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ScienceDirect
Metabolic engineering and synthetic biology approaches have

prospered the field of biotechnology, in which the main focus

has been on Escherichia coli and Saccharomyces cerevisiae as

microbial workhorses. In more recent years, improving the

Gram-positive bacteria Lactococcus lactis and Bacillus subtilis

as production hosts has gained increasing attention. This

review will demonstrate the different levels at which these

bacteria can be engineered and their various application

possibilities. For instance, engineered L. lactis strains show

great promise for biomedical applications. Moreover, we

provide an overview of recent synthetic biology tools that

facilitate the use of these two microorganisms even more.
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Introduction
In the last few decades, metabolic engineering and syn-

thetic biology approaches to improve industrial applica-

tions of microbes have delivered many breakthrough

results [1]. However, most of this work has been per-

formed with the main model organisms Escherichia coli
and Saccharomyces cerevisiae. Here, we will focus on two

other workhorses in biotechnology that is the food-grade

bacterium Lactococcus lactis, and industrial chassis Bacillus
subtilis. L. lactis is indispensable in dairy and health

applications, being a production organism for antimicro-

bials, polyphenols, oral vaccines, and flavor-compound

and texturizing compound. B. subtilis is an efficient
www.sciencedirect.com 
metabolite and enzyme producer for various industrial

applications. Moreover, the sporulation properties of the

latter also offer opportunities for vaccine production by

expressing antigens at the surface of spores. These micro-

organisms have some unique properties, which make

them particularly suited for specific applications. Both

L. lactis and B. subtilis lack immunogenic lipopolysacchar-

ides that render them better hosts for expression of

health-related products, like antimicrobial delivery or oral

vaccines, than E. coli and other Gram-negative bacteria.

Moreover, L. lactis model strain MG1363 produces only a

low number of exoproteins and no exoproteases, while

genome-reduced B. subtilis strains [2�] also lack extracel-

lular protease activity, which make these hosts excellent

enzyme producers, since the products will stably remain

in the culture supernatants.

Metabolic engineering of L. lactis

For more than 20 years, the relatively simple metabolism

of L. lactis has served as a target for metabolic engineer-

ing. The ability to metabolize a broad range of carbon

sources, high glycolytic flux and tolerance to high con-

centrations of organic acids and alcohols makes it an

excellent candidate for bioproduction of fine chemicals

and food ingredients. Rewiring the pyruvate node by

blocking competing enzymes and modifying the native

glycolytic flux via ATP (adenosine triphosphate) and

cofactor recycling, lead to strains efficiently producing

diacetyl, acetaldehyde, acetoin, and so on. The ability of

L. lactis to switch between fermentation and respiration

when hemin is present was elegantly exploited as a way to

regenerate NAD (nicotinamide adenine dinucleotide)

during acetoin and 2,3-butanediol production [3�]. The

most recent studies not only obtained the highest 2,3-

butanediol level reported for L. lactis to date [4], but also

demonstrated its potential for converting dairy waste

streams into the value-added products (3R)-acetoin,
2,3-butanediol and biofuel ethanol with high yields

encouraging further bioprocess optimization [4,5].

Many engineering efforts were put in food industry-

related strain improvement, such as stress and phage

resistance [6–8]. Rerouting and overexpression of various

native and heterologous pathways in L. lactis (Figure 1a,b)

have yielded efficient vitamin, polyol, EPS (extracellular

polymeric substances), hyaluronic acid producers

(reviewed in Ref. [6]). Development of protocols for cell

propagation in emulsion droplets coupled to microfluidics
Current Opinion in Biotechnology 2019, 59:1–7
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Metabolic engineering strategies for the production of industrial relevant products by L. lactis and B. subtilis.

