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Abstract
Objectives  We sought to explore to what extent the use of Subpopulation Treatment Effect Pattern Plot (STEPP) may help 
to identify efficient treatment allocation strategy.
Methods  The analysis was based on data from the COACH study, in which 1023 patients with heart failure were randomly 
assigned to three treatments: care-as-usual, basic support, and intensive support. First, using predicted 18-month mortality 
risk as the stratification basis, a suitable strategy for assigning different treatments to different risk groups of patients was 
developed. To that end, a graphical exploration of the difference in net monetary benefit (NMB) across treatment regimens 
and baseline risk was used. Next, the efficiency gains resulting from this proposed subgroup strategy were quantified by 
computing the difference in NMB between our stratified approach and the best performing population-wide strategy.
Results  The analysis using STEPPs suggested that a differentiated approach, based on offering intensive support to low-
risk patients (18-month mortality risk ≤ 0.16) and basic support to intermediate- to high-risk patients (18-month mortality 
risk > 0.16) would be an economically efficient treatment allocation strategy. This was confirmed in the subsequent cost-
effectiveness analysis, where the average gain in NMB resulting from the proposed stratified approach compared to basic 
support for all was found to be €1312 (95% CI €390–€2346) per patient.
Conclusions  STEPP provides a systematic approach to assess the interaction between baseline risk and the difference in 
NMB between competing interventions and to identify cutoffs to stratify patients in a health economically optimal manner.
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Introduction

Cost-effectiveness analysis supports resource allocation 
decision making by comparing the differences in costs and 
effects of alternative treatment regimens [1–4]. When such 
analyses are conducted alongside randomized controlled tri-
als (RCTs), the cost-effectiveness of the evaluated treatments 
is generally expressed in terms of population averages. This 
provides insight into which of the available treatments per-
forms best for the patient population considered. However, 
when these patients are characterized by a heterogeneous 
clinical condition, and their risk profiles are determined by 
factors like demographic variations, biometric variations, 
and co-morbidities, there may be considerable variation in 
response. In fact, the likelihood of subpopulations for whom 
response to one or the other treatment is obscured may be 
substantial [5–8]. Such differences among patients may also 
lead to systematic variation in resource use and costs, which 
could be another reason why one of the other treatments per-
forms better in specific subpopulations [2, 6]. Acknowledg-
ing patient heterogeneity in health economic evaluation has 
therefore considerable potential in more efficient resource 
allocation decision-making [5, 8–10].

A recently conducted systematic review [5] identi-
fied baseline risk, treatment effect, health state utility, and 
resource utilization as the four input parameters of a health 
economic evaluation that may be prone to patient heteroge-
neity. However, as the cost-effectiveness of one treatment 
compared to another is ultimately determined by the net 
effect on all these parameters, it is essential that the impact 
of patient heterogeneity on each of these parameters is con-
sidered conjointly rather than in isolation, especially when 
the purpose is to identify more efficient reimbursement poli-
cies. For health economic evaluations conducted alongside 
an RCT, this can be achieved by conducting such analyses 
directly in terms of net monetary benefit (NMB) [11–13].

Hoch et  al. [14] have previously proposed assessing 
the impact that different sources of patient heterogeneity 
may have on a treatment’s NMB by means of regression 
analysis. For example, suppose that one wants to explore 
whether the cost-effectiveness of a new treatment compared 
to the current standard treatment is affected by the age of 
the patient. Using regression analysis, this can be achieved 
by fitting a regression model with NMB as the dependent 
variable and the treatment indicator, age, and the interaction 
between age and the treatment indicator as the independent 
variables. A low p value for the regression coefficient cor-
responding to the interaction term then shows that age has 
a relatively strong influence on the new treatment’s relative 
cost-effectiveness.

