
 

 

 University of Groningen

Local and Hierarchical Refinement for Subdivision Gradient Meshes
Verstraaten, T. W.; Kosinka, J.

Published in:
COMPUTER GRAPHICS FORUM

DOI:
10.1111/cgf.13575

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Verstraaten, T. W., & Kosinka, J. (2018). Local and Hierarchical Refinement for Subdivision Gradient
Meshes. COMPUTER GRAPHICS FORUM, 37(7), 373-383. https://doi.org/10.1111/cgf.13575

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 13-11-2019

https://doi.org/10.1111/cgf.13575
https://www.rug.nl/research/portal/en/publications/local-and-hierarchical-refinement-for-subdivision-gradient-meshes(06bb9a0f-4742-4bb8-afde-1db222ede3a0).html


Pacific Graphics 2018
H. Fu, A. Ghosh, and J. Kopf
(Guest Editors)

Volume 37 (2018), Number 7

Local and Hierarchical Refinement for Subdivision Gradient Meshes

T. W. Verstraaten1 and J. Kosinka1

1Bernoulli Institute, University of Groningen, Nijenborgh 9, 9747 AG Groningen, The Netherlands

Figure 1: From the left: An initial, level 0 design of a butterfly model. Its mesh consists of only nine polygons. The model edited at several
levels (up to level 4) via local refinement of geometry and/or colour. Half of the butterfly mesh at level 4. The overall shape of the model is
adjusted at level 0; the refinements are expressed in local frames tied to the mesh, and thus follow adjustments of the coarse mesh naturally.
The mesh can then be again edited at finer levels, adding more detail (lower left wing). At any level, colour can be assigned to a vertex as a
whole, or to any of its segments wedged between two incident edges to introduce sharp colour transitions (Method 2).

Abstract
Gradient mesh design tools allow users to create detailed scalable images, traditionally through the creation and manipulation
of a (dense) mesh with regular rectangular topology. Through recent advances it is now possible to allow gradient meshes to
have arbitrary manifold topology, using a modified Catmull-Clark subdivision scheme to define the resultant geometry and
colour [LKSD17]. We present two novel methods to allow local and hierarchical refinement of both colour and geometry for
such subdivision gradient meshes. Our methods leverage the mesh properties that the particular subdivision scheme ensures.
In both methods, the artists enjoy all the standard capabilities of manipulating the mesh and the associated colour gradients at
the coarsest level as well as locally at refined levels. Further novel features include interpolation of both position and colour
of the vertices of the input meshes, local detail follows coarser-level edits, and support for sharp colour transitions, all at any
level in the hierarchy offered by subdivision.

CCS Concepts
•Computing methodologies → Graphics systems and interfaces; Parametric curve and surface models;

1. Introduction

Gradient meshes are a powerful vector graphics primitive for cre-
ating scalable illustrations. Traditional gradient meshes are ren-
dered as bicubic (Ferguson) patches over a regular rectangular
mesh, the vertices of which are assigned colours by the user; see
e.g. [SLWS07,BLHK18]. Clearly, the necessity of a regular rectan-
gular mesh for bicubic patches serves as a severe restriction on the
artist designing the mesh and thus also the final image.

Through recent advances it is now possible to create gradient
meshes of arbitrary manifold topology [LKSD17, SL17]. The core
idea behind these subdivision gradient meshes is the use of subdi-
vision surfaces to define the emergent colour surface. Starting from

a user defined mesh, a colour surface is produced by applying a
single modified ternary subdivision step and then proceeding with
Catmull-Clark subdivision [CC78]. This ensures C2 colour surfaces
almost everywhere. This method allows artists to include faces and
vertices of arbitrary valency and produces a well-defined colour
surface provided the faces are convex. The same convexity condi-
tion applies also to traditional gradient meshes.

The subdivision gradient mesh tool allows for more flexibility
than the traditional gradient meshes. However, when the user wants
to locally add more detail to their mesh, this has so far been possible
only in the strict setting of regular rectangular meshes [BLHK18].
Although the authors of [LKSD17] mention hierarchical editing as

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI: 10.1111/cgf.13575



T.W. Verstraaten & J. Kosinka / Local and Hierarchical Refinement for Subdivision Gradient Meshes

enabled via subdivision, their method provides only the naive ap-
proach offered by all subdivision schemes and it does not preserve
detail when a coarser level is edited and does not, in general, inter-
polate colour at refined levels.

We focus on facilitating local editing at any level in the hierarchy
that ensures preservation of local detail; see Figure 1. The main
contributions of this paper are:

• We present two novel methods that allow for local and hierar-
chical refinement in subdivision gradient meshes. Both methods
ensure interpolation of both position and colour.
• We design a method for storing the refinement of geometry in lo-

cal coordinate frames, thus preserving details when coarser lev-
els are (re)edited.
• We enrich subdivision gradient meshes by allowing sharp colour

transitions at any level in the hierarchy.

We start by reviewing relevant related work (Section 2). To sim-
plify the exposition of our methods, we first present our ideas in
the more accessible univariate case (Section 3) and then move on
to the full bivariate case (Section 4). We then present two meth-
ods for hierarchical subdivision gradient mesh editing: Method 1
(Section 5) is based on control vectors [KSD15], which allows for
adding details via special blending functions that have to be con-
structed. Method 2 (Section 6) relies on direct colour adjustment
at any level in the hierarchy, and in contrast to Method 1 supports
sharp colour transitions. We then showcase and discuss our results
(Section 7) and conclude the paper (Section 8).

2. Related work

The (traditional) gradient mesh tool first appeared in Adobe Il-
lustrator as the ‘Mesh object’ [Ado98], and is now available,
in slightly different forms [BLHK18], also in CorelDRAW and
Inkscape. All these implementations rely on a regular grid of
quadrilateral patches, rendered as Ferguson or Coons bicubic
patches. Although very popular among artists, this traditional gra-
dient mesh suffers from two major limitations that may hinder its
usability and expressive power: the restriction to regular rectangu-
lar arrays and the lack of support for local refinement.

The first restriction, concerning topology, has been ad-
dressed and alleviated by employing either triangular Bézier
patches [XLY09], or the concept of Loop subdivision sur-
faces [Loo87] which naturally supports meshes of arbitrary man-
ifold topology [LHFY12, ZZW14]. Subdivision surfaces have also
been used in the shading curve primitive [LTKD15]. More recently,
[LKSD17] showed that colour interpolation can be achieved by
using a modified ternary subdivision step before proceeding with
Catmull-Clark subdivision to produce the limit colour surface. We
build on this work by adding support for geometry interpolation and
sharp creases at any level in the hierarchy arising via subdivision.

Mathematically exact and local refinement for traditional gradi-
ent meshes has been addressed recently in [BLHK18], lifting the
limitation of global refinement. Our approach offers a similar type
of local refinement, but based on subdivision. To ensure local edit-
ing and preservation of detail, pioneered in [FB88] in the context of
hierarchical B-splines, we take advantage of the concept of control
vectors [KSD15] and encode hierarchical edits in local frames.

