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Abstract

We define a logic of default justifications that relies on op-
erational semantics. One of the key features that is absent in
standard justification logics is the possibility to weigh differ-
ent epistemic reasons or pieces of evidence that might con-
flict with one another. To amend this inadequacy, we develop
a semantics for “defeaters”: conflicting reasons forming a ba-
sis to doubt the original conclusion or to believe an opposite
statement. Our logic is able to address interactions of normal
defaults without relying on priorities among default rules and
introduces the possibility of extension revision for normal de-
fault theories.

Introduction
Justification logics provide a formal framework to deal with
epistemic reasons. The first justification logic was developed
as a logic of arithmetic proofs (LP) by Artemov (2001).1
Possible world semantics for this logic was first proposed
by Fitting (2005a; 2005b) in order to align justification log-
ics within the family of epistemic modal logics. A distinctive
feature of justification logic is replacing belief and knowl-
edge modal operators that precede propositions (2P ) by
proof terms or, in a generalized epistemic context, justifica-
tion terms and thereby forming justification assertions t : P
that read as “t is a reason that justifies P ”.

Although justification logic introduced the notions of jus-
tification and reason into epistemic logic, it does not for-
mally study the ways of defeat among reasons. The impor-
tance of defeaters is highlighted by paradigmatic examples
from classical literature on defeasible reasoning. The vari-
ants of the following example are discussed by Chisholm
(1966) and Pollock (1987). Suppose you are standing in a
room where you see red objects in front of you. This can
lead you to infer that a red-looking table in front of you is
in fact red. However, the reason that you have for your con-
clusion is defeasible. For a typical defeat scenario, suppose
you learn that the room you are standing in is illuminated
with red light. This gives you a reason to doubt your initial

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1The idea of explicit proof terms as a way to find the semantics
for provability calculus S4 dates to 1938 and K. Gödel’s lecture
published in 1995 (Gödel 1995).

reason to conclude that the table is red, though it would not
give you a reason to believe that it is not red. However, if
you were to learn, instead, that the table has been painted in
white, then you would also have a reason to believe a denial
of the claim that the table is red.

The example specifies two different ways in which rea-
sons defeat other reasons: the former is known as undercut
and the latter as rebuttal.2 Learning additional information

undercut

rebuttal
CLAIM

Figure 1: The types of defeat

about the light conditions incurs suspending the applicabil-
ity of your initial reason to believe that the table is red.
In contrast, learning that there is a separate reason to con-
sider that the table is not red will not directly compromise
your initial reason itself. The differences between undercut-
ing and rebutting reasons are illustrated in Figure 1.

Only a restricted group of epistemic reasons may be
treated as completely immune to defeaters: mathematical
proofs. However, they form only a small part of possible
reasons to accept a statement and, being a highly-idealized
group of reasons, they have rarely been referred to as rea-
sons. Fitting’s possible world semantics for justification log-
ics was meant to model not only mathematical and logical
truths, but also facts of the world or “inputs from outside
the structure” (Fitting 2009, p. 111). Yet the original intent
of the first justification logic LP to deal with mathematical
proofs, together with the fact that mathematics is cumula-
tive, reflected in its epistemic generalizations. Accordingly,
reasons that justify facts of the world were left encapsulated
within a framework for non-defeasible mathematical proofs.

Non-mathematical reasons and justifications are com-
monly held to depend on each other in acquiring their status
of “good” reasons and justifications. Still, the questions re-
lated to non-ideal reasons have only recently been raised in

2The terminology is originally Pollock’s (1987).



the justification logic literature.3 In the present paper we de-
velop a non-monotonic justification logic with justification
terms such that (1) their defeasibility can be tracked from the
term structure and (2) other justifications can defeat them by
means of an undercut or a rebuttal. Our logic combines tech-
niques from both default logic and justification logic to for-
malize conflicts of reasons produced in less-than-ideal ways.

Justification logic
The introduction of justifications into modal semantics
opened up a possibility to study formal systems for non-
defeasible epistemic reasons based on justification logic.
These systems include an explicit counterpart to the modal
Truth axiom: 2F → F .4 Varieties of these systems have
been extensively studied and described in e.g. (Kuznets
2000) and (Fitting 2008). Syntactic objects that represent
mathematical proofs in LP are more broadly interpreted as
epistemic or doxastic reasons by Fitting (2005a; 2005b) and
Artemov and Nogina (2005). In order to introduce our sys-
tem of default reasons, we build upon the existing systems
for non-defeasible reasons. In this respect, one can see our
strategy as being analogous to the standard default logic ap-
proach (Antoniou 1997; Reiter 1980) where agents reason
from known or certain information. This section gives pre-
liminaries on one of the logics of non-defeasible reasons.

Since we assume that an agent starts to reason from inde-
feasible information, we want our underlying logic to rep-
resent “factive” or “truth inducing” reasons. However, addi-
tional constraints on the system are not necessarily needed
to introduce the system of default reasons. Therefore, we
do not assume standard axioms and operations that ensure
positive or negative introspection. Accordingly, an adequate
logical account of factive justifications is the logic JT, a
justification logic with the axiom schemes that are explicit
analogues of the axiom schemes for modal logic T.5 After
we define the underlying logic, we develop our novel non-
monotonic approach to justifications.

Syntax
Syntactically, knowledge operators take the form of justifi-
cation terms preceding formulas: t : F . Given that “t” is a
justification term and that “F ” is a formula, we write “t : F ”,

3The first proposed formalism that includes the idea of evidence
elimination specific to a multi-agent setting is by Renne (2012).
Baltag, Renne and Smets (2012; 2014) bring together ideas from
belief revision and dynamic epistemic logic and offer an account
of good and conclusive evidence. Several approaches ((Milnikel
2014), (Kokkinis et al. 2015), (Kokkinis, Ognjanović, and Studer
2016) and (Ognjanović, Savić, and Studer 2017)) start from the
idea of merging probabilistic degrees of belief with justification
logic, while (Fan and Liau 2015) and (Su, Fan, and Liau 2017)
develop a possibilistic justification logic.

