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It is increasingly clear that inflammatory diseases and cancers are influenced by cleavage

products of the pro-hormone chromogranin A (CgA), such as the 21-amino acids long

catestatin (CST). The goal of this review is to provide an overview of the anti-inflammatory

effects of CST and its mechanism of action. We discuss evidence proving that CST

and its precursor CgA are crucial for maintaining metabolic and immune homeostasis.

CST could reduce inflammation in various mouse models for diabetes, colitis and

atherosclerosis. In these mouse models, CST treatment resulted in less infiltration of

immune cells in affected tissues, although in vitro monocyte migration was increased by

CST. Both in vivo and in vitro, CST can shift macrophage differentiation from a pro- to

an anti-inflammatory phenotype. Thus, the concept is emerging that CST plays a role in

tissue homeostasis by regulating immune cell infiltration and macrophage differentiation.

These findings warrant studying the effects of CST in humans and make it an interesting

therapeutic target for treatment and/or diagnosis of various metabolic and immune

diseases.

Keywords: catestatin, immune modulation, macrophages, anti-inflammatory, inflammatory disease,

chromogranin A

INTRODUCTION

Inflammation-based diseases, such as chronic inflammation (Type 2 diabetes Mellitus
(T2DM) and colitis), auto-immune diseases (rheumatoid arthritis (RA) and systemic lupus
erythematosus (SLE)), hypertension, tumor metastasis and development of severe cancers
(myeloma, neuroendocrine tumors, lung, and breast cancer) (1–3) are major health problems. For
instance, 415 million adults were globally affected by T2DM in 2015 and this caused 5.0 million
deaths (4). For RA the current mortality rate is 2.2 million (5) and for SLE comorbidities including
infection and cardiac malfunction account for 29% of all deaths (4, 6). The second leading cause of
death worldwide is cancer and 1 in 6 people die to cancer, accounting for 8.8 million deaths in 2015
(4). The prevalence of all these diseases is increasing and, in many cases, sufficient therapies are not
available. Recently, an interest in utilizing the body’s ownmolecules to treat these diseases arose. An
interesting candidate is the pro-hormone chromogranin A (CgA), which contributes to a balanced
immune response. CgA is proteolytically cleaved, both intracellularly as well as extracellularly after
its release, and this gives rise to several peptides (7, 8). These peptides exert a broad spectrum of
regulatory functions among the metabolic, endocrine, cardiovascular and immune systems (9). It
is becoming increasingly clear that one of these cleavage products, the bio-active peptide catestatin
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(CST: hCgA352−372) (10, 11), is particularly of interest, since
it suppresses tissue inflammation and affects the immune
system. Indeed the concept is emerging that CST plays an
immunomodulatory role in macrophage differentiation and
monocyte migration. This review will focus on the relatively new
concept of modulating innate immunity by targeting CST, which
may find applications in treatment of various inflammatory based
diseases and cancer (1–3). We will review the effect of CST
on infiltrating immune cells, tissue homeostasis and the role of
CST in disease. Moreover, we will discuss remaining outstanding
questions about the effects and molecular targets of CST, as well
as further directions in research and therapeutic applications.

CLEAVAGE PRODUCTS OF THE
PRO-HORMONE CHROMOGRANIN A

Chromogranin A (CgA)
The human CgA gene is located on chromosome 14 (12, 13) and
codes for a 439 amino acids long protein (14). As member of the
granin family, CgA is characterized by an acidic pI, heat stability
and 8-10 pairs of dibasic cleavage sites (15). Moreover, this 49
kDa protein has the capacity to form aggregates and the ability
to bind calcium (Ca2+) with a high capacity, but low affinity
(16). CgA was first identified as an acidic protein co-stored
and co-released with ATP and catecholamines in chromaffin
granules of neuroendocrine cells in the adrenal medulla (17, 18).
CgA facilitates the storage in these granules of catecholamines
and ATP at hyperosmotic concentrations in a non-diffusible
form (17–21). Thereby CgA contributes to the biogenesis of
secretory granules packed with condensed proteins, mostly (pro)
hormones (22, 23) via recruitment of proteins involved in the
formation and trafficking of vesicles, such as cytoskeleton-, GTP-
, and Ca2+-binding proteins (24). The secretory granules route
toward the cell periphery, where they mature and undergo
calcium-controlled exocytosis (25–27). Upon an increase in
Ca2+ concentration, CgA is co-released simultaneously with
the stored hormones of the secretory granules via exocytosis
(25–27). CgA is not only present in chromaffin cells, but
has been detected in other secretory vesicles of endocrine,
neuroendocrine and neuronal tissues (28–31) as well as in
keratinocytes (32), myocardial cells (33–35), endothelial cells
(36, 37), and macrophages (36). Interestingly, CgA is also present
in cells of the pancreatic islet, secretory granules of glucagon
containing α-cells and insulin producing β-cells, andmay thereby
modulate glucose metabolism (31, 38–42). This makes CgA
particularly interesting in the context of metabolic diseases,
such as diabetes. Patients suffering from carcinoids or other
neuroendocrine tumors (25, 43–47), heart failure, renal failure,
hypertension, RA, and IBD (48–54) display increased levels
of circulating CgA, implicating an important role of CgA to
influence human health and disease (3).

