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a b s t r a c t 

We present a machine learning analysis of five labelled galaxy catalogues from the Galaxy And Mass As- 

sembly (GAMA): The SersicCatVIKING and SersicCatUKIDSS catalogues containing morphological features, 

the GaussFitSimple catalogue containing spectroscopic features, the MagPhys catalogue including physi- 

cal parameters for galaxies, and the Lambdar catalogue, which contains photometric measurements. Ex- 

tending work previously presented at the ESANN 2018 conference – in an analysis based on Generali z ed 

Relevance Matrix Learning Vector Quanti z ation and Random Forests – we find that neither the data from 

the individual catalogues nor a combined dataset based on all 5 catalogues fully supports the visual- 

inspection-based galaxy classification scheme employed to categorise the galaxies. In particular, only one 

class, the Little Blue Spheroids , is consistently separable from the other classes. To aid further insight into 

the nature of the employed visual-based classification scheme with respect to physical and morphological 

features, we present the galaxy parameters that are discriminative for the achieved class distinctions. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

Telescope images of galaxies reveal a multitude of appearances,

ranging from smooth elliptical galaxies, through disk-like galaxies

with spiral arms, to more irregular shapes. The study of morpho-

logical galaxy classification plays an important role in astronomy:

the frequency and spatial distribution of galaxy types provide valu-

able information for the understanding of galaxy formation and

evolution [1,2] . 

The assignment of morphological classes to observed galaxies is

a task which is commonly handled by astronomers. As manual la-

belling of galaxies is time consuming and expert-devised classifica-

tion schemes may be subject to cognitive biases, machine learning

techniques have great potential to advance astronomy by: (1) in-

vestigating automatic classification strategies, and (2) by evaluat-

ing to which extent existing classification schemes are supported

by the observational data. 

In this work, we extend a previous analysis [3] to make a con-

tribution along both lines by analysing several galaxy catalogues
∗ Corresponding author. 

E-mail address: a.f.nolte@rug.nl (A. Nolte). 
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hich have been annotated using a recent classification scheme

roposed by Kelvin et al. [4] . In our previous study, we assessed

hether this scheme is consistent with a galaxy catalogue contain-

ng 42 astronomical parameters from the Galaxy And Mass Assembly

GAMA, [5] ) by performing both an unsupervised and a supervised

nalysis with prototype-based methods. We assessed whether class

tructure can be recovered by a clustering of the data generated by

he unsupervised Self-Organi z ing Map (SOM) [6] , and investigated

f the morphological classification can be reproduced by Gener-

li z ed Relevance Matrix Learning Vector Quanti z ation (GMLVQ) [7] ,

 powerful supervised prototype-based method [8] chosen for its

apability to not only provide classification boundaries and class-

epresentative prototypes, but also feature relevances. Finding

onsistently negative results for the supervised and unsupervised

ethod, namely an intermediate classification accuracy of GM-

VQ of around 73% and no clear-cut agreements between galaxy

lasses and SOM-clustering results, we concluded the classification

cheme to be not fully supported by the considered galaxy cata-

ogue. As discussed previously [3] the hypothesised misalignment

etween galaxy data and classification scheme could be explained

y lack of discriminative power of the employed classifiers or clus-

ering methods, by mis-labellings of certain galaxies (a possibility

https://doi.org/10.1016/j.neucom.2018.12.076
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2018.12.076&domain=pdf
mailto:a.f.nolte@rug.nl
https://doi.org/10.1016/j.neucom.2018.12.076
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Table 1 

Overview of galaxy catalogues analysed in this work. Shown are also the number of samples for which complete information, i.e. information from each of the 

catalogues, is available, and the number of samples in the final dataset considered in the remainder of this work. 

Catalogue Shorthand Number of samples after preprocessing 

GaussFitSimple GFS 7430 galaxies with 59 emission line features 

Lambdar Lambdar 7365 galaxies with 28 flux measurements and uncertainties for different bands 

MagPhys MagPhys 7541 galaxies with 171 features 

SersicCatVIKING Viking 5476 galaxies with 66 Sérsic features 

SersicCatUKIDSS Ukidss 3008 samples with 53 Sérsic features 

Complete information from all catalogues 2117 galaxies 

Final sample (cf. Section 2.6 ) 1295 galaxies 
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lready discussed in [9] ), or by the absence of essential parameters

n the data set. In this work, we address two of the mentioned as-

ects: We employ an additional established and flexible classifier,

andom Forests [10] to collect evidence that the previously found

oderate classification performance is not due to shortcomings

f GMLVQ. Furthermore, we address the potential incompleteness

f the previously analysed dataset by performing another set of

upervised analyses on several additional galaxy catalogues from

he GAMA survey [11] , which contain a multitude of additional

hotometric, spectroscopic and morphological measurements. 

Despite the commonly quoted abundance of data in astron-

my, well-accepted benchmark datasets are not readily available in

he field of galaxy classification, and only a few works analysing

AMA catalogues with machine learning methods exist. In an anal-

sis by Sreejith et al. [9] , 10 features from GAMA catalogues are

and-selected and analysed using Support Vector Machines, De-

ision Trees, Random Forests and a shallow Neural Network ar-

hitecture. With respect to Kelvin et. al’s classification scheme a

aximum classification accuracy of 76.2% is reported. Turner et al.