Further details on gradient meshes can be found in the sur-
vey [BB13], which also discusses diffusion curves [OBW∗08,
FSH11], a different vector graphics primitive and a popular alter-
native to (extended) gradient meshes. Our contribution focuses on
gradient meshes, but we borrow the idea of sharp colour transitions
from diffusion curves and allow them in our flexible primitive.

3. Preliminaries: the univariate case

We start by presenting our approach to local refinement of geome-
try and colour in the simpler, univariate setting. Consider the sim-
plified case of a parametrised (colour) curve S(t) = ∑

N
i=1 Bi(t)pi,

where pi are (colour) control points. We assume for the mo-
ment that S has only the red colour channel r, i.e., that
S(t) = [x(t),r(t)]>, where x stands for position. We make no as-
sumptions on the shape of the Bi(·). We investigate the idea of basis
enrichment by the use of control vectors as detailed in [KSD15]. To
that end, we define a refined colour curve S̃(t) via

S̃(t) =
N

∑
i=1

Bi(t)pi +
M

∑
j=1

f j(t)c j. (1)

In this context, the c j are to be understood as control vectors in
that they do not specify a position in space but rather a displace-
ment. The f j are blending functions that we need to specify. In this
manner, c j = 0 for all j guarantees that S(t) = S̃(t), i.e., the original
curve is recovered if the control vectors are set to zero. This method
is therefore useful for users as adding control vectors initialised to
0 leaves the curve undisturbed until the control vectors are explic-
itly altered. We take a closer look at the case M = 1 to see what this
idea offers and how to pick the new basis function f (t) := f1(t).

Consider a colour curve S(t) as shown in Figure 2, left, and sup-
pose for ease of exposition that it is defined for t ∈ [0,1]. We want to
create a new curve that has some additional detail around t0 ∈ (0,1)
that can be set using a control vector c = [cx,cr]

>. In particular, we
want to create a new curve S̃(t) such that S̃(t0) = S(t0)+c, so that c
specifies exactly the displacement from the original curve at t = t0,
see Figure 2, right. We can do this via Equation (1) provided that
we make an appropriate choice for f (t). It is clear that the treat-
ment of colour and position should be different as the latter is not
bounded while the former has to stay within the gamut [0,1]. Thus,
Equation (1) only makes sense if we set f to be a matrix of the form

f (t) =
[

fx(t) 0
0 fr(t)

]
.

3.1. Refinement of geometry

The expression for the refined x-component is given by

x̃(t) = x(t)+ fx(t)cx.

As is discussed in [KSD15], fx can be chosen from a wide selection
of possible functions that satisfy fx(t0) = 1 and fx(0) = fx(1) = 0.
In our context, the following set of conditions gives pleasing re-
sults. Let b(·) be any smooth basis function b : [0,1]→ [0,1] that
attains its only maximum at b(t0) = 1 and its only two minima at

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

374



T.W. Verstraaten & J. Kosinka / Local and Hierarchical Refinement for Subdivision Gradient Meshes

Figure 2: The influence of a control vector on a colour curve S.
Left: A univariate colour curve S = [x(t),r(t)]>. Right: The colour
curve S̃ after dragging a point to a new position. The original curve
is shown in black. Notice that the refinement via a control vector
has local support and is interpolated.

b(0) = b(1) = 0. Many such functions exist and we will discuss
appropriate choices later on. Then the refinement of x is done via

x̃(t) = x(t)+b(t)cx

by simply using fx(t) = b(t). This small set of requirements on b(·)
ensures that x̃(t0)= x(t0)+cx, and that x̃(0)= x(0) and x̃(1)= x(1).

One of the main advantages of the control vector approach is
that the refinement of position can be expressed in a local frame, as
we show in Section 4.2. That is, when the user alters the original
(coarse) geometry, the refinement in position is dragged along with
it as it is expressed via the displacement cx.

3.2. Refinement of colour

We now consider the r-component of Equation (1), i.e.,

r̃(t) = r(t)+ fr(t)cr.

In our setting, we set the following conditions on r̃(t):

1. r̃(t0) = r(t0)+ cr. This amounts to requiring that fr(t0) = 1.
2. The support of fr is (0,1). This ensures that r̃(0) = r(0) and

r̃(1) = r(1) and that the refinement is local.
3. 0 ≤ r̃(t) ≤ 1. This is exactly the requirement that the newly

formed colour curve does not leave the gamut.

The value of cr is constrained to lie in the interval
[−r(t0),1− r(t0)], so that Conditions 1 and 3 do not conflict.
Unlike in the case of geometry, we cannot use fr(t) = b(t) for
colour refinement. Indeed, as b′(t0) = 0, we would have that
r̃′(t0) = r′(t0), which could leave the gamut in the reasonable
scenario with r′(t0) 6= 0 and cr = 1− r(t0). A suitable function r̃(t)
satisfying all three conditions is given by

r̃(t) =

r(t)+ 1−r(t)
1−r(t0)

b(t)cr if cr ≥ 0,

r(t)+ r(t)
r(t0)

b(t)cr if cr < 0.
(2)

The appearance of 1− r(t) and r(t) multiplying b(t) is not surpris-
ing, as these functions measure the admissible amount that we can
deviate from r(t) in the cases cr ≥ 0 and cr < 0, respectively.

3.3. Choosing the blending function

The choice of b(t) is important as it lies at the heart of the refine-
ment of both colour and position. We choose a b(t) that is linked
to the underlying mesh. Following [LKSD17], each knot interval is

Figure 3: The different cubic B-spline curves (generated
by subdivision) over T using the non-zero control values
[1− s,1+ s/2,1− s]. Red: s = 0; blue: s = 0.4; green: s = 0.8.

uniformly subdivided into three by a ternary step by inserting two
knots into it, and these are then uniformly subdivided by a binary
step, resulting in seven knots in total, see Figure 3, collected into a
knot-vector T.

It is now simple to define a function b(t) satisfying the require-
ments from the previous section via uniform cubic subdivision, i.e.,
the univariate version of Catmull-Clark subdivision. The local knot
vector T supports three uniform cubic B-splines, and their sum is
exactly the b(t) we are after. Expressed in terms of subdivision, we
associate the middle three knots in T with the value of one, all other
control values are set to zero; see the red graph in Figure 3. Gen-
erating b(t) can, after the two initial steps, be done using binary
uniform cubic subdivision with the mask [1,4,6,4,1]/8. As these
blending functions are generated in exactly the same manner as the
original colour curve, their implementation is straightforward.

The shape of b(t) determines how large the effective influence of
c is around t = t0, i.e., the middle knot of T. As b(t) may be quite
‘blunt’ at its maximum, we offer the user control over its shape by
changing the control values that generate it. Any triple of values
[1− s,1+ s/2,1− s] produces a b(t) that attains a maximum of 1
at the middle knot and is supported on T. This follows from the
limit stencil for uniform cubic subdivision, which reads [1,4,1]/6.
We have to ensure that s ∈ [0,1) to avoid several maxima or nega-
tive values. Examples are shown in Figure 3. Clearly, increasing s
creates a more pronounced peak so that finer detail can be added.