Cleavage Products of CgA
CgA can be proteolytically processed in various tissues and
thereby serves as a precursor for several biological active peptides
(Figure 1). The cleavage of CgA at its dibasic sites is performed by
intra-granular and extra-cellular proteases, such as prohormone

convertases 1 (PC1) (81), PC2 (81), furin (81), cysteine protease
cathepsin L (CTSL) (82), the serine proteases plasmin (83, 84)
and thrombin (85), as well as by kallikrein (86). Depending on
the cleavage sites, post-translational modifications (glycosylation
and phosphorylation) and proteolytic processing, CgA can result
in the following six biological active peptides (9, 87). The
first peptide identified was pancreastatin (PST) (hCgA250−301),
which has an opposing effect to insulin (42, 58, 59). WE-14
(hCgA324−337) was identified in midgut carcinoid tumors and
acts as an antigen for the highly diabetogenic CD4+ T cell
clones (60–62). Chromofungin (hCgA47−66) has antimicrobial
effects as well as effects on innate immune regulation (88, 89).
Vasostatin (hCgA1−76) has a vasodilative and anti-angiogenic as
well as antiadrenergic functions (55–57). Serpinin (hCgA402−439)
regulates granule biogenesis (79) and acts as a myocardial ß
agonist (80). Finally, the pleotropic peptide CST (hCgA352−372)
has mainly anti-inflammatory effects (8, 90) and is the central
focus of this review. The N-terminal 15 amino acid domain of
bovine CST is called Cateslytin (bCgA344−358), which is the active
domain of CST (76, 91). CgA is unique as several of its peptides
exhibit opposing counter-regulatory effects for fine-tuning and
maintaining metabolic homeostasis. As for cardiac function, this
is regulated in rodents by the pro-adrenergic peptide serpinin
(80) and both antiadrenergic peptides vasostatin and CST (66,
92). Likewise, angiogenesis is controlled by the antiangiogenic
peptide vasostatin (85, 93) and the proangiogenic peptide
CST (64, 85). Similarly, glucose homeostasis is maintained by
pancreastatin (42, 58, 59, 94), which is an anti-insulin peptide
and CST, which is a pro-insulin peptide (75). Although CgA
processing has been reported to occur intracellularly inside the
hormone-storage vesicles and extracellularly after its release
in the blood, no systematic studies have been conducted to
determine whether several proteolytic enzymes act at the same
time to liberate all of the CgA peptides or act at different sites
at different times in a tissue-specific manner. In addition, no
attempts have been made so far to assess whether CgA peptides
are generated in equal molar amounts or generated in response
to physiological demands in different tissues. However, it has
been reported that circulating concentrations of CgA peptides are
different. For example, plasma vasostatin levels vary from 0.3 to
0.4 nM and CST circulates at 0.03 to 1.5 nM concentrations (9),
which might represent different degrees of processing or rates of
clearance from the circulation.

