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This paper studies an optimized container loading problem with the goal of maximizing the 3D space utilization. Based on the
characteristics of the mathematical loading model, we develop a dedicated placement heuristic integrated with a novel dynamic
space division method, which enables the design of the adaptive genetic algorithm in order to maximize the loading space
utilization. We use both weakly and strongly heterogeneous loading data to test the proposed algorithm. By choosing 15 classic
sets of test data given by Loh andNee as weakly heterogeneous data, the average space utilization of our algorithm reaching 70.62%
outperforms those of 13 algorithms from the related literature. Taking a set of test data given by George and Robinson as strongly
heterogeneous data, the space utilization in this paper can be improved by 4.42% in comparison with their heuristic algorithm.

1. Introduction

Container loading problems mainly address the issues of
planning the loading order and loading position on the basis
of ensuring certain constraints [1–3]. Study on optimization
of container loading problems has an extensive engineering
background and various applications on the modern man-
agement of container terminals and container shipping [4–
6]. The container loading problem is a Nondeterministic
Polynomial- (NP-) Hard problem that focuses on establish-
ing mathematical models and seeking efficient algorithms
depending on the specific environments [7, 8]. Depending
on the types of containers and cargoes, the container loading
problem can be divided into 14 categories [9]. Our paper
studies two categories of loading a single container with
selections from either weakly or strongly heterogeneous set of
cargoes such that the value of the loaded items is maximized.

Intelligent optimized algorithms, such as simulated
annealing, tabu search algorithm, and genetic algorithm,
have been proposed in literature, in order to compute the
optimal solution of the complex NP-hard problem including

the practical case of container loading [10, 11]. The existing
algorithms can be divided into two categories: placement
heuristic and improved heuristic. The placement heuristic is
also known as the basic heuristic, which establishes direct
search strategies and search rules with practical experience
and search solutions based on these rules. The basic heuristic
has a high practical value for the optimization of the packing
problem. Although it cannot guarantee the optimal solution,
it can usually obtain a satisfactory feasible solution. The
improved heuristic is a hybrid algorithm which combines
basic heuristic with neighborhood search algorithm, such
as genetic algorithm, tabu search algorithm, and greedy
algorithm [12–14].

The representative placement heuristic was proposed by
George and Robinson who firstly introduced the concept of
layers [15]. Based on the algorithm of George and Robinson,
Bischoff and Marriott constructed 14 heuristics by mixing
6 sequencing rules and 3 fill methods that already existed
[16]. Loh and Nee studied a heuristic for problem of weakly
heterogeneous, by taking the charge density as the objective
function, building horizontal layers and loading from bottom
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to top [17]. In addition, they designed 15 sets of test datawhich
was often used as a classic test data for later algorithms. Ngoi
et al. proposed a heuristic algorithm that the cargoes can only
be loaded in the horizontal direction of rotation [18]. They
abandoned the concept of layers and created a special method
ofmatrix representation of spacewhich simplified the loading
steps.

Bischoff and Ratcliff proposed a heuristic with multiple
destination constraints where the cargoes were ordered in
accordance with the arrival order [19]. This algorithm did
not build layers but columns in order to load similar cargoes
in the same column space. They also used the matrix space
representation of Nogi et al. [18]. Gehring and Bortfeldt
proposed a typical hybrid genetic algorithm and introduced
two-dimensional loading problem into three-dimensional
loading problem [20]. Bortfeldt and Gehring proposed a
tabu search algorithm for solving container loading problem
considering stability constraints, rotation constraints, stack
constraints, and weight constraints [10]. They have created
two composite block loading methods; one block contained
only the same cargoes, and the other block contained two
types of cargoes. Similar to George and Robinson’s idea of
building walls, Chien and Wu used a tree search strategy to
find the best loading plan [21]. Each node of the tree is a set of
walls depths; its child nodes are corresponding to the strips’
widths. Bortfeldt and Gehring’s hybrid genetic algorithm
combined greedy algorithm with vertical layers [13]. In
addition to stability constraints, rotation constraints, stack
constraints, and weight constraints, they also considered
balance constraints.

Chien and Deng [22] proposed a heuristic similar to
the matrix space representation of Nogi and coworkers [18].
Their heuristic divides a loading space into two subspaces
and then searches the suitable subspace for the current cargo
to load. Moura and Oliveira [23] carried out two kinds of
deformation based on George and Robinson’s method. The
first deformation introduced the stability constraint. In the
second deformation, the width of the new layers must be
less than the width of the old one, which was convenient to
merge the loading space and improve the loading stability.
Lim et al. proposed two kinds of heuristics for homogeneous
packing and heterogeneous packing [24]. The heuristic of
Wang et al. was designed for a special kind of dynamic space
decomposition method based on the trigeminal tree [25].Wu
et al. used two segments of encoding in genetic algorithm,
including the number and the rotation of the cargoes [26].
Their algorithm applied simultaneous genetic operation to
both segments of the encoding.

He and Huang designed a caving degree based flake
arrangement to solve the packing problem [27], which
constructed the flake cargoes block consisting of the same
cargoes. In [28], Dereli et al.’s hybrid bee(s) algorithm inspired
by the bees foraging behaviorwas similar to genetic algorithm
where the optimal parents and some offspring were reserved
to the next generation. The algorithm considered the rotation
constraints of the cargoes and the LDB concept. Tian et al.
considered the cargo transport priority and structured tree
search algorithm based on the greedy heuristic so that blocks
of similar cargoes were loaded into a container [29]. There

were five evaluation functions to select the blocks which
constructed the search tree branches. Lim et al. designed
single container and multicontainer loading algorithms for
a practical storage management system, using the dynamic
sequencing method to determine the priority of cargoes [30].
In the single container loading problem, the cargoes with a
high priority are placed near the bottomof the container loca-
tion. In the multicontainer loading problem, the cargoes with
a high priority are placed in the higher priority container.
Goncalves and Resende’s genetic algorithm adopted two-
segment encoding of cargo loading sequence and position
[31]. The cargo loading sequence encoding used a biased
random key strategy in order to avoid the correction of the
sequence encoding.

