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Abstract 

Introduction: Task difficulty affects the amount of interpretable information from a task, which 

is thought to interfere with motor learning. However, it is unclear whether task difficulty in itself 

is a stimulus for motor learning because the experimental evidence is mixed in support of the 

optimal challenge point framework that predicts one specific level of task difficulty to produce 

the greatest magnitude of motor learning. 

Purpose: We determined the effects of functional task difficulty on motor skill acquisition, 

retention, and transfer. 

Methods: Healthy young participants (N = 36) learned a mirror star-tracing task at a low, 

medium or hard difficulty level defined by the bandwidth of the star. We measured skill 

acquisition, retention and transfer to untrained difficulty levels, as well as the perceived mental 

workload during the task. 

Results: Task difficulty affected motor performance, but did not affect motor learning and 

transfer. For the groups that practiced the task at the medium and hard but not at the low 

difficulty level, initial skill level correlated with the magnitude of learning. 

Conclusion: The optimal challenge point framework does not capture the complex relationship 

between task difficulty and motor learning. Previously reported effects of task difficulty on the 

magnitude of motor learning are probably mediated by perceived mental workload. Task 

difficulty did not affect the magnitude of visuomotor skill learning but it affected how learning 

occurred. The data have implications on how athletes learn new motor skills and patients re-learn 

injury-impaired motor skills during rehabilitation.  

Keywords: Motor Learning; Motor Control; Challenge Point; Error-prone Learning; Errorless 

Learning; Mental Workload 
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Introduction 

Motor learning is important during the lifespan and can be defined as “a problem-solving process 

in which the goal of an action represents the problem to be solved” (1). To solve this problem, 

the performer selects the most suitable action plan from the many available options and „learns‟ 

the task. Sources of information available during and after each attempt to perform the task help 

pick the right action plan and this information forms the basis of motor learning (1–3). Based on 

Fitt‟s law, the amount of interpretable information derived from a task depends on the difficulty 

of the task (4). 

Task difficulty is a broad concept and can be seen as a summed manifestation of all task 

characteristics (4,5). A task is difficult if it cannot be mastered in a single session and has 

multiple degrees of freedom (6). With increasing task difficulty, the number of errors tends to 

increase. The information content embedded in the errors shapes the action plan and helps to 

improve performance. However, our information capacity is limited and when exceeded, the 

performer chooses an incorrect action plan and errors and poor performance ensue (2,4,7). High 

task difficulty can lead to information overload, which is thought to interfere with motor learning 

(1,4).  

The central tenet of the optimal challenge point framework is this information processing 

underlying motor learning. The framework posits that a specific level of task difficulty produces 

the greatest magnitude of motor learning. This level is called the optimal challenge point and 

depends on two types of task difficulty: nominal and functional. Nominal task difficulty is the 

difficulty provided by the task independent of the individual and environmental constraints, 

whereas functional task difficulty refers to the challenge level of the task for the person 

performing the task. Functional task difficulty is therefore not only influenced by nominal task 
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difficulty, but also by the skill level of the performer and the environment in which the task is 

performed (1).  

Since the introduction of the optimal challenge point framework, most experiments to test its 

assumptions have been based on the effects of external manipulations of functional task 

difficulty on motor learning, for example by manipulating practice schedules (8–11). Little is 

known about the relationship between functional task difficulty and motor learning when 

functional task difficulty is mainly driven by the nominal difficulty of a task. The framework 

predicts that motor learning increases up to a certain level of nominal task difficulty, beyond 

which further increases in difficulty are counterproductive and learning does not improve and 

can in fact deteriorate (1).  

However, the experimental evidence is mixed for the presence of an optimal level of nominal 

task difficulty. In a postural control task, the optimal challenge point occurred at a medium 

difficulty level. Difficulty in this task was manipulated by changing the stability of the ground 

surface (12). In a sequence key-press task, where difficulty was manipulated by the information 

given about the next key, the most difficult level corresponded to the optimal challenge point. 

However, there are also studies reporting no optimal point of task difficulty. In a tracing task, the 

bandwidth represented task difficulty and affected warm-up decrements, but not the rate of 

improvements (13). In a dart-throwing task, motor learning was also independent of difficulty 

level, i.e., target size (14). 