We remark that increasing s has the effect of producing colour
values that may be outside the gamut for finitely many subdivision
steps, but in the limit, the gamut will be respected at all vertices. In
practice, this means that colours should be projected to their limit
values using the limit stencil, before rendering a pixel-dense mesh.

3.4. Hierarchical refinement

It is possible to extend the presented approach in a hierarchical
manner, i.e., to be able to add finer detail on top of previously added
detail. As binary subdivision proceeds, the six knot-intervals in T
are split into twelve. The first or second six of these can be used to
produce a basis function b1(t) in a manner completely analogous
to b0(t) := b(t) to provide finer detail than could be achieved us-
ing b0(t). This can be continued as desired to produce bi(t), where
bi+1(t) has half the support of bi(t). The final colour curve S̃ is then

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

375



T.W. Verstraaten & J. Kosinka / Local and Hierarchical Refinement for Subdivision Gradient Meshes

T

g
M M0

Figure 4: The ternary subdivision step T : M̃ 7→ M0. Two new
vertices are placed along each edge, and 2n+1 new faces are cre-
ated for each face of valency n. All newly created faces have va-
lency 4, except for the centre face which inherits its valency from
the original face.

defined by the recurrence relation:

S0 : = S,

Si+1 : = Si +∑
j

fi, jci, j, for i = 0, . . . l−1,

S̃ : = Sl .

Here, the fi, j are the basis functions at level i, defined as in Sec-
tion 3.1 or in Section 3.2 for geometry or colour, respectively. After
each step, Si is a colour curve that stays within the gamut. Thus, S̃
is a well defined colour curve. In this formulation, the coarse detail
is added first and finer detail is added later.

We are now ready to generalise these ideas to the bivariate case
of subdivision gradient meshes of arbitrary manifold topology.

4. Preliminaries: the bivariate case

Before presenting our two methods for local refinement of subdi-
vision gradient meshes, we lay out the necessary terminology and
mathematics common to both methods.

A meshM= (V,E,F) is determined by a set of vertices V , a set
of edges E ⊂ {(vi,v j)∈V ×V | i 6= j}, and a set of faces F . We as-
sume it is planar and of manifold topology (also called connectivity
or combinatorics). Additionally, for a gradient mesh, denoted M̃,
we have a set of colour gradient vectors G. These gradient vectors
are assigned to each pair (vi,(vi,v j)) ∈ V × E. That is, for each
vertex, a colour gradient vector is associated to each edge incident
with that vertex. We denote by Rm

v,M the m-ring neighbourhood of
a vertex v in the meshM, and we drop the subscriptM when no
confusion is likely to arise.

We outline here the method put forward in [LKSD17] to allow
for arbitrary manifold topology gradient meshes. As noted earlier,
a ternary subdivision step is initially performed on the gradient
mesh M̃, which also consumes the colour gradients and produces
a finer mesh, as illustrated in Figure 4. We denote this operator as
T : M̃ 7→M0. Then we define a sequence of increasingly finer and
finer meshesM0,M1, . . ., whereMi+1 = CMi for i = 0,1,2, . . .
and C is the Catmull-Clark subdivision operator. We then create a
colour surface over M̃ by computing Ml = Cl(TM̃) and using
e.g. bilinear interpolation inside all faces or subdividing until the
mesh is pixel dense for rendering.

M1 M1 with R1
pi τM1

Figure 5: Left: A part ofM1 arising from a quadrilateral face in
M̃. Middle: Division of the vertices into disjoint one-ring neigh-
bourhoods: the vertices τ(CM̃) are shown as coloured squares and
the sets R1

pi are shown as disks of the appropriate colours. Right:
The vertices τ(CM̃) are connected into the mesh τM1.

4.1. Topology of the involved meshes

The topology of the mesh that arises after a number of subdivision
steps turns out to be important. We will make extensive use of:

Lemma 1 Consider a topologically manifold gradient mesh M̃.
Then the two meshes

M1 :=CTM̃ and TCM̃

have identical topology. That is, as far topology is concerned, T and
C commute. Notice that for the ternary step we need information on
the colour gradients. We are however only interested in the arising
topology so here we neglect the colour gradient information.

A proof of Lemma 1 is given in the supplementary material. We
denote topological equivalence via

M1 top
' TCM̃.

Note, however, that the two operators do not commute in terms of
the resultant colour surface as the T operator creates flat colour
spots at all vertices.

The following corollary follows immediately:

Corollary 2 For all k ≥ 0 and 0≤ p≤ k, it holds that

Mk :=CkTM̃
top
' CpTCk−pM̃.

In particular,Mk top
' TCkM̃.

As the topology ofMk is the same as that of TCkM̃, there exists a
natural injection τ mapping the vertices in CkM̃ to the vertices in
Mk. This injection is defined by associating each vertex in CkM̃
to the vertex in Mk created by the vertex subdivision stencil of
T . Observe that T creates disjoint one-ring neighbourhoods around
each vertex in a mesh. Thus we have the following:

Lemma 3

R1
pi,Mk ∩R1

p j ,Mk =

{
∅ if i 6= j,
R1

pi,Mk otherwise,
(3)

for all pi and p j in τ(CkM̃).

This is illustrated in Figure 5, and leads us to the following:

Definition 4 For k ≥ 0, we define the set of R1-separated vertices
at level k to be the set of all vertices in τ(CkM̃). We call these

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

376



T.W. Verstraaten & J. Kosinka / Local and Hierarchical Refinement for Subdivision Gradient Meshes

p

~p

e1

e2 p

~p

φ

α

e2e1

Figure 6: Expressing refinement of geometry in a local frame. A
vertex p is displaced to p̃, lying in an incident sector defined by
e1 and e2. Left: The edges e1 and e2 can be used to store the re-
finement ∆p = p̃− p as ae1 + be2. Right: The displacement can
be locally stored as the angle fraction φ/α and the scaled length
‖p̃−p‖2/

√
‖e1‖2‖e2‖2 of the displacement.

vertices simply R1-separated vertices when there is no confusion
about the level of these vertices.

Note that the set of R1-separated vertices at level 0 is the set
of images of the vertices in M̃ under the vertex subdivision stencil
of T . We can connect the vertices in τ(CkM̃) into a mesh by simply
preserving the connectivity of CkM̃. We denote the resultant mesh
by τMk. Notice, crucially, that τMk consists of a subset of the
vertices inMk =CkTM̃.

We have described the initial ternary step in terms of topology.
Regarding geometry, it is a modified linear ternary step: the posi-
tions of the original vertices are unchanged, the new edge points
play the role of colour gradient handles, and the inner face points
are positioned using bilinear interpolation [LKSD17, Section 4.3].