(a) Rational engineering of expression cassettes (from left to right, different colored boxes represent various promoters, RBSs, CDSs and

terminators, respectively), transporters, cofactors, or secretion machinery components. (b) Modular or combinational optimization of different

rational approaches in a multi-gene product synthetic pathway. (c) Global transcription machinery engineering (gTME) allows system-wide

pathway modification for improving the metabolic capacity or chemical tolerance. All the three levels of metabolic optimization approaches have

been done in B. subtilis, while only strategy (a) and (b) have been applied for the overexpression of products in L. lactis.
and other screening methods allowed selection of strains

with higher biomass or better vitamin producers without

any targeted genetic manipulation [9,10�].

Synthetic biology tools for L. lactis

Genetic engineering for strain optimization in L. lactis
has been focused for many years on traits useful to

improve industrial milk fermentations. Because of its

beneficial properties and the expanding genetic toolbox

(Table 1), L. lactis has also gained interest as an expres-

sion host for the production of heterologous proteins and

therapeutic/antimicrobial peptides [11]. Various tools

have been instrumental to enable the use of L. lactis
as a production host. Depending on the purpose, either
Current Opinion in Biotechnology 2019, 59:1–7 
(artificial) constitutive or inducible promoters are

employed to (over)express the gene or gene cluster of

interest. The development of inducible gene expression

systems has been extremely powerful for functional

characterization or production purposes. Various systems

have been developed, of which the NIsin-Controlled

Expression system (NICE) is mostly used [12]. Also

other systems such as Zirex (Zinc-regulated expression

system) [13] and ACE (agmatine-controlled expression)

[14] were developed that can be used alone or in com-

bination to enable sequential expression. Riboswitches

can be used as an OFF-switch to enable gene silencing

and are currently under development for L. lactis [EP

Hernandez et al., unpublished data].
www.sciencedirect.com
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Table 1

Existing and novel synthetic biology tools for L. lactis

Purpose Synthetic biology tool Reference

Controlled gene expression Nisin-controlled gene expression system (NICE)

[19��]
Zinc-regulated expression system (Zirex)

Agmatine-controlled expression system (ACE)

Stress-inducible controlled expression system (SICE)

pH-responsive expression (P170)

Constitutive gene expression Constitutive native promoter library [55]

Genome engineering pSEUDO. Site-specific integration based on homologous recombination [18]

Recombineering. Marker-free method for chromosomal mutations/deletions using ssDNA oligo’s [17]

Cre-loxP recombination system. Site-specific recombination system that allows multiple gene

deletions in L. lactis

[56]

CRISPR-Cas9/CRISPRi-based genome editing [57]

Improved expression host L. lactis NZ9000-4 (9k-4) with minimized genome and enhanced heterologous protein production [58]

Improved protein secretion Signal peptides (SP). A library of usp45-derived SP for efficient protein secretion [59]
To introduce foreign DNA into L. lactis, electroporation is

