

 University of Groningen

PIG WELFARE THROUGH BEHAVIOR LEARNING FROM CAMERA RECORDINGS
Marin, Iuliana; Goga, Nicolae; Doncescu, Andrei

Published in:
Scientific papers-Series d-Animal science

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Marin, I., Goga, N., & Doncescu, A. (2018). PIG WELFARE THROUGH BEHAVIOR LEARNING FROM
CAMERA RECORDINGS. Scientific papers-Series d-Animal science, 61(1), 245-250.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 13-11-2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Groningen

https://core.ac.uk/display/232525937?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.rug.nl/research/portal/en/publications/pig-welfare-through-behavior-learning-from-camera-recordings(9787f848-4473-4b36-a637-201cdb7fbe45).html

245

PIG WELFARE THROUGH BEHAVIOR LEARNING

FROM CAMERA RECORDINGS

Iuliana MARIN1, Nicolae GOGA1,2, Andrei DONCESCU3

1Faculty of Engineering in Foreign Languages, University POLITEHNICA of Bucharest,

Bucharest, Romania
2Molecular Dynamics Group, University of Groningen, Groningen, Netherlands

3Laboratoire d'analyse et d'architecture des systemes, Université Paul Sabatier de Toulouse,
Toulouse, France

Corresponding author email: marin.iulliana25@gmail.com

Abstract

Animal Science students along with the farm staff have to monitor the behavior of pigs in order to assure their welfare.
The video systems are used by our educational software and new methods of pig observation, evaluation and treatment
are applied much faster and more efficient compared to the classical intervention. Each recording is stored as a media
file and each frame taken at 0.1 seconds is stored as a Bitmap image. The Bitmap images are processed in parallel
using the MapReduce programming model from Apache Hadoop. The contour of the image is automatically analyzed
and based on it the presence of pigs is detected, as well as their location can be determined. The location is important
because it can be denoting that the pig eats or that it stays aside. Pig limp was also detected. It was observed based on
the recordings that 83% of the time the pigs spend it lying down, 7% is spent eating and 10% of the time they walk and
sit. Video monitoring and automatic interpretation facilitates the learning of new intervention approaches and boosts
the responsiveness among the students. The students can learn from the critical situations and benefit from these cases
while learning.

Key words: educational software, behavioral monitoring, video recordings, image filtering, MapReduce.

INTRODUCTION

Image analysis starting from video recordings
is a useful way of better understanding the
monitored environment.
The use of camera recordings has been used
while investigating the way students build their
knowledge during the class while the teacher
was presenting the lesson (Carvalho, 2004).
In vivo behavioral studies (Pasqualin et al.,
2018) have been done in real time based on fast
video capturing of dynamic phenomena like
fast fluorescent calcium imaging and voltage
mapping in cardiac myocytes and neurons.
Pigeons behavior consisting in moving, eating,
returning to the box is observed without the
need of watching the video (Madan et al.,
2014). The algorithm finds out the bird's
position at a specific moment of time, overlays
this on the reference video frame and a
summary of the activity is obtained. Based on
this statistics about the length of the path and
duration are computed.
Hen tracking based on image analysis
processing (Kashiha et al., 2014) is used to

determine the total time spent in each
compartment, as well as their behavior when
they are exposed to a certain ammonia
concentration in the air. Ammonia results from
the chemical decomposition of uric acid which
is found in litter (Aziz et al., 2010). The
experiment proved that hens avoid
compartments with a level of ammonia higher
than 22 ppm.
An automated monitoring system based on
using depth sensors (Matthews et al., 2017) for
monitoring the pig movement was created for
having information about the pig standing,
eating, drinking and moving activities.
The depth and infrared captures were done
using the Kinect software development kit. The
observations on the behavior have been stated
manually.
The current article presents the automatic
analysis done in parallel of camera recordings
to investigate the presence, behavior and
limping of pigs. The devices that are needed are
just the video cameras. No other special and
expensive devices are required. The solution
allows the farm staff to assure welfare to pigs.

Scientific Papers. Series D. Animal Science. Vol. LXI, Number 1, 2018
ISSN 2285-5750; ISSN CD-ROM 2285-5769; ISSN Online 2393-2260; ISSN-L 2285-5750

246

Students and the farm staff learn to prepare
themselves to interfere during an emergency.
The article is organized as follows: in the next
section are presented the algorithms for edge
detection and the MapReduce parallel
processing on images. The results and
discussions section presents the impact of
computation without and with MapReduce,
along with the detection of pig body parts and
behavior. The conclusions are drawn based on
the obtained results.