In this paper, we propose a novel adaptive genetic algo-
rithm integrating two-stage real-number encoding method
and dynamic space division method to improve the exist-
ing placement heuristic, which effectively avoids a certain
amount of space loss. The novelty of the proposed method
is described as follows. (1) According to the characteristics
of the loading problem, a two-stage real-number encoding
method is developed, where the priority of the cargoes is
designed as the first half of encoding and then the placement
state is designed as the second half so that the algorithm
can search for the optimal solution in large search sets.
(2) Dynamic adaptive crossover and mutation operators are
designed in the genetic algorithm in order to avoid the bad
convergence caused by coding changes. More importantly, we
use both weakly and strongly heterogeneous loading data to
test the proposed algorithm. By choosing 15 classic sets of
test data in [17] as weakly heterogeneous data, the average
space utilization reaching 70.62% outperforms those of 13
algorithms from the related literature. Taking a set of test data
in [15] as strongly heterogeneous data, the space utilization
can be improved by 4.42% in comparison with [15].

The rest of the paper is organized as follows.The next sec-
tion provides a description ofthe general container problem
model, constraints and objective functions. Sections 3 and
4 discuss the proposed algorithm, including the placement
heuristic (how a layout is constructed) and the improved
heuristic (how to search for better solutions). Experimental
results, along with benchmark data sets, are analyzed in
Section 5. Conclusions are given in Section 6.

2. Problem Statement

Given a container and a set of boxes, the container loading
problem aims to determine the load position and place
rotation in the container in order to maximize the space
utilization with basic geometric constraints [32]. This paper
addresses the problem of loading a single container with the
following assumptions [28, 33, 34]:

(i) Each cargo can be loaded into a container

(ii) The cargoes do not have a priority during the loading
procedure

(iii) The shape of the cargoes is regular rectangle
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(iv) Fillers are used to fill the gap between the cargoes to
ensure the loading stability

(v) The placement of the cargoes must be parallel or
orthogonal to the container walls

(vi) The placement of cargoes can be arbitrarily rotated

Our model uses a three-dimensional Cartesian coordi-
nate system, as shown in Figure 1. In the coordinate system,
the 𝑥-axis represents the length of the container, the 𝑦-axis
represents thewidth, and the 𝑧-axis represents the height.The
origin point represents the left corner of the container.

The relevant parameters of the model are as follows:

(i) 𝐿 = the length of the container
(ii) 𝑊 = the width of the container
(iii) 𝐻 = the height of the container
(iv) 𝑖 = the ID number of the cargo type
(v) 𝑛𝑖 = the quantity of the type-𝑖 cargo
(vi) 𝑙𝑖 = the length of the type-𝑖 cargo
(vii) 𝑤𝑖 = the width of the type-𝑖 cargo
(viii) ℎ𝑖 = the height of the type-𝑖 cargo
The decision variables of the model are the loaded

number of the type 𝑖 cargo denoted by𝑚𝑖. Our paper focuses
on maximizing the space utilization of the container. The
objective function of the model is given by

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐹 = ∑𝑖𝑚𝑖𝑙𝑖𝑤𝑖ℎ𝑖𝐿𝑊𝐻 × 100% (1)

To appropriately model the process of loading container,
we require that the feasible solution satisfies the basic geomet-
ric constraints; i.e., all the cargoes must be fully loaded in the
container and the overlap is not allowed. The basic geometric
constraints can be expressed as follows:

𝑠.𝑡. ∑
𝑖

𝑚𝑖𝑙𝑖𝑤𝑖ℎ𝑖 ≤ 𝐿𝑊𝐻 (2)

0 ≤ 𝑚𝑖 ≤ 𝑛𝑖 (3)

In the following sections, we first propose a placement
heuristic integrated with a novel dynamic space division
method by examining the characteristics of the mathematical
model. Then, a dedicated adaptive genetic algorithm is
designed in order to optimize the loading space utilization
based on the characteristics of the heuristic.

3. The Placement Heuristic

In this paper, our proposed placement heuristic improves
George and Robinson’s algorithm [15]. In our heuristic, the
same type of cargoes with the same rotation is put together in
order to avoid some gaps and improve the loading efficiency.
We also use a variety space distribution method based on
different loading location, which efficiently avoids some
loss of loading space. Remaining spaces are merged with
abandoned spaces so that the abandoned spaces are reused

Z(Height)

Y(Width)

X(Length)

Figure 1: Coordinate system.

Z

Y

X

Figure 2: Z-Y-X division mode.

and the space utilization is improved. There are three rules
to realize the improved placement heuristic. In the following
parts, these three rules are adopted to build the placement
heuristic.

3.1. Placement Rule. As shown in Figure 1, this coordinate
system has been built. This placement rule takes the corner
strategy; i.e., the cargoes are firstly placed near the origin
point.Without constraints of loading precedence, the loading
order is flexible.

3.2. Space Division Rule. The optimization of container
loading is mainly reflected by the space division rule. After
the cargo is loaded into the left corner of the current space,
three spaces are formed as shown in Figure 2, including the
up space, the right space, and the front space. The following
cargoes are firstly loaded in the up space, then the right space,
and last the front space. Robinson and George algorithm
introduces the concept of “layer”. They use YZ layers. The
YZ layers are layers parallel to the YZ plane. Each loading
forms three spaces and cargoes are loaded according to the
Z-Y-X traversing order until all the remaining cargoes cannot
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Figure 3: Y-Z-X division mode.

