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Abstract 28 Oxidative stress is a common feature of obstructive airway diseases like asthma and chronic 29 obstructive pulmonary disease (COPD). Lung macrophages are key innate immune cells that can 30 generate oxidants and are known to display aberrant polarization patterns and defective 31 phagocytic responses in these diseases. Whether these characteristics are linked in one way or 32 another and whether they contribute to the onset and severity of exacerbations in asthma and 33 COPD remains poorly understood. Insight into oxidative stress, macrophages and their 34 interactions may be important in fully understanding acute worsening of lung disease. This 35 review therefore highlights the current state of the art regarding the role of oxidative stress and 36 macrophages in exacerbations of asthma and COPD. It shows that oxidative stress can attenuate 37 macrophage function, which may result in impaired responses towards exacerbating triggers 38 and may contribute to exaggerated inflammation in the airways. 39 40 
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Introduction 41 Obstructive lung diseases such as asthma and chronic obstructive pulmonary disease (COPD) 42 are characterized by chronic lung inflammation of diverse origin and localization, but both are 43 associated with oxidative stress and changes in macrophage function (113, 128, 129, 155, 157). 44 Macrophages are the most abundant leukocytes in the airways and crucial for regulating 45 immune responses. In addition, they are well known for their ability to generate reactive 46 oxidants, like reactive oxygen species (ROS) and reactive nitrogen species (RNS), to protect 47 against invading pathogens (69). The host protects itself against these reactive species by 48 increased expression of antioxidants. Oxidative stress results from an imbalance between the 49 production of oxidants and antioxidant defenses. In obstructive lung diseases this imbalance is 50 potentially associated with disease development and severity. It may also contribute to acute 51 worsening of these diseases, called exacerbations, although there is considerably less data 52 available. In this review we present the current state of knowledge on the contribution of 53 oxidative stress to exacerbations, with a focus on lung macrophages.  54  55 
Obstructive lung diseases and macrophages 56 Lung macrophages have been shown to be involved in the induction and progression of lung 57 inflammation in asthma and COPD, but are also emerging as important cells that control and 58 limit inflammatory events in the lung (24, 73, 151, 161). This multitude of different, and 59 sometimes even opposing, tasks is handled through distinct polarized “activation” states of 60 macrophages. Signals from the tissue surrounding macrophages determine the polarization type 61 and prepare them for the different roles needed at specific times.  62 In the past macrophage polarization was seen as a dichotomous process yielding either M1 and 63 M2 macrophages, similar to the process of differentiation seen for T cells. M1 macrophages or 64 classically activated macrophages are pro-inflammatory macrophages associated with Th1 65 inflammation. M2 or alternatively activated macrophages are associated with Th2 inflammation 66 and wound healing. However, we now know that this process of polarization is much more 67 
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complex in vivo and an almost continuous spectrum of different macrophage phenotypes exists. 68 This has made literature from this field rather confusing and in 2014 a consortium of 69 macrophage experts suggested a new nomenclature in which macrophages in in vivo situation 70 should be labeled with the markers used to isolate/characterize them (127). Since this usually 71 involves many markers, readability remains an issue and often people still refer to the old 72 M1/M2 names. While writing this review we struggled with old papers using the old names, new 73 papers ignoring the guidelines, papers using the nomenclature correctly and how to summarize 74 results from papers using different markers that can identify macrophages with roughly similar 75 functionalities. We therefore chose to divide lung macrophages first into alveolar macrophages 76 (AMs) when this specific type was mentioned or lung macrophages when no distinction was 77 made. We did not find publications specifically looking at interstitial macrophages (IMs) in the 78 context of oxidative stress and asthma or COPD. Regarding polarization, we grouped 79 macrophages in studies stating the use of M1 or markers associated with Th1 responses under 80 the name M1 and macrophages in studies stating the use of M2 or markers associated with Th2 81 inflammatory responses under the name M2. As the name “M2” macrophages in literature is also 82 used for macrophages with anti-inflammatory functions we also introduced a third class named 83 M2-like anti-inflammatory macrophages to indicate macrophages that look like M2 macrophages 84 but produce anti-inflammatory or pro-resolution molecules and used this name whenever it was 85 clear that anti-inflammatory macrophages were studied. The different markers used in literature 86 to identify differentially polarized macrophages in human and murine lung tissue are 87 summarized in Figure 1. To assist the reader further, we summarized all papers that cite 88 macrophage polarization in Table 1 and indicated which markers were used for identification 89 and which names these macrophages were given in the original paper. 90  91 The role of macrophage polarization in respiratory diseases has been extensively reviewed by us 92 before (22). In short, both asthma and COPD are characterized by alterations in macrophage 93 polarization, and therefore function, that contribute to development and severity of the disease 94 
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(23, 51, 54-56, 81, 122, 146). Lung macrophages in healthy individuals or mice have low 95 expression of markers indicating a specific polarization type and most are characterized as anti-96 inflammatory expressing interleukin (IL)-10 (54, 122). In asthma, however, the numbers of M1 97 and M2-polarized macrophages are higher than in controls at the apparent cost of M2-like anti-98 inflammatory macrophages that are lower in asthma compared to control (54, 55, 72, 102, 119, 99 121, 122, 125). When these IL-10-producing M2-like macrophages are subsequently reinstated 100 in murine lung tissue, this was associated with having less allergic lung inflammation (53). 101 Furthermore, neutrophil-dominated asthma is associated with M1-polarized macrophages, 102 whereas eosinophil-dominated asthma is associated with M2-polarized macrophages in mice 103 (54, 56, 122, 146). These studies combined suggest that in mouse models of asthma lung 104 macrophages lose their anti-inflammatory properties and acquire a polarized activation state 105 with the polarization type determining the inflammation outcome: M1-polarized being 106 associated with neutrophils and M2-polarized with eosinophils. However, this still needs to be 107 confirmed in humans.  108  109 In COPD, polarization changes are less apparent, though dysregulation of M1 and M2 110 polarization patterns has been described with macrophages acquiring and losing both M1 and 111 M2 markers and an unexpected loss of inflammatory signatures in AMs of COPD patients 112 compared to non-COPD smokers (9, 156, 187). A study by Eapen et al. characterized both AMs 113 and IMs from COPD patients, smokers with normal lung function and healthy controls and found 114 that smokers primarily had M1-polarized IMs and M2-polarized AMs compared to nonsmokers 115 irrespective of having COPD (61). The effects of smoking in this study thus appeared to have far 116 more influence on macrophage polarization than having COPD, suggesting that maybe we need 117 more functional readouts to capture the changes in COPD. Indeed, several studies showed 118 changes in AM function as compared to controls (23, 79, 81). For instance, macrophage 119 responsiveness in COPD seems to be impaired, resulting in disturbed efferocytosis of airway 120 epithelial cells and eosinophils (63, 80). In addition, impaired phagocytosis of pathogens by 121 
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(alveolar) macrophages was demonstrated in COPD patients (12-15, 17, 165, 185). Summarizing 122 these results, COPD appears to be characterized by dysfunctional macrophages with maybe an 123 inability to polarize effectively towards a specific inflammatory signature, resulting in defective 124 phagocytosis and efferocytosis. This may then contribute to ongoing inflammation due to 125 persistence of dead cells and microbes. 126  127 