currently the golden standard. However, DNA transfer

between two L. lactis species by conjugation was developed

[15] and a non-conjugative vertical gene transfer has been

observed as well (L Morawska, OP Kuipers, personal com-

munication). Recently, the induction of competence genes

created functional competence in L. lactis [16]. Different

gene modification systems have enabled efficient chromo-

somal mutations by using recombineering [17]. Gene inser-

tions ordeletions werefacilitatedbydoublecross-overusing

the pCS1966 plasmid that is unable to replicate and that

contains a selectable antibiotic marker and a counter-select-

able orotate transporter. This can lead to markerless dele-

tions or insertions [18]. An extensive overview of cloning

vectors and tools for gene expression/modification is pre-

sented elsewhere [19��]. Currently, alternative natural

methods are being developed that open up application

options in, for example, the dairy industry. Phage contami-

nation can be the cause of significant lossofbacterial activity

in food fermentations and during the production of bio-

chemicals. Antisense RNAs against crucial bacteriophage

genes were previously used in L. lactis [20] to inhibit the

efficiency of plaquing and burst size. In these studies, there

was a limited design of these antisense RNAs, other than

cloning different parts of the genes such that the opposite

strand is transcribed as an antisense RNA. Recently, hun-

dreds of novel RNAs with putative regulatory functions

have been discovered [21] and advances in the field of

regulatory RNAs have gained tremendous insight in the

molecular mechanisms of how mRNAs can be silenced by

degradation or by blocking of the Shine Dalgarno sequence

to prevent translation, creating possibilities for a more

designer approach using regulatory RNAs as a tool to affect

gene expression. Cell penetrating peptides (CPPs) could

provide a way to deliver phosphorodiamidate morpholino

oligonucleotides (PMOs) to enable gene silencing. These

CPP–PMO’s are now allowed therapeutically [22], but can

be applied to steer fermentation during the process itself in
www.sciencedirect.com 
order to eliminate cell functions such as transporters or

pathways. An illustrative example of synthetic biology

making use of peptide modularity instead of DNA modu-

larity was provided by lanthionine ring shuffling of lanti-

biotics, making use of over 25 different ring, hinge, and tail

modules and a micro-alginate bead-based high throughput

screening method to obtain new-to-nature lantibiotics.

Some of the analyzed peptides possessed antimicrobial

activity and were shown to have an unprecedented host

range [S Schmitt et al., unpublished data].

Use of L. lactis for biomedical applications

An established history of safe use in the food industry

makes L. lactis an appealing organism for a number of

biomedical applications. Absence of lipopolysaccharides

and only a low number of exoproteins make it a better

delivery vehicle or expression host than E. coli and other

Gram-negative bacteria. Genetically modified (GM) L.
lactis is used to (1) prevent and treat inflammatory bowel

disease (IBD), diabetes, cancer by modulating inflamma-

tion via cytokine, anti-protease, antioxidant enzyme, anti-

bacterial, and anti-antigenic peptide secretion; (2) fight

infectious diseases and allergic reactions via modulation

of immune responses and as a safer vaccine. GM L. lactis
may even be used to deliver DNA molecules to mammalian

cells as vaccines or as a form of gene therapy [23].

Steidler et al. have established proof of principle using L.
lactis engineered to produce the anti-inflammatory cyto-

kine interleukin-10 (IL-10) to treat IBD [24]. Using

animal models, they showed that dietary administration

of engineered bacteria is therapeutically effective. An

elegant system for the containment of live GM bacteria

was designed replacing the thyA gene with an expression

cassette resulting in a strain that produces hIL-10 when is

strictly dependent on thymidine or thymine for growth

and survival. This strain was the first genetically modified

organism (GMO) to reach clinical trials [25]. To date,
Current Opinion in Biotechnology 2019, 59:1–7
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several engineered lactococci have reached clinical stud-

ies using similar safe containment strategy. Recently, a

phase Ib/IIa study was announced to test the ability of L.
lactis secreting IL-10 and proinsulin (AG019) [26�] to treat

early onset type 1 diabetes. A phase 2 clinical trial of an

oral rinse composed of a recombinant L. lactis strain

engineered to secrete the mucosal protectant human

trefoil factor hTFF1 was initiated [27]. An oral adminis-

tration of L. lactis engineered to secrete anti-TNF-alpha

nanobodies proved to be effective and safe against IBD in

a phase I trial [28].

Although the NICE system proved to be useful in many

cases, synthetic biology approaches required develop-

ment of promoters that do not involve an external inducer

and are constitutive or respond to factors which bacteria

encounter in the mammalian body (Table 1).

A resource-conserving and environmentally sustainable

production of plant natural products with health-benefi-

cial properties using microbial cell factories is an attrac-

tive alternative to plant extraction or chemical synthesis.

L. lactis was shown to be an excellent host for the

expression of plant and fungal membrane proteins and

soluble enzymes involved in polyphenol, terpenoid, and

ester synthesis [6,29]. Functional pathways for the pro-

duction of nutraceuticals resveratrol and anthocyanins

were assembled. Employment of metabolic biosensors

for malonyl-CoA allowed monitoring of intracellular pre-

cursor pool and suggested strategies to improve the

product yield [29].