4In fact, in (Fitting 2008, p. 156) we find three different truth
axiom schemes.

5Justification logic JT was first introduced by Brezhnev
(2001). Justification logics with equivalent axiom schemes to the
logic we define in this section are also defined and investigated in
(Kuznets 2000) and (Fitting 2008). In future work, adding the ax-
ioms of positive and negative introspection could be considered.

where t is informally interpreted as a reason or justification
for F . We define the set Tm that consists of exactly all jus-
tification terms, constructed from variables x1, . . . , xn, . . .
and constants c1, . . . , cn, . . . by means of operations · and
+. The grammar of justification terms is given as follows:

t ::= x | c | (t1 · t2) | (t1 + t2)

where x is a variable denoting an unspecified justification
and c is a proof constant. Proof constant c is atomic within
the system. For a justification term t, a set of subterms
Sub(t) is defined by induction on the construction of t. For-
mulas of JT are defined by the following grammar:

F ::= > | P | (F1 → F2) | (F1∨F2) | (F1∧F2) | ¬F | t : F

where P ∈ P and P is an enumerable set of atomic proposi-
tional formulas and t ∈ Tm. The set Fm consists of exactly
all formulas.

Axioms and rules of JT
We can now define the logic of non-defeasible reasons JT.
The logic JT is the weakest logic with “truth inducing” jus-
tifications containing axiom schemes for two basic opera-
tions · and +.6 These are the axioms and rules of JT:
A0 All the instances of propositional logic tautologies from
Fm

A1 t : (F → G)→ (u : F → (t · u) : G) (Application)
A2 t : F → (t+ u) : F ; u : F → (t+ u) : F (Sum)
A3 t : F → F (Factivity)
R0 From F and F → G infer G (Modus ponens)
R1 If F is an axiom instance of A0-A3 and cn, cn−1 . . . , c1

proof constants, then infer cn : cn−1 . . . c1 : F (Iterated
axiom necessitation)
Proof constants are justifications of basic logic truths. In

justification logics, basic truths are taken to be justified (at
any depth) by virtue of their status within a system and their
justifications are not further analyzed. A set of instances of
such canonical formulas in justification logic is called Con-
stant Specification (CS) set.
Definition 1 (Constant specification). The Constant Speci-
fication set is the set of instances of rule R1.

CS = {cn : cn−1 . . . c1 : A | A is an axiom instance of
A0-A3, cn, cn−1, . . . , c1 are proof constants and n ∈ N}

The use of constants in R1 above is unrestricted. In such for-
mat, the rule generates a set of formulas where each axiom
is justified by any constant at any depth. The set of formu-
las obtained in this way is called Total Constant Specifica-
tion (T CS). A more appropriate name for the logic above
would therefore be JTTCS. It is possible to put restrictions
on the use of constants in rule R1 in order to consider a lim-
ited class of CS-sets. We restrict the constant specification

6As Fitting (2005b; 2008) shows, we can also technically con-
sider dropping the operator + from our language. In this way we
obtain the logic that he calls LP−(T) (Fitting 2008, p. 162).



set CS following a simple intuition that each axiom instance
has its own proof constant.7

Restriction 2. CS is

• Axiomatically appropriate: for each axiom instance A,
there is a constant c such that c : A ∈ CS and for each
formula cn : cn−1 . . . c1 : A ∈ CS, such that n ≥ 1,
cn+1 : cn : cn−1 . . . c1 : A ∈ CS for some cn+1;

• Injective: Each proof constant c justifies at most one for-
mula.

The logic JTCS is defined by replacing the iterated axom
necessitation rule of JTTCS with the following rule depen-
dent on Restriction 2:

R1* If F is an axiom instance of A0-A3 and
cn, cn−1 . . . , c1 proof constants such that cn : cn−1 :
. . . c1 : F ∈ CS , then infer cn : cn−1 : . . . c1 : F

We say that the formula F is JTCS-provable (JTCS ` F )
if F can be derived using the axioms A0-A3 and rules R0
and R1*.

Semantics
The semantics for JTCS is an adapted version of the se-
mantics for the logic of proofs (LP) given by Mkrtychev
(1997).8

Definition 3 (JTCS model). We define a function reason
assignment based on CS ∗(·) : Tm → 2Fm, a function
mapping each term to a set of formulas from Fm. It satisfies
the following conditions:

1. If F → G ∈ ∗(t) and F ∈ ∗(u), then G ∈ ∗(t · u)

2. ∗(t) ∪ ∗(u) ⊆ ∗(t+ u)

3. If c : F ∈ CS , then F ∈ ∗(c)
A truth assignment v : P → {True, False} is a function
assigning truth values to propositional formulas in P . We
define the interpretation I as a pair (v, ∗). For an interpreta-
tion I, |= is a truth relation on the set of formulas of JTCS.

For any formula F ∈ Fm, I |= F iff
• For any P ∈ P , I |= P iff v(P ) = True

• I |= ¬F iff I 6|= F

• I |= F → G iff I 6|= F or I |= G

7For example, one such constant specification is defined by
Artemov (2018, p. 31): “cn : A ∈ CS iff A is an axiom and
n is the Gödel number of A”. The choice of CS is not trivial. If
we define an empty CS, that is, JT∅, we eliminate logical aware-
ness for agents, while defining an infinite CS imposes logical omni-
science. To ensure that standard properties as Internalization (Arte-
mov 2001) hold, CS has to be axiomatically appropriate. Moreover,
different restrictions could affect complexity results, as discussed
in e.g. (Milnikel 2007).

8The condition for justifications of the type ’!t’ are not needed
in the JTCS semantics. Mkrtychev’s model can be thought of as
a single world justification model. Since the notion of defeasibility
introduced in the next section turns on the incompleteness of avail-
able reasons, our system eliminates worries about the trivialization
of justification assertions that otherwise arise from considering jus-
tifications as modalities in a single-world model.

