈ [0, (1−sL
α
2 −1

)
2 L − L1]∪ [−N − (1−sL

α
2 −1

)
2 L ,−N −1], by FKG inequality,

we have
μ+
1[ωi | −−N ,−L1−1 ∩AL1 ] ≤ −λm. (49)

Thus, the spins in the set [0, (1−sL
α
2 −1

)
2 L − L1] ∪ [−N − (1−sL

α
2 −1

)
2 L ,−N − 1] are

in the minus phase.
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−N − (1−sL
α
2 −1)

2 L
−N · · · −L1 0 −L1 +

(1−sL
α
2 −1)

2 L

− phase −
+ + +− − −

− phase

−N − (1−sL
α
2 −1)

2 L
−N · · · −L1 0 −L1 +

(1−sL
α
2 −1)

2 L

+ phase +
+ + +− − −

+ phase

Fig. 4. From wetting to essential discontinuity. Here L1 = o(L) and LN1−α = o(1)

By the same argument, considering all spins in the frozen interval [−N ,−L1 − 1]
being plus, then the spins in the set [0, (1−sL

α
2 −1

)
2 L−L1]∪[−N− (1−sL

α
2 −1

)
2 L ,−N−1]

are in the plus phase (see Fig. 4). In particular,

μ+
1[ω0| −−N ,−L1−1 ∩AL1 ] ≤ −λm < 0 < λm ≤ μ+

1[ω0| +−N ,−L1−1 ∩AL1 ]. (50)

Themeasuresμ+
1 [·|−−N ,−L1−1∩AL1 ] andμ+

1 [·|+−N ,−L1−1∩AL1 ] areFKGmeasures
(satisfying the FKG inequality). This fact is a consequence of the Holley inequality and,
in addition, these measures are extremal Gibbs measures associated to the Hamiltonian
(45).

ByLemma2, the sumof the interaction terms between [−L1,−1] and its complement
is uniformly bounded by a constant. Then, if we insert back the interactions connecting
with ϒL1 , this changes the Hamiltonian by a uniformly bounded (finite-energy) term.

Using a Bricmont–Lebowitz–Pfister type argument as in [8], we can show that con-
ditional probabilities with respect to the original measures μ+[·| −−N ,−L1−1 ∩AL1 ]
and μ+[·| +−N ,−L1−1 ∩AL1 ], associated to the of the Dyson model, are equivalent to
μ+
1[·| −−N ,−L1−1 ∩AL1 ] and μ+

2[·| +−N ,−L1−1 ∩AL1 ] respectively, and then they are
also different extremal Gibbs measures. In addition,

μ+[ω0| −−N ,−L1−1 ∩AL1 ] < μ+[ω0| +−N ,−L1−1 ∩AL1 ]. (51)

Thus, for every configuration ω+ ∈ N +,left
N ,L1

(ωalt) and ω− ∈ N−,left
N ,L1

(ωalt), there exists
δ > 0 such that

∣∣∣μ+,ω+

Z+
[σ0] − μ

+,ω−
Z+

[σ0]
∣∣∣ > δ,

for L1 large enough, as we desired. ��

5. Number of Discontinuity Points

From the previous section, we know that at low temperatures the alternating configura-
tions are points of discontinuity in a suitable range of the exponent α on Dyson models.
The argument can be generalized for configurations alternating on blocks, and then we
have an infinity but countable number of points where the g-function is essentially dis-
continuous. One of the natural questions on g-functions is the number of discontinuity
points when they do exist, see [37], for instance.
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In this section, we prove as a corollary from the previous results that for α > 3/2 the
number of discontinuity points is uncountable.

Consider P be the i.i.d. a priori measure on E = {−1, 1} defined by P(X = 1) =
P(X = −1) = 1

2 . Let (Xi )i∈Z be a family of random variables on (E,P). Let ω =
(ω j ) j>0 be a fixed configuration on {−1, 1}Z+ , define

Y = Y (ω) :=
∑

i<0

∑

j>0

1

|i − j |α Xiω j

being the “random energy” of the past.

Proposition 5. If α > 3/2, then Var(Y ) < ∞.

Proof. Since E(Xi ) = 0 for every i ∈ Z, the variance of Y is given by Var(Y ) = E(Y 2).

Y 2 =
∑

i<0

∑

j>0

∑

l<0

∑

k>0

1

(|i − j ||l − k|)α Xi Xlω jωk . (52)

Thus, since for i �= l we have E(Xi Xl) = E(Xi )E(Xl) = 0, and E(X2
i ) = 1 for every

i ∈ Z,

E(Y 2) =
∑

i<0

∑

j>0

∑

k>0

1

(|i − j ||i − k|)α ω jωk . (53)

Thus, the variance is bounded by

Var(Y ) ≤
∑

i>0

∑

j>0

1

(i + j)α
∑

k>0

1

(i + k)α

≤ 1

(α − 1)2
∑

i>0

i2−2α,

which is finite when 2 − 2α < −1, i.e., α > 3/2. ��

Corollary 1. For every α ∈ (3/2, 2) and β > 0 large enough the number of points
where the g-function is essentially discontinuous is uncountable.

Proof. By Proposition 5 and Chebyschev’s inequality we know that given a c ∈ R large
enough, we have P(|Y | < c) > 0. Since any set of a countable number of points has
measure zero for P, it follows that it must exist an uncountable number of configurations
ω such that Y (ω) < c. For each of themwe use Lemma 2 as before and we can show that
these points are also configurationswhere the g-function is essentially discontinuous. ��
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6. Final Remarks and Open Questions

We have as our main result shown that between the class of Gibbs measures and the
class of g-measures, neither of them contains the other one. Thus one-sided continuity
and two-sided continuity of conditional probabilities are really different properties and
there exists a clear distinction between these two notions.

The result on entropic repulsion which we used in the proof presumably can be
improved in various respects. We mention a few open questions regarding these issues.

It is not clear to us whether entropic repulsion holds for the case α = 2. The interface
in that case has macroscopic, rather thanmesoscopic flucuations, whichmakes our proof
break down.

Neither is it clear to us whether the methods of Littin and Picco [59] will allow to
extend the entropic repulsion results to other α values, although we expect them to hold
also in that regime.

We give lower bounds for the entropic repulsion, that is, the size of the “wet” region,
but have neither checked if the upper bounds are feasible nor if the entropic repulsion
holds all the way up to the critical point.
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