While the use of multivariable regression models may 
provide insight into which sources of patient heterogeneity 

potentially have an impact on the relative cost-effectiveness 
of the evaluated treatments, the statistical power to detect 
such interaction effects is usually low. Moreover, actually 
being able to verify relevant heterogeneity using such mod-
els strongly depends on whether the assumed multiplica-
tive structure of interaction fits reality. This may lead to 
missing or over-interpretation of the detected significant 
interaction terms. An alternative approach for studying 
treatment–covariate interaction that makes no assumptions 
about the nature of the relationship between the outcome 
and the covariate in each treatment group is the Subpopula-
tion Treatment Effect Pattern Plot (STEPP) methodology 
[15–17]. This is based on a graphical exploration of the fluc-
tuation in treatment effect across different, but overlapping 
subpopulations defined with respect to increasing levels of 
the covariate of interest. Although using STEPP to explore 
how the difference in NMB between two treatments varies 
as a function of one or more sources of patient heterogeneity 
could potentially be very useful in identifying more efficient 
reimbursement policies, to the best of our knowledge, it has 
not yet been considered. Using the difference in NMB as 
the measure of treatment benefit and an individualized pre-
dicted risk obtained from an RCT as the covariate of interest, 
the objective of this paper was to illustrate how the STEPP 
methodology can be used to derive risk-stratified treatment 
allocation strategies that maximize cost-effectiveness. Spe-
cifically, a case study in heart failure (HF) disease manage-
ment was elaborated.

Methods

Study cohort

The data that we used to conduct our analysis was taken 
from the Coordinating study evaluating Outcomes of Advis-
ing and Counseling in Heart failure (COACH), a multicenter 
RCT in which 1023 patients were randomly assigned to one 
of three disease management programs (DMPs) [18, 19]. 
Patients in the care-as-usual group received routine follow-
up management by a cardiologist. Along with this routine 
management, patients in the basic and intensive support 
groups received additional care from an HF nurse. In addi-
tion, patients in the intensive support group received multi-
disciplinary advice and two or more home visits by the HF 
nurse. The total follow-up time of the trial was 18 months.

Baseline risk assessment

The patients’ predicted 18-month all-cause mortality risk 
was obtained from a previously developed multivariable risk 
prediction model [20]. This model included the following 14 
predictor variables: age, gender, diastolic blood pressure, 
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systolic blood pressure, history of stroke, history of myocar-
dial infarction, atrial fibrillation, peripheral arterial disease, 
diabetes, left ventricular ejection fraction, previous HF hos-
pitalization, serum sodium, estimated glomerular filtration 
rate (eGFR), and N-terminal pro brain natriuretic peptide 
(NT-proBNP). Missing values on these predictor variables 
were dealt with using multiple imputation [21]. Mortality 
risk values were then computed by taking the average of the 
risk values obtained from each of the ten imputed datasets.

Patient‑level NMB assessment

The patient-level NMB was calculated as NMBi = � × ei − ci , 
where ei and ci denote the observed effect and cost for patient 
i, and λ denotes the willingness-to-pay threshold [14]. The 
patients’ observed survival time, which was censored at 
18 months for those who were still alive at the end of the 
study’s follow-up, was taken as the measure of effectiveness. 
Costs were calculated at the patient level by multiplying the 
patients’ volumes of resource use with their respective unit 
costs as described in more detail in a previously conducted 
economic evaluation in this patient population [22]. The will-
ingness-to-pay threshold was set equal to €20,000 per life 
year, which is the same threshold as was used in the afore-
mentioned study [22].