Obstructive lung diseases and oxidative/nitrosative stress 128 Also characteristic for both asthma and COPD is the presence of oxidative stress. Lung tissue is 129 continuously exposed to ambient air and due to its large surface area and blood supply highly 130 susceptible to oxidative injury by reactive species, including superoxide, hydrogen peroxide 131 (H2O2), nitric oxide (NO) and peroxynitrite. These oxidants and nitrating agents can be of either 132 exogenous (e.g. cigarette smoke and air pollution) or endogenous origin (e.g. production by 133 resident and inflammatory cells such as macrophages and in mitochondria). In normal 134 conditions, ROS/RNS act as signaling molecules to regulate physiological processes. Yet, in the 135 case of chronic inflammation, the excess generation of reactive species can also lead to oxidative 136 stress, damaging multiple cellular organelles and processes and ultimately contributing to the 137 pathogenesis and exacerbation of obstructive lung diseases (Figure 2, upper panel). 138 In order to have such an impact, ROS/RNS must outcompete a wide range of antioxidant defense 139 mechanisms, including the glutathione (GSH) and thioredoxin (TRX) redox systems, catalase 140 (CAT) and superoxide dismutase (SOD) enzymes (142). These antioxidant defenses are 141 regulated by nuclear factor erythroid 2-related factor 2 (Nrf2), the master regulator of 142 antioxidant responses (Figure 2, lower panel) (195). 143  144 Direct measurement of ROS/RNS is relatively complicated because of their high reactivity and 145 short lifetime. As a result, lipid peroxidation products (e.g. 4-hydroxynonenal (4-HNE), 8-146 isoprostane and/or F2-isoprostanes and malondialdehyde (MDA)), products of protein 147 oxidation/nitration (e.g. protein carbonylation (this includes e.g. 4-HNE and MDA protein 148 
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adducts, resulting from a phenomenon often referred to as carbonyl stress), bromotyrosine, 149 chlorotyrosine and nitrotyrosine) and products of DNA oxidation (e.g. 8-hydroxy-2’-150 deoxyguanosine (8-OHdG)) have been widely used as (indirect) markers of oxidative and 151 nitrosative damage and thus ROS/RNS activity. Still, one has to keep in mind that proper storage 152 and prevention of further oxidation are important to obtain reliable results. 153  154 The role of oxidative stress in the pathogenesis of asthma and COPD has been extensively 155 addressed in several reviews (42, 95, 120, 140, 149). In short, it has been found that excess 156 production of ROS can contribute to airway inflammation and hyperresponsiveness and may 157 also be involved in decreasing sensitivity to treatment and subsequently worsen disease 158 outcomes. Higher levels of markers of oxidative stress have been found in asthmatics and COPD 159 patients versus healthy controls and altered levels of various antioxidants have been reported in 160 asthma and COPD as well (128, 129). An increase in antioxidant capacity is generally explained 161 as an attempt to a defense response, while a decrease most likely represents neutralization or 162 inactivation by ROS. Loss of antioxidants can thus be the consequence of enhanced oxidative 163 stress, but can in turn also contribute to more oxidative stress and perhaps the severity of 164 asthma and COPD. This apparent contradiction in outcomes can only be solved by studying 165 fluctuations in oxidative stress over time and relate these to clinical symptoms in patients. 166  167 Nitrosative stress in asthma and COPD is less often investigated. A few studies have looked into 168 the end products of nitrosative stress and found NO concentrations and the severity of 169 eosinophilic airway inflammation to be positively correlated in asthma and a subgroup of COPD 170 patients (52, 199). In addition, exhaled breath condensate (EBC) and sputum peroxynitrite 171 levels were found to be higher and peroxynitrite inhibitory activity lower in asthma and COPD 172 patients compared to healthy volunteers and peroxidative stress was negatively correlated with 173 the forced expiratory volume in one second (FEV1) (11, 89, 90, 136). This suggests that RNS may 174 have a functional role in asthma and COPD as well. Other evidence suggests that a reduced 175 
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availability of arginine may result in higher nitrosative stress with a possible negative impact on 176 lung function in asthma and COPD (38, 148, 152, 153). 177  178 
Oxidative/nitrosative stress and macrophages in asthma and COPD 179 Oxidative and nitrosative stress and macrophages are linked in many ways in asthma and COPD. 180 ROS/RNS can affect macrophage function and thereby influence disease severity, but on the 181 other hand the high number of (activated) AMs present in these diseases can contribute to 182 generation of ROS/RNS during phagocytosis or after stimulation with a wide variety of 183 (microbial) agents (a process referred to as the respiratory burst) (69). One of the proteins 184 shown to play a role in bacterial killing by generating ROS in macrophages is tartrate resistant 185 acid phosphatase (145). We have recently shown that the expression of tartrate resistant acid 186 phosphatase is higher in AMs of asthma and COPD patients than in controls, thereby possibly 187 contributing to generation of oxidative stress (23). This is corroborated by the finding that 188 macrophages of patients with asthma and COPD have higher production of inducible NO 189 synthase (iNOS) than nonsmoking and smoking control subjects, resulting in upregulation of 190 RNS as assessed by nitrotyrosine, iNOS and heme oxygenase 1 (HO-1) staining in lung tissue (2, 191 90, 115, 160, 178).  192 Other studies have shown that exposure to excess ROS/RNS can lead to impaired function of 193 macrophages, e.g. senescence and impaired phagocytosis (8, 77, 198). This macrophage 194 dysfunction was suggested to at least partially result from oxidation of mannose binding lectin, a 195 key component required for effective phagocytosis (168). Oxidative stress may additionally 196 cause accumulation of damaged lipid proteins in mouse models of COPD, which can inhibit the 197 phagocytic function of AMs and drive inflammatory behavior (126, 166, 167). High oxidative 198 stress in animal models was indeed shown to attenuate AM function, primarily resulting in 199 reduced phagocytic capacity and cell viability (30, 31, 33). Moreover, high oxidative stress 200 affected maturation of AMs in guinea pigs, as demonstrated by a shift towards a less terminally 201 differentiated population (33). Increased ROS production in the AM cell line NR8383 also 202 
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resulted in enhanced expression of M2 activation markers, possibly due to induction of 203 transforming growth factor beta (TGF-β) signaling and diminished antioxidant availability (32). 204 Treatment with antioxidants in this case was able to lower oxidative stress and improve 205 phagocytosis and maturation of AMs and partially blocked alternative activation in NR8383 cells 206 (31-33). Further research into specific mechanisms causing impaired AM function showed a key 207 role for NADPH oxidases and mitochondrial ROS (mROS) generation, which in addition provided 208 targets for normalizing ROS production and rescuing phagocytic capacity (110, 111, 190, 191). 209 Although the aforementioned animal studies demonstrate that high oxidative stress plays a role 210 in AM dysfunction, all models are based on chronic alcohol ingestion and more direct evidence is 211 essential to fully understand what happens in asthma and COPD. It was already shown that AMs 212 from COPD patients have chronic mROS production, causing increased mROS baseline levels. 213 However, these AMs fail to generate sufficient mROS upon bacterial challenge (17). High 214 oxidative stress in COPD may thus impair mitochondrial function and result in reduced bacterial 215 clearance. Furthermore, the mitochondrial-specific antioxidant mitoTEMPO did not increase 216 intracellular bacterial numbers in AMs from COPD patients (while it did in healthy), confirming 217 mitochondrial dysfunction as a key determinant of their defective antimicrobicidal response 218 (17). 219 In addition to endogenous ROS/RNS, the function of macrophages can be altered by exogenously 220 generated ROS/RNS. Cigarette smoke models are commonly used for studying AMs in COPD with 221 cigarette smoke inducing oxidative stress. Cigarette smoke exposure ex vivo resulted in a redox 222 imbalance with higher production of NO by rat AMs and higher ROS production by human and 223 mouse macrophages (96, 139, 192). Similar results were found in vivo when oxidative stress was 224 assessed as increased expression of MDA and HO-1 and by decreased GSH levels in macrophages 225 of cigarette smoke-exposed rats (183). Moreover, cigarette smoke provokes oxidative damage in 226 macrophages. For example, cigarette smoke exposure resulted in cell apoptosis and 227 downregulated phagocytic ability of macrophages and decreased efferocytosis as measured in 228 both bronchoalveolar lavage fluid (BALF) and tissue macrophages obtained from cigarette 229 