Figure 4: X-Y-Z division mode.

be placed in any of the remaining spaces, where X means the
front space, Y means the right space, and Z means the up
space.

Similar toGeorge andRobinson’s algorithm,we also build
the similar YZ layers and build Y ties in every layer in which
the Y ties are parallel to Y-axis. The space division rule is
applied based on the following three cases.

Case 1. The loading cargo is the first cargo both in a layer and
in a tie.

Case 2. The loading cargo is not the first cargo in a layer but
the first cargo in a tie.

Case 3. The loading cargo is neither the first cargo in a layer
nor the first cargo in a tie.

In the first case, we divide the current space into the right
space, the up space, and the front space, as shown in Figure 3.
In the second case, we divide the current space into the front
space, the right space, and the up space, as shown in Figure 4.
In the third case, we divide the current space into the front
space, the up space, and the right space, as shown in Figure 5.

Figure 5: X-Z-Y division mode.

Figure 6: Right-and-left space consolidation.

In fact, the space is often divided by the Y-Z-X division
mode shown in Figure 3. However, in the second case, the
length of the current space is determined by the first loaded
cargo in the layer. As the space length is small, the divided
front space may be narrow. As a consequence, such a narrow
front space could be treated as an abandoned space that
cannot load any cargo. In the third case, the length of the
current space is determined by the first loaded cargo in the
layer, and the width is determined by the first loaded cargo
in the tie. As both the space length and the space width are
small, the divided front space and up space could be narrow.
The front space and up space could easily be abandoned
spaces. In this paper, the narrow space is regarded as an
abandoned space in advance. The volume of available space
can be increased by adopting the above space division rule in
order to improve the overall space utilization.

3.3. Space Consolidation Rule. If there are abandoned spaces
before each loading, we combine the current space with
the abandoned spaces so that the abandoned spaces can be
used again. There are three directions of space consolidation,
including right-and-left space consolidation in Figure 6, up-
and-down space consolidation in Figure 7, and front-and-
back space consolidation Figure 8.The consolidation steps are
given as follows.

Step 1. Before loading, search the abandoned spaces.

Step 2. Determine whether the abandoned space and the
current space are in the same XZ plane, in the XY plane, or in
the YZ plane in turn.

Step 3. If they are in the same plane, combine them as shown
in Figures 6–8.

Step 4. Use the combined space as the new current loading
space.
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Figure 7: Up-and-down space consolidation.

Figure 8: Front-and-back space consolidation.

4. Adaptive Genetic Algorithm

This section gives an improved genetic algorithm, which does
not define the cargoes’ priority in the placement heuristic but
chooses the priority as the first half of encoding and then
introduces the placement state as the second half so that
it is able to search the optimal solution in a larger search
space. In addition, dynamic adaptive crossover and mutation
operators are designed in the genetic algorithm to avoid the
bad convergence caused by coding changes. In this sense, the
proposed adaptive genetic algorithm is applicable for both
weakly heterogeneous problem and strongly heterogeneous
problem. The adaptive genetic algorithm is constructed by
four steps, including the encoding and decoding, fitness
function and selection, adaptive crossover operator and
mutation operator, and the optimal preservation strategy.

4.1. Encoding and Decoding. Suppose that there are 𝑘 types
of cargoes to be loaded, and the quantity of each cargo is 𝑛𝑖,
for 𝑖 ∈ {1, 2, . . . , 𝑘}. A two-stage coding method composed of
the sequence and placement state of the cargoes is adopted
in this encoding and the length of the encoding is 2𝑛. The
previous 𝑛 bits show the sequence of the cargoes, and the
latter 𝑛 bits indicate the placement state of the cargoes. A
typical encoding is expressed as follows:

𝑃 = {𝑠1, 𝑠2, . . . , 𝑠𝑘, 𝑠𝑘+1, 𝑠𝑘+2, . . . , 𝑠2𝑘} (4)

where 𝑠1, 𝑠2, . . . , 𝑠𝑘 represent the loading sequence of the
cargoes and 𝑠𝑘+1, 𝑠𝑘+2, . . . , 𝑠2𝑘 ∈ {1, 2, 3, 4, 5, 6} indicates the
corresponding types of rotation of 𝑠1, 𝑠2, . . . , 𝑠𝑘. In order to
reduce the amount of the wasted space, the same cargoes are
placed in the same placement state defined in Table 1. For
example, the number of the rotations of cargo 𝑖 is 1, which
indicates the length, the width, and the height of the cargo are
placed in parallel to that of the container; i.e.,𝑥𝑖‖𝑋, 𝑦𝑖‖𝑌, 𝑧𝑖‖𝑍.
Since the placement of the cargo can be arbitrarily rotated as
assumed in Section 2, 6 kinds of the placement state of the
overall space are formed and shown in Table 1.

Table 1: Encoding values of placement state.

