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Fixed muscle synergies and their potential
to improve the intuitive control of
myoelectric assistive technology for upper
extremities
Tim A. Valk* , Leonora J. Mouton, Egbert Otten and Raoul M. Bongers

Abstract

Background: Users of myoelectric controlled assistive technology (AT) for upper extremities experience difficulties
in controlling this technology in daily life, partly because the control is non-intuitive. Making the control of
myoelectric AT intuitive may resolve the experienced difficulties. The present paper was inspired by the suggestion
that intuitive control may be achieved if the control of myoelectric AT is based on neuromotor control principles. A
significant approach within neurocomputational motor control suggests that myosignals are produced via a limited
number of fixed muscle synergies. To effectively employ this approach in myoelectric AT, it is required that a limited
number of muscle synergies is systematically exploited, also when muscles are used differently as required in
controlling myoelectric AT. Therefore, the present study examined the systematic exploitation of muscle synergies when
muscles were used differently to complete point-to-point movements with and without a rod.

Methods: Healthy participants made multidirectional point-to-point movements with different end-effectors, i.e. with the
index finger and with rods of different lengths. Myosignals were collected from 22 muscles in the arm, trunk, and back,
and subsequently partitioned into muscle synergies per end-effector and for a pooled dataset including all end-effectors.
The exploitation of these muscle synergies was assessed by evaluating the similarity of structure and explanatory ability
of myosignals of per end-effector muscle synergies and the contribution of pooled muscle synergies across end-effectors.

Results: Per end-effector, 3–5 muscle synergies could explain 73.8–81.1% of myosignal variation, whereas 6–8 muscle
synergies from the pooled dataset also captured this amount of myosignal variation. Subsequent analyses
showed that gradually different muscle synergies—extracted from separate end-effectors—were exploited across
end-effectors. In line with this result, the order of contribution of muscle synergies extracted from the pooled dataset
gradually reversed across end-effectors.

Conclusion: A limited number of muscle synergies was systematically exploited in the examined set of movements,
indicating a potential for the fixed muscle synergy approach to improve the intuitive control of myoelectric AT. Given
the gradual change in muscle synergy exploitation across end-effectors, future research should examine whether this
potential can be extended to a larger range of movements and tasks.

Keywords: Assistive technology, Muscle synergies, Point-to-point movements, Upper extremity, Electromyography,
Intuitive control
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Background
Within current rehabilitation practice, a substantial focus is
on applying assistive technology (AT) to help patients with
neuromotor deficits regain functionality in their daily activ-
ities. Often, myosignals are used to control the AT, e.g. in
myoelectric prostheses [1–3], myo-powered electric wheel-
chairs [4–6], and movement supporting devices, such as
exoskeletons [7–9] and orthoses [10, 11]. Furthermore,
myosignals have been applied in other human-machine
interfaces which are relevant for the independence of pa-
tients with neuromotor deficits, such as in the control of a
personal computer [12] or the teleoperation of robotic arms
[13–16]. However, despite the technological advancement
in many devices, patients often still experience problems to
control myoelectric AT in daily life [17–21]. For instance,
movements with myoelectric AT are non-smooth and
require high levels of attention [18, 22]. One of the aspects
that could cause these problems is that the control of myo-
electric AT is non-intuitive, as muscles have a different
function during the control of actions with myoelectric AT
compared to the same action in the non-affected situ-
ation (cf. [23, 24]). For example, in hand prosthetics,
the action of closing and opening of the hand is con-
trolled with remaining parts of wrist or elbow flexors
and extensor muscles—depending on the level of am-
putation. This function is arguably different from the
original function of these muscles, i.e. flexing and ex-
tending the wrist or elbow, respectively. The present
paper was inspired by the suggestion that an intuitive
interface between user and device would aid the effect-
ive control of myoelectric AT (cf. [25–27]). Further-
more, the present paper was grounded on the idea that
this intuitive control can be achieved if the design of
myoelectric AT is based on knowledge of the neuromo-
tor control principles underlying the production of
myosignals (cf. [28–31]). Therefore, we explored the
extent to which the fixed muscle synergy approach
[32–37], a proposed control principle from the field of
neurocomputational motor control, could form a basis
to improve the intuitive control of myoelectric AT for
upper extremities.
The basics of the fixed muscle synergy approach are

that myosignals are produced by simultaneously activat-
ing a limited number of fixed muscle groups consisting
of functionally related muscles across multiple joints, i.e.
the muscle synergies. These fixed muscle synergies are
proposed to be interneuronal networks, which do not
change over time, and are organized at the level of the
spinal cord (cf. [32, 33, 35, 36]). Activation of one of
these networks leads to proportional activation of the
muscles within a synergy. In that way, fixed muscle
synergies serve as primitives, which—if conjointly acti-
vated in a time-varying way—can produce appropriate
myosignals moving the limb across different tasks and

conditions [32–37]. Over the last decade, findings of
muscle synergies in myosignals in a variety of human be-
haviors—such as reaching in three dimensions [38–44],
upper extremity visuomotor adaptation [45], force con-
trol [46], planar reaching [47–49], upper extremity
movements in virtual reality [50], walking [51–53], and
postural control [54–56]—have been offered as evidence
for the existence of fixed muscle synergies as used neu-
romotor control principle. The relevant question for the
present paper is whether the proposed principle of fixed
muscle synergies could aid in controlling myoelectric
AT in an intuitive way.
The successful improvement of the intuitive control of

myoelectric AT with fixed muscles synergies requires that
muscles are indeed organized into fixed synergies and that
these synergies are systematically exploited during the dif-
ferent use of muscles as required in the control of myoelec-
tric AT. The aim of the present study was to gain new
insights in the viability of the fixed muscle synergy ap-
proach for its application in upper extremity assistive de-
vices. Therefore, the present study assessed whether a
limited number of muscle synergies was systematically
exploited when the same task had to be produced while
muscles were used differently. In the present experiment,
able-bodied participants made multidirectional point-to-
point movements with end-effectors of different lengths—
i.e. their index finger and with a rod of varying length. Due
to the introduction of end-effectors of different lengths, the
same point-to-point movement with the tip of the
end-effector had to be produced while postural angles, and
thus the use of muscles, varied over a large range [57–59].
Explaining this behavior in terms of fixed muscle synergies,
the same set of fixed muscle synergies had to be activated
with different time-varying signals to produce the ap-
propriate myosignals moving the tip of the end-effector
both with and without the use of rods. The potential
finding that a limited number of muscle synergies is
systematically exploited to produce myosignals when
muscles are used differently across end-effectors would
encourage the use of the fixed muscle synergy approach
to improve the intuitive control of myoelectric AT for
upper extremities. Alternatively, the set of muscle syn-
ergies might substantially differ across end-effectors.
Such a finding would warrant further examination of
the idea of fixed muscle synergies as neuromotor
control principle underlying the production of myo-
signals and places limitations on its potential to im-
prove the intuitive control of myoelectric AT for upper
extremities.