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smoke-exposed mice (81, 139, 192). These cigarette smoke-induced changes were shown to 230 improve by procysteine antioxidant treatment (81).  231  232 Taken together, these studies suggest that in addition to being an important source of ROS/RNS, 233 the redox state is crucial for proper macrophage function as well as differentiation when needed. 234 The airway inflammation and altered function and polarization of macrophages as seen in 235 asthma and COPD thus may be related to increased oxidative stress found in these diseases. 236 However, it is still not clear whether changes in macrophage polarization are cause or effect of 237 oxidative stress and what the actual consequences are.   238 
 239 
Exacerbations of asthma and COPD 240 Both asthma and COPD patients can suffer from periodic acute worsening of symptoms called 241 exacerbations, that are associated with increased airway inflammation, a decline in lung function 242 and increased mortality. Despite more therapeutic intervention and medication, these remain 243 difficult to control (6, 40). During an exacerbation, patients have difficulties in breathing, chest 244 pain and cough up sputum, caused by restriction of the airways and overproduction of mucus 245 (182). Exacerbations are predominantly triggered by viral and bacterial respiratory infections, 246 but can also be induced by exposure to allergens, air pollution or exercise (101). Yet, why some 247 patients develop an exacerbation during an infection or other exposures and why some do not, is 248 not understood. It has been suggested this may be associated with different levels of oxidative 249 stress. 250  251 Oxidative stress during exacerbations of asthma and COPD has been studied in various settings, 252 in humans as well as in animal models. Numerous studies in patients suffering from acute 253 exacerbations requiring hospitalization demonstrated that exacerbations are associated with an 254 increase in oxidative stress, both locally and systemically, as assessed as increases in the levels 255 of well-known oxidative stress markers (i.e. 8-isoprostane, H2O2, MDA, protein carbonylation 256 
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and reactive oxygen metabolites (ROM)) compared to stable disease (Table 2). These increases 257 are often accompanied with higher levels of inflammatory markers such as C-reactive protein 258 (CRP), cysteinyl leukotrienes (Cys-LTs) and leukotriene B4 (LTB4) (3, 7, 18, 116, 159, 193). 259 Experimental allergen or rhinovirus-induced exacerbations in asthmatics and COPD patients 260 were also shown to result in ROS generation and higher levels of 8-isoprostane and/or F2-261 isoprostanes compared to baseline (34, 36, 59, 60, 68). Even in an ex vivo lipopolysaccharide 262 (LPS)-induced human COPD exacerbation model, higher H2O2 and MDA levels were detected 263 compared to vehicle (39). Moreover, animal models of asthma and COPD exacerbations 264 displayed similar increases in oxidative stress levels as reported for patients, indicating that 265 these models are suited to study mechanistic effects. For example, LPS, diesel exhaust 266 particulates, ozone and graphene oxide were all able to exacerbate airway inflammation in 267 ovalbumin or house dust mite mouse models of asthma (both acute and chronic models), 268 resulting in increased ROS production and elevated levels of e.g. 8-isoprostane and MDA (58, 85, 269 94, 99, 134, 154). In addition, viral infection mimicked by poly(I:C) stimulation led to enhanced 270 protein carbonylation in a mouse model of COPD exacerbation (164). 271  272 The majority of human studies on this topic have focused on oxidative stress markers in serum, 273 plasma or material derived from upper or lower airways. Wu et al., however, found that changes 274 in oxidative stress during exacerbations in asthmatic adults can also be detected by measuring 275 the major urinary metabolite of F2-isoprostane (186). Still, some matrices may have superior 276 clinical utility over others, since discrepancies are known to exist as well. For example, sputum 277 MDA levels in COPD patients experiencing an acute exacerbation were significantly higher 278 compared to stable COPD, healthy controls and after treatment, while levels of MDA in EBC were 279 comparable for all groups (4). The authors hypothesized that this difference may be explained 280 by the high day-to-day variability in EBC MDA readings. On the other hand, a significant 281 association between local and systemic MDA was found in patients experiencing acute COPD 282 exacerbations (194).  283 
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 284 Although most studies investigate markers of oxidative stress, antioxidant responses have been 285 studied as well. Significant negative relationships between MDA levels and GSH, glutathione 286 peroxidase (GPx) and SOD were observed in both asthma and COPD exacerbations, implicating 287 an important role for antioxidants in the development of exacerbations (45, 194). Table 3 288 depicts some of the most common antioxidants measured in patients hospitalized due to asthma 289 and COPD exacerbations. While it is obvious that levels of markers of oxidative stress are higher 290 during acute exacerbations (Table 2), findings regarding antioxidant capacity appear to be 291 conflicting, with some studies finding higher and some finding lower levels than in stable 292 disease. These different outcomes are difficult to explain and can probably only be resolved by 293 following patients clinically in detail over time. Results from experimental and ex vivo human 294 exacerbation models were more unanimous, revealing a decrease in GSH and SOD during 295 experimental exacerbations compared to baseline (39, 43, 59). Lower antioxidant levels of CAT, 296 GSH and SOD were also found during exacerbations in mouse models (58, 99, 154). The 297 importance of antioxidant status is further highlighted by ex vivo and animal studies showing 298 that the administration of antioxidants (apocynin, curcumin, ebselen, GSH, N-acetylcysteine 299 (NAC) and vitamin E) is to various degrees able to restore antioxidant levels, lower oxidative 300 stress and thereby reduce airway inflammation and hyperresponsiveness and ameliorate the 301 induced exacerbation (39, 58, 62, 99, 135, 154).  302  303 Loss of lung function is an important indicator of a developing exacerbation and changes in FEV1 304 in relation to oxidative stress and antioxidant levels have therefore been studied as well. 305 Markers of oxidative stress in serum (MDA and ROM) were found to negatively correlate with 306 FEV1 during asthma and COPD exacerbations (26, 132). Moreover, sputum MDA levels primarily 307 decreased in those COPD patients who had a more pronounced improvement in FEV1 post-308 treatment, while MDA levels remained high in patients with minor changes in FEV1 (4). This 309 suggests that high oxidative stress levels are linked to more severe exacerbations and that the 310 