Encoding
value

Edge
Parallel to X

Edge
Parallel to Y

Edge
Parallel to Z

1 𝑥𝑖 𝑦𝑖 𝑧𝑖
2 𝑦𝑖 𝑥𝑖 𝑧𝑖
3 𝑦𝑖 𝑧𝑖 𝑥𝑖
4 𝑧𝑖 𝑦𝑖 𝑥𝑖
5 𝑧𝑖 𝑥𝑖 𝑦𝑖
6 𝑥𝑖 𝑧𝑖 𝑦𝑖

Note that the encoding values determine the sequence
and rotation. The placement heuristic rule and space division
rule determine the position of the cargo placement. There-
fore, we can obtain the solution of loading operations by
decoding, which is the process of converting encoding into
loading results. In decoding, we set the number of loaded
cargoes 𝑠𝑖 as𝑚𝑖, which is expressed as follows:

𝑄 = {𝑠1, 𝑠1, . . . , 𝑠1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚1

, 𝑠2, 𝑠2, . . . , 𝑠2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚2

, . . . , 𝑠𝑘, 𝑠𝑘, . . . , 𝑠𝑘⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚𝑘

} (5)

4.2. Fitness Function and Selection. Generally, the fitness
function of genetic algorithm is determined by the objective
function. In this paper, the fitness function refers to the
space utilization of the objective function, which is defined
as follows:

𝐹 = ∑𝑖𝑚𝑖𝑥𝑖𝑦𝑖𝑧𝑖𝑋𝑌𝑍 × 100% (6)

Roulette-wheel-selection in [35] is chosen as the selection
method of this paper. The popular size is set as 𝑀, and
the parental generation is {𝑃1, 𝑃2, 𝑃3, . . . , 𝑃𝑀}. The steps of
Roulette algorithm are described as follows.

Step 1. Calculate the fitness of each individual in the group.

Step 2. Calculate the relative fitness of each individual, which
is the probability to be selected as parental generation. The
probability of individual 𝑗 is defined as

𝑝𝑗𝑠 = 𝐹𝑗∑𝑗 𝐹𝑗 (7)

Step 3. Calculate the cumulative probability of each individ-
ual; i.e.,

𝑝𝑗 = {{{
𝑝𝑗𝑠, 𝑗 = 1
𝑝𝑗−1 + 𝑝𝑗𝑠, 𝑗 = 2, 3, . . . (8)

Step 4. Generate a random number between 0 and 1 and then
determine the range of it. If the number is in [𝑝𝑗−1, 𝑝𝑗], then𝑃𝑗 is selected, which is shown in Figure 9.

Step 5. Repeat Step 4 until 𝑀 individuals are generated,
which makes up the new group {𝑃󸀠1 , 𝑃󸀠2 , 𝑃󸀠3 , . . . , 𝑃󸀠𝑀}.
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Figure 9: Roulette algorithm.

4.3. Adaptive Crossover Operator and Mutation Operator.
Next, we propose an adaptive genetic algorithm so that
the crossover probability and mutation probability can be
adjusted dynamically. When the fitness value of the popula-
tion tends to be consistent or local optimum, the crossover
probability and mutation probability increase, and then the
population diversity increases. However, when the fitness
value of the population is relatively dispersed, the crossover
probability and mutation probability decrease in order to
prevent the diversity of the population from being destroyed.
Furthermore, for the individuals with higher fitness values
than the average values of the population, the crossover
probability and mutation probability should be set smaller in
order to protect the solution and go into the next generation.
For the individuals with lower fitness values, the crossover
probability and mutation probability should be set larger so
that the probability of being knocked out of the solution
increases.

The crossover operator is carried out on the encoding
of adaptive genetic algorithm. Since we use a two-stage
encoding and the characteristic of two-stage encoding is dif-
ferent from each other, their crossover operators are different.
Partial mapped crossover operator method is used in the first
half of this encoding, and two-point crossover operator is
chosen for the second half. In general, the recommended
probability of crossover is in the interval [0.4, 0.99] [36].
The crossover probability used in this paper is described as
follows:

𝑃𝑐 =
{{{{{{{

𝑃𝑐1, 𝑓󸀠 < 𝑓𝑎V𝑔
𝑃𝑐1 − (𝑃𝑐1 − 𝑃𝑐2) × (𝑓

󸀠 − 𝑓𝑎V𝑔)
(𝑓𝑚𝑎𝑥 − 𝑓𝑎V𝑔) , 𝑓󸀠 ≥ 𝑓𝑎V𝑔 (9)

where 𝑃𝑐1 and 𝑃𝑐2 are the upper bound and lower bound of𝑃𝑐; i.e., 𝑃𝑐1 = 0.99 and 𝑃𝑐2 = 0.40. 𝑓󸀠 is the fitness value of the
larger individuals which are ready to cross. 𝑓𝑎V𝑔 is the average
fitness value of the population. 𝑓𝑚𝑎𝑥 is the maximum fitness
value of the population.{𝑃󸀠1 , 𝑃󸀠2 , 𝑃󸀠3 , . . . , 𝑃󸀠𝑀} is the population made up of 𝑀
individuals ready to cross. The encoding crossover steps are
described as follows.

Step 1. Select two adjacent parent individuals 𝑃󸀠1 and 𝑃󸀠2 to
cross and calculate the crossover probability 𝑃𝑐.
Step 2. Generate a random number between [0, 1] with
rand() function. If the number is larger than 𝑃𝑐, then do not
cross the former part of the code; if not, then carry out the
partially mapped crossover operator to the former part of 𝑃󸀠1
and 𝑃󸀠2 ;

Step 3. Generate two random numbers 𝑎 and 𝑏 (𝑎 < 𝑏)
between [1, 𝑘]. Firstly, exchange the codes between bit 𝑎 and 𝑏
of 𝑃󸀠1 and 𝑃󸀠2 and then modify the code values out of the cross
region according to the mapping relationship of the value of
the cross region.

Step 4. Generate a random number within [0, 1] with rand()
function. If the number is larger than 𝑃𝑐, then do not cross
the latter part of the code; if not, carry out the two-point
crossover operator to the latter part of 𝑃󸀠1 and 𝑃󸀠2 .
Step 5. Generate two randomnumbers 𝑐 and 𝑑 (𝑐 < 𝑑) within[𝑘 + 1, 2𝑘] as the crossover point and exchange the codes
between bits 𝑐 and 𝑑 of 𝑃󸀠1 and 𝑃󸀠2 . There is an example of the
crossover process described in Figure 10.