• I |= F ∨G iff I |= F or I |= G

• I |= F ∧G iff I |= F and I |= G

• I |= t : F iff F ∈ ∗(t)
The interpretation I is reflexive, which means that the truth
relation for I fulfills the following condition:

• For any term t and any formula F , if F ∈ ∗(t), then I |=
F .

Definition 4 (JTCS consequence relation). Σ |= F iff for
all reflexive interpretations I, if I |= B for all B ∈ Σ, then
I |= F .

Due to Restriction 2, the consequence relation for JTCS is
weaker than the JTTCS consequence relation.

Definition 5 (JTCS closure). JTCS closure is given by
ThJTCS (Γ) = {F |Γ |= F}, for a set of formulas Γ ⊆ Fm
and the JTCS consequence relation |= defined above.

For any closure ThJTCS (Γ), it follows that CS ⊆
ThJTCS (Γ).

We can prove that the compactness theorem holds for the
JTCS semantics.9 Compactness turns out to be a useful re-
sult in defining the operational semantics of default reason
terms. We first say that a set of formulas Γ is JTCS satis-
fiable if there is an interpretation I that meets CS (via the
third condition of Def. 3) for which all the members of Γ
are true. A set Γ is JTCS-finitely satisfiable if every finite
subset Γ′ of Γ is JTCS satisfiable.

Theorem 6 (Compactness). A set of formulas is JTCS sat-
isfiable iff it is JTCS-finitely satisfiable.

Proof. See the Appendix.

A logic of default justifications
In this section, we develop a system based on JTCS in
which agents form default justifications reasoning from an
incomplete knowledge base. Justification logic JTCS is ca-
pable of representing the construction of a new piece of evi-
dence out of existing ones by application (“·”) or sum (“+”)
operation. However, to extend an incomplete JTCS theory,
we need to import reasons that are defeasible. We come up
with both a way in which such reasons are imported and a
way in which they might get defeated by introducing con-
cepts familiar from defeasible reasoning literature into justi-
fication logic.

We start from the above-defined language of the logic
JTCS and develop a new variant of justification logic JTCS

that enables us to formalize the import of reasons outside
the structure as well as to formalize defeaters or reasons that
question the plausibility of other reasons.

Our logical framework of defeasible reasons represents
both factive reasons produced via the axioms and rules of
JTCS and plausible reasons based on default assumptions

9A compactness proof for LP satisfiability in possible world
semantics is given in (Fitting 2005b).



that “usually” or “typically” hold for a restricted context.10

We follow the standard way (Reiter 1980) of formalizing
default reasoning through default theories to extend the logic
of factive reasons with defeasible reasons. Building on the
syntax of JTCS, we introduce the definition of the default
theory:
Definition 7 (Default Theory). A default theory T is defined
as a pair (W,D), where the set W is a finite set of JTCS

formulas and D is a countable set of default rules.
Each default rule is of the following form:

δ =
t : F :: (u · t) : G

(u · t) : G
.

The informal reading of the default δ is: “If t is a reason for
F , and it is consistent to assume that (u · t) is a reason forG,
then (u · t) is a defeasible reason to believe G”. The formula
t : F is called the prerequisite and (u · t) : G is both the
consistency requirement11 and the consequent of the default
rule δ. We refer to each of the respective formulas as pre(δ),
req(δ) and cons(δ). For the set of all consequents from the
entire set of defaults D, we use cons(D). The default rule δ
introduces a unique reason term u, which means that, for a
default theory T , the following holds:

1. For any formula t : F ∈ ThJTCS (W ), u 6= t and
2. For any other default rule δ′ ∈ D such that
δ′ = t′:F ′::(u′·t′):G′

(u′·t′):G′ , if F 6= F ′ or G 6= G′, then u 6= u′.12

The reason term uwitnesses the defeasiblity of the prima fa-
cie reason (u · t) for G. Whether a reason actually becomes
defeated or not depends on other default-reason formulas
from cons(D). Other defaults might question both the plau-
sibility of the default reason u and the plausibility of the
proposition G.

A formal way of looking at a default reason of this kind
is that (u · t) codifies the default step we apply on the ba-
sis of the known reason t. A distinctive feature of such rules
is generating justification terms as if it were the case that
cons(δ) was inferred by using an instance of the applica-
tion axiom: u : (F → G)→ (t : F → (u · t) : G). The dif-
ference is that an agent cannot ascertain that an available
reason justifies applying the conditional F → G without
restrictions. Still, sometimes a conclusion must be drawn
without being able to remove all of the uncertainty as to
whether the relevant conditional actually applies or not. In
such cases, an agent turns to a plausible assumption of a jus-
tified “defeasible” conditional F → G that holds only in the

10For a logical account of typicality based on ranked models and
preferential reasoning, see Propositional Typicality Logic (PTL)
developed by Booth, Meyer, and Varzinczak (2012). In PTL, a typ-
icality operator is added to propositional logic and interpreted in
terms of ranked models to formally capture the most typical situa-
tions in which a given formula holds.

11In order to avoid any misunderstanding, we avoid the name
justification for the formula req(δ) since justification logic terms
are commonly known as justifications.

12Similarly, Artemov (2018, p. 30) introduces “single-
conclusion” (or “pointed”) justifications to enable handling “jus-
tifications as objects rather than as justification assertions”.

absence of any information to the contrary. While the inter-
nal structure of the default reason (u · t) indicates that it is
formed on the basis of the formula u : (F → G), the defea-
sibility of (u·t) lies in the fact that the formula u : (F → G)
is not a part of the knowledge base.