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capacity to counter ROS production is linked to a response to treatment. In addition, it has been 311 suggested that antioxidant levels may reflect the severity of an exacerbation. A significant 312 positive association between SOD activity and FEV1 was seen in asthma patients admitted to the 313 hospital because of acute exacerbations, suggesting that patients with higher SOD levels are 314 better off during an exacerbation (91). On the other hand, serum levels of TRX negatively 315 correlated with FEV1 during exacerbations (189). Thus, altered antioxidants during asthma and 316 COPD exacerbations may be part of the pathophysiological features of the disease.  317  318 Nitrosative stress during exacerbations remains poorly investigated, although elevated levels of 319 nitrotyrosine were reported during both asthma and COPD exacerbations (68, 85, 171). In 320 addition, acute exacerbations of COPD are characterized by higher levels of NO inhibitor 321 asymmetric dimethylarginine (ADMA) concentrations in serum (148). ADMA promotes the 322 formation of peroxynitrite and results in a shift towards L-arginine breakdown, contributing to 323 airway obstruction. High ADMA levels in these patients were also found to be associated with 324 higher all-cause mortality (180). 325  326 Macrophages may contribute to the development of exacerbations in several ways (Figure 3). 327 Their defective phagocytic capacity as seen in asthma and COPD can result in impaired clearance 328 of bacteria, subsequently leading to an increased bacterial burden in the lung (12, 67, 76, 112). 329 Defective opsonic phagocytosis by AMs has recently been associated with both exacerbation 330 frequency and FEV1 in COPD patients (16). Impaired antiviral responses have been seen in 331 asthmatic patients as well, which may be caused by changes in macrophage polarization. M1 332 macrophages are favorable during viral infections as they have better antigen-presenting and 333 antiviral capacity, but many macrophages in asthma display signs of M2 polarization (118, 122). 334 Several studies have indeed demonstrated that rhinovirus-induced antiviral type 1 responses by 335 AMs are defective in asthma patients (44, 105, 163). In addition to stimulating less M1 336 polarization, this virus was also demonstrated to exacerbate Th2-mediated airway inflammation 337 
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in asthma, which correlated with viral load and symptom severity (86, 123). Moreover, 338 rhinovirus infection in ovalbumin-sensitized mice resulted in more M2 macrophage polarization, 339 enhancing hyperresponsiveness (82). In AMs of COPD patients, M1-related inflammatory genes 340 are downregulated and M2-associated genes are upregulated compared to healthy controls, 341 suggesting a similar effect on the antiviral capacity as seen in asthma (156). Moreover, impaired 342 AM efferocytosis contributes to the accumulation of apoptotic material that may perpetuate 343 inflammation in the airways (158, 168, 179). Impaired efferocytosis of eosinophils in COPD 344 patients was in fact related to both the frequency and severity of future exacerbations (63). In 345 addition, AMs of COPD patients prone to exacerbations were demonstrated to have impaired 346 innate immune responses towards respiratory pathogens, including diminished cytokine 347 induction and reduced nuclear factor kappa B (NF-κB) translocation (13).  348  349 Besides macrophage involvement in the induction of exacerbations, emerging evidence points 350 towards changes in function and polarization of macrophages during exacerbations as well, 351 which could be the result of being in an environment of high oxidative stress. Allergen 352 provocation in atopic asthma patients induced airway inflammation and was associated with an 353 altered phenotype pattern within the AM population (107, 108). For example, AMs post-354 challenge showed increased expression of the cluster of differentiation (CD) molecules CD11b 355 and CD14, potentially resulting from an influx of blood monocytes. In ovalbumin and rhinovirus-356 induced acute exacerbation mouse models of chronic asthma, macrophage polarization was 357 skewed towards M2/alternative activation, accompanied by higher expression of cell surface 358 markers related to antigen presentation than in control asthmatic mice (35, 41, 131). Moreover, 359 macrophages in mouse models of acute exacerbations exhibited higher expression of several 360 pro-inflammatory cytokines compared to chronically challenged animals (35, 78, 133, 150). 361 Consequently, these AMs were demonstrated to have a greater ability to stimulate the 362 expression of Th2 cytokines when co-cultured with pulmonary CD4+ T lymphocytes (78). In 363 addition, THP-1-derived macrophages displayed an M2-polarized phenotype upon incubation 364 
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with sputum from exacerbating COPD patients (75). The altered macrophage function and 365 polarization towards M2 during exacerbations may thus influence immune responses and 366 contribute to aggravation of airway inflammation. This together with the aberrant M1 367 macrophage differentiation may impair antiviral responses, making it an interesting therapeutic 368 possibility to prevent virus-induced exacerbations. 369  370 
What causes oxidative/nitrosative stress in exacerbations? 371 Several factors may contribute to oxidative stress during asthma and COPD exacerbations 372 (Figure 4). As mentioned previously, exacerbations are usually caused by exogenous stimuli. 373 Some of these triggers, including cigarette smoke and air pollution, contain different populations 374 of free radicals and ROS/RNS that not only directly contribute to oxidative stress generation in 375 the lung, but also stimulate the production of reactive species by e.g. epithelial cells and 376 phagocytes. More specifically, it has been suggested that various sources of pollution particles 377 trigger oxidant responses in a cell-specific manner (10). Furthermore, pollens were 378 demonstrated to have intrinsic NADPH oxidases and are therefore able to generate ROS (5, 21). 379 Environmental factors thus exacerbate airway inflammation and increase cellular ROS levels, 380 but have been demonstrated to induce oxidative damage to mitochondria as well (66, 109). The 381 resulting mitochondrial dysfunction and enhanced mROS generation was suggested to be 382 responsible for the exacerbation of allergic airway inflammation in mice, as evidenced by the 383 accumulation of eosinophils, mucus hypersecretion and bronchial hyperresponsiveness (1). 384 Thus, exogenous events may directly and indirectly influence oxidative stress levels, thereby 385 contributing to the development of asthma and COPD exacerbations. 386  387 Inflammatory cells represent an important endogenous source of ROS. Both asthma and COPD 388 exacerbations are characterized by eosinophil and/or neutrophil recruitment to the airways 389 (138). Following allergen-induced exacerbations in allergic asthmatic patients, circulating 390 eosinophils display enhanced ROS production together with diminished apoptosis (65, 104). 391 
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Both observations point towards eosinophil priming upon exposure to allergen. In vitro allergen 392 challenge of peripheral neutrophils obtained from allergic asthmatics induced the release of 393 myeloperoxidase (MPO) and ROS production in an allergen-specific, dose and time-dependent 394 manner (70, 124). Likewise, blood and sputum neutrophils of exacerbating COPD patients 395 showed increased ROS production (176).  396  397 In addition to neutrophils and eosinophils, AMs are also relevant ROS-producing effector cells 398 that are present in lung tissue during asthma and COPD exacerbations. AMs of allergic subjects 399 and mild asthmatics demonstrated higher ROS metabolism and superoxide production after 400 allergen challenge (36, 37). This may be related to lower Nrf2 activity, because inducing an 401 experimental exacerbation by segmental allergen challenge in human atopic asthmatics led to 402 lower Nrf2 DNA-binding activity and protein expression as well as inhibition of the Nrf2-403 dependent gene SOD-1 in AMs as compared to baseline (59). Likewise, oxidative stress was 404 higher and protein levels of Nrf2 and its downstream target HO-1 were lower in ozone-405 exacerbated asthmatic mice than in mice with ovalbumin-induced asthma only (58). Human AMs 406 after allergen challenge were also unable to respond to Nrf2-inducing agents like 2-cyano-3,12-407 dioxooleana-1,9(11)-dien-28-oic acid (CDDO) and sulforaphane ex vivo, as exemplified by failure 408 to induce DNA-binding activity or protein expression of Nrf2 (59). This loss of Nrf2 activity and 409 protein seems to be mediated by ROS, since vitamin E supplementation not only resulted in 410 lower oxidative stress but was also able to restore the drop in Nrf2 (58, 59). Moreover, Nrf2 411 agonists were able to increase phagocytosis by AMs from COPD patients, a process that is 412 defective and associated with impaired responses to oxidative stress in this disease (16). 413 Cigarette smoke-exposed Nrf2-deficient mice demonstrated lower pathogen clearance by 414 macrophages, enhanced airway inflammation and greater pulmonary injury upon bacterial and 415 viral infections than air-exposed mice, emphasizing the importance of Nrf2 in combating 416 oxidative stress (76, 188). Additionally, virus infection in mice attenuated expression of Nrf2 and 417 its target genes, leading to oxidative damage in the lung (83). Impaired Nrf2 activity and 418 