The Pleotropic Peptide Catestatin (CST)
The CgA plasma levels range from 0.5 to 1 nM (9), whereas the
physiological blood levels of CST range from 0.03 to 1.5 nM
in healthy subjects (9, 95). At first CST was identified as a
potent inhibitor of nicotine induced catecholamine release. As
CST is secreted together with catecholamines, it can thereby
function as an autocrine negative feedback-loop self-limiting
further catecholamine secretion (10, 96, 97). Later, CST was
found to play a role in the regulation of hypertension (65–68) and
cardiac functions (8, 69–74), as well as in promoting angiogenesis
(64, 85), decreasing obesity (63) and regulating innate immunity
(8, 32, 36, 75–78). In line with this, alternated plasma levels of
CST or its prohormone CgA have been observed in the context
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FIGURE 1 | Chromogranin A and its bio-active peptides. Cleavage of CgA gives rise to six known biological active peptides: vasostatin (Orange; hCgA1−76), which

has anti-adrenergic and anti-angiogenic functions (55–57); Chromofungin (Yellow; hCgA47−66 ) has antimicrobial effects as well as effects on innate immune

regulation; pacreastatin (Purple; PST; hCgA250−301 ), which has anti-insulin functions (42, 58, 59); WE-14 (green; hCgA324−337 ), which acts as an autoantigen for the

highly diabetogenic CD4+ T cell clones (60–62); CST (Red; hCgA352−372), which has pro-insulin, anti-obesigenic (63), pro-angiogenic (64, 65), anti-adrenergic,

anti-hypersensitive (65–68), cardiomodulatory (8, 69–74) and anti-inflammatory functions (8, 32, 36, 75–78); serpinin (blue; hCgA402−439 ), which is pro-adrenergic

and regulates granule biogenesis and acts as a myocardial ß agonist (79, 80).

of various diseases. Plasma levels of CST are reduced in patients
suffering from T2DM and hypertension (75, 95, 98), whereas
elevated levels of the pro-hormone CgA have been detected
in the plasma of patients with neuroendocrine tumors (25),
hypertension (99, 100) and various inflammatory diseases, such
as RA (6, 101, 102), SLE (6), inflammatory bowel disease (IBD)
(53, 54, 103–105) as well as T1DM and T2DM (62, 106–109). This
suggests that the lower levels of CST are caused by a dysregulation
of proteolytic processing of CgA (98). The balance between
processed peptides seems also important to counteract effects of
the bio-active peptides. Since vasostatin has an anti-angiogenic
effect (55–57), this might counteract the pro-angiogenic effect of
CST (64, 85). Moreover, CgA-knockout (CgA-KO) mice develop
an obese phenotype (42) as well as severe hypertension which
could be rescued by intra-peritoneal injections of CST (67). Since
hypertension is linked to diabetes, heart diseases and psoriasis
(110), this indicates that CST might be important in various
severe diseases. These findings support the hypothesis that the
impaired processing of CgAmight lead to lower CST levels which
contributes to disease development. They also warrant further
studies to elucidate the effects and mechanisms of CgA and its
bio-active peptide products.

CST CONTRIBUTES TO MAINTENANCE OF
METABOLIC AND IMMUNE HOMEOSTASIS

CST Effects on Metabolism
In addition to its anti-inflammatory effects, CST also affects
metabolism. Opposite to insulin, CST inhibits lipogenesis and
increases lipolysis in adipose tissue by inhibition of the α2-
adrenergic receptor and by enhancing leptin signaling (63).
Simultaneously, it stimulates fatty acid uptake and breakdown
in the liver, as reflected by increased expression of the genes
involved in fatty acid oxidation upon intra-peritoneal CST
injections in mice (63). In line with this, CST injections in CgA-
KO mice resulted in decreased triglyceride levels in the plasma

and reduced fat depot sizes by∼25% (63). These findings indicate
that CST promotes lipid flux from adipose tissue to the liver
for beta oxidation, which might explain the frequently observed
weight gain in patients with inflammatory diseases, as these
patients have lower plasma levels of CST (75, 95, 98).