One can think of our use of the operation “·” in default
rules as the same operation that is used in the axiom A1, only
being applied on an incomplete JTCS theory. Similarly, we
can follow Reiter (1980, p. 82) and Antoniou (1997, p. 21)
in thinking of a standard default rule such as A:B

B as merely
saying that an implication A ∧ ¬C ∧ ¬D · · · → B holds,
provided that we can establish that a number of exceptions
C,D, . . . does not hold. However, if the rule application
context is defined sufficiently narrowly, the rule is classically
represented as an implication A→ B. Generalizing on such
interpretation of defeasibility, our defaults with justification
assertions can be represented as instantiations of the axiom
A1 applied in a sufficiently narrow application context.

Analogous to standard default theories, we take the set
of facts W to be underspecified with respect to a number
of facts that would otherwise be specified for a complete
JTCS interpretation. Besides simple facts, our underlying
logic contains justification assertions. To deal with justifica-
tion assertions, a complete JTCS interpretation would also
further specify whether a reason is acceptable as a justifica-
tion for some formula. Therefore, except the usual incom-
plete specification of known propositions, default justifica-
tion theories are also incomplete with respect to the actual
specification of the reason assignment function. For our de-
fault theory, this means that, except the valuation v, default
rules need to approximate an actual reason-assignment func-
tion ∗(·).

In “guessing” what a true model is, every default rule in-
troduces a reason term whose structure codifies an applica-
tion operation step from an unknown justified conditional.
For example, in rule δ above, we rely on the justified condi-
tional u : (F → G). Even though this justified conditional is
not a part of the rule δ itself, it is the underlying assumption
on the basis of which we are able to extend an incomplete
knowlede base. Each underlying assumption of this kind can
be made explicit by means of a function default conditional
assignment: #(·) : D → Fm. The function maps each de-
fault rule to a specific justified conditional as follows:

#(δi) = un : (F → G),

where δi ∈ D and δi = tk:F ::(un·tk):G
(un·tk):G , for some reason

terms tk and un and some formulas F and G.
A set of all such underlying assumptions of default rules

is called Default Specification (DS) set.
Definition 8 (Default specification). For a default theory
T = (W,D), justified defeasible conditionals are given by
the Default Specification set:
DS = #[D] = {un : (F → G) | #(δi) = un : (F → G)

and δi ∈ D}.
The use of underlying assumptions from DS is responsible
for the non-monotonic character of default reasons and con-
trasts our default rules with the standard application opera-
tion represented by the axiom A1. The extended meaning of



the application operation via default rules will be referred to
as default application. Extending the interpretation of the
application operation “·” can be formally captured by the
following definition:
Definition 9 (Default Application). For a default rule δ ∈
D, if u : (F → G) = #(δ) and if t : F = pre(δ), then
(u · t) : G = cons(δ).

Let us again consider the red-looking-table example from
the Introduction to see how prima facie reasons and their
defeaters are imported through default rules.
Example 10. Let R be the proposition “the table is red-
looking” and let T be the proposition “the table is red”.
Take ta and ua to be some specific individual justifications.
The reasoning whereby one accepts the default reason (ua ·
ta) might be described by the following default rule:

δa =
ta : R :: (ua · ta) : T

(ua · ta) : T
.

We can informally read the default as follows: “If you have a
reason to believe that a table is red looking and it is consis-
tent for you to assume that this gives you a reason support-
ing the claim that the table is red, then you have a defeasible
reason to conclude that the table is red”. Suppose you then
get to a belief that “the room you are standing in is illumi-
nated with red light”, a proposition denoted by L. For some
specific justifications tb and ub, the following rule gives you
an undercutting reason for (ua · ta):

δb =
tb : L :: (ub · tb) : ¬[ua : (R→ T )]

(ub · tb) : ¬[ua : (R→ T )]
,

where the rule is read as “If you have a reason to believe that
the lighting is red and it is consistent for you to assume that
this gives you a reason to deny your reason to conclude that
the red-looking table is red, then you have a defeasible rea-
son that denies your reason to conclude that the red-looking
table is red”. The formula cons(δb) denies the basis for the
inference that led you to conclude cons(δa), although note
that it is not directly inconsistent with it. In the next subsec-
tion we define what undercutting defeaters are semantically.

Suppose that instead of learning about the light condi-
tions in the room as in δb, you learn that the table has been
painted white. This would also prompt a rebutting defeater
- a separate reason to believe the contradicting proposi-
tion ¬T . Let W denote the proposition “the table is painted
white” and let tc and uc be some specific justifications. We
have the following rule:

δc =
tc : W :: (uc · tc) : ¬T

(uc · tc) : ¬T
.

The rule reads as “If you have a reason to believe that the
table has been painted white and it is consistent for you to
assume that this gives you a reason supporting the claim
that the table is not red, then you have a defeasible reason
to conclude that the table is not red”. Note that the formula
cons(δc) does not directly mention any of the subterms of
(ua · ta). The defeat among the reasons (ua · ta) and (uc · tc)
comes from the fact that they cannot together consistently
extend an incomplete JTCS theory.

The entire example can be described by the following de-
fault theory T0 = (W0, D0), where W0 = {ta : R, tb :
L, tc : W} and D0 = {δa, δb, δc}.
Each defeater above is itself defeasible and considered to be
a prima facie reason. The way in which prima facie reasons
interact is further specified through their role in the opera-
tional semantics.

Operational semantics of default justifications
Between the two types of defeaters, the semantics of rebut-
ting justifications is more straightforward since it rests on the
known mechanism of multiple extensions used in standard
default theories. What requires additional explanation is the
semantics of undercutting defeaters. Notice that each for-
mula #(δ) has the format of a justified material conditional.
This formula is not a part of a default inference δ itself, but
the default application described by δ depends on assuming
a reason for that conditional and the justification assertion
cons(δ) encodes this assumption in the internal structure of
the resulting reason term. This brings to attention the fol-
lowing possibility: a knowledge base may at the same time
contain justified formulas of the type t : F , (u · t) : G
and v : ¬[u : (F → G)], without the knowledge base be-
ing inconsistent. Although the application axiom A1 does
not say that t : F and (u · t) : G together entail the for-
mula u : (F → G), the occurrence of the formulas t : F ,
(u · t) : G and v : ¬[u : (F → G)] together is not significant
in standard justification logic. It only becomes significant
with default application.13

The extension of the application operation to its defeasi-
ble variant opens new possibilities for a semantics of justi-
fications. In particular, it enables reasoning that is not reg-
imented by the standard axioms A1 and A2 of basic justi-
fication logic (Artemov 2008, p. 482). For instance, if a set
of JTCS formulas contains both a prima facie reason t and
its defeater u, then the set containing a conflict of justifi-
cations does not support concatenation of reasons by which
t : F → (t+u) : F holds for any two terms t and u. In other
words, the possibility of a conflict between reasons elimi-
nates the monotonicity property of justifications assumed in
the sum axioms (A2).