Individual differences as well as differences in difficulty manipulations between studies can 

underlie these inconsistencies. Most studies attempted to control for individual differences by 

implementing novel tasks and doing group-level analysis. However, the challenge point 

framework as well as recent work emphasize that individual characteristics affect the 
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experienced difficulty level (1,15). Although the amount of available information from a task is 

directly related to nominal task difficulty, the amount of interpretable information also depends 

on individual characteristics such as initial skill level and the capacity to process information 

(16,17). Therefore, a task with a medium level of nominal task difficulty can be easy for 

someone with a high initial skill level, while someone with a low initial skill level can 

experience the task as hard. In addition, since there is no unifying definition of task difficulty, 

most studies quantify nominal task difficulty in terms of performance outcomes, e.g. longer 

movement times or higher error scores with increasing difficulty. However, different tasks are 

difficult to compare and expressing it this way, a level of difficulty that is hard in one task can 

correspond to a level of difficulty that is medium or easy in another task. In addition to the 

nominal task difficulty, the functional task difficulty should be also taken into account. Recently, 

the measure of mental workload through the National Aeronautics and Space Administration 

Task Load Index (NASA-TLX) has been put forward as a subjective measure of functional task 

difficulty (12,15,18). Designed to measure mental workload in pilots, the NASA-TLX is a valid 

index of mental workload in a variety of contexts, including motor learning (19). 

Beyond the magnitude of improvement and the perceived workload, the magnitude and direction 

of transfer are behaviourally also relevant measures of motor learning. Transfer is the 

conveyance of the learned skill from one to another difficulty level. Until now, experimental 

evidence favours no particular direction of transfer (20). Based on the optimal challenge point 

framework, it is expected that transfer from a hard to an easy task is greater than from an easy to 

a hard task (1). In reaching, where difficulty was defined as distance to the target and transfer 

was defined as performance on a target distance not included in the acquisition phase, this 
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expectation was indeed confirmed (10). However, in a stick balancing task, transfer from an easy 

to a more difficult task was more beneficial than the other way around (11).  

Altogether, experimental evidence is mixed and inconclusive in support of an optimal challenge 

point for motor skill learning. Because athletes are constantly on the lookout to increase training 

effectiveness, a better understanding of how functional task difficulty can be measured and how 

it affects motor learning can improve the efficacy of training protocols. If an optimal challenge 

point indeed exists, training at the optimal difficulty level would increase the effectiveness of 

training and decrease learning time. In addition, patients in rehabilitation would likely recover 

functions impaired by an injury faster and to a greater extent if they practiced the impaired 

function at the optimal difficulty level. Using a reductionist approach, we implemented a new 

visuomotor mirror-star tracing task in a homogeneous population (healthy young adults). In this 

task, we measure performance in terms of speed and accuracy. Using this approach, nominal task 

difficulty is the key determinant of functional task difficulty, while still taking individual 

differences into account.  

The purpose of this study was to determine the effects of functional task difficulty on motor skill 

acquisition, retention, and transfer. Based on the optimal challenge point framework, we tested 

three hypotheses: 1) motor skill practice at a medium or hard versus a low difficulty level of the 

same task will produce greater motor skill acquisition and retention in terms of speed and 

accuracy, 2) the learning benefit gained from a specific difficulty level depends on the initial 

skill level as predicted by the optimal challenge point framework, and 3) motor skill transfer is 

difficulty-dependent so that the optimal direction of transfer is from hard to easy. 
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Methods 

Participants 

Healthy and right handed (21) young adults aged 18-30 years (N = 36; 38.9 % male; age: 22.97 ± 

2.43 years; height: 175.67 ± 9.97 cm; weight: 68.44 ± 13.61) participated in the study. Exclusion 

criteria were the use of medication that affects neural functioning, movement restrictions with 

and pain in the right hand or arm, presence of a neurological condition and familiarity with the 

task. Participants gave written informed consent to the study protocol, which was approved by 

the ethical committee of Human Movement Sciences at the University Medical Centre of 

Groningen.  