Step 6. Repeat Steps 1–5 to the individuals remained and then
a new population made up of 𝑀 individuals comes out as{𝑃󸀠󸀠1 , 𝑃󸀠󸀠2 , 𝑃󸀠󸀠3 , . . . , 𝑃󸀠󸀠𝑀}.

According to the encoding, the sequence reversed muta-
tion operator is used in the former part of this code, and
the basic bit mutation operator is used in the latter part of
the code. The probability of mutation is supposed to be in[0.0001, 0.1] [36].Themutation probability used in this paper
is described as follows:

𝑃𝑚 =
{{{{{{{

𝑃𝑚1, 𝑓 < 𝑓𝑎V𝑔
𝑃𝑚1 − (𝑃𝑚1 − 𝑃𝑚2) × (𝑓𝑚𝑎𝑥 − 𝑓)(𝑓𝑚𝑎𝑥 − 𝑓𝑎V𝑔) , 𝑓 ≥ 𝑓𝑎V𝑔 (10)

where 𝑃𝑚1 and 𝑃𝑚2 are the upper bound and lower bound
of 𝑃𝑚; i.e., 𝑃𝑚1 = 0.1 and 𝑃𝑚2 = 0.0001. 𝑓 is the fitness value
of the individual which is ready to cross.{𝑃󸀠󸀠1 , 𝑃󸀠󸀠2 , 𝑃󸀠󸀠3 , . . . , 𝑃󸀠󸀠𝑀} is the population ready to mutate.
The encoding mutation steps are described as follows.

Step 1. Select an adjacent parent 𝑃󸀠󸀠1 individual to mutate, and
calculate the crossover probability 𝑃𝑚.
Step 2. Generate a random number within [0, 1] with rand()
function. If the number is larger than 𝑃𝑚, then do not mutate
the former part of the code; if not, then carry out the sequence
reversed mutation operator to the former part of 𝑃󸀠󸀠1 .
Step 3. Generate two randomnumbers 𝑎 and 𝑏 (𝑎 < 𝑏) within[1, 𝑘] and reverse the codes between bits 𝑎 and 𝑏 of 𝑃󸀠󸀠1 .
Step 4. Generate a random number within [0, 1] with rand()
function. If the number is larger than 𝑃𝑚, then do not cross
the latter part of the code; if not, then carry out the basic bit
mutation operator to the latter part of 𝑃󸀠󸀠1 .
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Crossed

c da b

4 1 5 6 2 7 8 3 5 2 3 1 2 1 1 4

8 3 7 1 2 6 5 4 5 4 4 5 5 6 1 2

4 5 7 1 2 6 8 3 5 2 3 5 5 6 1 4

8 3 5 6 2 7 1 4 5 4 4 1 2 1 1 2

'P1

'P2

''P1

''P2

Figure 10: Partially mapped crossover and two-point crossover (𝑎 = 3, 𝑏 = 6, 𝑐 = 12, and 𝑑 = 14).

4 1 7 5 2 6 8 3 5 2 3 2 5 6 1 4
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a b

''P1

''P1

c

'

Figure 11: Sequence reversed mutation operator and basic bit
mutation operator (𝑎 = 2, 𝑏 = 4, and 𝑐 = 12).

Step 5. Generate a random number c within [𝑘 + 1, 2𝑘] as the
mutation point, and exchange the code in bit c of 𝑃󸀠󸀠1 with a
random number in {1, 2, 3, 4, 5, 6}. There is an example of the
crossover process described in Figure 11.

Step 6. Repeat Steps 1–5 to the individuals remained, and
then a new population made up of𝑀 individuals comes out
as {𝑃󸀠󸀠󸀠1 , 𝑃󸀠󸀠󸀠2 , 𝑃󸀠󸀠󸀠3 , . . . , 𝑃󸀠󸀠󸀠𝑀 }.
4.4. Optimal Preservation Strategy. Good individuals of the
parental population can be retained by adopting optimal
preservation strategy, in order to avoid disappearing in
genetic iteration. The steps of optimal preservation strategy
are described as follows.

Step 1. Calculate the fitness value of all the individuals of the
parental {𝑃󸀠󸀠󸀠1 , 𝑃󸀠󸀠󸀠2 , 𝑃󸀠󸀠󸀠3 , . . . , 𝑃󸀠󸀠󸀠𝑀 } and get the individual with
the largest fitness value as the optimal parental generation,
whose fitness value is 𝐹𝑚𝑎𝑥.
Step 2. Calculate the fitness value of all the individuals of the
offspring {𝑃󸀠󸀠󸀠1 , 𝑃󸀠󸀠󸀠2 , 𝑃󸀠󸀠󸀠3 , . . . , 𝑃󸀠󸀠󸀠𝑀 } and get the individuals with
the minimum fitness as the worst ones, the fitness of which is𝐹󸀠󸀠𝑚𝑖𝑛.
Step 3. Compare the optimal parental generation with the
worst offspring. If 𝐹󸀠󸀠𝑚𝑖𝑛 < 𝐹𝑚𝑎𝑥, then replace the worst
offspring by the optimal parental generation.

In summary, the proposed adaptive genetic algorithm can
be described in Table 2 where 𝐺𝐸𝑁 denotes the maximum
generation.