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subsequent deterioration of essential antioxidant responses in the airways may therefore play a 419 critical role in the molecular pathways of asthma and COPD exacerbations. Targeting the Nrf2 420 pathway using e.g. sulforaphane has already been suggested as a tool in preventing 421 exacerbations of COPD, though not all trials were proven successful (19, 25, 76, 87, 184, 195). 422  423 
Clinical relevance and therapeutic strategies 424 Measuring oxidative stress levels or altering stress levels are being investigated as clinical 425 approaches in trying to predict, prevent and/or diminish the severity of exacerbations. For 426 example, ROM levels in serum from asthmatics being more likely to experience severe 427 exacerbations were higher compared to patients who did not suffer from exacerbations (132). 428 This finding was supported by a ROC analysis that demonstrated an association between ROM 429 levels and the occurrence of severe exacerbations. ROM levels were also found to be predictive 430 for exacerbations in COPD patients with repeating exacerbations, since they increased before the 431 exacerbation and changed corresponding to clinical symptoms (97). Other oxidative stress 432 markers like lipid peroxide (LPO), MDA-modified low-density lipoprotein (MDA-LDL) and 433 urinary 8-OHdG displayed trends similar to ROM, although changes in MDA-LDL levels appear 3-434 5 days later, limiting its use as a predictive marker. The activity of SOD has not been found to 435 follow clinical symptoms and only showed minimal fluctuation (97). EBC 8-isoprostane levels, 436 on the other hand, may have some predictive value as Keskin et al. showed that these were 437 higher in asthmatic children with more than four exacerbations per year than in children with 438 only 1-4 exacerbations per year, suggesting that these values are related to the number of 439 exacerbations per year (92). In addition, specific eosinophil-catalyzed protein oxidation may be 440 of important value, since higher baseline urinary levels of bromotyrosine in children 441 corresponded to a fourfold higher chance of the occurrence of an asthma exacerbation (181). 442 Several studies have found a significant relationship between vitamin D (a membrane 443 antioxidant) insufficiency and higher odds of severe asthma exacerbations (20, 27-29, 147). This 444 effect was even greater by traffic-related air pollution or co-occurrence of folate deficiency (20, 445 
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147). More specifically, vitamin D insufficiency was associated with significantly elevated 446 oxidative stress levels, poorer lung function and decreased responsiveness to corticosteroids 447 during severe exacerbations compared to vitamin D sufficiency (27, 103). However, vitamin D 448 deficiency and exacerbations did not show any correlation in COPD cohort studies and it was 449 also found to not increase the risk of rhinovirus-induced exacerbations (100, 141). The effects of 450 vitamin D may possibly be minor in comparison to other complex factors that influence 451 susceptibility to COPD exacerbations.  452 Taken together, measuring markers of oxidative stress and/or levels of antioxidants may help in 453 identifying patients at risk of (severe) exacerbations of asthma and COPD. This has previously 454 been suggested for allergen sensitization and also for allergen-induced asthma exacerbations 455 (114, 175, 177). Whether these patients will actually benefit from strategies aiming for reduced 456 oxidative stress levels or an increased antioxidant capacity remains to be investigated. 457 Furthermore, studies on the predictive value of oxidative stress levels remain scarce and are 458 mostly conducted with limited patient numbers and over a short time frame. Further research 459 including larger patient cohorts is thus necessary to validate these findings and identify 460 potential biomarkers for predicting exacerbations. 461  462 Antioxidant administration to counteract oxidative stress and thereby possibly prevent asthma 463 and COPD exacerbations or modulate their severity has been investigated in quite a few studies. 464 Animal and ex vivo studies showed that administration of antioxidants normalized ROS 465 production and antioxidant responses and incidentally also led to improvements in macrophage 466 function and polarization (31, 33, 39, 58, 62, 76, 84, 99, 135, 154). Several clinical studies have 467 investigated the effect of antioxidant administration on exacerbation rates. In COPD patients, the 468 antioxidant and mucolytic agent carbocysteine was well tolerated and daily administration for 469 one year lowered the number of exacerbations in both placebo-controlled and observational 470 studies (64, 196). The antioxidant activity of erdosteine was already confirmed earlier by lower 471 plasma ROS and 8-isoprostane levels, and it was recently also demonstrated to lower the rate 472 
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and duration of COPD exacerbations (46, 47). Long-term high-dose NAC treatment (600 mg 473 twice a day) was safe and able to reduce exacerbation frequency in COPD as well, although this 474 was in particular true for moderate disease severity and high-risk patients (169, 170, 197). 475 However, 600 mg daily NAC was unsuccessful in preventing COPD exacerbations, possibly 476 pointing towards a dose-dependent effect (48). Similar trials in asthma patients are currently 477 lacking and the efficacy of antioxidants in reducing asthma exacerbations therefore remains to 478 be elucidated.  479 Recent meta-analysis of individual participant data demonstrated that supplemental vitamin D 480 reduced the asthma exacerbation rate and this outcome did not differ across patient subgroups 481 (88). Yet, supplementation was only able to reduce exacerbations in COPD patients with baseline 482 vitamin D concentrations below a certain threshold (93, 106, 117). 483 Targeting oxidative stress using antioxidants may thus provide a strategy for the reduction 484 and/or prevention of exacerbations, though pre-specified subgroups of patients should probably 485 be considered. Furthermore, evaluating the effects on baseline oxidative stress levels could help 486 understand why not all patients benefit from antioxidant treatment. Evidence regarding the 487 mechanism of action in positive trials of antioxidants is also required to clarify whether it is the 488 antioxidant capacity that is critical in reducing exacerbation rates, since most agents described 489 also have mucolytic and anti-inflammatory properties. 490  491 
Conclusions 492 This summary of existing literature shows that asthma and COPD and exacerbations of these 493 diseases are characterized by high oxidative stress and impaired macrophage function. 494 Macrophages have multiples roles in the oxidative stress associated with exacerbations: on the 495 one hand the high numbers of (altered) macrophages in asthma and COPD contribute to 496 generation of ROS/RNS and on the other hand oxidative stress also affects macrophage function 497 and polarization. Oxidative stress is associated with decreased capacity of macrophages to 498 respond to pathogens, caused by decreased phagocytosis and aberrant polarization and this 499 
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appears to be crucial in the insufficient initial response to exacerbating stimuli. To date, much of 500 the knowledge on oxidative stress and macrophages has been derived from animal models of 501 exacerbations. Although these may provide mechanistic insights, their actual relevance to 502 human disease is largely unknown. Further study into the interactions between oxidative stress 503 and macrophages in the context of acute exacerbations may give us valuable information on how 504 exacerbations occur and why some obstructive lung patients develop exacerbations while others 505 do not. Ideally, one would map fluctuations in a patient undergoing oxidative stress over time, 506 compare frequent and infrequent exacerbators and find out whether asthma and COPD patients 507 before an exacerbation show evidence of more oxidative stress than before a non-exacerbating 508 respiratory infection or compared to healthy controls experiencing a similar respiratory tract 509 infection. This knowledge may lead to targets, markers and therapeutic strategies to reduce or 510 prevent exacerbations. 511  512 
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Table 1. Overview of papers that cite macrophage polarization. 516 
Reference Macrophage Definition 