Methods
Participants
Eleven right-handed participants (mean age 23.9 ± 2.5
years, five males) took part in the experiment. Participants
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had no neuromotor deficits and all had normal or
corrected-to-normal sight. Participants received verbal
and written information about the procedures and signed
an informed consent before the start of the experiment.

Experimental set-up
In the experiment, participants made point-to-point
movements with the tip of their index finger or the tip
of a rod that was attached to the index finger. During
the point-to-point movements, eight peripheral targets
that were distributed equally around a center point
(Fig. 1) were tested. All targets had a diameter of 1 cm,
and the distance between the center point and targets
was 25 cm. The center point and targets were printed
on a piece of paper (A2 size, landscape orientation),
which was presented on a table in front of the partici-
pants. The rods used during the experiment were made
of aluminum; had a diameter of 0.5 cm; a length of 5,
15, or 25 cm; and a mass of 4, 12, or 20 g; respectively.
These rods were attached to an aluminum holder
(weight: 50 g) that was attached to the dorsal side of
the index finger. Furthermore, at the ventral side of the
index finger, a small aluminum plate was attached to
prevent movement of the interphalangeal joints while
allowing free motion of the metacarpophalangeal joint
(cf. [59]).
Five rigid bodies, triangular in shape, containing one

infrared light-emitting diode (LED) in each of the three

corners, were attached to the right side of the partici-
pants’ body, following Van Andel et al. [60]. The rigid
bodies were placed on the sternum, the flat part of the
acromion, laterally to the upper arm just below the in-
sertion of the deltoid, dorsally to the lower arm just
proximal to the ulnar and radial styloids, and to the
dorsal surface of the hand. The rigid bodies attached to
the sternum and the upper arm had a leg length of 6 cm;
the other three rigid bodies had a leg length of 4 cm.
Another set of three LEDs was attached to the
aluminum holder on the index finger. Positional data
for the eighteen LEDs was gathered with an Optotrak
3020 system (Northern Digital, Waterloo, Ontario,
Canada), using two synchronized units that sampled
at 100 Hz. To relate positions of the LEDs in space to
the anatomy of the participants and the movement of
the rods, nineteen bony landmarks of the participants
and the tips of the rods were digitized using a pointer
device [60].
Myosignals of 22 muscles (flexor carpi radialis [FCR];

flexor carpi ulnaris [FCU]; extensor carpi ulnaris [ECU];
extensor carpi radialis [ECR]; pronator teres [PRO];
brachioradialis [BRO]; brachialis [BRA]; long and short
head of the biceps brachii [BIL and BIS, respectively];
long, medial and lateral head of the triceps brachii [TRLo,
TRMe, and TRLa, respectively]; pectoralis major [PEC];
anterior, middle and posterior part of the deltoid [DEA,
DEM, and DEP, respectively]; superior, medial, and
inferior part of the trapezius [TRS, TRM, and TRI, re-
spectively]; infraspinatus [INF]; teres major [TER]; and
latissimus dorsi [LAT]) were recorded using surface
electromyography (EMG) as measured by two Porti
systems (TMSi, Enschede, the Netherlands), which were
synchronized with the Optotrak system. One Porti device
sampled in millivolts with no amplification at a frequency
of 2048Hz, whereas the other device sampled in milli-
volts with twenty times amplification at a frequency of
1600Hz. In the data analysis, raw data from both systems
were converted to signals in millivolts, with no amplifica-
tion. Before electrode attachment, hair was removed from
the attachment location if necessary, and the skin was
cleaned using denatured alcohol. After electrode place-
ment, the correctness of placement was determined by
having the participant perform a number of movements
in which the targeted muscle was involved [61], while
visually checking whether EMG activity matched expecta-
tions. Corrective placements were performed if necessary.
After positional LEDs and EMG electrodes were at-

tached, participants were gently strapped against the ex-
tended back of a chair, in such a way that trunk motion
during the point-to-point movements was prohibited
while the motion of the shoulder was free. Furthermore,
an elbow placer was positioned next to the participant
to standardize the participants’ position of the olecranon

Fig. 1 Experimental set-up, as seen from above
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at the start of each trial, which ensured a similar start
posture when the tip of the end-effector was held at the
center point.

Experimental procedure
Point-to-point movements were made from the center
point to one of eight peripheral targets (center-out move-
ment) and back from this peripheral target to the center
point (out-center movement). Before each trial, the experi-
menter indicated to the participant towards which target
had to be pointed. Subsequently, the experimenter gave a
start signal, after which participants reached as quickly
and accurately as possible from their start point to the se-
lected target. After each center-out trial, the next move-
ment to be made was its out-center counterpart back to
the center point. Note that the instruction was to move as
quickly as possible but that the response time was not em-
phasized. After each movement, participants were re-
quired to hold the tip of the end-effector at the terminal
position for a maximum of 1 s.

Design
In the present study, the participants performed 320 tri-
als. Each couple of center-out and out-center move-
ments involving one of the eight peripheral targets was
repeated five times in a random order as a block for
each of the four end-effectors (index finger and the three
rods). These blocks were also presented in random
order. After these 320 trials, participants performed
another 240 trials. These trials were not used in the
present study.

Data analysis
End-effector and joint-angle kinematics
Using rigid body transformations, the movement trajec-
tory of the tip of the end-effector was computed from
the Optotrak LEDs at the aluminum holder. Using this
movement trajectory of the end-effector tip, the start of
each movement in a trial was determined as the last frame
in the data before the tangential velocity—computed as
the square root of summed squares of derivatives of the
3D positional data—of the end-effector tip went above a
speed of 25mm/s. In a similar way, the end of each
movement in a trial was determined as the first frame in
the data after the tangential velocity of the end-effector tip
dropped below a speed of 25mm/s, with the additional
requirement that the tip of the end-effector had to be
within a radius of 10mm around its final position. The
time between start and end of the movement was defined
as movement time. To determine the accuracy at the
target, the absolute error, defined as the absolute differ-
ence between the position of the tip of the end-effector
and the center of the target at movement termination,
was computed.

To describe the executed movements in terms of
joint-angles, three joint-angles that contributed most to
the movement (cf. [59])—i.e. shoulder plane of eleva-
tion, shoulder inward-outward rotation, and elbow
flexion-extension—were computed using ISB guidelines
for the upper extremity [62]. These joint-angles were
derived from segment orientations using the digitized
bony landmarks and the Optotrak LEDs attached to the
rigid bodies. Joint-angle trajectories were normalized
over time.