 

Design 

Participants were randomly assigned to one of three groups based on the nominal difficulty of 

the motor skill they subsequently practiced: Motor Practice with Low Difficulty (P-LD), Motor 

Practice with Medium Difficulty (P-MD) or Motor Practice with High Difficulty (P-HD). 

Participants visited the lab on two consecutive days. On Day 1, visuomotor performance was 

measured (baseline), followed by motor practice at the assigned difficulty level for 160 trials. 

After practice, the post- and transfer tests were administered. Participants also rated how difficult 

they perceived the execution of the motor skill using the National Aeronautics and Space 

Administration Task Load Index (NASA-TLX) (18). On Day 2, ~24 h after practice, the baseline 

and transfer measurements were repeated to quantify skill retention.  
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Task 

Based on pilot experiments, we adopted and modified the star-tracing task (22,23). The 

modifications compared with previous studies consisted of: 1) performing the task on a 24 by 

16.95 cm Apple iPad Air; 2) visualizing the iPad surface through a mirror to make the task even 

more challenging, and 3) creating three levels of tracing difficulty by changing the bandwidth of 

the star (13). Participants sat in a chair and placed both hands on the surface of a table in front of 

them. The iPad was placed on the table top in front of the participant. The task was to trace, by 

holding a stylus in the right-dominant hand, a symmetrical pentagon-shaped star as fast and 

accurately as possible. Participants looked at their moving hand in a mirror placed vertically 14 

cm beyond the back edge of the iPad. A sheet of cardboard placed horizontally above the 

participant‟s hand and below the chin, prevented participants from seeing the hand tracing the 

star. The length of each of the five sides of the pentagon was 10.5 cm. The width of the wall of 

the star was set to 3 (Hard Difficulty, HD), 5 (Medium Difficulty, MD), or 7 mm (Low 

Difficulty, LD). Participants were instructed to trace the star by moving the stylus within the 

bandwidth formed by the walls of the star. The non-dominant left hand rested on the table next to 

the iPad. Fig 1 shows the setup. While executing the task, the star was visible to the participant 

and a blue dot represented the start and end point of the tracing path. When ready, the participant 

was asked to place the stylus on the blue dot, after which a beep signalled the start of the trial. 

Because frequency of knowledge of results (KR) and knowledge of performance (KP) can affect 

motor performance and learning (24,25), KP was available during each trial by maintaining 

visibility of the star. In addition, KR was kept at 100% for each group, by presenting the 

movement time and error percentage after each trial. Before the start of the test, participants 

familiarized themselves with the task by performing one trial at each difficulty level. For the pre-
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, post- and retention tests, participants traced the star at the assigned difficulty level 10 times. 

Motor practice consisted of four blocks of 40 trials at the assigned difficulty level. Transfer was 

quantified as performance at the untrained difficulty levels, comprising ten trials each. The order 

of the difficulty levels in the transfer task was block randomized across participants.  

 

NASA-TLX 

The NASA-TLX was administered at the end of Day 1, using the official NASA-TLX IOS 

application on the iPad. Participants rated six dimensions related to perceived effort completing 

the motor task with their assigned difficulty on a scale from 0 to 100: Mental demand, Physical 

demand, Temporal demand, Performance, Effort and Frustration. In addition, to determine the 

weighting of each dimension, participants completed pairwise comparisons across all pairs of the 

six dimensions. Weightings were given to each dimension based on the number of times a 

dimension was chosen as most relevant. Total workload scores were computed by multiplying 

the weighting with the rating score of each dimension, summing the scores across all dimensions 

and dividing by 15 (18).  

 

Data analysis 

Visuomotor data were analysed with custom made Matlab scripts (The Mathworks, Natick, 

Massachusetts, USA, version R2016b). Raw position data were manually checked for 

correctness before interpolating at 60 Hz. Because participants at times made large errors 

unrelated to motor performance at the start and end of a trial, these initial and final segments 

were excluded from the analyses. Visuomotor performance was quantified as the error 

percentage and movement time per trial, in order to capture both speed and accuracy.  
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Movement time was defined as the time it took for participants to complete the full path of the 

pentagon one time. Error percentages were computed as the percent of samples outside of the 

bandwidth (Serror) per trial (total samples Stotal: 660 ± 346), according to the equation: 

%Error = (Serror/Stotal) × 100     [1] 

In addition, to allow a better comparison between groups the total distance of the traced path per 

trial was calculated as an accuracy measure that was independent of the bandwidth manipulation. 