Human 

Bazzan et al., 2017 (9) M1 iNOS confirmed by HLA-DR, TNF-α 

 M2 CD206, IL-4, IL-13

Draijer et al., 2017 (54) M1 IRF5 

 M2 CD206

 M2-like IL-10 

Eapen et al., 2017 (61) M1 iNOS

 M2 Arginase, CD163 

Girodet et al., 2016 (72) M0 CD206loMHC-IIlo

 M2 CD206hiMHC-IIhi 

Gutierrez et al., 2010 (75) M1 TNF-α, IL-6 

M2 Arginase, CD206

Hodge et al., 2011 (81) M1 CR-3, CR-4, FcγR1, HLA classes I and II 

M2 Arginase, DC-SIGN

Melgert et al., 2011 (122) Alternatively activated CD206, stabilin-1 

Mouse 

Bunting et al., 2013 (35) Alternatively activated Arginase-1, FIZZ1, CCL24, YM1 

Chung et al., 2015 (41) M2 CD206, CD301, IL-13 

Draijer et al., 2013; 2016; 2018 (53, 55, 56) M1 IRF5 

M2 CD206, YM1

 M2-like IL-10 

Hong et al., 2014 (82) M1 IFN-γ, TNF-α, IL-12

M2 Arginase-1, CD206, CD301, YM1, IL-4, IL-13 

M2a CCL17, CCL24

M2b IL-10, CD86 

M2c CXCL13

Kurowska-Stolarska et al., 2009 (102) M1 TLR2, IL-12, TNF-α, CXCL10 

Alternatively activated CD206, YM1, FIZZ1, CCL17, CCL22, CCL24 

Moreira et al., 2010 (125) M2 Arginase-1, FIZZ1, YM1

Nagarkar et al., 2010 (131) M2/alternatively activated Arginase-1, FIZZ1, YM1, TNF-α, p70 IL-12, MGL-2, IL-10 