Exploration of treatment‑predicted risk interaction 
and determination of subgroup strategy

To explore whether an interaction existed between the 
COACH DMPs and the predicted 18-month mortality risk, 
we applied the STEPP methodology [15, 16] using the dif-
ference in NMB as the outcome of interest. STEPP is a novel 
graphical method for assessing treatment–covariate inter-
action on different, but overlapping subpopulations defined 
with respect to the covariate of interest. The subpopulations 
are defined on the basis of two parameters: (1) the number of 
patients in common among consecutive subpopulations (n1) 
and (2) the number of patients in each subpopulation (n2). 
As the estimation of the interaction effect varies for different 
combinations of the parameter values, it is recommended to 
repeat the analysis for different values of n1 and n2 until the 
interaction effect stabilizes (i.e., a similar pattern is shown 
in the graph) [23]. For the analysis conducted in this study, 

stable estimates of the interaction effects were obtained by 
setting n1 and n2 equal to 120 and 150, respectively. Specifi-
cally, this means that the first subpopulation consisted of the 
150 patients with the lowest predicted 18-month mortality 
risks. To obtain the next subpopulation of 150 patients, the 
30 patients with the lowest mortality risks were replaced by 
the 30 patients with the next highest mortality risks. This 
process was repeated until all patients were included in at 
least one of the subpopulations. For this study, two STEPPs 
were created: one with the difference in NMB between care-
as-usual and basic support as the outcome and another with 
the difference in NMB between intensive support and basic 
support as the outcome. Basic support was selected as the 
reference category because it was previously shown to be 
the optimal population-wide strategy [22]. Based on the 
observed patterns of treatment-predicted risk interaction, a 
suitable strategy for assigning different DMPs to different 
risk groups of patients was subsequently identified.

Quantification of the efficiency gains resulting 
from the subgroup strategy

To evaluate the optimality of our proposed subgroup strat-
egy, we quantified its efficiency gains as suggested by Coyle 
et al. [8]. First, the average NMB was evaluated separately 
per DMP for each of the established risk categories. Sub-
sequently, the average gain in NMB resulting from strati-
fication compared to the best performing population-wide 
strategy was calculated as NMB =

∑

j

ΔNMBj×nj

N
 , where 

ΔNMBj denotes the difference in average NMB between 
the proposed treatment for subgroup j and the best perform-
ing population-wide strategy (basic support in our case), nj 
denotes the sample size of subgroup j, and N denotes the 
sample size of the overall study population. In the previ-
ously conducted economic evaluation, it was suggested that 
the New York Heart Association (NYHA) class, which is a 
generally used functional classification to describe the sever-
ity of HF symptoms, could be a suitable basis for offering 
different treatments to different subgroups of patient. For 
comparative purposes, the average gain in NMB resulting 
from using NYHA class as the stratification basis was com-
puted as well. 95% confidence intervals (CIs) for the effi-
ciency gain estimates were obtained through bootstrapping.

Table 1   Patient-level mortality 
risk and NMB estimates 
stratified by the three DMP 
groups

IQR inter-quartile range

Patient subgroup (sample size) Median (IQR) 18-month all-cause 
mortality risk

Median (IQR) NMB (€)

Care-as-usual (n = 339) 0.25 (0.14–0.40) 22,880 (3544–29,012)
Basic support (n = 340) 0.22 (0.14–0.35) 24,146 (7253–28,573)
Intensive support (n = 344) 0.24 (0.12–0.37) 24,064 (5256–28,208)
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Results

Patient‑level mortality risk and NMB estimates

The median of the patient-level 18-month all-cause mortality 

risk estimates was 0.23 (inter-quartile range: 0.14–0.37) with 
a minimum value of 0.01 and a maximum value of 0.93. 
Table 1 summarizes the distribution of the patient-level mor-
tality risk and NMB values stratified by the three different 
DMP groups. It shows that patients from the basic support 
group had the lowest median mortality risk and the highest 
median NMB when the willingness-to-pay threshold was set 
to €20,000. This is consistent with the previously conducted 
economic evaluation [22] where basic support was found to 
be the optimal one-size-fits-all strategy.