12] perform an unsupervised analysis of five hand-selected fea-

ures from GAMA catalogues using k-means clustering. While not

he main aim of Turner et al.’s analysis, a comparison of the de-

ermined clusters with class information from Kelvin et al. shows

alaxies that are assigned the same class by Kelvin et al. spread

ver several clusters (Figs. 11, 13, 15 and 17 in [12] ). 

In agreement with our previous results and the analyses from

he above mentioned literature, we find the employed classification

cheme to not be fully supported even when considering the ad-

itional catalogues and an alternative classifier. Interestingly, anal-

gous to our previous work [3] , the Little Blue Spheroids , a galaxy

lass newly introduced in [4] , remains most clearly pronounced,

lso for the set of catalogues analysed in this work. We present

he parameters that are the most relevant for the achieved class

istinctions. 

The paper is organised in as follows: In Section 2 the anal-

sed galaxy catalogues and their preprocessing is described.

ection 3 outlines the employed classification methods, GMLVQ

nd Random Forests. Section 4 describes experimental setups and

esults. The work closes with a discussion in Section 5 . 

This paper constitutes an extension of our contribution to the

6 th European Symposium on Artificial Neural Networks, Compu-

ational Intelligence and Machine Learning (ESANN) 2018 [3] . Parts

f the text have been taken over literally without explicit notice.

his concerns, among others, parts of the introduction and the

escription of GMLVQ in Section 3 . 

. Data 

In this work we analyse data from five galaxy catalogues

 Table 1 ) containing features which have been derived from spec-

roscopic and photometric observations, i.e. measurements of flux

ntensities in different wavelength bands from the Galaxy And
ass Assembly (GAMA) survey [11] for a sample of 1295 galax-

es. As the catalogues contain information for different sets of

alaxies, our data set consists of the set of galaxies for which a

ull set of features is available after balancing the relevant classes

cf. Section 2.6 ). 

To determine this set, each catalogue is first cross-referenced

ith the galaxy sample analysed in our ESANN contribution [3,9] ,

hich contains class labels for 7941 astronomical objects. The

esulting subsample is further preprocessed by selecting mea-

urements based on the specifics of each catalogue. Subsequently,

issing values are treated by first removing feature dimensions

ith a considerable amount of missing values (more than 500

issing values per feature dimension) and then discarding sam-

les which contain missing values in any of the remaining feature

imensions. 

Details of each catalogue as well as specific processing steps are

elineated in the following paragraphs. 

.1. GaussFitSimple 

The GaussFitSimple catalogue (GFS) [13] contains parameters

f Gaussian fits to 12 important emission lines found in galaxy

pectra, namely the emission lines of oxygen ([O I] emission lines

t 6300 Å and 6364 Å, in the following denoted as OIB and OIR ,

O II] lines at 3726 Å and 3729 Å, denoted as OIIB and OIIR , [O III]

ines at 4959 Å and 5007 Å, denoted as OIIIR and OIIIB ), nitrogen

[N II] lines at 6548 Å and 6583 Å, NIIR and NIIB ), sulphur ([S

I] lines at 6716 Å and 6731 Å, SIIR and SIIB ), and hydrogen (H α
nd H β lines at 6563 Å and 4861 Å, respectively). Further, the

atalogue contains slope and intercept of the continuum, that is,

he background radiation in-between emission lines. In addition

o these parameters the catalogue also contains meta-information

oncerning model fits and corresponding errors. 

From the GaussFitSimple catalogue we select amplitudes

AMP_ ∗) and sigma (SIG_ ∗) of the Gaussian fit for each emission

ine, as well as calculated fluxes ( ∗_FLUX) and equivalent widths

 

∗_EW). Here and in the following, the asterisk ∗ is a placeholder

or the name of the corresponding emission line. We further

nclude information about the continuum (CONT, GRAD) and the

trength of the D40 0 0 break, resulting in 59 selected features. We

iscard all samples for which a failure of the fitting procedure

as been indicated (FITFAIL_ ∗), and remove samples containing

issing values in any of the feature dimensions. The resulting

ub-catalogue then contains 7430 galaxies with 59 emission line

eatures. 

We note that the classification performance on the full

atalogue, which contains model fit information and er-

ors/measurement uncertainties is comparable to the results

chieved with the reduced catalogue containing 59 features (cf.

ection 4 ). As the selected parameters allow for a more direct

nterpretation in terms of emission line strengths and therefore
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facilitate interpretation from the astronomical perspective, we

consider the reduced catalogue in the following. 

2.2. Lambdar 

The Lambdar catalogue [14] contains flux measurements and

uncertainties for 21 bands, as measured by the LAMBDAR software

[14] . When cross-referencing with the catalogue analysed in our

preceding study, 400 galaxies are missing from the Lambdar

catalogue. These galaxies are removed from the considered Lamb-

dar subset and do not contribute to the ensuing missing value

calculations. Columns still containing a considerable amount of

missing values after this step ( > 500) are excluded from the

analysis. The removed columns contain parameters that include

fluxes and errors in the far and near Ultraviolet (UV) (FUV_flux,

FUV_fluxerr, NUV_flux, NUV_fluxerr), and fluxes and errors in the

100 m to 500 m bands (P100_flux, P100_gcfluxerr, P160_gcflux,

P160_gcfluxerr, S250_gcflux, S250_gcfluxerr, S350_gcflux,

S350_gcfluxerr, S500_gcflux, and S500_gcfluxerr). After remov-

ing these, 28 features remain in the catalogue, namely fluxes and

errors for u, g, r, i and z bands observed in the Sloan Digital Sky

Survey (SDSS, [15] ), Z, Y, J, H and K bands from VISTA Kilo-Degree

Infrared Galaxy Survey (VIKING, [16] ), and W1, W2, W3 and

W4 bands from the Wide-field Infrared Survey Explorer (WISE,

[17] ). After this step, samples that are missing measurements for

any of the remaining features are removed, resulting in a final

sub-catalogue of 7365 galaxies with 28 features. 