Editable vertices: We must make a decision on which vertices
we allow the user to edit, in terms of both position and colour, at
each refinement level. That is, we must define how to constructRk,
the set of editable vertices at level k. We let Rk be the set of R1-
separated vertices at level k. That is, the set of vertices in τ(Mk).
Consequently, at level k ≥ 0, editable vertices have pairwise dis-
joint one-ring neighbourhoods by Lemma 3.

4.2. Local representation of geometry refinement

When a colour is assigned to a vertex (of any level), this colour is
to be interpolated in the limit. Therefore it makes sense to store the
colour component simply as the colour chosen by the user.

The geometry component of a vertex at level zero is simply
stored in global coordinates. However, when the position of a
higher-level vertex is adjusted, we would like to store it as a dis-
placement. In this manner, translating the level 0 mesh translates
the refined positions also. Furthermore, it is natural to store the dis-
placement not in global coordinates but rather in some local frame.
For this we need a method to map refinements from global coor-
dinates to refinements in some local coordinate frame, as well as
the inverse map. A suitable representation should be invariant un-
der translation, rotation and uniform scaling of the level 0 mesh.
We discuss two approaches to achieve this.

Approach A: For a vertex p of valency n, the parametric do-
main of the colour surface is logically divided into n sectors, each

bounded by the infinite rays given by two consecutive edges inci-
dent with p. The refinement of geometry updates the position of p
to a point p̃ := p+∆p, lying in one of these sectors. We denote
the edges bounding this sector by e1 and e2. We can express the
displacement of p locally via

∆p = ae1 +be2; (4)

see Figure 6, left. By taking inner products with e1 and e2 we obtain

[
∆p · e1
∆p · e2

]
=

[
‖e1‖2

2 e1 · e2
e2 · e1 ‖e2‖2

2

][
a
b

]
.

This can readily be solved for a and b provided that e1 and e2 are
linearly independent. We can also easily convert back from local to
global coordinates by using Equation (4).

Approach B: We let e1 and e2 be as in Approach A. They sub-
tend an angle α with each other. The vector ∆p makes an angle φ

with e1. We then store the pair

(φ̃, ρ̃) :=
(

φ/α,‖∆p‖2/
√
‖e1‖2‖e2‖2

)
as the local coordinates of the displaced vertex. We can again easily
invert this operation to find the global coordinates of ∆p. This is
illustrated for a boundary vertex in Figure 6, right.

Comparison: When the displaced vertex p lies on the boundary
of the mesh, Approach A is less natural than Approach B. Indeed,
at the boundary, it is likely that after some subdivision steps the
two outgoing boundary edges of a vertex have nearly opposite di-
rections, making the linear system in Equation (4) numerically un-
stable. On the other hand, Approach A offers full affine invariance.

Both approaches require us to store an index designating the sec-
tor around the vertex where the refinement is defined, and two ad-
ditional floating point numbers, so the storage cost is constant and
small. This constitutes a significant improvement when compared
to the exponential blow up of storage space required when storing
the subdivided mesh to gain more detail. The local representations
may be archived by using for instance double indices, indicating
the chosen refinement level and the vertex that is to be refined.

In our implementation, we used Approach B for boundary ver-
tices and Approach A for non-boundary vertices. It should be noted
that there is no natural ordering for the sectors around a vertex,
rather, the ordering is based on the particular implementation of
the ternary and Catmull-Clark subdivision steps. The same holds
for the choice of which bounding edge to call e1 and which to call
e2. To store these refinements, a convention needs to be established
which fixes the orderings.

5. Method 1: control vectors

The extension of the univariate technique for local refinement (Sec-
tion 3) to the full bivariate setting is mostly straightforward. The
colour surface S is now of the form

S : D→ R2× [0,1]3,

where D is the parameter space, a connected two-dimensional sub-
set of R2, and [0,1]3 represents the full RGB colour space. The
local knot vector T now becomes a local knot mesh and thus lacks

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

377



T.W. Verstraaten & J. Kosinka / Local and Hierarchical Refinement for Subdivision Gradient Meshes

Figure 7: Examples of the basis function b(u) over a pentagonal
face inM0. The grey lines show the mesh τ(M1). Far left: s = 0.
Left: s = 0.5. Right: The basis function b(u) at a boundary vertex.
Far right: A refined colour surface.

the natural ordering that we used in the univariate setting, but we
can proceed using the same ideas as before to define the blending
functions associated with control vectors.

5.1. Bivariate blending functions

On top of editable vertices, we need to define bivariate basis func-
tions b(u), again by subdivision. In other words, for refinement at
a vertex p ∈ Rk we must decide on a mesh Tp ⊂Mk over which
to define the limit function b(u). We must also decide on a choice
of control values for the vertices in Tp. We gather these values in a
vector b0 and denote the value of a vertex q ∈ Tp as b0(q).

The following setup proves convenient and natural. Following
closely the univariate setting, we let b0(q) be non-zero only for
q ∈ R1

p. The properties of Catmull-Clark subdivision then ensure
that the resultant basis function is supported over the three-ring
neighbourhood of p. By the choice of editable vertices and by
Lemma 3, we conclude that b|q = 0 for all q∈Rk \{p}. The small
support of the basis function generated in this manner allows us
to define Tp = R3

p, where b0(q) = 0 for q ∈ Tp \R1
p. This should

be understood to mean that Tp is the mesh obtained by taking the
vertices in R3

p inheriting all edges and faces.

It remains to set the non-zero control values in b0. To allow con-
trol over the shape of b(u), we follow the approach taken in the
univariate case; see Section 3.3. In order to achieve the same effect,
we first need the limit stencil of Catmull-Clark subdivision. For a
vertex p of valency n in the mesh obtained after the ternary subdivi-
sion step, its limit position p∞ is given by [HKD93, Appendix A]

p∞ =
n

n+5
p+

4
n(n+5)

n−1

∑
j=0

e j +
1

n(n+5)

n−1

∑
j=0

f j, (5)

where e j and f j are the edge- and face-connected neighbours of p,
respectively. And so to ensure that p∞ gets the value of 1, we set
all vertices in the one-ring neighbourhood of p to the value

e = e(s) = 1− ns
5
.

And e≥ 0 gives us a bound on the choice of s, namely s≤ 5
n , with

default value s = 0. The full specification of b0 over Tp = R3
p is

b0(q) =


1+ s if q = p,
1− ns

5 if q ∈ R1
p \{p},

0 otherwise.

Figure 7 shows examples of the resultant basis functions.

5.2. Refinement of colour

In full, the blending function f is now a 5× 5 matrix function and
c is a vector with five components:

f =


fx 0 0 0 0
0 fy 0 0 0
0 0 fr 0 0
0 0 0 fg 0
0 0 0 0 fb

 , c =


cx
cy
cr
cg
cb

 .
Armed with a basis function b(u) defined in the previous section,
we now look at the bivariate counterpart of Equation (2). Focusing
on the red channel, this reads

r̃(u) =

r(u)+ 1−r(u)
1−r(u0)

b(u)cr if cr ≥ 0,

r(u)+ r(u)
r(u0)

b(u)cr if cr < 0.
(6)

Analogous update relations hold for the green and blue channel.
Figure 7, far right, shows an example of a refined colour surface
with local colour refinements obtained by using Equation (6).