 

Statistical analyses 

All data were analysed with IBM SPSS Statistics version 23. Data were first checked for 

normality using the Shapiro-Wilk test. If the data was not normally distributed, a log 

transformation was performed. Missing values were replaced with mean substitution. On 

average, missing values constituted 3.9% of the data. To check if the difficulty manipulation was 

successful, separate repeated-measures ANOVAs were done for error percentage, movement 

time and total distance as dependent variables on baseline scores with all participants grouped 

across difficulty levels as the within-subjects factor. To check hypothesis 1, i.e., task difficulty 

affects motor skill acquisition and retention, separate Group (P-LD, P-MD, P-HD) by Time (pre-

, post and retention) ANOVAs were used with repeated measures on Time for error percentage, 

total distance and movement time as dependent variables. To examine the impact of individual 

differences in initial skill level on motor learning and retention, i.e., hypothesis 2, Pearson 

correlations were calculated between the scores on the pre-test and the improvement on the post- 

and retention-tests for movement time and total distance. We tested hypothesis 3, i.e., task 

difficulty affects transfer to unpractised tasks, by a Group (P-LD, P-HD) by Time (immediate, 

delayed) ANOVA with repeated measures on Time for error percentage, total distance and 
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movement time on the unpractised MD-test as dependent variables. Only the P-LD and P-HD 

groups are taken into account here to allow a direct comparison in performance on an 

unpractised task between two different directions of transfer. For all ANOVAs, a Greenhouse 

Geisser correction was performed when the assumption of sphericity was violated. Post-hoc tests 

were performed using Tukey‟s HSD. To check for any differences between the NASA-TLX 

scores for the different groups, an one-way ANOVA was performed on the raw ratings of all the 

subscales and the total workload score. For all analyses, the significance level was set at α = 

0.05.  

 

Results 

Motor performance 

At baseline, there was a significant main effect of difficulty for both error percentage (F(2,70) = 

323.9, p < .001) and movement time (F(2,70) = 9.4, p < .001), confirming that the width of the 

wall of the star created a task difficulty effect in terms of performance (Fig. 2). Post hoc 

comparisons revealed that error percentage during the execution of the HD task was 20.3% 

higher than during the MD task and 32.9% higher than during the LD task and that the error 

percentage in the MD vs. the LD task was 12.7% higher (Fig. 2A). During the HD task, 

movement time was 14.7% longer than during the MD task and 22.0% higher than during the LD 

task (Fig. 2B). Task difficulty did not affect the total distance of the path (Fig. 2C, F(2,70) = 0.8, 

p > .05). There was no task difficulty effect in terms of mental workload, measured as global 

outcome or on the six subscales of the NASA-TLX (see Table, Supplemental Digital Content 1, 

http://links.lww.com/MSS/B264, NASA-TLX scores).  
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Motor learning 

Practice improved motor performance in all groups (Time main effect) as measured by total 

distance (F(1,52) = 9.6, p = 0.001) and movement time (F(1,33) = 5.2, p = 0.029, Figs. 3B-C), 

but no improvement was seen in error percentages (F(2,66) = 30.6, p = 0.241, Fig. 3A). There 

were no group by time interactions for either outcome. Movement time at pre-test correlated with 

improvements at both post- and retention tests (Table 1). For total distance, performance at pre-

test did not correlate with improvements at post- and retention tests when the difficulty was low 

(Table 1), although 10 out of 12 subjects improved their performance (Fig. 4A). Performance at 

pre-test did correlate with improvements at post-test when the difficulty was medium or high 

(Table 1) but the distribution of the scores underlying the correlations was the opposite: at 

medium difficulty, 4 of 12 subjects improved whereas at high difficulty 9 of 12 subjects 

improved (Figs. 4B-C). There was only a correlation between total distance at the pre-test and 

improvement at the retention-test when the difficulty was medium (Table 1). 