2.3. MagPhys 

The MagPhys catalogue [18] contains physical parameters com-

prising information about stellar populations as well as parameters

describing the inter-stellar medium in the galaxies. Parameters

include, among others, star formation rates, star formation time-

scales, information about star formation bursts, as well as the

masses of stars formed in the bursts, overall stellar ages and

masses, metallicities, and information about dust in the interstel-

lar medium and in stellar birth clouds; all this for each included

galaxy. All MagPhys parameters have been derived from informa-

tion provided in the Lambdar catalogue ( Section 2.2 ) using the

MAGPHYS program [18,19] . Due to missing values in the Lambdar

catalogue, the MagPhys catalogue does not contain information

for 400 of the galaxies analysed in our ESANN contribution [3] .

Apart from these, there are no missing values, so that informa-

tion from 177 MagPhys features is available for 7541 galaxies.

However, after selecting the final sample (cf. Section 2.6 ) some

parameters exhibit almost no variance over the considered

samples: Parameters fb17_percentile2_5, fb18_percentile2_5,

fb17_percentile16, fb17_percentile50, fb17_percentile84 and

fb18_percentile16 1 are largely constant, with maximally 15 data

points displaying deviations. We therefore remove these features,

which results in a dimensionality of 171 for the final MagPhys

sample. 

Information on the MagPhys parameter shorthand notation

used in the remainder can be found in [20] . 

2.4. Sérsic catalogues 

Three different catalogues are available which contain param-

eters of single-Sérsic-component fits to the 2D surface brightness

distribution of galaxies in different bands [21] . The single-Sérsic-

component fits have been produced with the GALFIT program [22] .
1 Percentiles of the likelihood distribution of parameters describing the fraction 

of the effective stellar mass formed in bursts over the last 10 7 and 10 8 years. 

S  

t  

r  

b

he catalogues contain a parameter, GALPLAN_ ∗, which indicates

ALFIT fitting failures for each band, where the asterisk ∗ is a

laceholder for the band. GALPLAN_ ∗ = 0 indicates a severe failure

hen fitting the surface brightness profile of the galaxy, which

ould not be amended by attempting a number of correction

trategies. We therefore discard all samples where GALPLAN_ ∗ = 0.

An additional goodness-of-fit parameter allowing to judge the

uality of profile fitting is the PSFNUM_ ∗ parameter. This param-

ter indicates the number of prototype stars used to model the

oint spread function (PSF) in the galaxy image to which the sur-

ace brightness profile was fit. As indicated in the GAMA catalogue

escription, modelling PSFs based on less than 10 stars may result

n poor PSF models, which in turn may result in poorly fitted sur-

ace brightness distributions. Accordingly, we discard all samples

here the PSFNUM_ ∗ parameters have a value lower than 10. 

The catalogue further contains meta-information needed to

eproduce the results of the GALFIT fitting. Here we concentrate

n parameters that are descriptors of galaxies as opposed to

arameters describing the fitting procedure. The galaxy descrip-

ors, all GALFIT-derived, are: GALMAG_ ∗, the magnitude of the

érsic model; GALRE_ ∗, the half-light radius measured along the

emi-major axis; GALINDEX_ ∗, the Sérsic index; GALELLIP_ ∗, the

llipticity; GALMAGERR_ ∗, the error on magnitude; GALREERR_ ∗,

he error on the half-light radius; GALINDEXERR_ ∗, the error

n the Sérsic index; GALELLIPERR_ ∗, the error on ellipticity;

ALMAG10RE_ ∗, the magnitude of a model truncated at 10 ×
he half-light radius; GALMU0_ ∗, the central surface brightness;

ALMUE_ ∗, the effective surface brightness at the half-light ra-

ius; GALMUEAVG_ ∗, the effective surface brightness within the

alf-light radius; and GALR90_ ∗, the radius containing 90% of total

ight, measured along the semi-major axis of the galaxy. 

.4.1. SersicCatVIKING 

The SersicCatVIKING [21] catalogue contains the above mea-

urements for the VIKING bands Z, Y, J, H, and K. Based on the

ALFIT failure parameter GALPLAN_ ∗ = 0, 966 samples were re-

oved from the sub-catalogue. Additional 1074 samples were re-

oved because of PSFNUM_ ∗ < 10. After removing samples which

ave missing values in any of the named feature dimensions the

nal sub-catalogue contains 5476 galaxies with 66 Sérsic features. 

.4.2. SersicCatUKIDSS 

The SersicCatUKIDSS [21] catalogue contains the above mea-

urements for the UKIDSS [23] bands Y, J, H, K. Based on the GAL-

IT failure parameter GALPLAN_ ∗ = 0, 2904 samples were removed

rom the sub-catalogue. Additional 1841 samples were removed

ecause of PSFNUM_ ∗ < 10. After removing samples which have

issing values in any of feature dimensions the final sub-catalogue

ontains 3008 samples with 53 Sérsic features. 