The logic of default justifications we develop here relies
on the idea of operational semantics for standard default log-
ics presented in (Antoniou 1997). Here is an informal de-
scription of the key operational semantics steps. First, de-
fault reasons are taken into consideration at face value. Af-
ter the default reasons have been taken together, we check
dependencies among them in order to find out what are the
non-defeated reasons. Finally, a rational agent includes in its
knowledge base only acceptable pieces of information that
are based on those reasons that are ultimately non-defeated.

The basis of operational semantics for a default theory
T = (W,D) is the procedure of collecting new, reason-

13Notice that a (JTCS-closed) knowledge base that contains
the formulas t : F and (u · t) : G, also contains the formula
((c · t) · (u · t)) : (F → G), assuming that the constant c justifies
the axiom F → (G→ (F → G)). This is so regardless of whether
u : (F → G) is also in the knowledge base or not.



based information from the available defaults. A sequence
of default rules Π = (δ0, δ1, . . .) is a possible order in which
a list of default rules without multiple occurrences from D
is applied (Π is possibly empty). Applicability of defaults is
determined in the following way: for a set of JTCS-closed
formulas Γ we say that a default rule δ = t:F ::(u·t):G

(u·t):G is ap-
plicable to Γ iff

• t : F ∈ Γ and

• ¬(u · t) : G /∈ Γ.

Reasons are brought together in the set of JTCS formulas
that represents the current evidence base:

Definition 11. In(Π) = ThJTCS (W ∪ {cons(δ) |
δ occurs in Π}).

The set In(Π) collects reason-based information that is yet
to be determined as acceptable or unacceptable depending
on the acceptability of reasons and counter-reasons for for-
mulas.

We need to further specify sequences of defaults that are
significant for a default theory T : default processes. For a se-
quence Π, the initial segment of the sequence is denoted as
Π[k], where k stands for the number of elements contained
in that segment of the sequence and where k is a minimal
number of defaults for the sequence Π. Any segment Π[k] is
also a sequence. Intuitively, the set of formulas In(Π) repre-
sents an updated incomplete knowledge base W where the
new information is not yet taken to be granted. Using the no-
tions defined above, we can now get clear on what a default
process is:

Definition 12 (Process). A sequence of default rules Π is
a process of a default theory T = (W,D) iff every k such
that δk ∈ Π is applicable to the set In(Π[k]), where Π[k] =
(δ0, . . . δk−1).

We will use default specification sets that are relativized to
default processes:

DSΠ = {un : (F → G) | #(δi) = un : (F → G)

and δi ∈ Π}.

The kind of process that we are focusing on here is called
closed process and we say that a process Π is closed iff ev-
ery δ ∈ D that is applicable to In(Π) is already in Π. For
default theories with a finite number of defaults, closure for
any process Π is obviously guaranteed by the applicability
conditions. However, if a set of defaults is infinite, then this
is less-obvious.

Lemma 13 (Infinite Closed Process). For a theory T =
(W,D) and infinitely many k’s, an infinite process Π is
closed iff for every default rule δk applicable to the set
In(Π[k]), δk ∈ Π.

Proof. From the compactness of JTCS semantics we have
that if a set In(Π[k])∪{req(δ)} is satisfiable for all the finite
k’s, it is also satisfiable for infinitely many k’s. Therefore
the applicability conditions for a rule δ are equivalent to the
finite case.

Besides the standard process of collecting new informa-
tion, we need to explain the way in which an agent decides
on the acceptability of reasons. We have already introduced
the extended meaning of the application operation for a de-
fault theory T . Now we show how default application is es-
sential to the operational semantics of default reasons. Ide-
ally, an agent has all the factive reasons valid under some
interpretation I. In contrast, in reasoning from an incom-
plete knowledge baseW , a closure ThJTCS (W ) is typically
underspecified as to whether a reason t is acceptable for a
formula F . In such context, reasoning starts from defeasible
justification assertions in DS as the only available resource
to approximate a reason assignment function that actually
holds.

Notice thatDS can be an inconsistent set of JTCS formu-
las and that an agent needs to find out which reasons prevail
in a conflicting set of reasons. One way in which reasons
may conflict with each other is captured by the definition of
undercut:

Definition 14 (Undercut). A reason u undercuts reason t be-
ing a reason for a formula F in a set of JTCS-closed formu-
las Γ ⊆ In(Π[k]) iff

∨
(v)∈Sub(t) u : ¬[v : (G→ H)] ∈ Γ

and v : (G→ H) ∈ DSΠ.

For a set Γ such that ThJTCS (Γ) contains some reason u
that undercuts t we say that Γ undercuts t. We can think
of Γ as a set of reasons against which we test the reason t
being reason for the formula F . This is further elaborated
in the semantics of acceptability of reasons. We now define
conflict-free sets of formulas:14

Definition 15 (Conflict-free sets). A set of JTCS-closed
formulas Γ is conflict-free iff Γ does not contain both a for-
mula t : F with an undercut reason t and its undercutter
u : G.