MATERIALS AND METHODS

The camera recordings belonging to a pig farm
are processed in parallel using the MapReduce
programming model from Apache Hadoop. The
retrieved media file is the input to be analyzed
by the program. Each frame taken at 0.1
seconds is saved in the Bitmap format. The
frames are processed in parallel using the C#
language based on the MapReduce
programming model from Apache Hadoop.
Edges present a significant change in the image
intensity, marking the boundaries between the
objects. The contours of the pigs can be
detected using the Prewitt filter that calculates
an estimation of the image intensity function
gradient. This offers the direction of the largest
possible increase from light to dark and the rate
of change in that direction (Prewitt, 1970). The
Canny edge detection (Canny, 1986) filter has
multiple stages, where edges are the local
maxima obtained after applying the horizontal
and vertical masks.
The gradient for a slide of the radiography is a
two dimensional vector, being composed of the
derivatives in the horizontal and vertical
directions. The vector points towards the
direction of the biggest intensity increase,
respectively from darker to brighter values.
There are two masks that are used for edge
detection in the horizontal and vertical
direction and which are convolved through the
operator * with the original image A for which
the approximations of the derivatives are done.
The vertical mask, Gx, has a zero column and
will retrieve the vertical edges of an image:

 (1)

The mask acts as a first order derivative and
computed the difference between the intensities
of pixels in an edge region. The central column
is filled with zeros, indicating that the initial
values of the image are not taken into
consideration, but it enhances the calculation of
the difference between the right and left pixel
values placed around an edge.
The horizontal mask, Gy, has a zero row and
works similarly to the previous mask,
computing the difference of pixel intensities
from above and below a particular edge, being
equal to:

 (2)
The marks have opposite signs and their sum
equals zero.
The resulting gradient is the combination of the
previous two masks:

 (3)
Another type of filter is the Canny edge
detector which consists of multiple stages,
being an improvement of the Sobel filter
(Sobel, 1968). The application of the Gaussian
filter to smooth the image in order to remove
the noise which is done by blurring the image.
Finding the intensity gradients of the image due
to the fact that a point may have a variety of
directions. The horizontal and vertical masks
are applied, such as for Prewitt which was
previously explained.
The application of non-maximum suppression
to get rid of response to edge detection. Only
local maxima should be marked as edges.
The application of double threshold to
determine potential edges. The suppression of
all the other edges that are weak and not
connected to strong edges. For the second step,
the intensity of the gradient can be computed
using a Sobel filter, where:

 (4)
and

 (5)

247

The gradient may be computed using equation
3 and its direction is determined by the
arctangent function with two arguments:

 (6)
The MapReduce programming model consists
of three steps: Map, Shuffle and Sort, Reduce
(Dean, 2008) and was described by the
engineers from Google, Jeffrey Dean and
Sanjay Ghemawat. The Map step takes as input
key-value pairs and outputs multiple pairs.
These intermediate output is grouped by key at
the Shuffle and Sort step, so that for each key is
obtained a list of values and this will represent
the input for the Reducer. The Reducer outputs
a key-value pair.
MapReduce runs using Java as programming
language, but it does not have a library for
processing images such as the Bitmap, a raster
image file format. Instead, the C# programming
language of the .Net Framework contains the
System.Drawing.Bitmap library, enhancing
image processing. The code written in C# for
processing the input data can be run in Java by
transforming it into a .dll file which is used for
the Map and Reduce functions, but the
implementation complexity increases in the
generation of the .dll file for the Prewitt and
Canny filters.
MapReduce jobs can be run on Hadoop using
HDInsight clusters and Microsoft Azure
(Microsoft, 2018) that is a cloud computing
platform employed to build, deploy and
manage applications and services through a
network of managed data centers. The
Microsoft Azure cloud computing platform
requires details about your own credit card and
clients pay for the usage according to the pay-
as-you-go pricing model.
There exists a MapReduce library called HIPI
(Hadoop Image Processing Interface), created
by Sean Arietta, Jason Lawrence, Liu Liu, and
Chris Sweeney, from the University of Virginia
Computer Graphics Lab. It is designed as a
wrapper over the Apache’s Hadoop
MapReduce framework, specifically designed
for image processing. It enables the storage of
very large collections of images on the HDFS
(Hadoop Distributed File System). HIPI
integrates OpenCV, a popular open-source
library for computer vision algorithms. A HIPI
program is structured as in Figure 1.