Besides the effect on lipid metabolism, intra-peritoneal
administration of CST improved glucose and insulin tolerance
in Diet-induced obese (DIO) mice and insulin-resistant systemic
CST-KO mice, that express a truncated version of CgA (75).
This could be due to CST inhibiting gluconeogenesis in the
liver, thereby lowering the production and release of glucose
in the blood (75). This effect of CST could be mediated
by the modulation of Kupffer-cells and monocyte-derived
macrophages, since the effects of their cytokines are linked
to glucose and insulin metabolism (75, 111) and for instance
neutralization of TNF-α improves insulin sensitivity (112). Thus,
CST can promote lipid and glucose metabolism, and thereby
might help to prevent obesity and maintain homeostasis of
metabolic functions (7, 63, 75). Although CST immunoreactivity
has been detected in carcinoid tumors of the appendix, bronchus,
stomach, small bowel and large bowel (113), its effects on
cancer metabolism is yet to be investigated. However, insulin has
been reported to promote cancer metabolism by upregulating
pyruvate kinase M2 isoform (PKM2) expression and decreasing
its activity, eventuating in amplification of cancer-metabolism-
specific parameters like glucose uptake, lactate production,
glycolytic pooling and macromolecular synthesis (114). In
addition, several reports reveal increased cancer risk under
hyperinsulinemic condition (115, 116). Since CST decreases
insulin level in hyperinsulinemic as well as insulin-resistant DIO
and CST-KO mice (75), we expect that CST would decrease
tumor growth by decreasing expression of PKM2 and increasing
its activity, which requires experimental validation. Interestingly,
PST, another cleavage product of CgA, counteracts the metabolic
and insulin sensitizing effects of CST (75). These anti-insulin
actions of PST are likely important in maintaining homeostasis
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in glucose metabolism (7, 42, 94). The exact regulation of the
proteolytic generation of CST and PST remains to be elucidated,
but it could be coupled to metabolism via glycosylation because
hyper-glycosylation of CgA is known to lead to reduced levels
of CST (117). Thereby, the generation of CgA cleavage products
might be regulated by sugar levels and this might play a role in
progression of metabolic diseases, as for instance the increased
blood glucose levels in T2DM might promote glycosylation of
CgA.

CST Regulates Immune Homeostasis
CST contributes to the defense against infections in several ways
(76, 77, 118). An initial study utilized 15 amino acids from
the N-terminal end of bovine CST or cateslytin to demonstrate
their antimicrobial activities (76). First, CST can directly act
on invading microbes, as CST can penetrate the membrane of
bacteria and fungi. At relatively high concentrations (> µM)
it thereby directly can impair the growth of fungal pathogens
(76). Moreover, CST can induce lysis of bacteria and helps
to protect against infections following skin injuries in mice
(32). Second, at least in vitro, CST can result in activation of
neutrophils and mast cells which contribute to innate immune
responses to infections (76–78, 118, 119). These effects may be
restricted to local high CST concentrations, whereas systemic
anti-inflammatory effects of CST have been best described in
autoimmune diseases (Figure 2).

In a colitis mouse model, intra-rectal injections with CST
resulted in decreased serum levels of the acute phase reactant
C-reactive protein (CRP) (78, 120) and suppressed activity of
myeloperoxidase (MPO), which is a marker for granulocyte
infiltration (78). As a result of these injections, the tissue
architecture of the colon improved (78, 121). Moreover,
in atherosclerotic mice (apolipoprotein E-deficient mice),
intraperitoneal injection followed by continuous subcutaneous
CST infusion significantly retarded atherosclerotic lesions by
40% in the entire surface area of the aorta (36). In both
colitis and atherosclerosis models, the prevalence ofmacrophages
and monocytes in inflamed tissues was reduced following
administration of CST (36, 78, 121), thereby supporting the anti-
inflammatory effects of CST. In DIO mice, the intra-peritoneal
injection of CST inhibited the infiltration of monocytes in
the liver and reduced CC-chemokine ligand 2 (CCL2)-induced
chemotaxis of peritoneal macrophages (75). The molecular
mechanisms by which CST affects monocyte and macrophage
migration are still unclear. One possibility is that CST directly
affects leukocyte migration. This is shown for monocytes,
although in this case already low concentrations of CST (nM)
promoted migration in an in vitro chemotaxis assay (122).
The reasons underlying this discrepancy between in vitro and
in vivo experiments is unclear, but could be due to CST
affecting other chemokines (such as CCL2) present in the in
vivo situation. Moreover, CST is also pro-angiogenic (64, 85)
which might reduce its anti-inflammatory effect when present
on its own. Another possibility is that CST affects the integrins
that affect leukocyte extravasation. This possibility is supported
by the finding that CST can reduce expression levels of the
integrin ligands intracellular adhesion molecule 1 (ICAM-1) and

vascular CAM-1 (VCAM-1) in endothelial cells, which correlate
with lymphocyte extravasation (36). Finally, CST might reduce
monocyte infiltration in inflammatory tissues by lowering the
production of pro-inflammatory cytokines and chemokines by
macrophages due to altered macrophage differentiation (75, 78).