As stated before, the set W contains certain informa-
tion and this means that any information from W is always
acceptable regardless of what has been collected later on.
Therefore, any set of formulas Γ that extends the initial in-
formation contains W . To decide whether a consequent of a
default δ is acceptable, an agent looks at those sets of rea-
sons that can be defended against all the available counter-
reasons. According to that, an agent looks at finding a de-
fensible set of justified formulas among all certain informa-
tion taken together with the consequents of the applicable
defaults rules. Therefore, for a default theory T = (W,D),
an agent always considers potential extension sets of JTCS

formulas that meet the following conditions:

1. W ⊆ Γ and

2. Γ ⊆ {W ∪ cons(δ) | δ occurs in Πi},
where Πi is a closed process of T. For any potentially accept-
able set Γ we define the notion of acceptability of a justified
formula t : F :

14In characterizing sets of JTCS formulas we use the terminol-
ogy of Dung’s (1995) abstract argumentation frameworks when-
ever possible. Abstract argumentation frameworks treat conflicts
between arguments and they naturally overlap with our idea of con-
flicting reasons in many ways.



Definition 16 (Acceptability). For a default theory T =
(W,D), a formula t : F ∈ cons(Π) is acceptable w.r.t. a set
of JTCS formulas Γ iff for each undercutting reason u for t
being a reason for F such that u : G ∈ In(Π), ThJTCS (Γ)
undercuts u being a reason for G.

Informally, an agent has yet to test any potential extension
against all the other available reasons before it can be con-
sidered as an admissible extension of the knowledge base.
Definition 17 (Admissible Extension). A potential exten-
sion set of JTCS formulas Γ is an admissible extension of
a default theory T = (W,D) iff ThJTCS (Γ) is conflict-free
and if each formula t : F ∈ Γ is acceptable w.r.t. Γ.

After considering all the available reasons, an agent ac-
cepts only those defeasible statements that can be defended
against all the available reasons against these statements.

The two latter definitions introduce the idea of “external
stability” of knowledge bases (Dung 1995, p. 323) into de-
fault logic by taking into account all the reasons that ques-
tion the plausibility of other reasons. In addition to that, our
operational semantics prompts an implicit revision proce-
dure. Any new default rule that is applicable to the set of for-
mulas In(Π[k]) potentially makes changes to what an agent
considered to be acceptable relying on the set of formulas
In(Π[k − 1]). Before we show this on the formalized ex-
ample from the beginning of this section, we introduce the
idea of default extension for a default theory T . Extension is
the fundamental concept in defining logical consequence in
standard default theories. We think of preferred extensions
as maximal plausible world views based on the acceptabil-
ity of reasons:
Definition 18 (Preferred Extension). For a default theory
T = (W,D), an admissible extension set of JTCS formulas
Γ, ThJTCS (Γ) is a preferred extension of a default theory T
iff for any other admissible extension Γ′, Γ 6⊂ Γ′.

In other words, preferred extensions are maximal admissi-
ble extensions with respect to set inclusion. The existence of
preferred extensions is universally defined for default theo-
ries. To ensure that this result also holds for the case of an
infinite number of default rules and infinite closed processes,
we make use of Zorn’s lemma and restate it as follows:
Lemma 19 (Zorn). For every partially ordered set A, if
every chain of (totally ordered subset of) B has an upper
bound, then A has a maximal element.

Theorem 20 (Existence of Preferred Extension). Every de-
fault theory T = (W,D) has at least one preferred exten-
sion.

Proof. If W is inconsistent, then for any default δ, nega-
tion of the consistency requirement req(δ) is contained in
ThJTCS (W ) and the only closed process Π is the empty
sequence. Therefore, the only potential and admissible ex-
tension is W itself and T has a unique preferred extension
ThJTCS (W ) containing all the formulas of JTCS.

Assume that W is consistent. In general, if there is a fi-
nite number of default rules in D, any closed process Π of
T is also finite. Admissible extensions obtained from closed
processes form a complete partial order with respect to ⊆.

Since there are only finitely many admissible sets, any ad-
missible set Γ has a maximum Γ′ within a totally ordered
subset of a set of all admissible sets. Therefore, Γ ⊆ Γ′ and
ThJTCS (Γ′) is a preferred extension of T .

For the case where D is infinite and closed processes
Π1,Π2, . . . are infinite, there is again a complete partial or-
der formed from a set of all admissible sets. The argument
for finite processes does not account for the case where Γ′,
the union of admissible sets Γ1,Γ2, . . . , could be contained
in some Γ′′ for an ever increasing sequence Γ1,Γ2, . . . . We
first state that Γ′, the union of an ever increasing sequence
of admissible sets Γ1,Γ2, . . . , is also an admissible set. To
ensure this, we turn to its subsets. That is, if Γ′ was not ad-
missible, then some of its subsets Γn for n ≥ 1 would not be
conflict-free or would contain a formula that is not accept-
able, but this contradicts the assumption that Γn is admis-
sible. Now, for the set of all admissible sets ordered by ⊆,
any chain (totally ordered subset) has an upper bound, that
is, the union of its members Γ′ =

⋃∞
n=1 Γn. According to

Lemma 19, there exists a maximal element and, therefore a
preferred extension of T .

The semantics of defeasible reasons enables us to define
additional types of extensions that are not necessarily based
on the admissibility of reasons. One of them is stable exten-
sion familiar from formal argumentation theory:
Definition 21 (Stable Extension). For a default theory T =
(W,D) and its closed processes Π and Π′, a stable ex-
tension is a JTCS closure of a potential extension Γ ⊂
In(Π) such that (1) ThJTCS (Γ) undercuts all the formulas
t : F ∈ In(Π) outside ThJTCS (Γ) and (2) for any formula
u : G ∈ Γ′ such that Γ′ ⊂ In(Π′) and u : G 6∈ In(Π), it
holds that Γ ∪ {u : G} is JTCS inconsistent.

The intuition behind the definition is that every reason
left outside the accepted set of reasons is attacked. For
our logic, this means that for every justification assertion
outside of an extension, the extension undercuts one of
its subterms and/or it contains a justification assertion in-
consistent with it. We can check that in the red-looking-
table example, stable and prefer extension coincide. For-
mally, theory T0 has a unique stable and preferred extension
ThJTCS (W0 ∪ {cons(δb), cons(δc)}). Moreover, note that
the process (δa, δb) includes a revision of its respective ad-
missible extension.