EMG processing and muscle synergy extraction
The raw EMG signals for each trial were band-pass fil-
tered based on SEMIAN guidelines (4th order Butter-
worth filter, 20–500 Hz), rectified, and low-pass filtered
(4th order Butterworth filter, 10 Hz) to determine the
linear envelope of the EMG signal. Before performing
further analyses, all EMG signals were checked for arti-
facts, and divergent signals—e.g. signals with extremely
high amplitudes—were removed from the analysis. For
the approved linear envelopes, a linear ramp—deter-
mined by calculating a line from the average activation
from trial onset until 200 ms before movement onset to
the average activation from 200ms after movement ter-
mination until trial termination—was subtracted from
these signals to exclude muscle activity due to posture
and work against gravity (cf. [38]). Subsequently, the
portion of the EMG linear envelope from 200ms before
movement onset to 200 ms after movement termination
was selected for further analysis. This portion of the sig-
nal was resampled to 100 data points using a cubic
spline, and per muscle, the EMG signals were normal-
ized in amplitude to the highest value that that muscle
exerted in the whole experiment. Last, these normalized
signals were averaged across trials from every movement
direction (center-out or out-center) and target combin-
ation within every end-effector.
In the fixed muscle synergy approach, it is assumed

that a set of S myosignals, in this study 22, over time T
can be obtained by combining a limited number of N
muscle synergies W, representing the proportional acti-
vation level of each muscle in the synergy (in an S times
N matrix), with a time-varying activation signals C (in
an N times T matrix), according to the following
equation:

M ¼ W � C þ e ð1Þ

in which e represents the error between the observed
myosignals M and the modeled myosignals W*C.
A non-negative matrix factorization algorithm [63]

was used to extract the muscle synergies W and time-
varying activation signals C from the observed myo-
signals in matrix M. Per participant, this matrix M was
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composed five times: four times separately for every
end-effector including all processed and averaged myo-
signals from every movement direction and target com-
bination within that end-effector, and one time as a
pooled dataset including all processed and averaged
myosignals from all end-effectors.
For the extraction of muscle synergies from the myo-

signals of every separate end-effector, the algorithm was
executed 25 times for a range of 1–8 possible number of
muscle synergies N (cf. [38]) (Fig. 2a). To increase the
possibility of finding a global minimum error between
observation and model, different initial matrices W and
C were taken for every iteration. For every possible
number of muscle synergies N, the set of muscle syner-
gies extracted from these 25 iterations with the highest
explained variance (R2) of the observed myosignals M
was retained. This R2 was computed as follows:

R2 ¼ 1−
SSE
SST

: ð2Þ

In this eq. 2, SSE is the sum of squared errors of the
data reconstructed by the muscle synergies, and SST is
the sum of squared residuals of the data with respect to
the mean of the different rows of the matrix M.
Subsequently, for every end-effector, the to-be-found

number of muscle synergies N* within an end-effector
was selected based on the following rationale [38], (cf.
[64]). If N* is the to-be-found number of muscle syner-
gies, it is expected that a change in the slope of the R2

versus N curve from curved to straight appears at the
number of N =N* muscle synergy combinations. This

change is expected because the additional muscle syner-
gies will only represent variation which is attributable to
noise, and hence will explain similar portions of data
variation. To objectively find this spot in the curve, a lin-
ear regression procedure was used to examine for which
N the R2 versus N curve was essentially straight [64].
This spot was found by fitting straight lines through de-
creasing portions of the R2 versus N curve, removing the
smallest N of the portion of curve per iteration (Fig. 2b).
The first N for which the mean square residual error of
regression line N to Nmax with the R2 curve was < 10− 4

(cf. [38]) was selected as the number of muscle synergies
in that specific end-effector.
Also for the pooled dataset containing the myo-

signals from all end-effectors, the non-negative matrix
factorization algorithm was run 25 times, but now for
a range of 1-NPooledMax possible total number of
muscle synergies. In this, NPooledMax is the sum of the
number of muscle synergies as estimated in the
end-effectors separately. From these NPooledMax differ-
ent total muscle synergies sets, the total muscle
synergy set for the pooled matrix was determined as
the minimal number of muscle synergies that could
equally well describe the myosignals from every
end-effector as the muscle synergies separately ex-
tracted from these end-effectors could.

Assessment of the exploitation of muscle synergies
Three strategies were used to assess the exploitation of
muscle synergies across end-effectors. First, the similar-
ity of the structure of individual muscle synergies across
end-effectors was assessed by i) visually perusing the
muscle synergies ii) determining the normalized dot

A B

Fig. 2 Graphical representation of muscle synergy extraction process. a Processed myosignals of 22 muscles (M1 to M22 in the figure) were factorized
into muscle synergies with a non-negative matrix factorization algorithm, for a range of 1–8 possible number of muscle synergies N. For each N in this
range, the amount of variance in myosignals that these N muscle synergies could explain (R2) was determined using eq. 2. b Explained
variances R2 and possible number of muscle synergies N plotted in an R2 versus N curve (blue curve in the figure). By repeatedly fitting
straight lines through decreasing portions of the R2 versus N curve (grey dotted lines in the figure), it was determined which portion of
the curve was essentially straight (red dotted line represents fitted line through this essentially straight part of the curve). The starting point of this essentially
straight portion of the curve was established as the to-be-found number of muscle synergies N* (in the present example 4)
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product (NDP) of two muscle synergies stemming from
two different end-effectors, and iii) examining whether
clusters of similar muscle synergies exploited across all
end-effectors could be formed. Second, the explanatory
ability of muscle synergies across end-effectors was
assessed by i) determining, via the cosine of principal
angles (CPA), whether two total muscle synergy sets
extracted from two separate end-effectors could span
the same subspace in the myosignal space, and ii) exam-
ining whether myosignals from one end-effector could
be reconstructed with the total muscle synergy set from
another end-effector. Third, the contribution of muscle
synergies as extracted from the pooled dataset was
evaluated across end-effectors.

Comparison of the structure of individual muscle
synergies extracted from separate end-effectors To
obtain a first impression of the similarity of structure of
individual muscle synergies across end-effectors, the
proportional activation levels between muscles within in-
dividual muscle synergies were visually compared across
these end-effectors. After this visual comparison, the
similarity in structure of individual muscle synergies
across end-effectors was determined mathematically
with the NDP—calculated as the fraction of the scalar
product of two muscle synergies and the product of their
norms [48, 64–66]. This calculation was done in an
end-effector-pair-wise way, in which all individual
muscle synergies from one end-effector were compared
with all individual muscle synergies from another
end-effector on basis of their structure. From these
comparisons, best matching muscle synergies, as indi-
cated by their NDP, were paired, and the NDPs belong-
ing to these matched muscle synergies were ranked in a
descending order. This NDP analysis showed in which
couple of paired muscle synergies similarity dropped
below threshold—in the present study 0.9, (cf. [48, 64,
65])—which is indicative for the number of individual
muscle synergies that showed similarity in their struc-
ture between two end-effectors.
To assess across which end-effectors a certain muscle

synergy was exploited, individual muscle synergies that
had a similar structure across end-effectors were clus-
tered into groups using k-means clustering [67–69].
Over different iterations, k groups of clustered muscle
synergies were formed—in which for each iteration, k
increased by 1. This iterative process was repeated until
all clusters contained only muscle synergies that had a
similar structure. This similarity was assessed by com-
paring all muscle synergies within a cluster in a pair-
wise manner using the NDP. The clustering process
was ended if all clusters of muscle synergies exhibited a
mean NDP—as averaged across the NDPs of all pos-
sible pairs within a cluster—that was larger than 0.9.

From the characteristics of these clusters—i.e. the
number and origin of the muscle synergies per cluster—
we could deduce which muscle synergies were exploited
across end-effectors.