Figure 1. HIPI program design

[http://hipi.cs.virginia.edu/images/hipi_pipeline.png,
2018]

A HIPI program takes a HIB (HIP Image
Bundle) file as its main input. The custom
format encapsulates a collection of images and
is a single file on the HDFS.
Fortunately, the standard distribution of HIPI
(HIPI, 2018) offers several tools for HIB
creation, including a shell script that converts a
directory of standard images (png or jpeg) into
a HIB file.
The HIPI program’s first step is culling,
meaning that images from the HIB are filtered
by user defined criteria. The remaining images
are assigned to maptasks, maximizing data
locality (like any Hadoop MapReduce program
should). An image is sent to the Mapper as an
object (various subclasses exist here, for ease
of use). Along with the image, the Mapper is
also given a Header object, to uniquely identify
each image.
The built-in MapReduce shuffle algorithm
minimizes network traffic, while transmitting
all output from the Mappers to Reducers. The
user can define custom reduce tasks, that
provide the building blocks for the final output,
stored in the HDFS.
The distribution provides several usage
examples (Sweeney, 2018).
As previously mentioned, HIPI can be used
with OpenCV. Once you have setup Hadoop
and HIPI, the setup for OpenCV is very easy
and is described at (Mayank, 2018).
The video recording files are converted into
Bitmap images, where each frame is taken as
0.1 seconds. This supports lossless data
compression through a program written in C#.
Each slide contains data patches and it is
partitioned into four subsets that are further
distributed to different map tasks (Fernandez,
2016; Yamamoto, 2012).

248

Figure 2. MapReduce processing flow

Parallel processing can be used for computing
the performances (Marin, 2010), digestibility
(Marin, 2017) of pigs based on forages (Marin,
2016), as well as that of fish (Nicolae, 2017),
ducks (Marin, 2015).
The parallel distributed processing using
MapReduce is illustrated in Figure 2. The
MapReduce function takes as parameters the
map function, reduce function and the list of
inputs. Each input is transformed into a
intermediate result of the type
IntermediateResult. The reduce function starts
only when all the concurrent transformations
have been done. Moreover, it turns the
intermediate results into final results. The map
task starts by using Task.Factory.StartNew(()
=> map(input)). The reduce task waits until all
the map tasks finished, after which is starts
processing using Task.Factory.Continue
WhenAll(mapTasks, tasks => PerformReduce
(reduce, tasks)).
The input key-value pairs for the Mapper are
stored inside a list of MyBitmap images. The
list contains pairs of the type MyBitmap where
the key is of the type String standing for the
image name and the image split representation
stored as System.Drawing.Bitmap. The output
of the Map function are the intermediate key-
value pairs where the key is the image name
and the value is the processed subimage.
The Shuffle and Sort step emits key-value pairs
where the key is the image name without
containing the split number and the value is the
list of processed subimages that belong to the
same image.
Having this as input, the Reducer will generate
MyBitmap key-value pairs where the key is the

image name and the value if the final image
obtained by merging the filtered subimages.
One important issue that appears is for the
border pixels of the subimages, because edge
detection algorithms imply convolution
operations (Tesfamariam, 2011). According to
this, each subimage data patches will be added
another layer of pixels from the following
subimage as in Figure 3.
Subimage A has an additional border of 2
pixels taken from the following image to its
right hand side. The subimages B and C have a
border of 2 pixels each taken from their
neighbors added on both sides. Subimage D has
the additional border of two pixels taken from
the left image neighbor. The subimages are
overlapping and the Reducer eliminates the
added pixels and merges the filtered images
according to their name that contains the split
number.

Figure 3. Input image splitting strategy

249

RESULTS AND DISCUSSIONS

The program runs both without the
implemented MapReduce, as well as using it.

The input data is represented by 20 folders,
each folder containing video recordings. The
total size is of 3 GB. The total execution time is
illustrated in Table 1.

Table 1. Data execution time according to the input data amount

Number of files Canny without
MapReduce [s]

Prewitt without
MapReduce [s]

Canny with
MapReduce [s]

Prewitt with
MapReduce [s]

840 470.670 315.067 312.810 280.965
630 358.772 237.025 238.874 207.840
420 259.375 152.734 163.102 138.346
210 157.015 68.526 88.293 71.853

Using the data from Table 1, the duration in
seconds as function of total file number was
displayed in Figure 4.

Figure 4. Duration in seconds as function of total file

number

It can be observed that the dependency between
the duration in seconds and the total number of
files is linear.
The execution time without MapReduce data
parallel processing lasted longer, as expected,
compared to the version where MapReduce
was applied.
Taking into consideration the quality of the
output image, for the MapReduce filtered scan
output Bitmap images of a video recording.
In Figure 5 is illustrated the output triggered by
applying the Prewitt filter. For the same slide,
the Canny filter was applied and the output
looks as in Figure 6.