The control vector c must respect the bounds

−r(u0)≤ cr ≤ 1− r(u0),

−g(u0)≤ cg ≤ 1−g(u0),

−b(u0)≤ cb ≤ 1−b(u0),

to ensure that the limit surface does not leave the gamut. This is
trivial to achieve in the user interface as the user defines the final
(interpolated) colour, and not its ‘displacement’. Thus, the user is
never bothered with these bounds.

5.3. Refinement of geometry

The refinement equation for the geometry reads:

x̃(u) = x(u)+b(u)cx, (7)

where

cx = [cx,cy]
> and x(u) = [x(u),y(u)]>.

The basis function b(u) associated to a vertex p is defined through
Catmull-Clark subdivision using some initial value set b0 defined
over a mesh Tp; see Section 5.1. We define the extension of b0 to
the full meshMk, denoted by pext

0 , as

pext
0 (q) =

{
b0(q) if q ∈ Tp,

0 otherwise.

There are only finitely many values in pext
0 , so that we may choose

some ordering of them and view pext
0 as a vector. With this view-

point, we obtain pext
i by Catmull-Clark subdivision of pext

0 via

pext
i = Sk+ip

ext
i−1 for i = 1,2, . . . , (8)

where Sk+i is the subdivision matrix mappingMk+i−1 toMk+i.

We can apply the same reasoning to the positions of the vertices
inMk: we collect them in a vector xk and proceed with Catmull-
Clark subdivision

xk+1 = Sk+1xk for k ≥ 0.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

378



T.W. Verstraaten & J. Kosinka / Local and Hierarchical Refinement for Subdivision Gradient Meshes

The refinement matrix for xk+i is the same as that for pext
i in Equa-

tion (8) as xk+i and pext
i both arise from the topology ofMk+i.

We can now state the following:

Lemma 5 Consider the refinement of geometry, using Equation (7),
of the intermediate meshMk through some cx and the associated
b0 at an editable vertex. Then, the resultant colour surface is the
same as the colour surface obtained by altering the position of the
vertices inMk via

xk← xk +pext
0 cx, (9)

and proceeding with Catmull-Clark subdivision.

That is, for the purposes of refinement of geometry, we do not
need to explicitly build b(u) but can instead alter the position val-
ues in some neighbourhood of the refinement in the intermediate
mesh. Note that the result holds for the theoretical limit surface
case as well as for the practical case where a finite number of sub-
division steps is performed. A proof of the lemma is given in the
supplementary material.

Lemma 5 offers a significant simplification of the implementa-
tion of the refinement of geometry. Instead of creating several inter-
mediate meshes that need to be subdivided, we can simply change
the geometry of Mk via Equation (9) and proceed with Catmull-
Clark subdivision.

The result analogous to Lemma 5 does not hold for the refine-
ment of colour using control vectors. This is due to the appearance
of 1−r(u) (resp. r(u)) in the refinement equations. These functions
are not known at intermediate refinement stages. An alternative ap-
proach is explored in Section 6.

5.4. Position and colour interpolation

In the initial ternary step, the colour of all editable vertices v, whose
colour has been set or adjusted by the user, is copied to all the cor-
responding vertices in R1

v,M0 before proceeding with subdivision.
The subsequent Catmull-Clark subdivision then ensures that the
colour of these vertices is interpolated, as observed and exploited
already in [LKSD17]. When finer detail is added at any level k≥ 0
via control vectors as detailed in Section 5.2, the construction of
b(u) and Equation (6) ensure that the new colour of the edited ver-
tex is again interpolated. For the interpolation of the positions of
control points set at level k = 0, we exploit Equation (5). The user
specifies the position of p∞ (corresponding to p), and also the po-
sitions of e j which are effectively the colour gradient handles asso-
ciated to p. The positions of f j are determined using bilinear inter-
polation. To ensure that the surface interpolates p∞, we internally
adjust p via Equation (5) to

p =
n+5

n
p∞− 4

n2

n−1

∑
j=0

e j−
1
n2

n−1

∑
j=0

f j.

Boundary vertices are treated similarly but using the univariate
limit stencil to determine the position of p. We can use the same
approach at any higher level k > 0. As we simply edit intermediate
meshes which are not rendered and project vertices to their limit
positions before rendering, the user sees the control points at their
desired limit positions. Effectively, as far as the user is concerned,
the subdivision scheme is interpolatory in both colour and position.

Figure 8: From the left: A triangular face. Colour refinement is
applied. A sharp colour refinement is added on top of the smooth
colour refinement. Colour gradients can be altered at refined levels.

6. Method 2: intermediate adjustment

In this section we present an alternative method of changing the
emergent colour surface, this time by directly editing the colours of
vertices at specific subdivision levels. We make use of the fact that
colour is interpolated at a vertex if the surrounding one-ring neigh-
bourhood of this vertex has the same colour value. The refinement
of geometry stays the same as in Method 1 (Section 5), including
geometry refinement representation in local frames (Section 4.2)
and geometry interpolation (Section 5.4).

6.1. Colour refinement

We again use the main result of Section 4.1: In the meshMk there
exists a subset of vertices, logically associated to the topology of
CkM̃, with mutually disjoint one-ring neighbourhoods of vertices.

More precisely, the colour of a vertex p in Mk is interpolated
if all vertices in R1

p have the same colour. Therefore, if we allow
the user to assign a colour to an arbitrary number of vertices in
τ(CkM̃), we can ensure interpolation of all set colours by setting
the R1 neighbourhoods of these to the same colour values. The
condition in Equation (3) ensures that this can be done indepen-
dently; see Figure 5. This amounts to applying the result obtained
in Lemma 5 for geometry also to the refinement of colour.

Altering the position or colour of vertices in M̃ does not alter its
topology, nor does it alter the topology of Mk. As the colour re-
finement method just presented is concerned with (local) topology
of intermittent meshes, the added detail is expressed in terms of a
local frame. That is, the colour refinements are simply deformed
along with any deformations in M̃; see Figure 1.

Colour gradients: We exploited the freedom to choose the
colours of R1

p to allow for colour interpolation at p. Similarly,
we can change the position of the points in R1

p to control the
extent of the propagation of colour in global space. This is ex-
actly analogous to how the ternary step controls the propagation
of colour through colour gradients. The colour gradients around a
refined point p ∈ τ(Ck−1M̃) determine the position of the points
in R1

p ⊆Mk \ τ(Ck−1M̃); see Figure 8.