Comparison of the explanatory ability of total muscle
synergy sets extracted from separate end-effectors In
principle, it is mathematically possible that two total
muscle synergy sets that differ in structure can explain
the same assemblage of myosignals, and thus span the
same subspace in myosignal space. In other words, it is
possible that for the same subspace in myosignal space
two total muscle synergy sets which differ in structure
are extracted. Thus, even if the myosignals as observed
in two end-effectors belong to the same subspace, it is
possible that muscle synergies with different structures
are extracted for these two end-effectors. In that case,
the dissimilarity in the structure of individual muscle
synergies, as assessed with the analyses presented above,
stems from other factors, e.g. computational chance or
noise, than a behavioral phenomenon. Therefore, we
controlled for this possibility by assessing whether total
muscle synergy sets—as extracted from the different
end-effectors—had the same explanatory ability, i.e.
could explain the same assemblage of myosignals. As a
first assessment, we compared the similarity of two
subspaces spanned by two total muscle synergy sets—as
extracted from two end-effectors—by calculating the
CPA between the dimensions of these two subspaces
[48], ([70] p. 603–604). Similar to the comparison of
NDPs, the comparison of subspaces was done in an
end-effector-pair-wise manner, in which CPAs had to
exceed the threshold of 0.9 [48, 64, 65] to be classified
as similar. As with the NDP, the calculated CPAs were
ranked in a descending order, such that this CPA analysis
showed for which dimension the CPA dropped below
threshold, indicative for the number of dimensions that
were shared across end-effectors.
The second assessment of the explanatory ability of

total muscle synergy sets examined whether the total
muscle synergy set from one end-effector could explain
myosignals from another end-effector [47, 48]. The myo-
signals from every end-effector were reconstructed with
the total muscle synergy set from another end-effector
using a linear least squares method with a non-negativity
constraint. This method determined the time-varying ac-
tivation coefficients C with respect to this total muscle
synergy set W. The quality of reconstruction was deter-
mined by computing the R2 of this reconstruction,
computed using eq. 2 presented above. Per reconstruc-
tion, the algorithm was run 25 times, with different ini-
tial coefficients for C, and the solution with the highest
R2 was retained for analysis.
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Evaluation of the contribution of muscle synergies
extracted from the pooled dataset Last, the contribu-
tion to the explanation of myosignals across end-
effectors of the muscle synergies as extracted from the
pooled dataset was examined. The contribution for each
of these muscle synergies was determined by assessing
the change in explained variance of the reconstruction
of the myosignals of every end-effector when a muscle
synergy was removed from the total set extracted from
the pooled dataset. The reconstruction of myosignals
with this total set minus one muscle synergy was deter-
mined using the same linear least squares method with a
non-negativity constraint as presented above. As with
other factorization procedures presented above, the algo-
rithm was run 25 times, and the solution with the high-
est R2 was retained to compute the change in R2 with
respect to the R2 of the total muscle synergy set. This
procedure was repeated for every muscle synergy in the
total set. Based on the change in explained variance,
muscle synergies were ordered from most to least con-
tributing for every end-effector.

Statistical analysis
Potential differences in the number of muscle synergies
across end-effectors were examined using the Friedman’s
test. Bootstrap statistics, with a resampling of 10,000
times, were used to determine the 95% confidence interval
around the sample means for NDP and CPA values across
participants. These confidence intervals were used to
check whether NDP and CPA sample means statistically
differed from the selected threshold of 0.9, indicated by
the whole confidence interval laying below threshold. To
check for differences in R2 of myosignals reconstructed
with a set of muscle synergies extracted from different
end-effectors, one-way repeated measure ANOVAs, with
end-effector (index finger, 5 cm, 15 cm, and 25 cm) as a
within-subject factor, were used. Before entering the
ANOVA, variables were checked both visually and with
the Shiparo-Wilk test on their normality. No deviations
from normality were found. If within these ANOVAs the
assumption of sphericity was violated, the Greenhouse-
Geisser correction was used. Furthermore, significant ef-
fects within these ANOVAs were further examined using
post-hoc Bonferroni corrected pair-wise t-tests. ANOVA
effects were interpreted with the generalized eta-squared
(η2G) [71, 72], which was interpreted with 0.02 as a small
effect, an effect size of 0.13 as a medium effect, and an ef-
fect size of 0.26 as a large effect [72], ([73] p. 413–414).
Last, per participant, as well as for all participants
together, obtained orders of muscle synergy contribution—
for the muscle synergies extracted from the pooled
dataset—were compared on their similarity in an
end-effector-pair-wise way based on Kendall’s tau coeffi-
cient. Kendall’s tau coefficients were tested for significant

deviation from zero. For all statistical analyses, an alpha
level of 0.05 was taken as a threshold for statistical signifi-
cance. All statistical analyses were performed using SPSS
version 22 and Matlab version R2016a.

Results
Note on included participant data
Due to technical issues regarding the acquisition of bony
landmarks of two participants (1 and 4)—needed for a
positional description of their arm movements—we
could not determine the joint-angle trajectories of these
two participants. Fortunately, for these participants, the
digitization of the various end-effector tips was success-
ful. Therefore, also for these two participants, we could
gather the movement trajectory of the tip of the end-ef-
fector using rigid body transformations, which was vital
for the selection of the part of the recorded myosignals
that was taken for further analyses. Thus, the results on
joint-angle kinematics are based on data of only nine out
of eleven participants; the rest of the results are based
on data of all eleven participants.

End-effector and joint-angle kinematics
Participants completed the task with a high accuracy in
every point-to-point movement (average error of 6.6 ±
3.6 mm), and with an average movement time of 0.65 ±
0.16 s (IF: 0.59 ± 0.14 s; 5 cm rod: 0.63 ± 0.17 s; 15 cm rod
0.66 ± 0.16 s; 25 cm rod 0.73 ± 0.16 s). Examination of
average movement times per participant showed that the
tendency of longer lasting movements with longer
end-effectors was present in all participants (Table 1).
Trajectories of the tip of the end-effector were slightly
curved (see for representative example Fig. 3a), exhibited
bell-shaped velocity profiles (Fig. 3b), and showed small
differences for the different end-effectors. Furthermore,
movements in the three examined joint-angles were
smooth, and, not unexpected, the joint-angle trajectories
depended on the direction in which the movement was
produced (Fig. 4). Also, joint-angle trajectories differed
when different end-effectors (i.e. index finger or rod)
were used to produce the point-to-point movements
(Fig. 4), yet the shape of joint-angle trajectory was, most
of the times, similar across end-effectors. For instance,
in point-to-point movements towards target 5, partici-
pants always used a similar shape of the extension tra-
jectory in the elbow to reach the target (Fig. 4, third
row, first column panel). Such similarities could also be
found in other joint-angle and target combinations.