 

Transfer 

To examine the direction effects of transfer to untrained levels, scores for immediate (directly 

after practice) and delayed (24 h after practice) transfer from the P-LD and P-HD groups to the 

MD-task were compared. The groups did not differ in their performance on the MD-task for 

error percentage (F(1,22) = 0.4, p = 0.554), total distance (F(1,22) = 0.3, p = 0.569) and 

movement time (F(1,22) = 1.1, p = 0.304). 
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Discussion 

We determined the effects of task difficulty on motor skill acquisition, retention, and transfer. 

Task difficulty did not affect the magnitude of visuomotor skill learning but it affected how 

learning occurs. Practicing a mirror star-tracing motor task at three levels of difficulty affected 

motor performance in terms of error percentage and movement time, but motor skill acquisition, 

retention and transfer to untrained difficulty levels were independent of task difficulty. Task 

difficulty also did not affect the perceived mental workload as measured by the NASA-TLX. 

Unexpectedly, initial skill level only influenced skill acquisition and retention when practicing at 

a medium or hard difficulty level. We discuss these findings with a perspective on the optimal 

challenge point framework for motor skill learning. 

 

The data did not support hypothesis 1: task difficulty did not affect the magnitude of visuomotor 

skill learning, measured immediately and 24 h after motor practice (Fig. 3). Based on the 

challenge point framework, we expected that practicing the star-tracing task at a medium or high 

compared with low difficulty level would have afforded learning benefits. Despite a clear effect 

of task difficulty on motor performance at pre-test (Figs. 2A-B), the magnitude of skill 

acquisition and retention were both independent of task difficulty. Previous studies suggested a 

putative role for mental effort in the effects of task difficulty on motor learning by reporting 

correlated increases in mental workload and motor learning (12,15). Clearly, this was not the 

case in the present study, as perceived mental demand did not differ between difficulty levels 

(Supplemental Digital Content 1, http://links.lww.com/MSS/B264). Although we gave feedback 

to participants about the time and accuracy for the trial they just completed, seeing the star 

during tracing gave participants the opportunity to extract knowledge of performance as an extra 
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source of information. That is, they could simply aim at the middle of the star wall and disregard 

the knowledge of results we provided on time and accuracy (26). Regardless of difficulty level, 

aiming at the middle of the star wall is always an effective strategy which we suspect subjects 

themselves discovered. Therefore, this knowledge of performance may have dominated over the 

knowledge of results provided at the end of a trial in the form of movement time and error 

percentages. A lack in improvement in the error percentages further support the possibility that 

participants ignored those percentages and instead aimed for the middle of the star wall (Fig. 

3A). A similar phenomenon occurred in a dart-throwing task, where task difficulty was 

manipulated by manipulating target sizes. In this task, visual feedback also provided participants 

with the possibility to aim for the middle of the target and task difficulty did not affect motor 

learning (14). Because of the availability of this concurrent knowledge of performance during 

tracing, movement slowing with increasing difficulty in the current task may be a mechanism to 

minimize mental workload (Fig. 2B). Movement slowing is probably related to an increase in the 

time needed to generate more detailed motor plans and process afferent feedback with an 

increase in demand for accuracy. Movement slowing can provide participants with extra time to 

interpret the increasing amount of task-relevant information when the bandwidth is narrow and 

more errors are made, which can reduce the perception of task difficulty in terms of information 

flow (4).  

  

The optimal challenge point framework suggests that in addition to nominal task difficulty, 

individual characteristics can also affect motor learning. One important individual factor is the 

ability to process information, which varies widely between individuals (15–17). In a reaching 

task with two levels of nominal difficulty, a cluster analysis revealed that more pronounced 
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individual variations in mental workload and performance occurred with increasing nominal task 

difficulty (15). The current results also show high variability within groups as well as in the 

magnitude of learning. These results highlight the mediating role of mental workload in the 

effects of task difficulty on motor learning, which could be confirmed by measuring brain 

activity. Correlating changes in brain activity and changes in motor performance could 

disentangle the relationship between individual information processing capacities, mental 

workload and motor learning. 