Considering the effects of CST treatment on THP-1 cells
(a human monocyte cell line), it seems that CST does not
affect the overall differentiation of monocytes to macrophages.
This was shown by consistent expression of the macrophage
marker CD68 by THP-1 cells under CST treatment. However,
CST steers the polarization of differentiation into less pro-
and more anti-inflammatory phenotypes (36). CST treatment
of THP-1 derived macrophages resulted in elevated levels
of anti-inflammatory macrophage markers (mannose receptor
C-type 1, (MRC1)) and reduced levels of pro-inflammatory
macrophage markers (macrophage receptor with collagenous
domain, (MARCO)) (36). Additionally, the gene expression
levels of the pro-inflammatory macrophage markers inducible
nitric oxygen synthase (iNOS) and monocyte chemoattractant
protein 1 (Mcp1) were reduced upon intra-rectal injection of
CST in a reactivated colitis mouse model, as well as in vitro
in LPS stimulated peritoneal and colon macrophages (78, 121).
In both the mouse model and in vitro, CST treatment resulted
in decreased levels of pro-inflammatory cytokines (IL-6, IL-1β,
TNF-α) (78, 121). In the reactivated colitis mice model, CST
promoted expression of several anti-inflammatory genes (IL-
10, Arg1, and Ym1) of the macrophages in the colon (121).
Moreover, a reduction of pro-inflammatory gene expression
(TNF-α, F4/80, Itgam, Itgax, Ifng, Nos2, and Ccl2) was detected
in isolated Kupffer cells and monocyte derived macrophages of
DIO mice after intra-peritoneal injections with CST, whereas
levels of anti-inflammatory genes were increased (IL-10, Mgl1,
IL-4, Arg1, and Mrc1) (75). These results could be confirmed in
isolated macrophages treated in vitro with CST (75). In the DIO
mouse model, intra-peritoneal injections with CST also reduced
plasma levels of pro-inflammatory cytokines and chemokines
(TNF-α, INF-γ, and CCL2) (75). Taken together, these findings
indicate that CST shifts macrophage differentiation from a
pro- to a more anti-inflammatory phenotype. Since adipose
tissue macrophages (ATMs) have antigen-presenting capacities
this shift could influence the adaptive immune response (123).
Interestingly, CD8 deficient mice show a decrease in macrophage
infiltration and adipose tissue (124), suggesting that CD8+ T cells
infiltration precedes macrophage accumulation in inflammation.
So, CST reduces inflammation, macrophage infiltration and
might even influence the adaptive immune response by affecting
Treg infiltration and decreasing CD8+ T cell infiltration, but that
would need to be validated in future experiments.

Although it is increasingly clear that CST exerts anti-
inflammatory effects on macrophages, the underlying
mechanisms are still largely unknown. A key open question is to
which receptor CST binds to exert its effect. This could either be a
plasmamembrane receptor as well as an intracellular target, since
CST can penetrate the cell membrane of neutrophils (76, 77).
Another question is which signaling pathways are influenced by
CST. Based on experiments with inhibitors in mast cells, CST
treatment leads to cellular activation by mobilizing intracellular
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FIGURE 2 | Model of the suppressive effects of CST on inflammation. (A) Inflammatory state. High plasma levels of CRP (yellow) are present in an inflammatory state.

Due to the presence of chemokines (CCL2) and upregulation of integrin ligands [ICAM-1 (green) and VCAM-1 (blue)] on the endothelial cells (orange), increased

monocyte (purple) infiltration is present at the inflammation site. An inflammatory environment (red) is created by the upregulation of pro-inflammatory markers (F4/80,

Itgam, Itgax, NOS2, MARCO, iNOS, MCP1) in macrophages (blue). The production of inflammatory cytokines is also increased (TNF-a, IL-1β, IL-6, IFN-γ) and

infiltration of CD8+ T cells occurs. (B) CST treated state. Treatment with CST (light blue) results in lower levels of circulating CRP (78, 120) and reduced expression of

integrin ligands (36). Monocyte infiltration is reduced (36, 75, 78, 121) and macrophages are polarized toward an anti-inflammatory phenotype, characterized by

upregulation of anti-inflammatory markers [MRC1, ARG1, YM1, Mg11, Mgl2, Clec7a (36, 75, 121)] and increased production of IL-10 and IL-4 (75, 121). Moreover,

expression of pro-inflammatory genes and cytokines are reduced (36, 75, 78, 121). There will be no infiltration of CD8+ T cells and Tregs might be present. Together,

this contributes to an anti-inflammatory environment (green) and improved tissue architecture (36, 78, 121).