5. Numerical Results

In this section, we examine the performance of our algorithm
by executing two tests: the weakly heterogeneous data test
and the strongly heterogeneous data test. Usually the problem
can be seen as strongly heterogeneous if many different types
of cargoes need to be loaded. In the case of a small set of
cargo types in the container, the problem is denoted weakly
heterogeneous. For each test, we first state the test data, then
present the test results, and finally perform the corresponding
result analysis.

5.1. Weakly Heterogeneous Data Test

5.1.1. Test Data. We use 15 groups of classic weakly hetero-
geneous data (called LN01–LN15 in our paper) given in Loh
and Nee’s study [17] to test the performance of our algorithm
and in the test𝑀 = 30 and 𝐺𝐸𝑁 = 600. Further, we compare
the performance of our algorithm with the performance of 13
algorithms presented in the related literature.

5.1.2. Test Results. The experiments are carried out on 15 sets
of test data provided by Loh and Nee [17]. All the cargoes
in the other 13 sets of test data expect LN02 and LN06 can
be loaded into the container. There are 200 cargoes in LN02,
and 162 of them can be loaded into the container after loading
optimization. The space utilization rate reached 95.41%. 200
cargoes are provided in LN06, and 181 of them can be loaded
into the container after loading optimization. In this case, the
space utilization reaches 93.98%. The detail of the solution
optimization by the algorithm is shown in Tables 3 and 4.
“Loading sequence” denotes the priority for loading; “Serial
number” is the ID number of the cargo type; “Quantity
installed” is the quantity that can be loaded into the container;
“Quantity not installed” is the quantity of the cargoes that
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Table 2: Adaptive genetic algorithm.

Step AGA (adaptive genetic algorithm)
(1) Input: 𝐵𝑜𝑥,𝑋, 𝑌,𝑍,𝑀,𝑃𝑐, 𝑃𝑚, 𝐺𝐸𝑁
(2) Generate a group of initial population encoding 𝑃
(3) for 𝑠 = 1 to 𝐺𝐸𝑁 do
(4) decode 𝑃 with heuristic rules
(5) calculate the fitness value 𝐹𝑖 of 𝑃
(6) search the individual max𝑝 with the highest fitness value,

whose fitness is max𝑓𝑖
(7) do the selection operator to 𝑃, the result is 𝑆𝑒𝑙𝑒𝑐𝑡𝑃
(8) do partial mapped crossover operator to the former part

coding of 𝑆𝑒𝑙𝑒𝑐𝑡𝑃
(9) do two point crossover operator to the latter part coding of𝑆𝑒𝑙𝑒𝑐𝑡𝑃
(10) store the result as 𝐶𝑟𝑜𝑠𝑠𝑃
(11) do sequence reversed mutation operator to the former

part of 𝐶𝑟𝑜𝑠𝑠𝑃
(12) do basic bit mutation operator to the latter part of 𝐶𝑟𝑜𝑠𝑠𝑃
(13) store the mutation result as𝑀𝑢𝑡𝑎𝑡𝑒𝑃
(14) decode𝑀𝑢𝑡𝑎𝑡𝑒𝑃 with heuristic rules
(15) calculate the fitness value 𝐹𝑖 of𝑀𝑢𝑡𝑎𝑡𝑒𝑃
(16) search the individual max𝑀𝑢𝑡𝑎𝑡𝑒𝑝with the highest fitness

value in𝑀𝑢𝑡𝑎𝑡𝑒𝑃, whose fitness is max𝑀𝑢𝑡𝑎𝑡𝑒𝑓𝑖
(17) search the individual min𝑀𝑢𝑡𝑎𝑡𝑒𝑝 with the lowest fitness

value in𝑀𝑢𝑡𝑎𝑡𝑒𝑃, whose fitness value is min𝑀𝑢𝑡𝑎𝑡𝑒𝑓𝑖
(18) if max𝑀𝑢𝑡𝑎𝑡𝑒𝑓𝑖 < max𝑓𝑖 then
(19) replace min𝑀𝑢𝑡𝑎𝑡𝑒𝑝 in𝑀𝑢𝑡𝑎𝑡𝑒𝑃 with max𝑝 in 𝑃
(20) end if
(21) 𝑃 = 𝑀𝑢𝑡𝑎𝑡𝑒𝑃
(22) end for

(23) search the individual max𝑝 with highest fitness value in
the 𝐺𝐸𝑁 generation, whose fitness is max𝑓𝑖

(24) Output: max𝑝, max𝑓𝑖

Table 3: Test result in LN02.

Loading
sequence

Serial
number

Quantity
installed

Quantity
not

installed
Rotation

1 7 25 0 6
2 4 19 0 3
3 2 37 0 5
4 5 16 0 1
5 6 10 7 6
6 1 29 0 1
7 3 3 31 1
8 8 23 0 3

cannot be loaded into the container; “Rotation” indicates the
direction of the corresponding cargoes placed and the value
of them refers to the definition of Table 1.

Table 4: Test result in LN06.

Loading
sequence

Serial
number

Quantity
installed

Quantity
not

installed
Rotation

1 5 25 0 2
2 6 23 0 5
3 1 34 0 2
4 8 0 17 6
5 2 37 0 3
6 4 25 2 4
7 7 14 0 6
8 3 23 0 5
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Figure 12: Packing result in LN02.

The packing simulation results of LN02 and LN06 are
shown in Figures 12 and 13. There are 8 kinds of cargoes in
LN02, and each color represents a kind of cargoes in LN02 in
Figure 12.There are also 8 kinds of cargoes in LN06, and each
color represents a kind of cargoes in LN06 in Figure 13.

5.1.3. Result Analysis. Theresults of performance comparison
are listed in Table 5 and Figure 14. It can be seen that the
average space utilization of our algorithm reaches 70.62%,
which is the best among all the algorithms.