 

Although task difficulty did not affect the magnitude of learning, it did affect the way learning 

occurred. High correlations between performance on the pre-test and the amount of improvement 

in the P-MD and P-HD groups underscore the influence of functional task difficulty on motor 

learning (Figs. 4A-B). In these two groups, participants with the lowest initial skill levels 

improved the most, which is in line with the optimal challenge point framework. Because 

participants in these groups made a lot of corrections during tracing, indicated by a high total 

distance, the potential was high to extract learning-relevant information. By using the strategy of 

movement slowing described above, participants benefited from these errors without overloading 

their information processing capacity. The interaction between initial skill level and nominal task 

difficulty is seen in the different distributions of the individual scores forming the correlations in 

the two groups. The P-MD compared with the P-HD group produced fewer errors and therefore a 

longer total distance in the beginning - corresponding to a lower initial skill level - was necessary 

in order to improve, so that only 4 of 12 participants in this group improved motor performance 

(Fig. 4B). In contrast, in the P-HD group almost all, 9 of 12, participants improved, suggesting 

that participants with a higher initial skill level still benefited from practicing at the most difficult 
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level (Fig. 4C). This analysis tentatively suggests that practicing an unfamiliar motor task at high 

vs. lower difficulty levels could produce greater magnitudes of motor learning and supports the 

challenge point framework. 

 

When performing the easy (LD) task, participants made few errors (Fig. 2A). As reasoned by the 

challenge point framework, only participants with a very low initial skill level would make 

enough errors to benefit from practice with the easy task. However, unexpectedly the initial skill 

level in the P-LD group was unrelated to improvement at the post-test, while still almost all, 10 

of 12, participants in this condition improved their performance (Fig. 4A). Therefore, 

improvement in this group must be mediated by some other approach than error detection. 

Recently, studies that minimized error during motor practice show the benefit of learning without 

errors (errorless learning) (28–30). In errorless learning participants rely on feedback minimally, 

resulting in the evolution of implicit learning. This learning is robust because the memory traces 

are more resistant to interference and stress in particular.  

 

A comparison between the present and past data raise the hypothesis that mental instead of motor 

effort mediate the previously reported effects of task difficulty on motor learning (12,14,15,27). 

Results from the current study suggest that not nominal task difficulty, but the effect of task 

difficulty on mental workload affects motor learning and that the optimal challenge point 

framework is only applicable when a certain amount of error is present. If participants make 

enough errors, they put effort into processing the information arising from those errors and use 

this information to improve. However, against the framework, when the available information 

from a task is insufficient, participants are still able to improve by adopting a more implicit type 
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of learning. In addition, if a manipulation of difficulty is used where it is possible to minimize 

the effect of difficulty on mental workload, for example by moving slowing or generating more 

objective feedback, the effects of task difficulty on motor learning seems to be minimal (13,14). 

Future work is needed to confirm this hypothesis and determine the relationship between mental 

workload, errors and the difficulty level used in practicing a motor skill.  

 

Assuming that the improvement in the P-LD and P-HD groups are indeed mediated by different 

underlying approaches, comparing their performance on an unpractised difficulty level would 

allow us to compare directly between learning from errors (error-prone learning) and errorless 

learning. However, when tested on the unpractised medium level MD-task, learning using an 

easy and a hard task produced similar magnitudes of transfer. The transfer and the practice tasks 

were rather similar, a phenomenon defined as „near transfer‟ (31). The relationship between 

difficulty of the motor task and transfer seems to depend on the distality of the transfer test: 

similarity of the transfer and practice task reduces the effects of task difficulty on transfer 

(10,31). However, it is not clear how error-prone vs. errorless learning influence this 

relationship. Therefore, further research should increase the dissimilarity between practice and 

transfer task and compare learning with errors vs errorless learning.  

