
 

 

 University of Groningen

PIG WELFARE THROUGH BEHAVIOR LEARNING FROM CAMERA RECORDINGS
Marin, Iuliana; Goga, Nicolae; Doncescu, Andrei

Published in:
Scientific papers-Series d-Animal science

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Marin, I., Goga, N., & Doncescu, A. (2018). PIG WELFARE THROUGH BEHAVIOR LEARNING FROM
CAMERA RECORDINGS. Scientific papers-Series d-Animal science, 61(1), 245-250.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 13-11-2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Groningen

https://core.ac.uk/display/232525937?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.rug.nl/research/portal/en/publications/pig-welfare-through-behavior-learning-from-camera-recordings(9787f848-4473-4b36-a637-201cdb7fbe45).html


245

  

 
PIG WELFARE THROUGH BEHAVIOR LEARNING  

FROM CAMERA RECORDINGS 
 

Iuliana MARIN1, Nicolae GOGA1,2, Andrei DONCESCU3 

 
1Faculty of Engineering in Foreign Languages, University POLITEHNICA of Bucharest, 

Bucharest, Romania 
2Molecular Dynamics Group, University of Groningen, Groningen, Netherlands 

3Laboratoire d'analyse et d'architecture des systemes, Université Paul Sabatier de Toulouse, 
Toulouse, France 

Corresponding author email: marin.iulliana25@gmail.com 
 
Abstract 
 
Animal Science students along with the farm staff have to monitor the behavior of pigs in order to assure their welfare. 
The video systems are used by our educational software and new methods of pig observation, evaluation and treatment 
are applied much faster and more efficient compared to the classical intervention. Each recording is stored as a media 
file and each frame taken at 0.1 seconds is stored as a Bitmap image. The Bitmap images are processed in parallel 
using the MapReduce programming model from Apache Hadoop. The contour of the image is automatically analyzed 
and based on it the presence of pigs is detected, as well as their location can be determined. The location is important 
because it can be denoting that the pig eats or that it stays aside. Pig limp was also detected. It was observed based on 
the recordings that 83% of the time the pigs spend it lying down, 7% is spent eating and 10% of the time they walk and 
sit. Video monitoring and automatic interpretation facilitates the learning of new intervention approaches and boosts 
the responsiveness among the students. The students can learn from the critical situations and benefit from these cases 
while learning. 
 
Key words: educational software, behavioral monitoring, video recordings, image filtering, MapReduce. 
 
INTRODUCTION 
 
Image analysis starting from video recordings 
is a useful way of better understanding the 
monitored environment. 
The use of camera recordings has been used 
while investigating the way students build their 
knowledge during the class while the teacher 
was presenting the lesson (Carvalho, 2004). 
In vivo behavioral studies (Pasqualin et al., 
2018) have been done in real time based on fast 
video capturing of dynamic phenomena like 
fast fluorescent calcium imaging and voltage 
mapping in cardiac myocytes and neurons. 
Pigeons behavior consisting in moving, eating, 
returning to the box is observed without the 
need of watching the video (Madan et al., 
2014). The algorithm finds out the bird's 
position at a specific moment of time, overlays 
this on the reference video frame and a 
summary of the activity is obtained. Based on 
this statistics about the length of the path and 
duration are computed. 
Hen tracking based on image analysis 
processing (Kashiha et al., 2014) is used to 

determine the total time spent in each 
compartment, as well as their behavior when 
they are exposed to a certain ammonia 
concentration in the air. Ammonia results from 
the chemical decomposition of uric acid which 
is found in litter (Aziz et al., 2010). The 
experiment proved that hens avoid 
compartments with a level of ammonia higher 
than 22 ppm. 
An automated monitoring system based on 
using depth sensors (Matthews et al., 2017) for 
monitoring the pig movement was created for 
having information about the pig standing, 
eating, drinking and moving activities.  
The depth and infrared captures were done 
using the Kinect software development kit. The 
observations on the behavior have been stated 
manually. 
The current article presents the automatic 
analysis done in parallel of camera recordings 
to investigate the presence, behavior and 
limping of pigs. The devices that are needed are 
just the video cameras. No other special and 
expensive devices are required. The solution 
allows the farm staff to assure welfare to pigs. 
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Students and the farm staff learn to prepare 
themselves to interfere during an emergency.  
The article is organized as follows: in the next 
section are presented the algorithms for edge 
detection and the MapReduce parallel 
processing on images. The results and 
discussions section presents the impact of 
computation without and with MapReduce, 
along with the detection of pig body parts and 
behavior. The conclusions are drawn based on 
the obtained results. 
 