6.2. Sharp colour transitions

We can create colour surfaces having C0-continuous colour tran-
sitions at desired edges and vertices using the methods developed
in [DKT98], by using a different set of subdivision weights for el-
ements tagged as sharp. The particular set of subdivision weights

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

379



T.W. Verstraaten & J. Kosinka / Local and Hierarchical Refinement for Subdivision Gradient Meshes

Figure 9: An example of hierarchical refinement applied to a model
of a leaf. Far left: A level 0 mesh consisting of valency 3 and
valency 4 faces. Left: Level 1 refinement of colour. Right: Fur-
ther refinement of colour and geometry at level 2. Far right: The
level 2 editable mesh τ(M2). Colour refinement was performed us-
ing Method 1; see Section 5.

Figure 10: Left: A mesh of arbitrary manifold topology that rep-
resents a leek. Right: Level 1 and 2 refinement of both colour and
geometry has been applied to the original mesh using Method 2.
Sharp colour transitions are used both in the level 0 mesh and for
the refined colours, which avoids the need for layering.

for each vertex and edge are then determined by the number of ad-
jacent sharp edges and vertices. We can extend upon these ideas to
allow C−1 colour transitions across edges.

We allow the user to assign a specific colour to a vertex p for
each face incident with p. Smooth vertices are then designated by
vertices having the same colour for all incident faces. The subdivi-
sion rules treat edges that separate two different colours of a ver-
tex as sharp edges, and similarly treat vertices having more than
one colour as sharp, using the update rules of [DKT98] defined for
sharp edges and vertices.

The updated subdivision rules only change the weights used to
determine the new position and colour of vertices and do not af-
fect the topology of the created meshes. Therefore, the methods of
refinement of geometry and colour presented here still work natu-
rally with added sharpness capabilities; see Figure 8. Sharp colour
transitions are currently limited to Method 2, although it should be
possible to modify Method 1 to support this feature as well.

7. Results and discussion

In Figure 9, we show an example of the refinement of colour and
geometry at several levels using Method 1 (detailed in Section 5)
on a leaf model. Figure 10 shows an example of refinement of ge-
ometry and colour using Method 2 (detailed in Section 6) on a leek
model, showcasing sharp colour transitions, which were also used
on the maritime flag model in Figure 11. A football model, natu-
rally relying on pentagons and hexagons, is depicted in Figure 12.

Figure 11: A rendering of a maritime flag (Method 2). Top: The
level 0 mesh, consisting of faces of valencies 3, 4, 5 and 6 as well
as a hole. Left: Level 1 refinement is applied to add detail. Right: A
close-up of the level 2 mesh. All level 0 capabilities (setting colour,
position and gradients, and adding sharp colour transitions) are
available at all refinement levels.

Figure 12: A rendering of a football created with Method 2. Top
left: The top mesh is the level 0 mesh used in our tool; the bot-
tom mesh is at level 1, which would have to be used as the base
mesh in traditional gradient mesh tools based on quads only. Top
middle: The football at level 0, consisting of quads, pentagons, and
hexagons. Top right: The final rendering after edits at levels up to
level 4. Bottom left: An inset of the part of the football with the
logo. Bottom right: A deflated ball modelled by editing a few ver-
tices of level 0.

The final model is also shown edited at the coarsest level to achieve
a deflation effect. In Figure 13 we show an example of a complex
design of a blackberry being locally refined. Our experimental im-
plementation can be seen in action in the supplementary videos.

7.1. Comparing Method 1 and Method 2

Both of the presented refinement methods achieve the goal of al-
lowing local hierarchical refinement of colour and geometry for
subdivision gradient meshes. Additionally, both of them support
interpolation of both position and colour at any level in the (subdi-
vision) hierarchy.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

380



T.W. Verstraaten & J. Kosinka / Local and Hierarchical Refinement for Subdivision Gradient Meshes

Figure 13: From the left: A blackberry created in our gradient
mesh tool. The arbitrary manifold topology mesh consists of faces
and vertices of several different valencies. A zoom on the stem
(level 0). Level 1 and 2 refinement of colour and geometry. Further
level 1 refinement of geometry; level 2 details follow suit naturally.

Figure 14: Left: A quadrilateral gradient mesh. Middle: Refine-
ment using Method 1. All editable vertices are set to white, except
for the middle vertex which is set to red. The colour settings of the
level 0 mesh are still visible in regions where the blending functions
take on small values. Right: Refinement using Method 2, with the
same colour settings. All colour information of the level 0 mesh is
overwritten on level 1.

Method 1, detailed in Section 5, is more general in that any basis
function satisfying a small set of conditions may be used to perform
the refinement. Although basis functions obtained through subdivi-
sion over the mesh are natural in some sense, other basis functions
may be used based on other considerations.

Method 2, presented in Section 6, allows us to modify the colour
at different refinement levels without having to store any basis func-
tions. It should be noted that this refinement method is in some
sense more invasive than Method 1, in the following way: if a user
decides to explicitly set the colours of all editable points at some
refinement level, effectively, the colour of all points in the mesh
at that step are altered. This has the effect of overriding all colour
information from previous refinement level, as well as the colours
set in the coarse mesh. In contrast, Method 1 always respects the
unrefined limit surface via Equation (6); see Figure 14. It is thus up
to the user to decide which method best suits their needs. In terms
of user interface and control, the methods are indistinguishable.

7.2. Improvements over previous methods

Due to the restrictions on traditional gradient mesh topologies, lay-
ering is often used to connect and overlay several gradient meshes,
and it is typically non-trivial to hide these transitions. The need for
such layering is greatly reduced by the increased flexibility inher-
ent in subdivision gradient meshes. Our novel refinement methods
further reduce the need for artists to use layering to circumvent the
restrictions of traditional gradient mesh tools by making the primi-
tive more flexible; see e.g. Figure 10 and Figure 15, left.

Figure 15: Left: A simple cherry model, featuring sharp colour
transitions. Traditional gradient mesh tools typically require mod-
elling this using at least two meshes/layers. Our Method 2 facil-
itates a single-mesh representation. Top middle: A simple straw-
berry model made in Inkscape with a single yellow seed added.
Top right: The face splitting required to add the detail in Inkscape
(or any traditional gradient mesh tool). Bottom middle: The same
model made in our tool. Bottom right: The level 4 editable mesh
where the colour refinement was performed. The entire editable
mesh is available to the user for editing, but no extra storage or
computation costs are incurred until a refinement is explicitly set.

Figure 16: A logo created from a single quad using Method 2. The
thin black lines are the edges of the level 4 mesh. Left: The letters
were created at level 4. Right: The logo has been deformed and
recoloured at level 0. Note how the level 4 details follow the over-
all geometry adjustment and that colour refinements are kept when
colours are edited at level 0 (or any other lower level than that of
the details).

Traditional gradient mesh tools do not provide a hierarchy of ed-
itable levels. Thus, after some detail is added to the mesh by split-
ting faces, there is no way to conveniently alter the coarse mesh
aspects that would automatically drag the detail along. In contrast,
the local representation of refinements of geometry at fine levels of-
fered by our novel methods allows the user to go back to a coarser
level and manipulate the mesh in a way that preserves the rela-
tive position of the refinements. This is shown in Figures 1 and 13.
Another clear example of the advantages of having a hierarchy of
refinement levels is showcased in Figure 16.