Myosignals and extracted muscle synergies
In about 1% of the signals, myosignals showed divergent
patterns, probably due to the partial detachment of the
electrode from the skin. These myosignals were removed
from the analysis. For the remaining and approved
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myosignals, for each end-effector and for each participant,
3–5 muscle synergies—an example can be seen in Fig. 5—
were able to explain 73.8–81.1% of data variance (index fin-
ger: 76.1 ± 4.1%; 5 cm rod: 76.6 ± 4.7%; 15 cm rod: 73.8 ±
5.2%; 25 cm rod: 81.1 ± 5.4%; as averaged across partici-
pants, also see Table 2). Importantly, across all participants,
6–8 muscle synergies extracted from the pooled dataset in-
cluding myosignals from all end-effectors could equally
well explain the observed myosignals per end-effector
as the muscle synergies extracted separately from the
myosignals of these end-effectors could. The values in
explained variances showed that for every end-effector,
it was possible to reconstruct a considerable part of the
observed myosignals with a limited number of muscle

synergies (Fig. 6). Importantly, different myosignals
were used when point-to-point movements were made
with different end-effectors (Fig. 6). For instance, for a
representative participant, the activity of the long part
of the biceps brachii, medial part of the triceps, and an-
terior part of the deltoid declined, whereas the activity
of the extensor carpi radialis slightly increased if longer
rods were used (Fig. 6).

Assessment of the exploitation of muscle synergies
Comparison of the structure of individual muscle synergies
extracted from separate end-effectors
Visual inspection of the similarity of structure of individ-
ual muscle synergies led to a first indication of a partial

Table 1 Average (± standard deviation) movement times (s) per participant, as averaged across all movements within an end-effector and
across all movements in the whole experiment

Participant Index finger 5 cm rod 15 cm rod 25 cm rod Experiment

1 0.64 ± 0.13 0.65 ± 0.13 0.68 ± 0.12 0.75 ± 0.16 0.68 ± 0.14

2 0.80 ± 0.15 0.88 ± 0.17 0.81 ± 0.16 0.87 ± 0.15 0.84 ± 0.16

3 0.55 ± 0.10 0.60 ± 0.10 0.62 ± 0.13 0.73 ± 0.15 0.62 ± 0.14

4 0.49 ± 0.10 0.54 ± 0.10 0.64 ± 0.10 0.65 ± 0.13 0.58 ± 0.13

5 0.52 ± 0.08 0.54 ± 0.08 0.55 ± 0.10 0.70 ± 0.13 0.58 ± 0.12

6 0.63 ± 0.11 0.72 ± 0.14 0.77 ± 0.16 0.81 ± 0.16 0.73 ± 0.16

7 0.55 ± 0.10 0.60 ± 0.10 0.60 ± 0.09 0.66 ± 0.14 0.60 ± 0.12

8 0.69 ± 0.12 0.70 ± 0.12 0.76 ± 0.14 0.85 ± 0.15 0.75 ± 0.15

9 0.38 ± 0.07 0.38 ± 0.07 0.40 ± 0.09 0.51 ± 0.11 0.42 ± 0.10

10 0.74 ± 0.10 0.87 ± 0.16 0.89 ± 0.14 0.95 ± 0.16 0.86 ± 0.16

11 0.44 ± 0.08 0.46 ± 0.08 0.54 ± 0.11 0.54 ± 0.09 0.50 ± 0.10

A B

Fig. 3 End-effector kinematics of performed point-to-point movements with different end-effectors. a Example of end-effector trajectories of one
representative participant towards (solid lines) and from (dashed lines) the different targets for the different end-effectors. b End-effector velocity
profiles for every participant, as averaged across all trials for every target and movement direction combination for every end-effector (indicated
by the different colors, for legend see Fig. 3a). Black line denotes average velocity profile across all participants, all end-effectors, and all target
and movement direction combinations
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Fig. 4 Joint-angle trajectories for a selection of point-to-point movements as performed in the experiment. Each panel represents the mean joint-
angle trajectories as averaged across participants, as performed in point-to-point movements with the different end-effectors towards and from a
selection of the different targets that occurred in the experiment. Dashed lines represent the standard deviation, dotted lines the standard error
of the mean

Fig. 5 Example of an extracted set of muscle synergies for every end-effector, for one representative participant. The height of the bar indicates
the proportional activation levels of a certain muscle in the synergy. Before being depicted, muscle synergies were matched across end-effectors
based on their NDP
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dissimilarity in muscle synergy structure across end-
effectors. This indication was guided by the observation
that the proportional activation levels between muscles
within part of the individual muscle synergies (as indi-
cated by the height of the bars in Fig. 5) were unequal
across end-effectors. For instance, for the muscle syn-
ergies of a representative participant (Fig. 5), the con-
tribution of shoulder and back muscles in muscle
synergy 3 and wrist muscles in muscle synergy 4
varied across end-effectors. Notably, the structures of

muscle synergies 1 and 2 of this particular participant
were much more similar across end-effectors (Fig. 5).
The NDP analysis performed on muscle synergy pairs

between two end-effectors confirmed the visual observa-
tion. This analysis showed that for every end-effector at
least one muscle synergy differed in structure with the
muscle synergies from another end-effector (as indicated
by the 95% confidence interval, Fig. 7). Interestingly, the
number of dissimilar muscle synergies between end-
effectors gradually became larger as the absolute differ-
ence in length between these end-effectors was larger
(Fig. 7). For instance, the total muscle synergy set
extracted from the index finger exhibited two muscle
synergies which structure was significantly dissimilar
from the muscle synergies from the 5 cm rod and three
muscle synergies which structure was significantly
dissimilar from the muscle synergies from the 15 cm and
25 cm rods (Fig. 7). Notably, every end-effector-pair-wise
comparison of muscle synergies also revealed muscle
synergies that had a similar structure across end-
effectors, indicating that these muscle synergies were
exploited in movements with both end-effectors.
The clustering of muscle synergies with a similar

structure across all end-effectors showed that only half
of the participants exhibited one or two muscle syner-
gies that were exploited in every end-effector (Fig. 8;
highlighted blocks indicate clusters with muscle syner-
gies exploited across all end-effectors). Furthermore,
for all participants, the majority of the clusters repre-
sented muscle synergies that were exploited in one

Table 2 Number of extracted muscle synergies with the amount
of explained variance for each participant and end-effector

Participant Index Finger 5 cm rod 15 cm rod 25 cm rod

1 3 / 80.7% 3 / 83.7% 4 / 81.6% 4 / 85.9%

2 4 / 80.5% 4 / 77.7% 3 / 73.2% 3 / 85.8%

3 4 / 75.2% 4 / 70.5% 3 / 69.5% 3 / 81.3%

4 4 / 76.6% 5 / 79.5% 5 / 79.5% 4 / 79.1%

5 4 / 76.9% 5 / 80.9% 4 / 75.0% 4 / 82.0%

6 4 / 78.1% 4 / 81.7% 4 / 73.3% 4 / 86.5%

7 4 / 72.0% 4 / 68.8% 4 / 67.1% 3 / 73.9%

8 3 / 66.4% 4 / 72.6% 4 / 68.0% 4 / 74.4%

9 4 / 77.1% 4 / 76.1% 4 / 75.4% 4 / 84.7%

10 4 / 78.4% 4 / 75.5% 4 / 68.4% 4 / 73.5%

11 4 / 74.9% 4 / 76.1% 4 / 80.6% 4 / 84.8%

No significant differences in number of muscle synergies across conditions (χ2

(3) = 4.20, p > 0.05)