MATERIALS AND METHODS 
 
The camera recordings belonging to a pig farm 
are processed in parallel using the MapReduce 
programming model from Apache Hadoop. The 
retrieved media file is the input to be analyzed 
by the program. Each frame taken at 0.1 
seconds is saved in the Bitmap format. The 
frames are processed in parallel using the C# 
language based on the MapReduce 
programming model from Apache Hadoop. 
Edges present a significant change in the image 
intensity, marking the boundaries between the 
objects. The contours of the pigs can be 
detected using the Prewitt filter that calculates 
an estimation of the image intensity function 
gradient. This offers the direction of the largest 
possible increase from light to dark and the rate 
of change in that direction (Prewitt, 1970). The 
Canny edge detection (Canny, 1986) filter has 
multiple stages, where edges are the local 
maxima obtained after applying the horizontal 
and vertical masks.  
The gradient for a slide of the radiography is a 
two dimensional vector, being composed of the 
derivatives in the horizontal and vertical 
directions. The vector points towards the 
direction of the biggest intensity increase, 
respectively from darker to brighter values.  
There are two masks that are used for edge 
detection in the horizontal and vertical 
direction and which are convolved through the 
operator * with the original image A for which 
the approximations of the derivatives are done. 
The vertical mask, Gx, has a zero column and 
will retrieve the vertical edges of an image: 

                                 (1)  

The mask acts as a first order derivative and 
computed the difference between the intensities 
of pixels in an edge region. The central column 
is filled with zeros, indicating that the initial 
values of the image are not taken into 
consideration, but it enhances the calculation of 
the difference between the right and left pixel 
values placed around an edge.  
The horizontal mask, Gy, has a zero row and 
works similarly to the previous mask, 
computing the difference of pixel intensities 
from above and below a particular edge, being 
equal to:  

                            (2) 
The marks have opposite signs and their sum 
equals zero.  
The resulting gradient is the combination of the 
previous two masks:  

                                           (3)  
Another type of filter is the Canny edge 
detector which consists of multiple stages, 
being an improvement of the Sobel filter 
(Sobel, 1968). The application of the Gaussian 
filter to smooth the image in order to remove 
the noise which is done by blurring the image. 
Finding the intensity gradients of the image due 
to the fact that a point may have a variety of 
directions. The horizontal and vertical masks 
are applied, such as for Prewitt which was 
previously explained.  
The application of non-maximum suppression 
to get rid of response to edge detection. Only 
local maxima should be marked as edges.  
The application of double threshold to 
determine potential edges. The suppression of 
all the other edges that are weak and not 
connected to strong edges. For the second step, 
the intensity of the gradient can be computed 
using a Sobel filter, where:  

                                  (4) 
and 

                            (5)  
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The gradient may be computed using equation 
3 and its direction is determined by the 
arctangent function with two arguments:  