Robbe et al., 2015 (146) M1 IRF5

 M2 YM1

 Anti-inflammatory IL-10

Abbreviations: iNOS = inducible nitric oxide synthase, HLA = human leukocyte antigen, TNF-α = tumor necrosis factor α,  CD = cluster of 517 
differentiation, IL = interleukin, IRF5 = interferon regulatory factor 5, MHC = major histocompatibility complex, CR = complement receptor, 518 
FcγR1 = Fc gamma receptor 1, DC-SIGN = dendritic cell-specific intercellular adhesion molecule grabbing non-integrin, FIZZ1 = found in 519 
inflammatory zone 1, CCL = chemokine (C-C motif) ligand, YM1 = chitinase 3-like 3, IFN-γ = interferon γ, CXCL = chemokine (C-X-C motif) 520 
ligand, TLR2 = toll like receptor 2, MGL-2 = macrophage galactose N-acetyl-galactosamine specific lectin 2 521 522 
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Table 2. Overview of oxidative stress markers during acute exacerbations of asthma and COPD. 523 
Marker Reference Material Observation P 

Asthma 

8-isoprostane Zanconato et al., 2004 (193) EBC ↔ (n=9) vs. stable asthma (n=13) NS 

Baraldi et al., 2003 (7) EBC ↑ vs. aŌer 5 d prednisone treatment (n=15) <0.05

Mak et al., 2013 (116) Plasma ↑ vs. remission (n=18) <0.01 

MDA Corradi et al., 2003 (45) EBC ↑ vs. aŌer 5 d prednisone treatment (n=12) 0.001

Nadeem et al., 2005 (130) Plasma ↑ (n=32) vs. stable asthma (n=71) <0.05 

Rahman et al., 1996 (143) Plasma ↑ (n=11) vs. stable asthma (n=9) <0.05

Gumral et al., 2009 (74) RBCs ↑ vs. stable periods (n=16) <0.01 

Protein carbonyls Nadeem et al., 2005 (130) Plasma ↔ (n=25) vs. stable asthma (n=73) NS

Rahman et al., 1996 (143) Plasma ↔ (n=11) vs. stable asthma (n=9) NS 

ROM Suzuki et al., 2008 (162) Serum ↑ vs. convalescence (n=7) <0.001 

Suzuki et al., 2008 (162) Serum ↑ (n=42) vs. stable asthma (n=11) <0.05

COPD 

8-isoprostane Antczak et al., 2012 (3) EBC ↑ vs. stable periods (n=16) <0.001 

Biernacki et al., 2003 (18) EBC ↑ vs. aŌer 2 w anƟbioƟc treatment (n=21) <0.0001

Tufvesson et al., 2013 (172) Sputum ↔ vs. stable periods (n=25)* NS 

H2O2 Antczak et al., 2012 (3) EBC ↑ vs. stable periods (n=16) <0.001

Oudijk et al., 2006 (137) EBC ↑ vs. aŌer 7 d intravenous corƟcosteroid treatment (n=10) <0.0005 

Gerritsen et al., 2005 (71) EBC ↑ vs. aŌer 7 d prednisolone treatment (n=14) 0.001 

Dekhuijzen et al., 1996 (49) EBC ↑ (n=19) vs. stable COPD (n=12) <0.001

MDA Antus et al., 2014 (4) EBC ↔ vs. discharge (n=34) NS 

Antus et al., 2014 (4) EBC ↔ (n=34) vs. stable COPD (n=21) NS

Zeng et al., 2013 (194) Plasma ↑ (n=43) vs. stable COPD (n=35) <0.05 

Stanojkovic et al., 2011 (159) Plasma ↓ vs. discharge (n=74) N/A

Rahman et al., 1997 (144) Plasma ↑ vs. discharge (n=13) <0.01 

Rahman et al., 1996 (143) Plasma ↑ (n=11) vs. stable COPD (n=9) <0.05

Gumral et al., 2009 (74) RBCs ↑ vs. stable periods (n=17) <0.001 

Tug et al., 2004 (173) Serum ↑ vs. stable periods (n=24) N/A 

Antus et al., 2014 (4) Sputum ↑ vs. discharge (n=34) <0.05

Antus et al., 2014 (4) Sputum ↑ (n=34) vs. stable COPD (n=21) <0.01 

Zeng et al., 2013 (194) Sputum ↑ (n=43) vs. stable COPD (n=35) <0.001

Protein carbonyls Rahman et al., 1996 (143) Plasma ↔ (n=11) vs. stable asthma (n=9) NS 

ROM Komatsu et al., 2007 (97) Blood ↑ (n=8) vs. chronic stable state (n=10) and recovery (n=6)** <0.01

  Koutsokera et al., 2009 (98) Serum ↔ vs. follow-up (n=30) NS 

Observations are defined as an increase (↑), decrease (↓) or no change (↔) in quantified concentrations of oxidative stress markers 524 
during acute exacerbations compared to either the same group of patients during recovery, or a separate group with stable disease.  525 
Abbreviations: MDA = malondialdehyde, ROM = reactive oxygen metabolites, EBC = exhaled breath condensate, RBCs = red blood cells, d = 526 
days, w = weeks, NS = not significant, N/A = not available 527 
*Stable periods are before the onset of exacerbation 528 
**All from the same n=10, chronic stable state is before the onset of exacerbation 529 530 
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Table 3. Overview of antioxidants during acute exacerbations of asthma and COPD. 531 
Marker Reference Material Observation P 