 

This study has several limitations. First, by having participants trace the star as rapidly and as 

accurately as possible, we increased variation in motor performance as participants could 

practice at any point along the speed-accuracy trade-off continuum (32). Therefore, future 

studies should develop a composite outcome, comprising both speed and accuracy. Second, we 

only considered performance of participants before and after learning, while ignoring the rate of 
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improvement in performance during practice. Although absolute improvements between groups 

did not differ, there is a possibility that there is a difference in learning rates, which could give 

further insights into differences between error-prone vs. errorless learning. Had we increased 

practice time in tandem with task difficulty, it is possible that each group would have reached its 

learning asymptote at a different time, producing a hierarchical learning pattern according to task 

difficulty. While keeping a broad perspective, a further limitation is that we did not apply the 

current experimental conditions to athletes needing to learn a new skill or to individuals 

undergoing rehabilitation who need to re-learn a skill impaired by an injury. Our data imply that 

highly capable athletes may benefit by practicing a new skill at high difficulty and patients re-

learning a „lost‟ skill would progress more effectively if practicing under conditions with a lower 

difficulty level. 

 

In conclusion, the current results suggest that the optimal challenge point framework does not 

fully capture the complex relationship between task difficulty and motor learning. It seems likely 

that the effects of task difficulty on motor learning as predicted by the framework are mediated 

by mental workload and that the framework is only applicable when a certain amount of errors is 

present. While applicable to explain the variations in the P-MD and P-HD groups, the framework 

fails to explain the results of the P-LD group. Contrary to the framework, we found that 

magnitude of motor learning in an easy task is independent of the available information. For 

motor skill acquisition, retention and near transfer the current results suggest that both learning 

with and without errors is equally effective. Task difficulty did not affect the magnitude of 

visuomotor skill learning but it affected how learning occurred.  
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Figure Captions 

Table 1 

Pearson correlations between scores on the pre-test and improvements immediately (post-test) 

and 24h (retention-test) after learning for the three groups seperate. 

 

Fig. 1  

Experimental set-up of the mirror star-tracing task. Partcipants traced the star as fast and 

accurately as possible with a stylus, while staying within the bandwidth. The sheet of cardboard 

prevented parcipants from directly seeing their hands, so they could only look at their moving 

hand through a mirror.  

 

Fig 2.  

Baseline differences between tasks for error percentage (A), movement time (B) and the total 

distance of the path (C) (N = 36). Error bars represent standard error. ** p < .01, *** p < .001. 

 

Fig 3.  

Improvement in motor performance of the three groups relative to the pre-test, quantified by 

error percentage (A), movement time (B) and total distance (C). Errors bars represent standard 

error. 

 

Fig 4.  

Correlation between scores on the pre-test and improvement at the post-test for the total distance 

of the path for the three groups separate 
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Figure 4 
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Table 1. Pearson correlations between scores on the pre-test and improvements 

immediately (post-test) and 24h (retention-test) after learning for the three groups 

seperate. 

 Improvement Post-test Improvement Retention-test 

Pre-test scores r p r p 

Movement time     

P-LD 0.80 0.002 0.83 0.001 

P-MD 0.87 < 0.001 0.84 0.001 

P-HD 0.71 0.009 0.61 0.04 

Total distance     

P-LD 0.023 0.9 0.18 0.6 

P-MD 0.82 0.001 0.82 0.001 

P-HD 0.85 0.001 0.53 0.08 
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Supplemental Digital Content 1. NASA-TLX scores 

 

 P-HD 

(Mean ± SD) 

P-MD 

(Mean ± SD) 

P-LD 

(Mean ± SD) 

Subscale    

Mental demand 62.5 ± 21.58 61.3 ± 22.17 67.5 ± 18.40 

Physical demand 39.2 ± 26.44 27.1 ± 21.05 38.3 ± 21.67 

Temporal demand 47.9 ± 23.69 46.7 ± 19.11 51.3 ± 22.07 

Performance 52.1 ± 20.61 38.3 ± 16.28 38.8 ± 20.24 

Effort 59.6 ± 22.31 53.8 ± 16.80 67.1 ± 10.76 

Frustration 50.0 ± 32.89 38.8 ± 28.29 45.4 ± 20.83 

Total Workload 58.4 ± 15.63 49.6 ± 13.17 56. 5 ± 6.17 
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