Metabolic engineering of B. subtilis

In addition to L. lactis, B. subtilis has been extensively

exploited as a microbial cell factory for the overproduc-

tion of various industrially relevant products in the fields

of food, pharma, and biotechnology. In the past few

decades, numerous studies have been performed in

attempts to develop this production host into a highly

adaptable chassis with both high yields and a wide range

of products [30].

Conventional approaches for improving the production

capacity of B. subtilis include modifying the elements of

synthetic pathways, that is gene copy numbers, promo-

ters, RBSs (ribosome binding sites), CDS (coding

sequences), and terminators [31�] or varying the availabil-

ity of rate-limiting components, that is the composition of

secretion machinery [32] (Figure 1a). However, these

efforts, that are based on the rational modification of

specific pathway or factors, always require a comprehen-

sive understanding of the target metabolic networks and

have limited success on strain improvement [33,34].

Metabolic engineering strategies that integrate newly

developed systems and synthetic biology approaches

have greatly facilitated the unlocking of phenotypes with
Current Opinion in Biotechnology 2019, 59:1–7 
desired cellular properties in B. subtilis [34]. Combinato-

rial pathway optimization, which enables to vary multiple

critical pathway elements, can streamline metabolic engi-

neering by reducing experimental efforts and the amount

of a priori knowledge [35] (Figure 1b). The combinatorial

engineering of promoters and RBSs [31�], and non-con-

served sequences [36] demonstrated great potential in

increasing reporter gene expression levels in B.
subtilis. The divided parts of complex multi-gene product

synthetic pathways have been modularly optimized for

generating recombinant strains with improved production

of N-acetylglucosamine [37]. Moreover, simultaneous

engineering of the cell surface and the expressed targets

lead to a further enhanced secretion efficiency of a-amy-

lases in B. subtilis [38].

Global transcription machinery engineering (gTME),

which allows multiple and simultaneous perturbations

of the whole transcriptome, enables the increase of

end-products by rerouting metabolic fluxes at a top layer

of regulatory networks [1] (Figure 1c). This global opti-

mization strategy can substantially simplify the strain

enhancement design even without a complete picture

of the underlying metabolic regulatory mechanisms [39].

A variety of global transcription factors in multiple micro-

organisms have been successfully engineered to elicit

variants with improved metabolic capacity or chemical

tolerance [40]. In a recent study, the gTME-based

approach was applied for effectively and quickly unlock-

ing B. subtilis variants by randomly mutagenizing the

global N-regulator and C-regulator CodY and CcpA,

respectively. The selected best phenotype, carrying cru-

cial mutations among helix-turn-helix domains, reached a

twofold increased overproduction of b-galactosidase. Fur-

thermore, this improvement was demonstrated by the

significantly enhanced overexpression of green fluores-

cent protein, a xylanase and a peptidase [41�].

Synthetic biology tools for B. subtilis

B. subtilis lends itself well to genetic manipulation due to

its ability to become naturally competent and to take up

both circular and linear forms of DNA. In addition, the

genome can easily be changed for variable purposes (e.g.

deletions, point mutations, insertions) by employing the

mechanism of homologous recombination. Nevertheless,

advances in technologies and increasing knowledge about

the characteristics of a successful bacterial production

host have driven the continuous development of useful

B. subtilis strains and genome editing tools. This makes B.
subtilis a very attractive bacterial host for academic and

biotechnological purposes.