Ca2+ and inducing the production of pro-inflammatory
cytokines/chemokines (GM-CSF, CCL2, CCL3, and CCL4) via
a mechanism possibly involving G-proteins, phospholipase C
and the mitogen-activated protein kinase/extracellular signal-
regulated kinase (ERK) (119). However, it is unknown whether
these pathways are also responsible for the anti-inflammatory
signaling in macrophages by CST.

CLINICAL IMPLICATIONS OF CST

Given its roles in metabolic regulation and immune homeostasis,
CST has potential clinical applications as a diagnostic marker and
even as a therapeutic target. For example, lower levels of CST
have been reported in the blood of patients suffering fromT2DM,
suggesting that it might be a diagnostic marker for this disease
(75, 95, 98). However, it might be more useful to study CST
levels relative to other cleavage products of CgA, considering that
some of these cleavage products counteract the activities of CST.
For instance, PST exerts opposing effects on insulin sensitivity
and glucose metabolism compared to CST (58), and increased
levels of PST can contribute to T2DM (41). The observed lower
levels of CSTmight well be caused by dysregulation of proteolytic
processing of CgA (98), since this could result in a higher
ratio of PST to CST. Indeed, an altered processing of CgA has
been observed in the microenvironment of tumors. Here CgA
cleavage products lead to proangiogenic activity, as cleavage of
the N- and C-terminal regions of CgA can activate antiangiogenic
(vasostatin) and proangiogenic sites (CST), respectively (1).
Further supporting the notion that CgA and its cleavage products

can be diagnostic markers for various diseases, is that elevated
levels of CgA have been detected in the plasma of patients with
neuroendocrine tumors (25), hypertension (99, 100) and various
inflammatory diseases, such as RA (6, 101, 102), SLE (6), IBD
(53, 54, 103–105) as well as T1DM and T2DM (62, 106–109).
However, not all assays used in the aforementioned studies allow
to discern full-length from proteolytically processed CgA (125)
and it would be very interesting to compare this to levels of
unprocessed CgA and its cleavage products.

As described above, studies in mouse disease models have
indicated that CST can be used as a therapeutic agent for
treatment of various diseases, such as colitis, atherosclerosis
and diabetes (42, 75, 78, 98, 121, 125). In particular in T2DM,
CST is a promising drug candidate, since it basically targets
all characteristics of T2DM and modulates both inflammation
and metabolism by lowering blood glucose levels, improving
insulin sensitivity and secretion as well as by reducing
systemic inflammation (3, 126). Especially the ability of CST
to shift macrophage polarization toward an anti-inflammatory
phenotype makes it a strong therapeutic candidate for a range
of inflammatory diseases, such as chronic inflammation (gastritis
and colitis), auto-immune diseases (RA and SLE), hypertension,
cancers and even inflammation-induced tumor metastasis (9, 25,
127).

CONCLUDING REMARKS

As discussed in this review, CST can decrease inflammation
by reducing immune infiltration in inflamed tissues and
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altering macrophages differentiation into an anti-inflammatory
phenotype (42, 75, 78, 98, 121, 125). These effects are
already observed at concentrations in the nM range, which
corresponds to physiological levels of circulating CST (9).
By lowering the production of pro-inflammatory cytokines,
CST may suppress inflammatory immune responses and/or
might promote the dissolvement of inflammation. As a result,
CST could prevent chronic states of inflammation and inhibit
exaggerated inflammatory responses normally leading to tissue
damage. Although CST exerts primarily anti-inflammatory
effects, other cleavage products of CgA have opposing pro-
inflammatory effects. Disbalances in the levels of circulating CgA-
derived peptides might therefore contribute to various diseases
(3). Detection and distinguishing of CgA cleavage products
with current ELISA-based assays are imperfect, requiring
more sensitive mass spectrometry-based assays instead. The
mechanism by which CST (and other CgA cleavage products) is
removed from the circulation remains unknown; amongst others,
its receptor-binding partners need to be identified for instance
by immune precipitation followed by proteomics. These data are
required to fully understand the effects of CST and other CgA
cleavage products.

Due to their effects on immune homeostasis, CST and other
CgA-derived peptides are promising targets for diagnosis and
therapy of diseases with an inflammatory component, such as
diabetes, cancer and RA. A caveat is that almost all current studies

on CgA have been conducted in mice and rats. Translating the
findings from rodent to man will be essential and will help
understanding and designing future diagnostic and therapeutic
strategies.
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