.4.3. SersicCatSDSS 

For the SersicCatSDSS catalogue [21] , most samples from

he cross-referenced catalogue [3,9] are discarded based on the

SFNUM and GALPLAN selection, and only 1672 samples re-

ain. The SersicCatSDSS catalogue is therefore excluded from the

nalysis. 

.5. Classification scheme 

For each galaxy analysed in our ESANN contribution [3] , a class

abel has been determined by astronomers following a visual in-

pection based classification scheme described by Kelvin et al.

4] . The scheme assigns galaxies to 9 classes: Ellipticals, Little Blue

pheroids, Early-type spirals, Early-type barred spirals, Intermediate-

ype spirals, Intermediate-type barred spirals, Late-type spirals & Ir-

egulars, Artefacts and Stars ( Table 2 ). We will refer to the classes

y their class index (1–9). 
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Table 2 

Overview of galaxy classes in the dataset used to cross-reference the catalogues analysed in this paper. Shown are also the corresponding 

Hubble types, an established galaxy type descriptor in astronomy, and the class index that is used to identify classes in the remainder of the 

work. Gray highlights indicate the classes that are part of the final classification problems. 

Class index Class name Corresponding Hubble type Prevalence in data set of [3,9] 

1 Ellipticals E0-E6 11% 

2 Little blue Spheroids – 11% 

3 Early-type spirals S0, Sa 10% 

4 Early-type barred spirals SB0, SBa 1% 

5 Intermediate-type spirals Sab, Scd 15% 

6 Intermediate-type barred spirals SBab, SBcd 2% 

7 Late-type spirals and irregulars Sd - Irr 45% 

8 Artefacts – 0.4% 

9 Stars – 0.005% 
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As barred spirals, artefacts and stars are highly under-

epresented in this sample, our subsequent analysis will focus on

he substantial classes, namely classes 1, 2, 3, 5 and 7. 

.6. Sample selection 

To ensure a fair comparison between the catalogues, our final

ataset comprises the subsample of galaxies for which a full set

f measurements is available, i.e galaxies for which measurements

re provided in each of the five considered catalogues. This is the

ase for 2117 galaxies. Considering only the substantial classes 1,

, 3, 5 and 7, and balancing classes so that for each class the

ame number of samples is selected, (259, based on class 2, the

lass with minimum cardinality), results in a final sample of 1295

alaxies. 

. Methods: classifiers 

.1. GMLVQ 

Generali z ed Relevance Matrix LVQ (GMLVQ) [7,8] is an exten-

ion of Learning Vector Quanti z ation (LVQ) [24] . LVQ is a super-

ised prototype-based method, in which prototypes are annotated

ith a class label. The prototypes are adapted based on the label

nformation of the training data: if the best-matching unit (BMU),

he prototype closest to the data point, is of the same class as a

iven data point, the prototype is moved towards the data point,

hile in the case of a BMU with an incorrect class label, the pro-

otype is repelled. While LVQ assesses similarities between proto-

ypes and data points using the Euclidean distance, GMLVQ learns

 distance measure that is tailored to the data, allowing it to sup-

ress noisy feature dimensions or to emphasise distinctive fea-

ures and their pair-wise combinations. GMLVQ therefore considers

 generalised distance 

 

�(w , ξ) = ( ξ − w ) T � ( ξ − w ) with � = �T � and 

∑ 

i �ii = 1 ,

here � is an n × n positive semi-definite matrix, ξ ∈ R 

n repre-

ents a feature vector and w ∈ R 

n is one of M prototypes. After

ptimisation, the diagonal of � will encode the learned relevance

f the feature dimensions, while the off-diagonal elements encode

he relevances of pair-wise feature combinations. As empirically

bserved and theoretically studied [25,26] the relevance matrix af-

er training is typically low rank and can be used, for instance, for

isualisation of the data set (see Appendix A for an example). 

The parameters { w i } M 

i =1 
and � are optimised based on a

euristic cost function, see [7] , 

 GMLVQ = 

P ∑ 

i =1 

μ�
i 

, with μ�
i 

= (d �J ( ξi ) − d �K ( ξi )) / (d �J ( ξi ) 

+ d �K ( ξi )) , (1) 
F
here P refers to the number of training samples, d �
J 

( ξ) =
 

�
J 

(w J , ξ) denotes the distance to the closest correctly labelled

rototype w J , and d �K ( ξ) = d �K (w K , ξ) denotes the distance to the

losest incorrect prototype w K . If the closest prototype has an

ncorrect label, d �
K 

( ξi ) will be smaller than d �
J 

( ξi ) , hence, the

orresponding μ�
i 

is positive. Minimisation of E GMLVQ will there-

ore favour the correctness of nearest prototype classification. In a

tochastic gradient descent procedure based on a single example

he update reads 

 J,K ← w J,K − ηw 

∂ μi /∂ w J,K and � ← � − η�∂ μi /∂ � . (2)

erivations and full update rules can be found in [7] . In a batch

radient descent version [27] , updates of the form (2) are summed

ver all training samples. 

.2. Random Forests 

Random Forests (RF) [10] is a well-known classification and re-

ression method that employs an ensemble of randomised Deci-

ion Trees [28] . In randomised Decision Trees, a subset of features

s chosen randomly at each node. Considering only the selected

eatures, decision thresholds are determined based on the best at-

ainable split between classes. To combine the classifications of

ach tree in the ensemble, i.e. to determine the output of the Ran-

om Forest, different methods can be employed. In the scikit-learn

mplementation used in our experiments [29,30] the final classifi-

ation output is obtained by averaging the probabilistic prediction

f each tree. 