In addition to protease deficient B. subtilis strains

(reviewed in Ref. [42]), which showed improved produc-

tion yields of heterologous proteins (Table 2), the

genome of B. subtilis has been reduced further in order

to obtain a more simplified microbial chassis that possibly
www.sciencedirect.com
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Table 2

Existing and novel synthetic biology tools for B. subtilis

Purpose Synthetic biology tool Reference

Improved expression host Protease-deficient B. subtilis strains [42]

Genome-minimized B. subtilis strains [2�]
Essential gene knockdown and non-essential gene knock out libraries [45��,46]

Improved genetic competence Inducible competence system to improve transformation efficiency [44]

Expression elements Bacillus BioBrick Box containing standardized vectors, reporters, promoters, epitope tags,

and optimized fluorescent proteins

[47]

A characterized phase-dependent endogenous promoter library [48]

Controlled gene expression Subtilin-regulated gene expression system (SURE) [49]

Inducer-free expression systems [50]

Genome engineering Markerless gene deletion system [51]

CRISPR-Cas9 system (pJOE8999) [52�]

Databases SubtiWiki. Database of genes, proteins, metabolic and regulatory pathways. [53]

BsubCyc. Database of metabolic pathways. [54]
displays even higher production yields [43]. To date, a

genome reduction of 36% has been achieved in B. subtilis
[2�]. This led to two independent genome-minimized B.
subtilis strains which have been subjected to multi-omics

analyses and still display robust growth in complex

medium. To cope with the gradual decrease in genetic

competence as a consequence of genome reduction, an

inducible competence system [44] was introduced in the

minimal genome leading to a 20-fold increase in transfor-

mation efficiency compared to the reference strain B.
subtilis 168. This, in combination with the preservation of

commonly used loci for genomic integration, makes these

MiniBacillus strains attractive microbial hosts for heterol-

ogous expression. Currently, the MiniBacillus strain PG10

is exploited for the heterologous production of lantibiotic

peptides [AY van Tilburg et al., unpublished data]. A

major advantage of this lantibiotic production system in

PG10 is the lack of extracellular serine proteases which

results in the production of antimicrobial inactive precur-

sor peptides which can be activated in vitro at a later stage.

Other useful B. subtilis strains can be found in the essen-

tial gene knockdown library [45��] and in two ordered and

barcoded non-essential gene knock out libraries [46]. By

providing information about gene functions, networks,

and pathways in B. subtilis, these single-gene deletion

strains can facilitate the design of tailor-made biological

systems.

In the last decade, the genetic toolbox for genome engi-

neering in B. subtilis has expanded significantly with the

development of new tools as well as improvements of

existing tools. Multiple toolboxes containing a variety of

(standardized) elements for fine-tuning gene expression

are nowadays available [47,48]. In addition, effort has

been devoted to the generation of more tightly controlled

expression systems (e.g. the subtilin-regulated gene
www.sciencedirect.com 
expression (SURE) system [49]), as well as expression

systems that are inducer-free [50] or which do not leave

selectable markers or other scars behind [51]. Also, the

CRISPR-Cas9 system has enriched the possibilities for

genome editing in B. subtilis and other Bacillus species

[52�]. By using the CRISPR-Cas9 system, disadvantages

of markerless systems can be overcome, while deletions,

mutations or insertions can easily be achieved at any place

in the genome. Furthermore, various databases have been

generated that provide a vast extent of information on the

level of DNA, proteins, regulators, and metabolites in B.
subtilis [53,54].

Conclusions and outlook
The low level of proteolytic activity, the availability of an

extensive engineering toolkit, including strictly con-

trolled promoters, and the great fermentative capacity

of L. lactis make it an attractive host for flavor, antimicro-

bial peptide and metabolite production, since heterolo-

gous enzymes needed in pathway engineering will com-

monly be stably produced. B. subtilis can grow to high cell

densities and is a great host for enzyme production,

particularly in view of recent advances to minimize its

genome reducing adverse proteolytic degradation and

undesirable phenotypes such as sporulation and biofilm

formation. A major advantage of these bacteria is also

their food-grade status, although restrictive regulations on

use of GMOs in food and environment still preclude some

exciting applications, such as gut microbiota-modulating

cultures, engineered probiotic strains or nutraceutical-

producing cultures, and oral vaccines. Recent advances

in CRISPR-Cas9 use and some foreseen medical applica-

tions, of engineered microbes might change this situation

in the near future.
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