Figure 5. Application of the Prewitt filter

Figure 6. Application of the Canny filter

By applying the Canny filter, the pigs are even
worse to be identified.
Based on the contour which is present in the
Prewitt filtered frame, pig recognition is done
based on a fragment dictionary for each feature,
such as the pig's body, head, legs, including
limp.
If limp is detected or if the pigs lay too much
down, meaning that they are ill, the image
which lead to this diagnosis is sent to the
program's user via email to facilitate a faster
intervention. In such a situation, the students
can learn how to mitigate the problems.
The pigs are analyzed using the recording
frame images, where each region is detected by
performing a set of transformations,
respectively scaling, rotation and translation. A
classifier is used in order to trigger which is the
detected body part.
Each camera has its own positioning and based
on its orientation it is known the location where
the pigs eat. The previous detected contours are
known and behavioral inferences are triggered
based on the positions occupied by the pigs,
leading to the fact that 83% of the pigs lay
down, 7% eat and 10% change their position
frequently.

250

CONCLUSIONS

The implemented MapReduce accepts Bitmap
images as input in order to process them in
comparison with the option of using the code
written in C# for running it in Java through the
obtained .dll file that can be used for the Map
and Reduce functions increases the complexity
in the generation of the Prewitt and Canny
filters.
Another option was that of Microsoft Azure
cloud computing platform that asks for your
personal information and it uses the pay-as-
you-go pricing model.
Large data amounts processing requires the use
of parallelization for optimum runtime duration
in order to detect illnesses and to analyze the
behavior of pigs. This has been proven by the
use of the implemented MapReduce, while for
the version without it, the execution time was
even double.
A better image contour detection and further
evaluation is to be investigated in the future.

REFERENCES

Scarfe, W. C., Farman, A. G., 2008. What is cone-beam

CT and how does it work? Dent Clin North Am.,
52(4), 707-730.

Prewitt, J.M.S., 1970. Object Enhancement and
Extraction. Picture processing and Psychopictorics,
Academic Press.

Canny, J., 1986. A computational approach to edge
detection. Pattern Analysis and Machine Intelligence.
IEEE Transactions on PAMI.

Sobel, I., Feldman, G., 1968. A 3x3 Isotropic Gradient
Operator for Image Processing. Stanford Artificial
Intelligence Project (SAIL).

Dean, J., Ghemawat, S., 2008. MapReduce: Simplified
data processing on large clusters. Commun Acm,
51(1), 107-113.

Microsoft, 2018. Microsoft Azure, https://azure.
microsoft.com/en-us/?b=16.17 .

HIPI, 2018. HIPI, https://github.com/uvagfx/hipi .
Sweeney, C., Liu, L., Arietta, S., Lawrence, J., 2018.

HIPI: A Hadoop Image Processing Interface for
Image-based MapReduce Tasks, University of
Virginia, http://homes.cs.washington.edu/~csweeney/
papers/undergrad_thesis.pdf .

Mayank, S., 2018. How to use opencv with Hadoop or
HIPI (Hadoop Image Processing Interface),
https://techgimmick.wordpress.com/2015/06/24/how-
to-use-opencv-with-hadoop-or-hipi-hadoop-image-
processing-interface/ .

Fernandez, B. A., Kumar, S., 2018. Distributed Image
Processing using Hadoop MapReduce framework,
http://search.iiit.ac.in/cloud/presentations/26.pdf .

Yamamoto, M., Kaneko, K., 2012. Parallel image
database processing with MapReduce and
performance evaluation in pseudo distributed mode.
International Journal of Electronic Commerce
Studies, 3(2), 211-228.

Marin, M., Urdes, L., Pogurschi, E., Dragotoiu, D., 2010.
Research Concerning the Influence of the Reducing
Level of the Compound Feed on the Performances of
the Pigs for Fattening. Scientific Papers Animal
Science and Biotechnologies, 43 (1), 72-75.

Marin, M., Hodosan, C., Dinita, G., Nicolae, C. G., 2017.
The Influence of the Chemical Composition of
Maize, Barley and Peas Hybrids on the Digestibility
of Compound Feed for Pigs. AgroLife Scientific
Journal, 6 (2), 127-132.

Marin, M., Hodosan, C., Nicolae, C. G., Dinita, G.,
Dragotoiu, T., Nistor, L., 2016. Researches regarding
the Chemical Composition and Gross Energy of
Sorghum in Comparison to other Forages for Feeding
Cattle and Pigs. Scientific Papers, 95.

Nicolae, C. G., Moga, L. M., Bahaciu, G. V., Marin, M.
P., 2017. Traceability system structure design for fish
and fish products based on supply chain actors needs.
Scientific Papers: Series D, Animal Science-The
International Session of Scientific Communications
of the Faculty of Animal Science, 60.

Marin, M., Dragotoiu, D., Nicolae, C. G., Dinita, G.,
2015. Research on the influence of the oregano oil
use over the productive performances and quality of
duck meat. AgroLife Scientific Journal, 4 (2), 48-51.

Tesfamariam, E. B., 2011. Distributed processing of
large remote sensing images using MapReduce: A
case of edge detection methods. LAP LAMBERT
Academic Publishing.