Exploration of treatment‑predicted risk interaction 
and determination of subgroup strategy

The estimated difference in NMB across the overlapping 
patient subpopulations are depicted in Figs. 1 and 2. The 
pattern of the difference in NMB between care-as-usual 
and basic support does not suggest clear cutoff points to 
stratify patients into different risk groups (Fig. 1). In addi-
tion, the fact that the treatment–covariate interaction effect 
was not significant (p value > 0.05), suggests that patient 
heterogeneity did not have a clear impact on the difference in 
NMB between these two treatments. However, a significant 
treatment–covariate interaction was found when comparing 
the difference in NMB between intensive support and basic 
support (Fig. 2). In addition, the pattern depicted in the plot 
suggests a risk value of 0.16 to be the zero point at which 
the difference in NMB between these two treatments starts to 
change signs. Based on this finding, our proposed subgroup 
strategy was to assign intensive support to low-risk patients 
(patients with predicted risk value ≤ 0.16) and basic support 
to intermediate- to high-risk patients (patients with predicted 
risk value > 0.16).

Subgroup cost‑effectiveness results

Table 2 depicts the results of the cost-effectiveness analysis 
within each risk stratum. For the low-risk patients, inten-
sive support was found to be the best performing strategy 
with the highest amount of NMB, while basic support per-
formed best in the intermediate- to high-risk patients. When 
NYHA class was used as the stratification basis, basic sup-
port was found to be optimal for less severe patients (i.e., 
those belonging to NYHA class II), while care-as-usual was 
found to be optimal for severe patients (i.e., those belonging 
to NYHA class III and IV).

Quantification of the efficiency gains resulting 
from the subgroup strategy

Table 3 depicts the average gains in NMB (95% CI) result-
ing from each subgroup strategy. Both strategies were found 
to be cost-effective compared to assigning basic support to 

Fig. 1   STEPP comparing the difference in NMB between care-as-
usual and basic support across different, but overlapping subpopula-
tions with increased mortality risk; a difference in NMB > 0 indicates 
that care-as-usual is the preferred strategy

Fig. 2   STEPP comparing the difference in NMB between intensive 
support and basic support across different, but overlapping subpopu-
lations with increased mortality risk; a difference in NMB > 0 indi-
cates that intensive support is the preferred strategy
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the whole patient population. However, the subgroup strat-
egy proposed in this study outperformed the one proposed 
previously, with an average gain in NMB of €1174 (95% CI 
€− 1146–€3284).

Discussion

STEPP is a relatively new approach to graphically explore 
treatment–covariate interaction with limited application in 
the clinical field [23–26]. By using STEPP to graphically 
explore treatment–covariate interaction, we found that the 
difference in NMB between intensive support and basic 
support varied greatly across different, but overlapping 
subpopulations defined with respect to increasing levels of 
predicted 18-month mortality risk. The difference in NMB 
between care-as-usual and basic support, in contrast, never 
led to a clear pattern of treatment–covariate interaction. 
By subsequently selecting the 18-month mortality risk at 
which the difference in NMB between intensive support and 

basic support started to change signs as the cutoff to stratify 
patients into two risk categories, we found that compared 
to applying basic support to all patients, the use of a strati-
fied approach based on offering intensive support to low-
risk patients and basic support to intermediate- to high-risk 
patients would result in an average gain in NMB of €1312 
(95% CI €390–€2346).

Our finding that more intensive multidisciplinary disease 
management is not beneficial in intermediate- to high-risk 
patients may seem counterintuitive to some readers, but is 
consistent with the study conducted by Pulignano et al. [27], 
who concluded that “most eligible patients for a hospital-
based DMP may be those at intermediate risk who are not 
too sick and not too healthy”. Our STEPP for care-as-usual 
against basic support suggests that this also holds for the 
moderate form of disease management that was provided 
in the COACH study. However, our other STEPP indicates 
that, compared to basic support, low-risk patients may still 
benefit from a more intensive form of disease management. 
Although there is also evidence to suggest that intensive, 

Table 2   Results of the cost-effectiveness analysis

Patient subgroup (sample size) Mean (95% CIs) survival time 
(days)

Mean (95% CIs) cost (€) Mean (95% CIs) NMB (€)