5.2. Strongly Heterogeneous Data Test

5.2.1. Test Data. The example in Robinson and George’s
paper [15] is selected as the test data for the strongly
heterogeneous problem. The container is a 20 foot
international standard container and the specification is
2352mm×2388mm×5899mm. Table 6 gives the details of
cargoes to be loaded. This group of data contains 30 cargoes.
The sizes of cargoes are different except Cargoes 4 and 5. The
difference in the size of cargoes is very big so that the test is
consistent with the strongly heterogeneous problem.
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Table 5: Table of space utilization.
(a)

Data BM[16] N[18] BR[19] GB[20] BG[10] C[21] B[13]
LN01 62.5% 62.5% 62.5% 62.5% 62.5% 62.5% 62.5%
LN02 90% 80.7% 90% 89.5% 96.6% 76.02% 89.8%
LN03 53.4% 53.4% 53.4% 53.4% 53.4% 53.4% 53.4%
LN04 55% 55% 55% 55% 55% 55% 55%
LN05 77.2% 77.2% 77.2% 77.2% 77.2% 77.19% 77.2%
LN06 83.1% 88.7% 83.1% 91.1% 91.2% 79.51% 92.4%
LN07 78.7% 81.8% 78.7% 83.3% 84.7% 72.14% 84.7%
LN08 59.4% 59.4% 59.4% 59.4% 59.4% 59.42% 59.4%
LN09 61.9% 61.9% 61.9% 61.9% 61.9% 61.89% 61.9%
LN10 67.3% 67.3% 67.3% 67.3% 67.3% 67.29% 67.3%
LN11 62.2% 62.2% 62.2% 62.2% 62.2% 62.16% 62.2%
LN12 78.5% 78.5% 78.5% 78.5% 78.5% 71% 78.5%
LN13 78.1% 84.1% 78.1% 85.6% 84.3% 84.14% 85.6%
LN14 62.8% 62.8% 62.8% 62.8% 62.8% 62.81% 62.8%
LN15 59.5% 59.5% 59.5% 59.5% 59.5% 59.46% 59.5%
Average 68.64% 69.00% 68.64% 69.95% 70.43% 66.93% 70.15%

(b)

Data E[22] M[24] L[25] W[26] D[29] LM[31] This paper
LN01 62.5% 62.5% 62.5% 62.5% 62.5% 62.5% 62.5%
LN02 90.8% 92.6% 80.4% 90.7% 86.3% 96.4% 95.41%
LN03 53.4% 53.4% 53.4% 53.4% 53.4% 53.4% 53.43%
LN04 54.96% 55% 55% 55% 55% 55% 54.96%
LN05 77.2% 77.2% 77.2% 77.2% 77.2% 77.2% 77.19%
LN06 87.9% 91.7% 84.8% 92.9% 89.2% 93.5% 93.98%
LN07 84.7% 84.7% 77% 84.7% 83.2% 84.7% 84.66%
LN08 59.4% 59.4% 59.4% 59.4% 59.4% 59.4% 59.42%
LN09 61.9% 61.9% 61.9% 61.9% 61.9% 61.9% 61.89%
LN10 67.3% 67.3% 67.3% 67.3% 67.3% 67.3% 67.29%
LN11 62.2% 62.2% 62.2% 62.2% 62.2% 62.2% 62.16%
LN12 78.5% 78.5% 69.5% 78.5% 78.5% 78.5% 78.52%
LN13 85.6% 68% 73.3% 85.6% 85.6% 84.9% 85.61%
LN14 62.8% 62.8% 62.8% 62.8% 62.8% 62.8% 62.81%
LN15 59.5% 59.5% 59.5% 59.5% 59.5% 59.5% 59.46%
Average 69.91% 69.11% 67.08% 70.24% 69.60% 70.61% 70.62%
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Figure 13: Packing result in LN06.

5.2.2. Test Results. The results are shown in Table 7. The
cargoes that are not loaded into containers are not listed in
the table. “The length of edges parallel to X”, “The length of
edges parallel to Y”, and “The length of edges parallel to Z”
indicate the parallel relationship with X, Y, and Z axis when
they are placed. There are 30 kinds of cargoes in the test. 18
of them can be loaded into the container after optimization
by our algorithm, and 12 cannot be loaded into the container.
The space utilization reaches 84.42%.

The loading simulation result is shown in Figure 15. Since
18 cargoes are loaded into the container. Hence, 18 different
colors are used to represent them.

5.2.3. Result Analysis. The space utilization reached 80% in
George and Robinson’s paper [15], but in this paper it goes
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Figure 14: Bar chart of space utilization in weakly heterogeneous
data test.
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Figure 15: Strongly heterogeneous packing result.

up to 84.42%, which has improved 4.42% space utilization
as shown in Table 8. The space division rule in this paper
is modified based on the method proposed by George and
Robinson, which is a dynamic space partition method. The
narrow space generated in the loading process is considered
to be an abandoned space in advance, and the corresponding
space partition rule is adopted. Hence, our method increases
the volume of available space, optimizes the utilization of
waste space, and improves the overall space utilization. The

Table 6: The test data of strongly heterogeneous problem.

Serial
number

The length of
the longest edge

(cm)

The length of
the middle
edge(cm)

The length of
the shortest
edge (cm)

1 222 220 120
2 222 180 100
3 200 163 120
4 220 120 111
5 220 120 111
6 210 120 110
7 190 120 110
8 150 140 100
9 122 103 97
10 168 98 68
11 132 96 66
12 130 96 50
13 120 80 60
14 110 72 68
15 120 80 60
16 130 70 54
17 144 66 46
18 173 69 36
19 84 78 62
20 95 66 60
21 68 68 68
22 70 64 54
23 78 62 50
24 98 50 48
25 90 60 37
26 80 60 40
27 75 60 40
28 74 46 34
29 60 50 40
30 96 33 30

results of this experiment show that the algorithm is signifi-
cantly higher than George and Robinson’s algorithm, which
indicates that the improved method of space partitioning is
effective for the optimization of container loading problem.