                                       (6) 
The MapReduce programming model consists 
of three steps: Map, Shuffle and Sort, Reduce 
(Dean, 2008) and was described by the 
engineers from Google, Jeffrey Dean and 
Sanjay Ghemawat. The Map step takes as input 
key-value pairs and outputs multiple pairs. 
These intermediate output is grouped by key at 
the Shuffle and Sort step, so that for each key is 
obtained a list of values and this will represent 
the input for the Reducer. The Reducer outputs 
a key-value pair. 
MapReduce runs using Java as programming 
language, but it does not have a library for 
processing images such as the Bitmap, a raster 
image file format. Instead, the C# programming 
language of the .Net Framework contains the 
System.Drawing.Bitmap library, enhancing 
image processing. The code written in C# for 
processing the input data can be run in Java by 
transforming it into a .dll file which is used for 
the Map and Reduce functions, but the 
implementation complexity increases in the 
generation of the .dll file for the Prewitt and 
Canny filters. 
MapReduce jobs can be run on Hadoop using 
HDInsight clusters and Microsoft Azure 
(Microsoft, 2018) that is a cloud computing 
platform employed to build, deploy and 
manage applications and services through a 
network of managed data centers. The 
Microsoft Azure cloud computing platform 
requires details about your own credit card and 
clients pay for the usage according to the pay-
as-you-go pricing model. 
There exists a MapReduce library called HIPI 
(Hadoop Image Processing Interface), created 
by Sean Arietta, Jason Lawrence, Liu Liu, and 
Chris Sweeney, from the University of Virginia 
Computer Graphics Lab. It is designed as a 
wrapper over the Apache’s Hadoop 
MapReduce framework, specifically designed 
for image processing. It enables the storage of 
very large collections of images on the HDFS 
(Hadoop Distributed File System). HIPI 
integrates OpenCV, a popular open-source 
library for computer vision algorithms. A HIPI 
program is structured as in Figure 1. 

 
Figure 1. HIPI program design 

[http://hipi.cs.virginia.edu/images/hipi_pipeline.png, 
2018] 

 
A HIPI program takes a HIB (HIP Image 
Bundle) file as its main input. The custom 
format encapsulates a collection of images and 
is a single file on the HDFS. 
Fortunately, the standard distribution of HIPI 
(HIPI, 2018) offers several tools for HIB 
creation, including a shell script that converts a 
directory of standard images (png or jpeg) into 
a HIB file.  
The HIPI program’s first step is culling, 
meaning that images from the HIB are filtered 
by user defined criteria. The remaining images 
are assigned to maptasks, maximizing data 
locality (like any Hadoop MapReduce program 
should). An image is sent to the Mapper as an 
object (various subclasses exist here, for ease 
of use). Along with the image, the Mapper is 
also given a Header object, to uniquely identify 
each image.  
The built-in MapReduce shuffle algorithm 
minimizes network traffic, while transmitting 
all output from the Mappers to Reducers. The 
user can define custom reduce tasks, that 
provide the building blocks for the final output, 
stored in the HDFS.  
The distribution provides several usage 
examples (Sweeney, 2018).  
As previously mentioned, HIPI can be used 
with OpenCV. Once you have setup Hadoop 
and HIPI, the setup for OpenCV is very easy 
and is described at (Mayank, 2018). 
The video recording files are converted into 
Bitmap images, where each frame is taken as 
0.1 seconds. This supports lossless data 
compression through a program written in C#.  
Each slide contains data patches and it is 
partitioned into four subsets that are further 
distributed to different map tasks (Fernandez, 
2016; Yamamoto, 2012). 
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Figure 2. MapReduce processing flow 

Parallel processing can be used for computing 
the performances (Marin, 2010), digestibility 
(Marin, 2017) of pigs based on forages (Marin, 
2016), as well as that of fish (Nicolae, 2017), 
ducks (Marin, 2015). 
The parallel distributed processing using 
MapReduce is illustrated in Figure 2. The 
MapReduce function takes as parameters the 
map function, reduce function and the list of 
inputs. Each input is transformed into a 
intermediate result of the type 
IntermediateResult. The reduce function starts 
only when all the concurrent transformations 
have been done. Moreover, it turns the 
intermediate results into final results. The map 
task starts by using Task.Factory.StartNew(() 
=> map(input)). The reduce task waits until all 
the map tasks finished, after which is starts 
processing using Task.Factory.Continue 
WhenAll(mapTasks, tasks => PerformReduce 
(reduce, tasks)).  
The input key-value pairs for the Mapper are 
stored inside a list of MyBitmap images. The 
list contains pairs of the type MyBitmap where 
the key is of the type String standing for the 
image name and the image split representation 
stored as System.Drawing.Bitmap. The output 
of the Map function are the intermediate key-
value pairs where the key is the image name 
and the value is the processed subimage.  
The Shuffle and Sort step emits key-value pairs 
where the key is the image name without 
containing the split number and the value is the 
list of processed subimages that belong to the 
same image.  
Having this as input, the Reducer will generate 
MyBitmap key-value pairs where the key is the 