Details on the set-up of the experiments for RF as well as for

MLVQ can be found in Section 4.1 . 

. Experiments 

In our experiments, we assess relevances of features and dis-

riminability between classes by training and evaluating GMLVQ

or each of the five preprocessed catalogues described in Section 2 .

s found in previous work [3] , class 2, the Little Blue Spheroids

LBS), were particularly well-distinguishable. We perform exper-

ments for both, the full 5-class problem, trying to distinguish

etween galaxy classes 1, 2, 3, 5 and 7 (cf. Table 2 ) and a 2-

lass problem in which the LBS are classified against galaxies from

he other four classes. In addition to the single catalogue experi-

ents, we also assess feature relevances and discriminability be-

ween classes for a concatenation of all catalogues, to account for

ossible synergies between features from different catalogues. 

To allow for interpretation in the light of other classifiers, we

erform the same experiments with the widely used Random

orests (RF) classifier [10] as a baseline. 
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4.1. Setup 

We train and evaluate GMLVQ on the galaxy catalogue data us-

ing a publicly available implementation [27] . As the GMLVQ cost

function is implicitly biased towards classes with larger numbers

of samples, we train and evaluate the classifier on size-balanced

random subsets of the five classes. For our experiments, we specify

one prototype per class and run the algorithm for 100 batch gradi-

ent steps with step size adaptation as realised in [27] with default

parameter settings.the We validate the algorithm by performing

a class-balanced repeated random sub-sampling validation (see e.g.

[31] for validation methods) for a total of 10 runs. Error measures

and relevance profiles shown in the following correspond to av-

erages over the 10 repetitions. For the two-class problems we also

obtain and average Receiver Operator Characteristics (ROC) and the

corresponding Area under the Curve (AUC) [32] . 

4.1.1. Setup LBS vs others 

For the two-class problem, we evaluate the classifier on a sub-

set of the full dataset (cf. Section 2.6 ) containing 515 samples. For

this subset, we select all 259 samples from class 2, while the oth-

ers class is made up by 256 samples consisting of 64 samples

randomly selected from class 1, 3, 5, and 7 each. The remaining

settings and validation procedure remain identical to the 5-class

problem. 

4.1.2. Random Forests 

We execute experiments employing Random Forests analogous

to the GMLVQ experiments, i.e. the classifier is trained on class-

balanced random subsets of the data and validated using repeated

random sub-sampling validation. Experiments are performed us-

ing a publicly available scikit-learn implementation [29,30] with

default settings. 

4.2. Classification results based on parameters from individual 

catalogues 

A summary of classification performances for both the 5-class

and the 2-class problem can be found in Fig. 1 . For the 5-class

problem, an overview of confusion matrices (averaged over all

validation runs) for each of the catalogues is shown in Fig. 1 a; an

overview of the average classification accuracies can be found in

Fig. 1 c in the bottom panel. For the 2-class problem, a comparison

of ROC curves and classification accuracies can be found in Fig. 1 b

and in Fig. 1 c in the top right subfigure, respectively. The corre-

sponding average relevance profiles contrasting feature relevances

for the 5-class and 2-class problem are shown in the Appendix, in

Fig. B.1 (Lambdar catalogue), Fig. B.2 (GaussFitSimple catalogue),

Fig. B.3 (SersicCatVIKING catalogue), Fig. B.4 (SersicCatUKIDSS

catalogue), and Figs. B.5 and B.6 (MagPhys catalogue). 

Results based on SersicCatVIKING : The confusion matrix indicat-

ing the GMLVQ class-wise accuracy on the SersicCatVIKING cat-

alogue exhibits similar, albeit slightly worse performance than

the performances presented in our previous work [3] that was

based on a different set of galaxy parameters. Based on the Ser-

sicCatVIKING, the LBS are classified with higher accuracy (87% vs.

91% in ESANN) than the other classes (47–67%, 64–74%). As in the

ESANN results, classes 1 and 3 show some overlap (21% of class 1

samples are classified as class 3, and 20% of class 3 samples are

erroneously classified as class 1). However, unlike in the ESANN

results, the overlap between class 1 and class 2 is increased in

the classification using SersicCatVIKING: 22% of class 1 samples

are now classified as belonging to class 2, where this overlap was

only 10% for the data analysed in our ESANN contribution [3] .

This is also reflected in the 2-class problem when distinguishing

the LBS from the other classes. In [3] this can be achieved with
UC(ROC) = 0.96, while for the SersicCatVIKING catalogue the clas-

ification accuracy is around 84% and the AUC(ROC) = 0.91. Another

otable increase in overlap is the overlap between class 5 and 7,

here the misclassification rate of class 5 galaxies as class 7 galax-

es is increased from 8% to 18%. 

Results based on GaussFitSimple catalogue: The confusion ma-

rix for the classification based on the GaussFitSimple Catalogue

hows the highest classification accuracy of 64% for the LBS. Class

 drops in accuracy to 47%. This is in part due to an increased over-

ap between the classes, 31% of class 1 samples are classified as

lass 3 samples and 31% of class 3 samples as belonging to class

. In addition, there is increased overlap between class 1 and 5

12%) and class 3 and 5 (18%), while the overlap between classes

 and 3 with both LBS and class 7 remains low. It is notable that

ased on the information in the GaussFitSimple Catalogue, class 7

s only classified slighly above chance level, with most of its sam-

les being misclassified as class 2 (35%) and class 5 (18%). Despite

his, the distinction between LBS and others is still on average 78%

orrect, the AUC(ROC) = 81%. 