6. Conclusions

In this paper, we construct the general loading mathematical
model based on the goal of maximizing space utilization. We
propose a dynamic space division method to improve the
placement heuristic which designs different space division
methods for different cargoes and effectively avoids a certain
amount of space loss. Based on the dynamic space division
method, we develop a dedicated genetic algorithm that uses
a two-stage real-number encoding method. The encoding
method consisting of the sequence of cargoes and rotation
lifts a single rule for cargoes loading order restriction.
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Table 7: Test result of strongly heterogeneous problem.

Load
sequence Serial number The length of edge parallel

to X
The length of edge parallel

to Y
The length of edge parallel

to Z
1 5 111 220 120
2 2 100 222 180
3 6 110 210 120
4 4 110 220 120
5 17 60 144 46
6 30 96 33 30
7 26 80 60 40
8 7 120 190 110
9 24 50 48 98
10 29 60 40 50
11 3 120 200 163
12 25 90 37 60
13 28 74 34 46
14 15 120 60 70
15 13 120 80 60
16 19 78 84 62
17 27 40 75 60
18 1 120 220 222

Table 8: Table of space utilization.

Method Unloaded cargoes space utilization
George and Robinson [15] Unavailable 80%
Jiang et al. [37] 13 82.8%
This paper 12 84.42%

This algorithm searches for the best combination of cargo’s
sequence and rotation through genetic algorithms, which
provides a larger search space for the algorithm to find a
better optimal solution. Based on this genetic code, this paper
chooses the suitable genetic operators that contribute tomore
diversity of genetic search space. As the improvement of
encoding greatly increases the size of the search space, it
becomes easy to converge to a premature local optimization
which renders some difficulties for the search. We apply the
dynamic adaptive technology to the genetic algorithm, which
dynamically adjusts the crossover and mutation probability
based on the individual fitness. This can improve the search
efficiency and avoid premature convergence.

To examine the performance of our algorithm, we use
both weakly and strongly heterogeneous loading data to test
the proposed algorithm. By choosing 15 classic sets of test
data in [17] as weakly heterogeneous data, the average space
utilization of our algorithm reaching 70.62% outperforms
those of 13 algorithms from the related literature. Taking a
set of test data in [15] as strongly heterogeneous data, the
space utilization can be improved by 4.42% in comparison
with [15]. Thus, the numerical experiments confirm that our
algorithm can achieve a better performance than that of other
algorithms.

Data Availability

The data used to support the findings of this study are
included within the article, by referring to some classic
literatures.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported in part by the National Natural
Science Foundation of China under Grant 51209100, in part
by the Shenzhen Science and Technology Plan Project under
Grant JCYJ201704I311305468, and in part by the Fundamen-
tal Research Funds for the Central Universities under Grant
2017KFYXJJ005.

References

[1] C.-H. Tang, “A scenario decomposition-genetic algorithm
method for solving stochastic air cargo container loading
problems,” Transportation Research Part E: Logistics and Trans-
portation Review, vol. 47, no. 4, pp. 520–531, 2011.

[2] A. Lim, H. Ma, C. Qiu, and W. Zhu, “The single container
loading problem with axle weight constraints,” International
Journal of Production Economics, vol. 144, no. 1, pp. 358–369,
2013.

[3] Z. Xue, C. Zhang, W.-H. Lin, L. Miao, and P. Yang, “A tabu
search heuristic for the local container drayage problem under a
new operation mode,” Transportation Research Part E: Logistics
and Transportation Review, vol. 62, pp. 136–150, 2014.



12 Complexity

[4] J.-N. Zheng, C.-F. Chien, and M. Gen, “Multi-objective multi-
population biased random-key genetic algorithm for the 3-D
container loading problem,” Computers & Industrial Engineer-
ing, vol. 89, pp. 80–87, 2015.

[5] A. Ramos, J. F. Oliveira, and M. P. Lopes, “A physical packing
sequence algorithm for the container loading problem with
static mechanical equilibrium conditions,” International Trans-
actions in Operational Research, vol. 23, no. 1-2, pp. 215–238,
2016.

[6] J. Christensen andD. Pacino, “Amatheuristic for the CargoMix
Problem with Block Stowage,” Transportation Research Part E:
Logistics and Transportation Review, vol. 97, pp. 151–171, 2017.

[7] S. Yan, Y.-L. Shih, and F.-Y. Shiao, “Optimal cargo container
loading plans under stochastic demands for air express carriers,”
Transportation Research Part E: Logistics and Transportation
Review, vol. 44, no. 3, pp. 555–575, 2008.

[8] S. Liu, X. Shang, C. Cheng, H. Zhao, D. Shen, and F. Wang,
“Heuristic algorithm for the container loading problem with
multiple constraints,” Computers & Industrial Engineering, vol.
108, pp. 149–164, 2017.

[9] X. Zhao, J. A. Bennell, T. Bektas, and K. Dowsland, “A compar-
ative review of 3D container loading algorithms,” International
Transactions in Operational Research, vol. 23, no. 1-2, pp. 287–
320, 2016.

[10] A. Bortfeldt andH. Gehring, “Applying tabu search to container
loading problems,” inOperations Research Proceedings, pp. 533–
538, 1997.

[11] G. Cabrera-Guerrero, C. Lagos, C. Castañeda, F. Johnson, F.
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