The fact that subdivision gradient meshes match, and go beyond,
the capabilities and expressiveness of traditional gradient mesh
tools, like that of Adobe Illustrator, was shown already in [KSD15].
But our methods go even further. The addition of a small detail re-

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

381



T.W. Verstraaten & J. Kosinka / Local and Hierarchical Refinement for Subdivision Gradient Meshes

quires splitting several faces in traditional gradient mesh tools, in-
creasing the mesh complexity. This splitting is not exact: split faces
do not leave the colour surface unchanged, with the exception of the
method of [BLHK18], which is, however, restricted to quadrilateral
faces.

In contrast, moving to the refined mesh in our tool is exact and
comes at no additional storage cost as the new vertices and con-
nectivity are determined simply by Catmull-Clark subdivision. Re-
finement of the colour of an editable vertex requires the storage
of only the index of the vertex, the refinement level, and the new
colour. One can also easily undo such refinements (by deleting the
stored triple), instead of having to merge a large set of faces back
together into the original mesh. Furthermore, due to the simultane-
ous availability of all editable vertices at a chosen refinement level,
adding several details at the same refinement level is simple and
time-efficient for the user; see Figure 1. This is shown also concep-
tually in Figure 15, right.

7.3. Limitations

There are some limitations to the methods presented here. First,
both methods do not work unless Catmull-Clark subdivision is per-
formed at least until the highest refinement level at which the user
altered the mesh. This means that the rendering of the colour sur-
face is likely more expensive than when using traditional, regu-
lar rectangular, gradient meshes, which can be rendered very effi-
ciently on the GPU. Nevertheless, even in the case of subdivision,
most of the surface is still bicubic and can be rendered efficiently as
such. And indeed, a commercial implementation could be expected
to rely on dedicated libraries, such as opensubdiv [NLMD12], as
opposed to our experimental CPU implementation.

Additionally, non-convex faces are not well suited for the meth-
ods outlined here. These give rise to colour surfaces that ‘fold over’.
The user should be aware of this and divide parts of the intended
non-convex design into several convex faces. This is possible due
to the topological freedom of our tool.

Yet another limitation is the use of a uniform subdivision
scheme, which only allows for refinement at (logically) dyadic
points. This has been identified already in [BLHK18]. The use of a
non-uniform subdivision scheme might alleviate this.

8. Conclusion

We have presented two methods of local hierarchical refinement
of the colour surface, one based on bivariate blending functions
associated to control vectors, and the other on explicitly altering
colour values at arbitrary subdivision levels. Both methods can be
used at any desired refinement level and ensure interpolation of the
chosen colour as well as position. Further, due to the use of control
vectors, finer edits follow changes performed at coarser levels.

Subdivision gradient meshes enjoy flexibility in terms of topol-
ogy. Our contribution in this area offers true hierarchical editing as
well as support for sharp colour transitions, thus offering greater
flexibility for vector graphics designers than offered by traditional
and recent subdivision gradient meshes.

8.1. Future work

The results obtained in this paper may prove useful in related areas
or even other fields. Here we give some examples.

Image vectorization: In the area of image vectorization, devel-
opments have been made that use gradient meshes as a vector prim-
itive (see e.g. [LHM09, SLWS07, PB06]), but these methods may
suffer from the same problems that designers of gradient mesh sur-
faces suffer from: The prohibitive costs and mesh complexity as
a result of local details. Using our methods one can imagine hav-
ing a level 0 layer that captures the coarse details of an image, and
capturing finer details at higher refinement levels, storing them as
refinements of the coarse mesh. Careful metrics will need to be es-
tablished, however, in order to determine which detail needs to be
stored at which refinement level.

Time-varying topology: In [DRVdP15], a novel data structure is
introduced that supports time-continuous topological events, such
as the merging and splitting of control points. Similar time-varying
topological capabilities may be feasible with the refinement tech-
niques proposed in this paper. A key property of our methods is
that the emergent colour surface stays unchanged when adding
zero control vectors to control points. These can then be smoothly
changed with respect to time. However, as these meshes are dy-
namic, one needs not only adaptive refinement, but also adaptive
coarsening, which presents an interesting future challenge.

Isogeometric analysis: Isogeometric analysis aims at integrat-
ing CAD representations of geometries and finite element type
methods to numerically approximate the solutions of PDEs over
these geometries. When simulating such PDEs, there is often a
large discrepancy in the amount of detail needed at various points of
the domain. A priori methods for determining the appropriate mesh
resolution at each location in the mesh are not always available.

In [WZHS16, KLCD16] methods to allow variable resolution at
different positions are presented based on truncated hierarchical
Catmull-Clark (THCC) subdivision surfaces. Such methods allow
a finer resolution by subdividing faces where necessary, thus cre-
ating new basis functions, and subsequently truncating these from
the surrounding coarser basis functions. Thereby we only refine
the mesh where it counts. Our method of hierarchical refinement
may provide a viable alternative to this technique. Refining a mesh
through our procedure provides locally more degrees of freedom to
accurately simulate the PDE while avoiding the need for compli-
cated and unpredictably shaped basis functions that may arise from
THCC splines. For this to be successful we will require a detailed
analysis to see how this affects error bounds and approximations at
refined levels, as well as linear independence of added functions.

Acknowledgements

This paper is based on the first author’s MSc thesis at the University
of Groningen. We would like to thank Pieter Barendrecht for his
useful insights and feedback during the development of some of
the methods presented in this paper. Also, we would like to thank
Gert Vegter and Fred Wubs for their comments and suggestions on
the original MSc manuscript. And we thank Fanna Lautenbach for
her help with the leek model in Figure 10.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

382



T.W. Verstraaten & J. Kosinka / Local and Hierarchical Refinement for Subdivision Gradient Meshes

References

[Ado98] ADOBE SYSTEMS: Adobe Illustrator 8.0 Classroom in a Book.
Adobe Press, 1998. 2

[BB13] BARLA P., BOUSSEAU A.: Gradient art: Creation and vector-
ization. In Image and Video-Based Artistic Stylisation. Springer, 2013,
pp. 149–166. 2

[BLHK18] BARENDRECHT P. J., LUINSTRA M., HOGERVORST J.,
KOSINKA J.: Locally refinable gradient meshes supporting branching
and sharp colour transitions. The Visual Computer 34, 6 (Jun 2018),
949–960. doi:10.1007/s00371-018-1547-1. 1, 2, 10

[CC78] CATMULL E., CLARK J.: Recursively generated B-spline sur-
faces on arbitrary topological meshes. Computer-Aided Design 10, 6
(1978), 350–355. doi:10.10010-4485(78)90110-0. 1

[DKT98] DEROSE T., KASS M., TRUONG T.: Subdivision surfaces in
character animation. In Proceedings of the 25th Annual Conference on
Computer Graphics and Interactive Techniques (New York, NY, USA,
1998), SIGGRAPH ’98, ACM, pp. 85–94. doi:10.1145/280814.
280826. 7, 8