Stable extensions are not universally defined for any
default theory T . Consider the following theory T1 =
(W1, D1), where W1 = {t : F} and D1 contains the de-
fault rules

δ1 =
t : F :: (u · t) : G

(u · t) : G
and

δ2 =
(u · t) : G :: (v · (u · t)) : ¬[u : (F → G)]

(v · (u · t)) : ¬[u : (F → G)]
.

While T1 has a preferred extension ThJTCS (W ), it has
no stable extension. This result conforms to similar results
about preferred and stable semantics in abstract argumenta-
tion frameworks. In fact, T1 is a justification logic formal-



ization of the concept of self-defeat, which is notorious in
argumentation framworks.

In addition, we can easily add other significant notions of
extensions, analogous to those in (Dung 1995). In particu-
lar, we can define variants of Dung’s (1995, p. 329) com-
plete and grounded extension. Different extensions defini-
tions will enable us to give different corresponding charac-
terizations of logical consequence. This will lead to proofs
of additional theorems and fully establish the role of justifi-
cation logic within the study of non-monotonic reasoning.

Related and future work
The above suggested connections between default justifica-
tion logic and abstract argumentation frameworks are cur-
rently being investigated. Standard justification logics are
known for their connection to modal logics. Artemov (2001)
provided a proof of the Realization Theorem that connects
the logic of arithmetic proofs LP with the modal logic S4.
The result has been followed up by similar theorems for
many other modal logics with known “explicit” justifica-
tion counterparts.15 As it stands now, default justification
logic can be considered to provide explicit justification logic
counterparts to (a subclass of) abstract argumentation frame-
works. A proof of this conjecture is a part of the future work.

Further developments are possible starting from the ba-
sic logic of default justifications. On the technical side of
our logic, we used only the expressiveness of normal de-
fault rules and we still need to investigate how to add non-
normal default rules. In the general context of default logics,
our logic introduces some new technical properties for nor-
mal default theories that are still to be thoroughly described.
Among them are revision of extensions and interaction of
different defaults that does not rely on their preference or-
derings, as commonly done in default logic (Delgrande and
Schaub 2000). An extensive account of default reasons that
makes use of preference orderings on defaults is developed
by Horty (2012). Horty’s logic is based on a propositional
language and develops from a different notion of reasons,
which makes it incomparable to our logic where reasons are
explicitly featured in the language itself.

Our work provides a complementary addition to the study
of less-than-ideal reasons in justification logic. Among re-
lated approaches, the logic of conditional probabilities de-
veloped by Ognjanović, Savić, and Studer (2017) introduces
a way to model non-monotonic reasoning with justification
assertions. Their proposal is based on defining operators for
approximate probabilities of a justified formula given some
condition formula. Using conditional probabilities, the logic
models certain aspects of defeasibile inferences with justifi-
cation terms. Yet the system can neither encode the defea-
sibility of justification terms in their internal structure nor
model defeat among reasons, to mention only some differ-
ences from our initial desiderata.

Baltag, Renne, and Smets (2012) define a justification
logic in which an agent may hold a justified belief that
can be compromised in the face of newly received infor-
mation. The logic builds on the ideas from belief revision

15See (Fitting 2016) for a good overview of realization theorems.

and dynamic epistemic logic to model examples where epis-
temic actions cause changes to an agent’s evidence. Con-
cerning the possibility of modelling defeaters, the logic of-
fers two dynamic operations that change the availability of
evidence in a model, namely “updates” and “upgrades” (Bal-
tag, Renne, and Smets 2012, p. 183). Evidence obtained by
updates counts as “hard” or infallible, while upgrades bring
about “soft” or fallible evidence. With the use of these ac-
tions, epistemic models can represent justified beliefs being
defeated, for example, by means of an epistemic action of
update with hard evidence. In this way, however, the mech-
anism by which reasons may conflict with one another is
simply being “outsourced” to an extra-logical notion of fal-
libility and, therefore, the logic does not directly address the
ways of defeat that we formalize in this paper.

Several interesting paths could be followed in connecting
the logic of default justifications with formal argumentation
frameworks. Among frameworks with abstract arguments,
the AFRA framework (Baroni et al. 2011) with recursive at-
tacks offers a possibility of representing attacks to attacks.
This conceptual advance can be useful in connecting de-
fault reasons to abstract arguments. Our logic could be seen
as closely related to the frameworks with structured argu-
ments, which is why connections with systems such as AS-
PIC+ (Prakken 2010), DeLP (Garcı́a and Simari 2004), SG
(Hecham, Bisquert, and Croitoru 2018) and the logic-based
argumentation framework by Besnard and Hunter (2001) are
still to be explored. Since each of these frameworks elabo-
rates on the notion of defeat, a thorough comparison to our
logic would shed light on their formal connections. A differ-
ent logic-based perspective on argumentation frameworks is
given by Caminada and Gabbay (2009) and Grossi (2010).
Both papers start from the idea of studying attack graphs and
formalizing notions of extensions from abstract argumenta-
tion theory using modal logic, with the former approach be-
ing proof-theoretical and the latter model-theoretical. A fur-
ther interesting research venue in the field of argumentation
theory is the one about the logical interpretation of prima
facie justified assumptions in (Verheij 2003). The DefLog
system which is developed there is closely related to ours in
motivation, but it develops from a perspective of a sentence-
based theory of defeasible reasoning instead of a rule-based
or argument-based approach.