Predicted 18-month mortality
Risk ≤ 0.16 (N = 321)
 Care-as-usual 521.2 (497.5–543.6) 6151 (3961–8826) 22,389 (19,200–25,101)
 Basic support 525.6 (505.2–545.5) 8653 (6117–11,664) 20,127 (17,107–22,844)
 Intensive support 557.2 (547.7–562.0) 6213 (4950–7624) 24,307 (22,857–25,577)

Risk > 0.16 (N = 702)
 Care-as-usual 428.2 (403.2–451.6) 11,175 (9348–13,226) 12,265 (9791–14,496)
 Basic support 454.0 (429.6–480.5) 10,041 (8257–11,935) 14,819 (12,608–17,071)
 Intensive support 432.3 (406.1–456.9) 13,155 (11,221–15,142) 10,525 (7935–12,803)

NYHA class
NYHA II (N = 513)
 Care-as-usual 481.4 (455.9–504.5) 8955 (6884–11,522) 17,405 (14,318–20,026)

Basic support 506.6 (486.0–528.6) 7170 (5788–8898) 20,570 (18,607–22,250)
Intensive support 505.7 (484.8–527.0) 9099 (7256–11,220) 18,581 (16,087–20,758)
NYHA III and IV (N = 495)
 Care-as-usual 428.7 (397.0–462.3) 10,692 (8279–13,206) 12,788 (10,112–15,948)
 Basic support 443.7 (414.7–471.1) 11,793 (9435–14,403) 12,507 (9465–15,219)
 Intensive support 448.9 (422.2–474.8) 12,462 (10,279–14,779) 12,118 (9304–14,707)

Table 3   Average gains in NMB 
(95% CIs) resulting from each 
subgroup strategy

Stratification basis Subgroup strategy Average (95% CIs) 
gain in NMB (€)

Predicted 18-month mortality Intensive support to low-risk group
Basic support to intermediate- to high-risk 

group

1312 (390 to 2346)

NYHA class Basic support to NYHA II group
Care-as-usual to NYHA III and IV group

138 (− 1854 to 2246)
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post-discharge disease management is unnecessary in low-
risk patients [28–30], our latter finding is consistent with 
several previously conducted subgroup analyses. Hebert 
et al. [31] found that when comparing severe (NYHA class 
III and IV) and less severe (NYHA class I and II) patients, 
nurse-led disease management was more likely to be cost-
effective in the less severe patients. Similarly, Miller et al. 
[32], who conducted a model-based evaluation to investi-
gate the lifetime cost-effectiveness of telephonic support 
for systolic HF patients, obtained a slightly less favorable 
cost-effectiveness ratio for this intervention after NYHA 
class I patients were eliminated from their study population. 
Finally, Goehler et al. [33] found that the median lifetime 
incremental cost-effectiveness ratio increased with €15,900/
quality-adjusted life year (QALY) for male patients and 
€600/QALY for female patients when the average age of 
the cohort passing through their model was increased from 
55 to 75 years. When combining our results with the find-
ings presented in these previous studies, it seems that the 
trade-off between a moderate or intensive form of disease 
management is shown especially in patients at low or inter-
mediate risk who are not too sick to be treated. Patients at 
high risk, in contrast, do not seem to benefit from a more 
intense form of multidisciplinary disease management. The 
question of whether such patients should therefore only be 
offered a basic form of disease management is an ethical 
discussion that is beyond the scope of this paper.

In our analysis, we applied a previously developed mul-
tivariable risk prediction model to combine the information 
captured within several covariates into a single prognostic 
index to represent baseline risk. We subsequently used this 
index to explore for heterogeneity in treatment effect across 
different subgroups of patients. Compared to conventional 
subgroup analysis based on a single prognostic covariate, 
integrating multiple independent patient characteristics asso-
ciated with the outcome parameters of interest in a multi-
variable risk prediction model improves risk stratification 
[34, 35]. This, in turn, can greatly enhance the statistical 
power to detect variations in treatment benefit as was shown 
in a previously conducted simulation study [36]. Moreover, 
the use of such a multivariable approach avoids the prob-
lem of multiple testing, resulting from the need to repeat 
the subgroup analysis for different individual risk factors. 
Thus, the chances of obtaining false positive findings are 
reduced [36, 37].