[DRVdP15] DALSTEIN B., RONFARD R., VAN DE PANNE M.: Vector
graphics animation with time-varying topology. ACM Trans. Graph. 34,
4 (2015), 145. doi:10.1145/2766913. 10

[FB88] FORSEY D. R., BARTELS R. H.: Hierarchical B-spline re-
finement. ACM Siggraph Computer Graphics 22, 4 (1988), 205–212.
doi:10.1145/378456.378512. 2

[FSH11] FINCH M., SNYDER J., HOPPE H.: Freeform vector graphics
with controlled thin-plate splines. In ACM Trans. Graph. (2011), vol. 30,
ACM, p. 166. doi:10.1145/2024156.2024200. 2

[HKD93] HALSTEAD M., KASS M., DEROSE T.: Efficient, fair in-
terpolation using Catmull-Clark surfaces. In Proceedings of the 20th
Annual Conference on Computer Graphics and Interactive Techniques
(New York, NY, USA, 1993), SIGGRAPH ’93, ACM, pp. 35–44. doi:
10.1145/166117.166121. 6

[KLCD16] KANG H., LI X., CHEN F., DENG J.: Truncated hierar-
chical Loop subdivision surfaces and application in isogeometric anal-
ysis. Comput. Math. Appl. 72, 8 (Oct. 2016), 2041–2055. doi:
10.1016/j.camwa.2016.06.045. 10

[KSD15] KOSINKA J., SABIN M. A., DODGSON N. A.: Control vectors
for splines. Computer-Aided Design 58 (2015), 173–178. Solid and
Physical Modeling 2014. doi:10.1016/j.cad.2014.08.028. 2,
9

[LHFY12] LIAO Z., HOPPE H., FORSYTH D., YU Y.: A subdivision-
based representation for vector image editing. IEEE Transactions on
Visualization and Computer Graphics 18, 11 (2012), 1858–1867. doi:
10.1109/TVCG.2012.76. 2

[LHM09] LAI Y.-K., HU S.-M., MARTIN R. R.: Automatic and
topology-preserving gradient mesh generation for image vectorization.
ACM Trans. Graph. 28, 3 (July 2009), 85:1–85:8. doi:10.1145/
1531326.1531391. 10

[LKSD17] LIENG H., KOSINKA J., SHEN J., DODGSON N. A.: A
colour interpolation scheme for topologically unrestricted gradient
meshes. 112–121. doi:10.1111/cgf.12862. 1, 2, 3, 4, 5, 7

[Loo87] LOOP C.: Smooth subdivision surfaces based on triangles, Jan-
uary 1987. Department of Mathematics, The University of Utah, Mas-
ter’s Thesis. 2

[LTKD15] LIENG H., TASSE F., KOSINKA J., DODGSON N. A.: Shad-
ing curves: Vector-based drawing with explicit gradient control. In Com-
puter Graphics Forum (2015), vol. 34, Wiley Online Library, pp. 228–
239. doi:10.1111/cgf.12532. 2

[NLMD12] NIESSNER M., LOOP C., MEYER M., DEROSE T.: Feature-
adaptive GPU rendering of Catmull-Clark subdivision surfaces. ACM
Trans. Graph. 31, 1 (2012), 6:1–11. doi:10.1145/2077341.
2077347. 10

[OBW∗08] ORZAN A., BOUSSEAU A., WINNEMÖLLER H., BARLA P.,
THOLLOT J., SALESIN D.: Diffusion curves: A vector representation
for smooth-shaded images. ACM Trans. Graph. 27, 3 (Aug. 2008), 92:1–
92:8. doi:10.1145/1360612.1360691. 2

[PB06] PRICE B., BARRETT W.: Object-based vectorization for inter-
active image editing. The Visual Computer 22, 9 (Sep 2006), 661–670.
doi:10.1007/s00371-006-0051-1. 10

[SL17] SVERGJA J. K., LIENG H.: A gradient mesh tool for non-
rectangular gradient meshes. In ACM SIGGRAPH 2017 Posters (New
York, NY, USA, 2017), SIGGRAPH ’17, ACM, pp. 59:1–59:2. doi:
10.1145/3102163.3102172. 1

[SLWS07] SUN J., LIANG L., WEN F., SHUM H.-Y.: Image vectoriza-
tion using optimized gradient meshes. In ACM Trans. Graph. (2007),
vol. 26, ACM, p. 11. doi:10.1145/1275808.1276391. 1, 10

[WZHS16] WEI X., ZHANG Y. J., HUGHES T. J., SCOTT M. A.: Ex-
tended truncated hierarchical Catmull-Clark subdivision. Computer
Methods in Applied Mechanics and Engineering 299 (2016), 316–336.
doi:10.1016/j.cma.2015.10.024. 10

[XLY09] XIA T., LIAO B., YU Y.: Patch-based image vectorization with
automatic curvilinear feature alignment. In ACM Trans. Graph. (2009),
vol. 28, ACM, p. 115. doi:10.1145/1661412.1618461. 2

[ZZW14] ZHOU H., ZHENG J., WEI L.: Representing images using
curvilinear feature driven subdivision surfaces. IEEE Transactions on
Image Processing 23, 8 (2014), 3268–3280. doi:10.1109/TIP.
2014.2327807. 2

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

383

http://dx.doi.org/10.1007/s00371-018-1547-1
http://dx.doi.org/10.10010-4485(78)90110-0
http://dx.doi.org/10.1145/280814.280826
http://dx.doi.org/10.1145/280814.280826
http://dx.doi.org/10.1145/2766913
http://dx.doi.org/10.1145/378456.378512
http://dx.doi.org/10.1145/2024156.2024200
http://dx.doi.org/10.1145/166117.166121
http://dx.doi.org/10.1145/166117.166121
http://dx.doi.org/10.1016/j.camwa.2016.06.045
http://dx.doi.org/10.1016/j.camwa.2016.06.045
http://dx.doi.org/10.1016/j.cad.2014.08.028
http://dx.doi.org/10.1109/TVCG.2012.76
http://dx.doi.org/10.1109/TVCG.2012.76
http://dx.doi.org/10.1145/1531326.1531391
http://dx.doi.org/10.1145/1531326.1531391
http://dx.doi.org/10.1111/cgf.12862
http://dx.doi.org/10.1111/cgf.12532
http://dx.doi.org/10.1145/2077341.2077347
http://dx.doi.org/10.1145/2077341.2077347
http://dx.doi.org/10.1145/1360612.1360691
http://dx.doi.org/10.1007/s00371-006-0051-1
http://dx.doi.org/10.1145/3102163.3102172
http://dx.doi.org/10.1145/3102163.3102172
http://dx.doi.org/10.1145/1275808.1276391
http://dx.doi.org/10.1016/j.cma.2015.10.024
http://dx.doi.org/10.1145/1661412.1618461
http://dx.doi.org/10.1109/TIP.2014.2327807
http://dx.doi.org/10.1109/TIP.2014.2327807