Fig. 6 Example of reconstruction of myosignals of one representative participant. Myosignals depicted were measured from a center-out movement
towards target 1. Grey areas represent the processed EMGs and colored lines the reconstruction by muscle synergy combinations
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Fig. 7 NDPs of the end-effector-pair-wise comparison of individual muscle synergies. NDPs were averaged across participants (means indicated by the
black circles) and ranked from the best matching muscle synergies (S) to the least matching muscle synergies between two end-effectors. Each panel
presents the results of the comparison of individual muscle synergies between two end-effectors. Vertical bars represent the 95% confidence interval
determined with bootstrap statistics, whereas colored dots represent data of individual participants. Asterisks indicate mean NDPs that are significantly
different from threshold (horizontal dashed line, significance determined with the 95% confidence interval)

Fig. 8 Distribution of the muscle synergies from the different end-effectors into the different clusters. Every panel presents the results of the clustering
process for each individual participant. Before being depicted in the figure, clusters were ranked based on their size. Different colors indicate the size
of the clusters: blue for one muscle synergy, red for two muscle synergies, green for three muscle synergies, and purple for four muscle
synergies. Clusters with four members, i.e. indicating muscle synergies exploited across all end-effectors, are highlighted
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end-effector or two end-effectors only. In addition, 7–
12 clusters were needed to cluster all unique muscle
synergies as observed in each participant (Fig. 8). This
number of clusters was larger than the number of
muscle synergies extracted from each end-effector
(range 3–5), but smaller than the sum of number of
muscle synergies across end-effectors (range 14–18),
further confirming the partial dissimilarity in individual
muscle synergy structure across all end-effectors.

Comparison of the explanatory ability of total muscle
synergy sets extracted from separate end-effectors
The comparison of subspaces spanned by the total muscle
synergy sets from every end-effector showed that every
subspace presented dimensions that were end-effector-
specific (Fig. 9). Notably, every total muscle synergy set
also shared dimensions of their subspace with the sub-
space from the total muscle synergy set from another
end-effector (Fig. 9). Together, the comparison of sub-
spaces showed that the total muscle synergy sets from the
different end-effectors explained partially different sub-
spaces in myosignal space. Interestingly, the total muscle
synergy sets from the different end-effectors gradually
spanned more distinct subspaces as the absolute dif-
ference in length of between end-effectors was larger
(Fig. 9). For example, the total muscle synergy set ex-
tracted from the index finger shared a common 3D,
2D, and 1D subspace with the total muscle synergy

set extracted from the 5 cm, 15 cm, and 25 cm rod,
respectively (Fig. 9).
The reconstruction of myosignals from one end-ef-

fector with the total muscle synergy set from another
end-effector showed that the part of myosignal variance
that a total muscle synergy set could explain decreased if
this set had to explain myosignals from another
end-effector as from which it was extracted (Fig. 10 [IF
panel: F(3;30) = 126.21, p < 0.001, η2G = 0.93; 5 cm rod
panel: F(1.15;11.52) = 35.42, p < 0.001, η2G = 0.78; 15 cm
rod panel: F(1.25;12.49) = 16.88, p < 0.001, η2G = 0.63; 25
cm rod panel: F(1.20;12.01) = 60.87, p < 0.001, η2G =
0.86]). Per panel presented in Fig. 10, these ANOVA ef-
fects were further examined using pair-wise post-hoc
t-tests, in which the portion variance of myosignals ex-
plained by ‘own’ total muscle synergy sets—e.g. index
finger myosignals explained with index finger muscle
synergies—was compared with the portion variance of
myosignals explained with ‘other’ total muscle synergy
sets—e.g. index finger myosignals explained with 5 cm
rod muscle synergies. All except one (i.e. the explanation
of 15 cm rod myosignals with 25 cm rod muscle syner-
gies, p = 0.062) of these comparisons showed that the
portion variance of myosignals as explained with other
total muscle synergy sets was significantly lower as
compared to the portion variance of myosignals ex-
plained with the own total muscle synergy set. Interest-
ingly, and in line with the results presented above, this
decreased ability to explain myosignals from other

Fig. 9 CPAs of the end-effector-pair-wise comparison of total muscle synergy sets. CPAs were averaged across participants (means indicated by
the black circles) and ranked from the best matching dimensions (D) to the least matching dimensions between two end-effectors. Each panel
presents the results of the comparison of subspaces spanned by the total muscle synergy sets of two end-effectors. Vertical bars represent the
95% confidence interval determined with bootstrap statistics, whereas colored dots represent data of individual participants. Asterisks indicate
mean CPAs that are significantly different from threshold (horizontal dashed line, significance determined with the 95% confidence interval)
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end-effectors was larger if the absolute difference in the
length of the end-effectors from the extracted muscle
synergies and to-be-explained myosignals was larger
(Fig. 10).

Evaluation of the contribution of muscle synergies extracted
from the pooled dataset
Last, across end-effectors, different orders of contribu-
tion to the explanation of myosignals were found for the
muscle synergies as extracted from the pooled dataset
(Fig. 11). For instance, for participant 1, muscle synergy
2 contributed least to explanation of myosignals ob-
served in index finger and 5 cm rod movements but con-
tributed most to the explanation of myosignals observed
in 25 cm rod movements (Fig. 11). Similar effects were
observed in other participants and for other muscle syn-
ergies (Fig. 11). The comparison of orders between
end-effectors showed that the difference between the
order of muscle synergy contribution gradually became
larger as the absolute difference in length between two
end-effectors was larger (Fig. 12). For instance, in the left
panel of Fig. 12, the order of muscle synergy contribu-
tion was similar between the index finger and 5 cm rod
condition (positive correlation), whereas the order of
muscle synergy contribution gradually changed to a
reversed order between the index finger and 25 cm rod
condition (negative correlation). Similar directions of
effect—i.e. larger differences between orders of muscle
synergy contribution as absolute differences in end-effector
lengths were larger—were also found in the other panels,

indicating the reversal in the contribution of muscle syner-
gies extracted from the pooled dataset across end-effectors.