While treatment-predicted risk interaction can best be 
assessed on a continuous scale [38], discretization of the 
predicted risks into two or more ordinal categories becomes 
essential if we want to use the underlying risk prediction 
model to guide the selection of therapy. By deriving the 
cutoff of 0.16 from the treatment effect pattern observed 
in a STEPP, we were still able to make effective use of the 
discriminative power of a continuous prognostic index in 

our quest for an efficient reimbursement policy. This does 
not hold when applying conventional subgroup analysis 
based on a single prognostic covariate as we did as part of 
our previous economic evaluation in this patient population 
[22]. When quantifying the net benefit gains of one over the 
other stratification basis, the subgroup strategy proposed in 
this study was found to outperform the previous one with an 
average gain in NMB of €1174 (95% CI €− 1146 to €3284).

A limitation of this study is that the cutoff of 0.16 may be 
specific for the data analyzed in this paper. It was selected by 
taking into account the pattern of treatment–risk interaction 
in a single clinical trial. Future research is thus required to 
determine to what extent this cutoff can also serve as a suit-
able stratification basis for other studies. Secondly, rather 
than using an external model (i.e., a risk prediction model 
developed on another dataset), we used an internally devel-
oped risk prediction model to assess the treatment effect 
across different subpopulations of predicted risk. The valid-
ity of this approach was recently assessed by Burke et al. 
[34], who concluded that “appropriately developed internal 
models produce relatively unbiased estimates of treatment 
effect across the spectrum of risk”. In addition, these authors 
also found that “when estimating treatment effect, internally 
developed risk models using both treatment arms should, 
in general, be preferred to models developed on the con-
trol population”. As all treatment groups of COACH were 
included in the development of the COACH risk prediction 
model, this is exactly the strategy that we have followed in 
the current paper. Thirdly, because we selected the differ-
ence in NMB as the measure of treatment benefit, our results 
are conditional on the value assumed for the willingness-
to-pay threshold. As a first paper to introduce the applica-
tion of our proposed approach, we only selected a single 
threshold. For actual decision-making purposes, it would 
however be recommended to perform sensitivity analysis 
and repeat the approach for different values of the willing-
ness-to-pay threshold to make sure that the risk-stratified 
treatment recommendation is robust with respect to the 
selected threshold value. Another limitation of this study 
is that the time horizon for the economic evaluation was 
restricted to the 18-month follow-up period of the COACH 
study, meaning that cost differences and survival benefits 
are likely to be underestimated. In future applications of our 
proposed method, one could therefore consider extrapolat-
ing the patient-level cost and survival estimates beyond the 
range of the trial data by applying more advanced statisti-
cal modeling techniques, such as the multi-state modeling 
approach proposed by Cao et al. [39]. Finally, heterogeneity 
in individual patient preferences was not considered in our 
analysis, although it was suggested as being an important 
factor when developing personalized treatment recommen-
dations [5].
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To conclude, the emerging role of health economics in 
personalized medicine has recently been recognized and 
is actively discussed [40–45]. To assess how personal-
ized medicine may maximize the net benefits, it is crucial 
to develop a risk-stratified treatment recommendation [46] 
to ensure subgroup cost-effectiveness analysis. Recently, 
value of information analysis was adapted to develop strati-
fied treatment recommendations that maximize net health 
benefit or NMB [9, 10]. This technique may be useful when 
a model-based economic evaluation is conducted. Our pro-
posed approach based on STEPP enables the development 
of stratified treatment recommendations when the economic 
evaluation is conducted alongside a clinical trial.
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