Results based on SersicCatUKIDSS: The results for the Sersic-

atUKIDSS show an overall similar performance to the results of

he SersicCatVIKING catalogue: In comparison to the classification

erformance presented in our ESANN contribution [3] , there is

n increased misclassification of class 1 samples as class 2 sam-

les, and an increased misclassification of class 5 samples as be-

onging to class 7. LBS classification accuracy is at 87% with an

UC(ROC) = 0.91. 

Results based on Lambdar catalogue: The results for the Lambdar

ample show a similar picture as the GaussFitSimple sample: Class

 is classified with an accuracy of only slightly above chance level

nd is often (52%) misclassified as class 2. Unlike in the GFS re-

ults, the accuracy for class 1 is below chance level (15%). As has

een the case for the other catalogues, class 1 samples are mis-

lassified mostly as class 3 (38%). In contrast to the GaussFitSimple

atalogue, here class 1 also shows considerable overlap with class

 (23% of class 1 samples are misclassified as class 2). In addition,

 considerable amount of class 1 samples (11% and 13%) are also

isclassified as classes 5 and 7. Further, class 5 and class 3 show

verlap, with 15–16% misclassifications. Overall, classification accu-

acy based on the Lambdar catalogue is lowest (46%), while the LBS

an be distinguished with 74% accuracy and an AUC(ROC) = 0.81. 

Results based on MagPhys catalogue : The classification results for

he MagPhys sample show a similar trend as the results based on

he Lambdar sample: Classes 1 and 3 exhibit considerable overlap

40% of class 1 samples are classified as class 3, and 17% of class

 samples are classified as class 1), class 7 accuracy is low (43%)

nd is frequently misclassified as class 2 (34% of the cases). In con-

rast to the Lambdar sample, there is almost no overlap between

lass 1 and class 2. Average classification accuracy for the 5 classes

ased on the MagPhys catalogue is at (54%), while the LBS can be

istinguished with 80% accuracy and an AUC(ROC) = 0.88. 

LBS vs other : The LBS can be distinguished from the other

lasses with an intermediate accuracy of about 74–87% and

UC(ROC) values of 81–91%. 

.3. Combined catalogues 

Combining all catalogues would result in a very high-

imensional classification problem, thereby rendering the result-

ng relevance profiles difficult to interpret. We therefore select a

ubset of parameters from each individual catalogue based on the

eature relevances obtained in the single catalogue experiments in

he following manner: For each individual catalogue, parameters

re sorted according to their relevance. Subsequently, the most rel-

vant parameters cumulatively comprising 50% of the summed to-

al relevance are carried over to the combined catalogue. We note
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Fig. 1. Summary of GMLVQ classification performances for both single and combined catalogues. 
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that we have also performed GMLVQ experiments on the full cata-

logue comprising all 377 features, which resulted in similar, albeit

slightly worse performances than reported below. 

For the Random Forests baseline experiments, we select the full

catalogue of 377 features independent from the GMLVQ results, as

to warrant identical experimental conditions. For completeness, we

note that classification accuracy of Random Forests on the above

described relevance-selected parameter subset is comparable to

the classification accuracy on the full dataset. 

Sorted relevance-profiles for the resulting combined catalogues

are displayed in Fig. 2 a and b, for the 5-class and 2-class prob-

lem, respectively. To simplify comparison, the confusion matrix

as well as the 2-class classification performance are displayed

alongside the individual catalogue performances in Fig. 1 . 

Considering the confusion matrix for the combined catalogue,

a slight overall increase in performance with respect to the indi-

vidual catalogue performances can be observed. Further, it reflects

the combined properties of the individual catalogues: An overlap

between classes 1 and 3, some overlap between classes 3 and

5, and some overlap between classes 2 and 7. In comparison to

the results presented in [3] , classification accuracy is slightly de-

creased (70% vs. 73%). It should be noted however, that in [3] thrice

as many samples per class were available, which could account

for the difference in performance. LBS can be distinguished from

the other classes with a classification accuracy of 89% and an

AUC(ROC) = 0.96. 

Feature relevances for the combined catalogues: The param-

eters that make up 50% of the relevances for the 5-class and

the 2-class problem (indicated by a black arrow in Fig. 2 a and

b), almost exclusively originate from the SersicCatVIKING and

MagPhys catalogues. For the 5-class problems, these parameters

are related to stellar masses and dust (mass_stellar_best_fit,

mass_dust_percentile97_5, mass_stellar_percentile_97_5 and

mass_stellar_percentile84), and the star formation timescale

(gama_percentile16), the effective surface brightness within the

half-light radius for the J- and Z-bands (GALMUEAVG_J and

GALMUEAVG_Z), ellipticity of the galaxy (GALELLIP_Z, GALEL-

LIP_Yviking), and magnitude of a GALFIT model of the galaxy

(GALMAG10RE_Jviking). 

For the 2-class problem, the most relevant parameters

encompass the GALFIT central surface brightness in Z-band

(GALMU0_Z), parameters related to star formation rates

(sfr19_percentile50), information related to the ellipticity of

the galaxies (GALELLIPERR_Z, GALELLIP_Hviking), effective surface

brightness (GALMUEAVG_Z) and information about the equivalent

width of the sulphur emission line. 