image name and the value if the final image 
obtained by merging the filtered subimages.  
One important issue that appears is for the 
border pixels of the subimages, because edge 
detection algorithms imply convolution 
operations (Tesfamariam, 2011). According to 
this, each subimage data patches will be added 
another layer of pixels from the following 
subimage as in Figure 3. 
Subimage A has an additional border of 2 
pixels taken from the following image to its 
right hand side. The subimages B and C have a 
border of 2 pixels each taken from their 
neighbors added on both sides. Subimage D has 
the additional border of two pixels taken from 
the left image neighbor. The subimages are 
overlapping and the Reducer eliminates the 
added pixels and merges the filtered images 
according to their name that contains the split 
number.  

 
Figure 3. Input image splitting strategy
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RESULTS AND DISCUSSIONS 
 
The program runs both without the 
implemented MapReduce, as well as using it. 

The input data is represented by 20 folders, 
each folder containing video recordings. The 
total size is of 3 GB. The total execution time is 
illustrated in Table 1. 

Table 1. Data execution time according to the input data amount 

Number of files Canny without 
MapReduce [s] 

Prewitt without 
MapReduce [s] 

Canny with 
MapReduce [s] 

Prewitt with  
MapReduce [s] 

840 470.670 315.067 312.810 280.965 
630 358.772 237.025 238.874 207.840 
420 259.375 152.734 163.102 138.346 
210 157.015 68.526 88.293 71.853 

 
Using the data from Table 1, the duration in 
seconds as function of total file number was 
displayed in Figure 4. 

 
Figure 4. Duration in seconds as function of total file 

number 
 
It can be observed that the dependency between 
the duration in seconds and the total number of 
files is linear.  
The execution time without MapReduce data 
parallel processing lasted longer, as expected, 
compared to the version where MapReduce 
was applied. 
Taking into consideration the quality of the 
output image, for the MapReduce filtered scan 
output Bitmap images of a video recording.  
In Figure 5 is illustrated the output triggered by 
applying the Prewitt filter. For the same slide, 
the Canny filter was applied and the output 
looks as in Figure 6. 
 

 
Figure 5. Application of the Prewitt filter 

 

 
Figure 6. Application of the Canny filter 

 
By applying the Canny filter, the pigs are even 
worse to be identified. 
Based on the contour which is present in the 
Prewitt filtered frame, pig recognition is done 
based on a fragment dictionary for each feature, 
such as the pig's body, head, legs, including 
limp.  
If limp is detected or if the pigs lay too much 
down, meaning that they are ill, the image 
which lead to this diagnosis is sent to the 
program's user via email to facilitate a faster 
intervention. In such a situation, the students 
can learn how to mitigate the problems. 
The pigs are analyzed using the recording 
frame images, where each region is detected by 
performing a set of transformations, 
respectively scaling, rotation and translation. A 
classifier is used in order to trigger which is the 
detected body part. 
Each camera has its own positioning and based 
on its orientation it is known the location where 
the pigs eat. The previous detected contours are 
known and behavioral inferences are triggered 
based on the positions occupied by the pigs, 
leading to the fact that 83% of the pigs lay 
down, 7% eat and 10% change their position 
frequently.  
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CONCLUSIONS 
 
The implemented MapReduce accepts Bitmap 
images as input in order to process them in 
comparison with the option of using the code 
written in C# for running it in Java through the 
obtained .dll file that can be used for the Map 
and Reduce functions increases the complexity 
in the generation of the Prewitt and Canny 
filters.  
Another option was that of Microsoft Azure 
cloud computing platform that asks for your 
personal information and it uses the pay-as-
you-go pricing model.  
Large data amounts processing requires the use 
of parallelization for optimum runtime duration 
in order to detect illnesses and to analyze the 
behavior of pigs. This has been proven by the 
use of the implemented MapReduce, while for 
the version without it, the execution time was 
even double. 
A better image contour detection and further 
evaluation is to be investigated in the future. 
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