Asthma 

CAT Gumral et al., 2009 (74) RBCs ↑ vs. stable periods (n=16) <0.001 

Nadeem et al., 2005 (130) RBCs ↔ (n=32) vs. stable asthma (n=89) NS

GPx Nadeem et al., 2005 (130) Plasma ↔ (n=25) vs. stable asthma (n=83) NS 

Gumral et al., 2009 (74) RBCs ↓ vs. stable periods (n=16) <0.01

Nadeem et al., 2005 (130) RBCs ↔ (n=28) vs. stable asthma (n=82) NS 

GRd Gumral et al., 2009 (74) RBCs ↓ vs. stable periods (n=16) <0.001

GSH Nadeem et al., 2005 (130) Blood ↔ (n=30) vs. stable asthma (n=86) NS 

Corradi et al., 2003 (45) EBC ↓ vs. aŌer 5 d prednisone treatment (n=12) <0.05

Deveci et al., 2004 (50) Sputum ↓ (n=10) vs. stable asthma (n=11) <0.001 

Protein sulfhydryls Nadeem et al., 2005 (130) Plasma ↓ (n=32) vs. stable asthma (n=90) <0.01 

Rahman et al., 1996 (143) Plasma ↔ (n=11) vs. stable asthma (n=9) NS

SOD Katsoulis et al., 2010 (91) RBCs ↓ vs. discharge (n=38) <0.001 

Gumral et al., 2009 (74) RBCs ↔ vs. stable periods (n=16) NS

Nadeem et al., 2005 (130) RBCs ↔ (n=32) vs. stable asthma (n=80) NS 

TEAC Rahman et al., 1996 (143) Plasma ↓ (n=11) vs. stable asthma (n=9) N/A

TRX Yamada et al., 2003 (189) Serum ↑ vs. stable periods (n=8) <0.005 

Yamada et al., 2003 (189) Serum ↑ (n=26) vs. stable asthma (n=30) <0.01

COPD 

CAT Gumral et al., 2009 (74) RBCs ↔ vs. stable periods (n=17) NS

GPx Zeng et al., 2013 (194) Plasma ↓ (n=43) vs. stable COPD (n=35) <0.05 

Gumral et al., 2009 (74) RBCs ↓ vs. stable periods (n=17) <0.01

Zeng et al., 2013 (194) Sputum ↓ (n=43) vs. stable COPD (n=35) <0.001 

GRd Gumral et al., 2009 (74) RBCs ↓ vs. stable periods (n=17) <0.05

GSH Drost et al., 2005 (57) BALF ↓ (n=12) vs. stable COPD (n=5) N/A 

Zeng et al., 2013 (194) Plasma ↓ (n=43) vs. stable COPD (n=35) <0.05

Turgut et al., 2014 (174) Sputum ↔ (n=11) vs. stable COPD (n=10) NS 

Zeng et al., 2013 (194) Sputum ↓ (n=43) vs. stable COPD (n=35) <0.001 

Protein sulfhydryls Rahman et al., 1997 (144) Plasma ↓ vs. discharge (n=13) <0.001

Rahman et al., 1996 (143) Plasma ↓ (n=11) vs. stable COPD (n=9) <0.05 

SOD Zeng et al., 2013 (194) Plasma ↓ (n=43) vs. stable COPD (n=35) <0.05

Stanojkovic et al., 2011 (159) Plasma ↑ vs. discharge (n=74) N/A 

Gumral et al., 2009 (74) RBCs ↑ vs. stable periods (n=17) <0.01

Zeng et al., 2013 (194) Sputum ↓ (n=43) vs. stable COPD (n=35) <0.001 

TEAC Rahman et al., 1997 (144) Plasma ↓ vs. discharge (n=13) <0.05

  Rahman et al., 1996 (143) Plasma ↓ (n=11) vs. stable asthma (n=9) N/A 

Observations are defined as an increase (↑), decrease (↓) or no change (↔) in quantified concentrations of antioxidants during acute 532 
exacerbations compared to either the same group of patients during recovery, or a separate group with stable disease.  533 
Abbreviations: CAT = catalase, GPx = glutathione peroxidase, GRd = glutathione reductase, GSH = glutathione, SOD = superoxide dismutase, 534 
TEAC = trolox equivalent antioxidant capacity, TRX = thioredoxin, RBCs = red blood cells, EBC = exhaled breath condensate, BALF = 535 
bronchoalveolar lavage fluid, d = days, NS = not significant, N/A = not available 536 537 
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Figure legends 538 
Figure 1. Summary of the M1 (blue) and M2 (grey) polarization concept. Shown are different 539 markers and cytokines that have been used in literature to identify differentially polarized 540 macrophages in the human and murine lung.  541 
 542 
Figure 2. Highlights of the oxidative stress pathway and its markers/antioxidants (upper panel). 543 Oxidative stress can lead to lipid peroxidation products, oxidized proteins and/or amino acids 544 and oxidative DNA damage. In cases of overwhelming oxidative responses (R·) and therefore cell 545 and tissue damage by reactive species, Nrf2 translocates to the nucleus, where it binds to 546 antioxidant response elements (ARE) and activates genes involved in the cellular antioxidant 547 and anti-inflammatory defense (lower panel). Under normal conditions, Nrf2 is maintained in 548 the cytoplasm by Kelch-like ECH-associated protein 1 (Keap1), resulting in its rapid 549 ubiquitination (ub) and subsequent proteasomal degradation. 550 
 551 
Figure 3. Macrophages in the development of asthma and COPD exacerbations. The altered 552 polarization and defective phagocytosis and efferocytosis of macrophages as seen in asthma and 553 COPD results in impaired responses towards exogenous (oxidative) triggers, leading to 554 exaggerated airway inflammation and oxidative stress. Concomitantly, high oxidative stress 555 facilitates an increase in NADPH oxidases, mitochondrial dysfunction and reduced Nrf2 activity, 556 thereby influencing immune responses and contributing to aggravation of inflammation in the 557 airways, further enhanced oxidative stress and exacerbations. 558 
 559 
Figure 4. Contributing factors to oxidative stress during exacerbations of asthma and COPD. 560 Environmental stimuli that trigger exacerbations (e.g. air pollution, respiratory pathogens, 561 cigarette smoke and allergens) account for an increase in exogenous ROS. Subsequently, this 562 provokes (mitochondrial) ROS generation by resident and inflammatory cells in the airways and 563 the circulation. Together with the enhanced recruitment of ROS-producing inflammatory cells to 564 
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the airways, this ultimately leads to the increased oxidative stress and altered antioxidant 565 availability observed during exacerbations. Presented cells are eosinophils (red), neutrophils 566 (purple), monocytes/macrophages (blue) and epithelial cells (green). 567 568 
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