It should be noted that relevance-matrices are not necessarily

unique. They depend on which other features are available and on

the parameters chosen for both data preprocessing and execution

of the algorithm. This can be illustrated when considering highly

correlated variables: GMLVQ might assign either two intermediate

relevances to each of the variables, or deem one variable highly

relevant at expense of the other correlated variable’s relevance.

Relevance profiles therefore should be interpreted in the sense that

focusing on the most relevant parameters would allow differentia-

tion between classes with the reported accuracy, while keeping in

mind that other combinations of features may achieve this as well.

4.4. Random Forests baseline results 

The classification accuracies for Random Forests for the indi-

vidual and combined catalogues are displayed in Fig. 1 c side-by-

side with the GMLVQ results. For all catalogues applying the Ran-

dom Forest classifier results in comparable, though slightly better

classification accuracies. 
. Discussion and conclusion 

The results presented above suggest that there may be incon-

istencies in the investigated morphological classification scheme:

nalogous to our previous findings [3] , it has proven difficult to

istinguish galaxy types using two powerful and flexible classifiers,

MLVQ and Random Forests. In all GMLVQ analyses of the indi-

idual as well as of the combined catalogues, class 1 ( Ellipticals )

nd 3 ( Early-type spirals ) are particularly difficult to differentiate.

lass 7 ( Late-type spirals & Irregulars ) is frequently misclassified as

lass 5 ( Intermediate-type spirals ) and with a similar frequency as

lass 2 (LBS), while class 2 is consistently detected with the highest

ensitivity among all classes. 

The difficulty of training a successful classifier was also ob-

erved in [9] , where class-wise averaged accuracies are around

5%. As mentioned in our earlier contribution [3] , possible expla-

ations for poor classification performance may be the lack of dis-

riminative power of the employed classifiers or mis-labellings of

ertain galaxies [9] . A possible indication for the latter case may

e that samples from class 7 ( Late-type spirals & Irregulars ) are of-

en misclassified as class 5 ( Intermediate-type spirals ), and class 2

LBS). This indicates that the feature representations of the galax-

es in question share more properties with the named classes, and

t is not unlikely that in the hand-labelling process an Intermediate-

ype spiral is occasionally misclassified as class 7 (e.g. confused

ith a Late-type spiral ), or that a LBS is classified as class 7 (an

rregular ). In the former case, employing even more flexible classi-

ers, e.g. GMLVQ with local relevance matrices [7] , may improve

lassification performances. In the second case, if mis-labellings

re restricted to “neighbouring” classes in an assumed underlying

lass ordering (e.g. when considering class 5 adjacent to class 7, or

lass 1 ( Ellipticals ) as adjacent to class 3 ( Early-type spirals )), ordinal

lassification may provide further insights [33,34] . 

Despite trying to address the issue of essential parameters be-

ng not contained in the dataset analysed in [3] by considering

 additional catalogues with a multitude of photometric, spectro-

copic and morphological measurements, it is still possible that

dditional (and possibly not yet discovered) parameters would

nable improved class distinction. Yet, our results do not rule

ut the possibility that the true, underlying grouping of galaxies

s considerably different and less clear-cut than the investigated

ne. Further data-driven analyses of galaxy parameters and im-

ges with advanced clustering methods might reveal alternative

roupings, like recently found for data in the VIMOS Public Extra-

alactic Redshift Survey [35] , or even suggest novel classification

chemes. 

To aid further insight into the nature of the employed visual-

ased classification scheme, in particular with respect to physical

arameters, we have presented relevances of the catalogue features

or the investigated class distinctions. Note that relevances have to

e interpreted with regard to the characteristics of the data sam-

le (e.g. correlations) and classification performance. This connotes

hat feature relevances are only meaningful when the class of in-

erest is at least moderately well distinguished from the others.

urther it should be noted that the presented feature relevances

re not necessarily unique – alternative relevance solutions may

xist. It is of particular interest to note that in the combined cat-

logue the most relevant features originate from the Sérsic cata-

ogues and the MagPhys catalogue. The high relevance of Sérsic

eatures indicate the importance of galaxy structure in different

ands for the class distinction, while the presence of highly rel-

vant features from the MagPhys catalogue highlights that classifi-

ation performance is aided by these physical parameters as well.

urther insight into the role of features in the context of neces-

ary and dispensable features may be obtained by studying feature

elevance bounds along the lines of [36] . 



A. Nolte, L. Wang and M. Bilicki et al. / Neurocomputing 342 (2019) 172–190 179 

Fig. 2. Sorted relevance profiles for catalogues obtained by combining the most relevant features that cumulatively make up 50% of the relevances in the single catalogue 

relevance profiles. Bar colours indicate the origin catalogue for each feature. Features up to the position marked by a black arrow constitute 50% of the cumulative relevance 

determined for the resulting combined catalogue. 
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Conclusions: We have presented an analysis of five galaxy cata-

logues using Random Forests and GMLVQ, a prototype-based clas-

sifier. Analogous to results obtained in preceding work on a lower-

dimensional dataset, we conclude that even when considering a

multitude of additional galaxy descriptors, the visual-based classi-

fication scheme used to label the galaxy sample remains not fully

supported by the available data. Taking into account that percep-

tual and conceptual biases likely play non-negligible roles in the

creation and application of galaxy classification schemes, further

data-driven analyses might help provide novel insights regarding

the true underlying grouping of galaxies. 
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Appendix A. Dataset visualisations and intrinsic dimensionality 

reduction in GMLVQ 

Figs. A.1 and A.2 display projections of each dataset considered

in this work onto the first and second eigenvector of the rele-

vance matrix � (cf. Section 3 ) and onto the first two principal
omponents determined by Principal Component Analysis (PCA)

37] . The rightmost column of each figure contrasts the eigenvalue

pectra of � and the data covariance matrix which forms the

asis for PCA. While � is an n × n matrix, the steeply declining

igenvalue spectra for each dataset illustrate the low-dimensional

ubspace which GMLVQ operates in after learning [25,26] . In

articular, for the 5 class problem, � spans an approximately 3

imensional subspace, while for the 2 class problem the subspace

s essentially one-dimensional. The low-rank relevance matrices

herefore can be thought of as performing a GMLVQ-intrinsic

imensionality reduction. 