Discussion
The successful improvement of the intuitive control of
myoelectric AT for upper extremities with the fixed
muscle synergy approach requires that a limited number
of muscle synergies is systematically exploited when
muscles are used differently to perform a certain task, as
in myoelectric AT. To assess whether this requirement
is met, the present study examined the systematic ex-
ploitation of muscle synergies when multidirectional
point-to-point movements had to be performed with
end-effectors of different lengths. Results showed that
3–5 muscle synergies could explain a substantial part of
the myosignals within every end-effector. Furthermore,
the same part of myosignals could be explained with
6–8 muscle synergies extracted from a pooled dataset
including all myosignals across end-effectors. These
results showed that the requirement that a limited
number of muscle synergies was systematically exploited
to account for myosignals when muscles were used
differently during the performance of the same task—i.e.
using end-effectors of different lengths—was met. Hence,
these results indicated that there is a potential for the
fixed muscle synergy approach to improve the intuitive
control of myoelectric AT for upper extremities for the set
of movements within the specific task as examined in the
present study.
In line with previous studies examining the presence of

muscle synergies in upper extremity myosignals [38–50],

Fig. 10 Explained variance of myosignals from the different end-effectors with the various total muscle synergy sets. Mean explained variance, indicated
by the black circles, as averaged across participants, for the reconstruction of data from one end-effector using the set of muscle synergies extracted from
the same or another end-effector. Upper vertical bars represent the standard deviation, lower vertical bars the standard error of the mean, and
colored dots represent data of individual participants
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the present findings showed that within and across
end-effectors muscle synergies could explain a consider-
able part of the variation in observed myosignals. Subse-
quent analyses showed in a three-step evaluation that the
exploitation of muscle synergies gradually changed across
end-effectors. First, the structure of individual muscle
synergies—i.e. the proportional activation levels of mus-
cles within a muscle synergy—gradually became more
dissimilar as the difference in end-effector length was
larger. Second, total muscle synergy sets from two
different end-effectors gradually spanned more distinct
subspaces as end-effectors differed more in length. More-
over, the ability of a total muscle synergy set from one
end-effector to explain myosignals from another
end-effector gradually decreased as a function of the dif-
ference in length of the end-effectors. Third, the order of
contribution of muscle synergies extracted from the
pooled dataset gradually reversed across end-effectors.
This change in the exploitation of muscle synergies across
end-effectors is in agreement with studies that observed
the use of different upper extremity muscle synergies
across conditions [41, 44, 48–50]. Such a changing
exploitation of muscle synergies across conditions could
indicate that the total pool of fixed muscle synergies rep-
resented at the spinal cord is larger than the set of fixed
muscle synergies that is used in every condition [48, 74].

It is suggested that from this total pool, the appropriate
set of fixed muscle synergies for a certain condition can be
selected to produce the required myosignals, which is the
core assumption of the fixed muscle synergy approach.
The question relevant for the control of myoelectric AT is
how muscle synergies can help in improving the intuitive
control of this AT.

On the implementation of muscle synergies to control
myoelectric AT for upper extremities
Depending on whether muscle synergies were extracted
from separate end-effectors or from the pooled dataset,
we found different numbers of muscle synergies that
could explain the myosignals. Therefore, we see two
different options for the implementation of the idea of
fixed muscle synergies to improve the intuitive control
of myoelectric AT for upper extremities. First, within a
limited set of movements—such as made within every
end-effector in our case—3-5 muscle synergies could
control a myoelectric assistive device that can be used
for this limited set of movements. Given the small num-
ber of control variables—e.g. the 3–5 muscle synergies—
such a device will have a rather direct relation between
the activation of these muscle synergies and the re-
stricted set of movements. Second, when interested to
control a device for a broader set of movements within a

Fig. 11 Position in contribution order for every end-effector for individual muscle synergies from the pooled dataset. Orders were ranked from 1
(most contributing) to 6–8 (least contributing)
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specific task, which allows for more flexibility, one could
use the expanded set of 6–8 muscle synergies. Given the
reversal of the contribution of these muscle synergies to
the observed movements across end-effectors, the acti-
vation of these 6–8 muscle synergies needs to be scaled
based on the movement that is intended to be pro-
duced—i.e. one should select the muscle synergies that
contribute most to the intended movement. Such a
control scheme resembles the idea presented above of
selecting a fixed muscle synergy from a total pool repre-
sented at the spinal cord.
Both implementation options presented here fit with

the concept of pattern recognition control (cf. [2, 75,
76]). In pattern recognition control, a software algorithm
detects combinations of features in a set of myosignals
and classifies them into one of the multiple possible ac-
tions of the actuators in the AT. To control such pattern
recognition based assistive devices, the user has to pro-
duce a certain movement such that the device can
recognize, and subsequently produce, the desired action
that is linked to this specific movement. Given the intui-
tive relation between pattern recognition control and the
fixed muscle synergy approach (cf. [77]), it might be that
the intuitive control of myoelectric AT can benefit from
the implementation of muscle synergies in a pattern
recognition control scheme. For instance, because the

opening and closing of the hand during healthy grabbing
actions can be correlated with different phases of the
transportation of the arm through space [78], the open-
ing and closing of a prosthetic hand might be linkable to
the patterns in myosignals—i.e. muscle synergies—dur-
ing this transportation. Such a link between the actions
performed with myoelectric AT and the muscle synergies
that are exploited during the healthy production of these
actions might improve the intuitive control of myoelec-
tric AT for upper extremities.
Previous work on the implementation of muscle syner-

gies to control of myoelectric AT has shown that muscle
synergies are suitable for force estimation, and thus
proportional control of myoelectric AT for upper
extremities [79, 80]. However, as muscle synergies do
not exceed the performance of myosignals of individual
muscles in classifying movements [80] or reconstructing
the movements of the end-effector [81, 82], the benefit
of using muscle synergies as compared to currently used
myosignals to control myoelectric AT is unclear. Fur-
thermore, in both myosignal and muscle synergy control,
considerable errors in classifying or reconstruction per-
formance are observed [80–82]. For instance, both myo-
signals of individual muscles and muscle synergies can
be used equally well to online control the movement of
a virtual object to reach a target location [82], yet both

Fig. 12 Kendall’s tau coefficients between the order of muscle synergy contribution of the different end-effectors. Every panel represents the
coefficients for the comparison of orders of one end-effector with the orders of all other end-effectors. Colored solid lines represent coefficients
including all participants, grey dashed lines represent coefficients per participant. Asterisks indicate coefficients including all participants
significantly different from zero
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types of control yield for considerable errors in task per-
formance. These results suggest that muscle synergies,
and maybe also myosignals, lack important information
that is used in the production of behavior—information
that is thus important for the intuitive control of myo-
electric AT (cf. [31, 83–85]). Therefore, we recommend
that future research should examine whether the actual
implementation of muscle synergies is beneficial for the
control of myoelectric AT for upper extremities.
Furthermore, both implementation options presented

here ground the potential of muscle synergies to im-
prove the intuitive control of myoelectric AT for upper
extremities on the specific set of movements within a
task that these muscle synergies can explain. Therefore,
it remains the question whether this potential can be
generalized to a broader set of movements and tasks.
The set of movements examined in the present task—i.e.
movements with different end-effectors—could be cap-
tured with a relatively limited number of 6–8 muscle
synergies. However, it is possible that—especially given
the relatively large change in muscle synergies within
the relatively small set of examined movements across
end-effectors—more muscle synergies are needed when
the set of movements is expanded to a wide range of
tasks. If indeed increasingly more muscle synergies are
needed to account for movements as produced in an in-
creasing number of tasks, it might be debatable i)
whether all these muscle synergies represent the use of
fixed muscle synergies from a pool in the spinal cord,
and ii) whether the idea of fixed muscle synergies is an
attractive approach to implement in the control scheme
of myoelectric AT that is ought to be used for a large
range of tasks.