Ever since the concept of justification entered into epis-
temic logics, there has been a tendency to model mainstream
epistemology examples, proposed by e.g. Russell, Dretske
and Gettier, with the use of justification logic (Artemov
2008; 2018). With the introduction of default justifications,
however, we can expect a more full-blooded integration of
the formal theory of justification with the study of knowl-
edge in philosophy, since paradigmatic examples include
both incomplete specification of reasons and defeated rea-
sons. Potential benefits of a non-monotonic system of jus-
tifications in this context were anticipated by Artemov in
(2008, p. 482) where he states that “to develop a theory of
non-monotonic justifications which prompt belief revision”
stands as an “intriguing challenge”. One of many interest-
ing topics from epistemology that could be investigated with
default-justifications theory is how does accrual of justifica-



tion affect the degree of justification.16

Appendix
Proof of Theorem 6. The claim from left to right is obvious.
For the other direction, take CS to be some specific axiomat-
ically appropriate and injective constant specification. We
first show that if a set Γ is JTCS-finitely satisfiable, then for
all formulas F ∈ Fm, it holds that Γ∪ {F} or Γ∪ {¬F} is
JTCS-finitely satisfiable. Suppose that Γ is JTCS-finitely
satisfiable and that Γ ∪ {F} and Γ ∪ {¬F} are both not
JTCS-finitely satisfiable. Then there would be finite sub-
sets Γ′ and Γ′′ of Γ such that Γ′ ∪ {F} and Γ′′ ∪ {¬F} are
not JTCS satisfiable. Since for no interpretation I it holds
that I |= {F,¬F}, Γ′ ∪{F,¬F} is never JTCS satisfiable.
But since for any possible interpretation I one of the formu-
las F or ¬F holds, this means that I |= Γ′ ⊆ I |= ¬F . In
a similar way we get that I |= Γ′′ ⊆ I |= F . Therefore,
we have that I |= Γ′ ∩ I |= Γ′′ = ∅ and, thus, Γ′ ∪ Γ′′

is not JTCS-satisfiable. But Γ′ ∪ Γ′′ is a finite subset of Γ
and this contradicts the assumption that Γ is JTCS-finitely
satisfiable.

The next step is proving a JTCS variant of the Linden-
baum lemma. Using the above-proven statement that for any
JTCS-finitely satisfiable set of formulas Γ and any formula
F , Γ∪{F} or Γ∪{¬F} is JTCS-finitely satisfiable together
with the fact that Γ∪{F,¬F} is never JTCS-finitely satisfi-
able, we can construct maximally JTCS-finitely satisfiable
sets. Let F1, F2, F3, . . . be an enumeration of F ∈ Fm. For
a JTCS-finitely satisfiable set Γ and for all i ∈ N define an
increasing sequence of sets of formulas as follows:

Γ0 = Γ

Γi+1 = Γi∪{Fi} if Γi∪{F1} is JTCS-finitely satisfiable,
otherwise Γi+1 = Γi ∪ {¬Fi}
Γ′ =

⋃∞
i=0 Γi

We can prove that Γ′ is JTCS-finitely satisfiable by induc-
tion. The base case Γ0 = Γ holds by assumption. Then we
claim that for all i ∈ N, Γi is JTCS-finitely satisfiable. For
some n ∈ N, take Γn to be JTCS-finitely satisfiable. Then
either Γ ∪ {Fn} or Γ ∪ {¬Fn} is JTCS-finitely satisfiable
and, therefore, Γn+1 is also JTCS-finitely satisfiable.

From the construction of the increasing sequence, we
have that for any finite set Γk ⊆ Γ′ there is a JTCS-finitely
satisfiable finite set Γk+1 ⊆ Γ′ such that Γk ⊆ Γk+1 and,
therefore, Γk is JTCS-satisfiable. Since any finite subset of
Γ′ is JTCS satisfiable, Γ′ is JTCS-finitely satisfiable. The
set Γ′ is maximal according to the enumeration of the set of
formulas Fm and contains exactly one of Fi or ¬Fi for all
i ∈ N.

Now we define a valuation v such that v(P ) = True iff
P ∈ Γ′ and the reason assignment ∗(t) = {F | t : F ∈ Γ′}.
We only need to check the conditions on the reason assign-
ment function. First, we show that ∗(·) satisfies the applica-
tion condition. Since the formula t : (F → G)→ (u : F →
(t ·u) : G) is JTCS valid, it is contained in Γ′. If F → G ∈
∗(t) and F ∈ ∗(u), then {t : (F → G), u : F} ∈ Γ′. Since

16The question is prominent in Pollock’s work (Pollock 2001).

Γ is closed under Modus ponens, we have that (t·u) : G ∈ Γ′

and, therefore, G ∈ ∗(t · u). Similarly, since the formulas
t : F → (t+ u) : F and u : F → (t+ u) : F are both in Γ′

we can easily check that the sum condition holds for ∗(·).
Finally, we have defined an interpretation I = (∗, v) that

meets CS and we need to prove that truth in this interpreta-
tion is equivalent to inclusion in Γ′:

I |= F iff F ∈ Γ′

The proof is by induction on the structure of F . For the base
case, suppose F is an atomic formula P : I |= P iff v(P ) =
True iff P ∈ Γ′.

For the inductive step, suppose that if the result holds for
F and G, then it also holds for ¬F , F ∧G, F ∨G, F → G
and t : F . For the negation case: I |= ¬F iff I 6|= F . By the
inductive hypothesis, I 6|= F iff F 6∈ Γ′. By the maximality
of Γ′, we have that F 6∈ Γ′ iff ¬F ∈ Γ′.

For the conjunction case: I |= F ∧ G iff I |= F and
I |= G. By the inductive hypothesis, I |= F and I |= G iff
F ∈ Γ′ and G ∈ Γ′ iff F ∧G ∈ Γ′. Since other connectives
are definable in terms of ¬ and ∧, we skip the remaining
cases.

Finally for the justified formula case: I |= t : F iff F ∈
∗(t). By the definition of ∗(·), it holds that F ∈ ∗(t) iff
t : F ∈ Γ′.

Therefore, for any JTCS-finitely satisfiable set Γ there is
an interpretation I based on a maximal JTCS-finitely satis-
fiable extension Γ′ of Γ such that I |= Γ.
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