Comparing the 2-D projections onto the two leading eigenvec-

ors of � and the projections onto the first two principal compo-

ents, the former results in a more fanned out representation with

espect the classes. This is due to the fact that by making use of

he class labels, GMLVQ finds a lower-dimensional discriminative

ubspace as opposed to the unsupervised PCA. 

ppendix B. Feature relevances for individual catalogues 

In the following ( Figs. B.1–B.6 ), we present relevance profiles for

he individual catalogues analysed in this work. Relevance profiles

eflect the diagonal of GMLVQ’s relevance matrix � after learn-

ng (cf. Section 3 ) and summarise the importance of features for a

iven data sample and classification task. Figures display mean and

ariance of the profiles over 10 independent runs (cf. Section 4.1 ).

s noted previously, for an accurate interpretation it is important

o note that, in general, relevance profiles are not unique: Espe-

ially in the presence of correlated variables, alternative profiles

esulting in comparable classification performance might exist. In

articular, a feature’s low relevance does not entail the feature to

arry no information for the desired class distinction, but may in-

tead indicate its contribution to be at least partly redundant with

ther features. 

For example, contrary to expectations at first glance, our exper-

ments with the Lambdar sample result in relevance profiles that

ndicate uncertainties of fluxes of various bands as more relevant

han the corresponding flux measurements themselves ( Fig. B.1 ).

hile it is not unthinkable that flux uncertainties systematically

ary over a subset of galaxy classes (personal communication, An-

us Wright, developer of the LAMBDAR software), in our sample

1 and W2 fluxes are correlated with both their respective errors

nd with fluxes from other bands. W1 and W2 fluxes as well as

uxes from other bands are thus at least partly redundant with the

1 and W2 flux uncertainties, and therefore might end up more

elevant than the corresponding fluxes. 

http://www.gama-survey.org/
https://doi.org/10.1016/j.neucom.2018.12.076


A. Nolte, L. Wang and M. Bilicki et al. / Neurocomputing 342 (2019) 172–190 181 

Fig. A.1. 2D visualisations of the datasets used in the LBS vs. others classification condition. The leftmost column displays a projection of each dataset onto the first two 

eigenvectors of the learned relevance matrix �. In the middle column, projections of the datasets onto the first two principal components (PC1 and PC2) are shown. The 

right column juxtaposes the eigenvalue spectra of the relevance matrix and the data covariance matrix used in PCA. For increased readability, figures concentrate on the 

median region of the data and axes are cut off at a 3 times inter-quantile range distance from the median. Furthermore, the data projections are scaled by the square root 

of the corresponding eigenvalues. In the sub-figures of the eigenvalue spectra the x-axis is truncated after both eigenvalues have dropped below a value of 0.005. 



182 A. Nolte, L. Wang and M. Bilicki et al. / Neurocomputing 342 (2019) 172–190 

Fig. A.2. 2D visualisations of the datasets used in the 5-class classification condition. The leftmost column displays a projection of each dataset onto the first two eigenvectors 

of the learned relevance matrix �. In the middle column, projections of the datasets onto the first two principal components (PC1 and PC2) are shown. The right column 

juxtaposes the eigenvalue spectra of the relevance matrix and the data covariance matrix used in PCA. For increased readability, figures concentrate on the median region of 

the data and axes are cut off at a 3 times inter-quantile range distance from the median. Furthermore, the data projections are scaled by the square root of the corresponding 

eigenvalues. In the sub-figures of the eigenvalue spectra the x-axis is truncated after both eigenvalues have dropped below a value of 0.005. 
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Fig. B.1. Feature relevances as determined by GMLVQ for the Lambdar sample. For accurate interpretation of the relevance profiles, take note that relevance profiles are not 

necessarily unique, in particular in the presence of highly correlated variables. This connotes that focusing on the relevant parameters would enable to differentiate between 

classes with the reported accuracy, however, there may be other combinations of features which could result in similar accuracies. 
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Fig. B.2. Feature relevances as determined by GMLVQ for the GaussFitSimple sample. Same note applies here as to Fig. B.1 . 
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Fig. B.3. Feature relevances as determined by GMLVQ for the SersicCatVIKING sample. Same note applies here as to Fig. B.1 . 
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Fig. B.4. Feature relevances as determined by GMLVQ for the SersicCatUKIDSS sample. Same note applies here as to Fig. B.1 . 
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Fig. B.5. 5 class problem: Feature relevances as determined by GMLVQ for the MagPhys sample. Same note applies here as to Fig. B.1 . 
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Fig. B.6. LBS vs. others: Feature relevances as determined by GMLVQ for the MagPhys sample. Same note applies here as to Fig. B.1 . 
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fication, and he has led or been involved in several applications of such methodolo-
gies to big astronomical data. 
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