Does the presence of muscle synergies originate from the
activation of neural networks?
Another issue can be raised concerning the interpret-
ation that muscle synergies as found in myosignals
originate from the activation of fixed neural networks. In
their studies on a cadaver arm and hand, Kutch &
Valero-Cuevas [86] suggested that the presence of
low-dimensional patterns in myosignals—i.e. muscle
synergies—does not necessarily imply the activation of a
fixed neural circuity—i.e. fixed muscle synergies. In this
study, myosignals were estimated via a neuromechanical
model based on i) measured forces acting on the cadaver
muscles after an external perturbation of the end-ef-
fector, and ii) externally applied forces on the cadaver
muscles to produce isometric forces in various directions
at the end-effector. Subsequently, a principal component
analysis showed a low-dimensional pattern in the
estimated myosignals. Thus, besides the possibility of
originating from neural circuitry, the presence of low-
dimensional patterns in myosignals can also emerge

from biomechanical—e.g. muscles that resist lengthen-
ing—and task constraints—e.g. direction of isometric
force produced at the end-effector [86].
This conceptual discussion on whether muscle syner-

gies as observed in myosignals originate from the activa-
tion of neural circuitry or emerge from biomechanical
and task constraints is relevant for the applicability of
muscle synergies to improve the intuitive control of
myoelectric AT. When applying muscle synergies to the
control of myoelectric AT, one needs to take into ac-
count that biomechanical and task constraints change
when myoelectric AT is used in different situations.
Given that these changing constraints affect the activa-
tion of muscles—for instance, muscles need to be acti-
vated differently depending on limb posture to produce
the same limb motion [87] and muscles perform differ-
ent roles in different contexts [88]—it is possible that
also muscle synergies as observed in myosignals change
on basis of these changing constraints. In fact, the grad-
ual change in the exploitation of muscle synergies as
found in the present study may have emerged from the
subtle differences in task constraints as induced by the
variation in end-effector length. Likewise, findings of the
exploitation of similar upper extremity muscle synergies
across conditions [38, 39, 43, 45] could have been the re-
sult of similarities in task constraints across these condi-
tions. For instance, the visuomotor adaption paradigm
as presented in Gentner et al. [45] required participants
to maintain end-effector movements in the same plane
of motion across conditions. These similarities in task
constraints could have resulted in similar arm move-
ments across conditions, hence explaining the findings
of similar muscle synergies. If i) the majority of muscle
synergies indeed emerges from biomechanical and task
constraints instead of from the activation of fixed neural
circuitry, and ii) observed muscle synergies change with
changing constraints, basing the control scheme of myo-
electric AT on muscle synergies that change with chan-
ging constraints might not a fruitful approach to pursue
when aiming to improve the intuitive control of myo-
electric AT.
Thus, following the discussion as presented in the

last two paragraphs, the answer to the question of
what the role of fixed muscle synergies is in the pro-
duction of myosignals is not straightforward (cf. [31,
81, 85, 89]). Given that the majority of participants ex-
hibited one or two muscle synergies that were shared
across at least three end-effectors, it seems reasonable
that some of the observed muscle synergies can be
captured in fixed neural networks. However, based on
the variation in the exploitation of the majority of
muscle synergies within the relatively limited set of
movements as examined in the present study, it is to
be examined whether the neuromotor system solely
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uses an organization of fixed muscle synergies to pro-
duce myosignals.

Alternatives for an intuitive control scheme for
myoelectric AT
In the remainder of this discussion, we address two pos-
sible alternatives for designing an intuitive interface be-
tween user and device. First, we think that, as mentioned
in the introduction, the intuitive control of myoelectric
AT will benefit most from the connection of its control to
principles that are already used by the neuromotor system
(cf. [28–31]). In trying to connect neuromotor control
principles to the control of myoelectric AT, it is important
to consider that the environment in which neuromotor
actions are conducted provides for perceptual information
that is relevant for the control of these actions. Thus,
considering the closing of the perception-action loop by
including perceptual information in the technology—of
which the lack also is assigned as a primary concern
among myoelectric AT users [17–21]—might be a vital
route in the improvement of the intuitive control of
myoelectric AT. In line with this idea, it has been shown
that providing feedback has beneficial effects on prosthesis
control [90–93], see for reviews [94, 95]. Therefore, we
underline the importance of future research towards
sensorimotor control principles and their link to the
intuitive control of myoelectric AT for upper extremities.
Second, it is suggested that the displacement of con-

trol from muscles to neurons might help for the im-
provement of the intuitive control of AT. Over the last
years, several routes in this endeavor have already been
taken, e.g. redirecting remaining parts of nerves to
remaining muscles [75, 96–98], and using discharges of
individual spinal motoneurons [99–101] and of neurons
in the motor cortex [102–104] to control the AT. How-
ever, to apply this technology in a general context—as
an ideal assistive device ought to be designed—present
technology requires that a systematic pattern can be
recognized in the observed neural activity. Since we
found variability in myosignal patterns—i.e. muscle
synergies that varied across end-effectors—it is to be
expected that also patterns in this neural activity will
vary across conditions. Therefore, the same issues as
raised above on the extent to which muscle synergies
can be used in a general way to control myoelectric AT
apply on the use of neural drive to control this AT.
Following this rationale, arguably the design of the present
neural approach is left with technology that might only be
applied in a task- or condition-specific sense.

Limitations
Although the present study examined the potential of
fixed muscle synergies to improve patient’s intuitive
control of myoelectric AT for upper extremities, such

AT, nor patients, were included in the experiment.
Nevertheless, we think that the used experimental set-up
related well enough with the use of myoelectric AT, as
the manipulation of end-effectors induced the different
use of muscles for the task, as is required during the
control of myoelectric AT. Furthermore, by including
only healthy subjects into the protocol, the present study
could examine the systematic exploitation of muscle
synergies in the absence of confounding factors resulting
from the actual use of myoelectric AT—such as its alter-
nated feedback system and influence on dynamics of
task performance. Thus, the present study offered an en-
trance to gain knowledge purely about the potential of
the fixed muscle synergy approach to improve the intui-
tive control of myoelectric AT for upper extremities.
Furthermore, the relatively small sample size could be

a limitation of the present study. Yet, our sample size
falls in the range of number of participants used in other
studies examining muscle synergies. Moreover, the
direction of the effects was systematic across participants.
Therefore, we do not expect differences in the results as
reported in the present study if more participants would
have been included.

Conclusion
The present study demonstrated that a limited number
of muscle synergies was systematically exploited during
the production of myosignals in point-to-point move-
ments with different end-effectors. This result indicated
a potential for employing the fixed muscle synergy ap-
proach to improve the intuitive control of myoelectric
AT for upper extremities for the set of movements
within the examined task. It remains the question
whether this potential can be extended to a larger range
of movements and tasks. Future research should be
aimed at examining the fixed character of muscle syner-
gies as well as the generalization of the potential of the
fixed muscle synergy approach to improve the intuitive
control of myoelectric AT for upper extremities. This
examination will be important to improve the intuitive
control of assistive devices and, in broader terms, rehabili-
tation practice.
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