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A branch-and-price-and-cut algorithm for resource
constrained pickup and delivery problems

Albert H. Schrotenboer, Evrim Ursavas, and Iris F.A. Vis
Department of Operations, Faculty of Economics and Business, University of Groningen,

a.h.schrotenboer@rug.nl

We study a multi-commodity multi-period resource constrained pickup-and-delivery problem inspired by the
short-term planning of maintenance services at offshore wind farms. In order to begin a maintenance service,
different types of relatively scarce servicemen need to be delivered (transported) to the service locations.
We develop resource-exceeding route (RER) inequalities, which are inspired by knapsack cover inequalities,
in order to model the scarcity of servicemen. In addition to a traditional separation approach, we present a
column-dependent constraints approach so as to include the RER inequalities in the mathematical formu-
lation. An alternative pricing strategy is developed to correctly include the column-dependent constraints.
The resulting approach is broadly applicable to any routing problem that involves a set of scarce resources.
We present a branch-and-price-and-cut algorithm to compare both approaches that include RER inequal-
ities. The branch-and-price-and-cut algorithm relies on efficiently solving a new variant of the Elementary
Resource Constrained Shortest Path Problem, using a tailored pulse algorithm developed specifically to
solve it. Computational experiments show that the RER inequalities significantly tighten the root node
relaxations. The column-dependent constraints approach searches then the branch and bound tree more
effectively and appears to be competitive with the traditional separation procedure. Both approaches are
able to solve instances of up to 92 nodes over 21 periods to optimality.

Key words : Column Generation, Column-Dependent Constraints, Pickup and Delivery, Multi-commodity,
Branch-and-Price-and-Cut, Offshore Wind

1. Introduction
The short-term planning of maintenance services at geographically scattered locations is a fre-
quently encountered optimization problem in maintenance service logistics. At the core of these
optimization problems lies the daily planning and routing of a scarce set of resources in order
to perform maintenance services. We will study such a problem at offshore wind farms, a fairly
new area of optimization that has received the attention of researchers lately, and refer to the
problem as the Multi-period Service Planning and Routing Problem (MSPRP) (Dai, St̊alhane,
and Utne 2015, St̊alhane, Hvattum, and Skaar 2015). Typical for these optimization problems is
the restricted availability of differently skilled servicemen, which may be viewed as a scarce set
of resources needed for performing maintenance services. In this paper, we present effective valid
inequalities to model the scarcity of resources, and, based on those inequalities, we develop an
exact solution approach that relies on a new variant of column-dependent constraints. The result-
ing approach is broadly applicable to routing problems that consume such a scarce set of resources
(e.g., the MSPRP). In addition, we will develop the first sophisticated exact solution approach
for short-term maintenance planning at offshore wind farms. This enables us to study a setting
without predefined planning restrictions, as opposed to current approaches in the literature.

In the MSPRP, a service is begun if the right amount of spare parts and the right number of dif-
ferently skilled servicemen are delivered to the service location. After completion of the service, the
servicemen need to be picked up again to be delivered to their next-scheduled service. These deliv-
ery and pickup tasks are performed by a heterogeneous fleet consisting of vessels and helicopters,
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each capacitated for the total weight of the spare parts and the number of servicemen. We will refer
to this fleet by using the general term “vehicle”. Note that the vehicles are not dedicated to a single
serviceman, whereas, in onshore operations, vehicles are often “owned” by the servicemen: see,
for example, Zamorano and Stolletz (2016); and Chen, Thomas, and Hewitt (2016). In addition,
we let the travel costs and travel time be arbitrarily given for each vehicle and period, allowing
the modeling of a wide variety of application dependent characteristics in a unified manner. For
example, the different cost structures of corrective and preventive maintenance services (St̊alhane,
Hvattum, and Skaar 2015), as well as the influence of weather conditions on the maximum allowed
travel time in each period (Kerkhove and Vanhoucke 2017), can be characterized in this way.

We assume that every service can be started and completed within a single period. Vehicles
are allowed to continue with the remaining delivery and pickup tasks following the delivery of the
servicemen at a service location, but they remain responsible for the pickup of the servicemen
delivered. Service times and designated maximum daily working hours of the servicemen need to
be respected. The number of available servicemen is restricted in every period, that is, it can be
considered as a resource whose total consumption among different vehicle routes must respect its
limited availability.

We model the MSPRP as a multi-commodity, multi-period pickup-and-delivery problem. We aim
to develop cost-minimizing routes such that spare parts and servicemen are picked up and delivered
between service locations, for each vehicle in each period, assuring the start and completion of all
maintenance services. We develop a new mathematical formulation based on Resource-exceeding
Route (RER) inequalities that model the scarcity of servicemen (resources). The RER inequalities
are included by means of column-dependent constraints. We will prove that the new formulation
is stronger than a standard set-covering formulation for a broad class of instance characteristics.
Its use is not restricted to the MSPRP; it is broadly applicable for routing problems that involve
a scarce set of restricted resources. In order to test the competitiveness of the column-dependent
constraints approach, a traditional separation procedure for including RER inequalities is presented
as well.

To include the column-dependent constraints in a branch-and-price (or branch-and-price-and-
cut) framework, an alternative, and optimal, pricing strategy is proposed. The general performance
of the branch-and-price-and-cut algorithm relies on efficiently solving pricing problems that are
obtained by decomposing the problem for each vehicle and period. The pricing problems are a new
variant of the Elementary Resource Constrained Shortest Path Problem (Irnich and Desaulniers
2005), and are solved by a tailored pulse algorithm (Lozano, Duque, and Medaglia 2015). We
propose efficient lower bounds that are exploited in the pulse algorithm. Finally, the strength of
the branch-and-price-and-cut algorithm is shown by solving a case for maintenance service logistics
at offshore wind farms, which is a newly created situation and one practically inspired.

The remainder of this section will review the relevant literature and highlight the paper’s con-
tributions. First, we discuss recent developments in algorithms to solve mathematical formulations
with column-dependent constraints. Second, we discuss some closely related pickup-and-delivery
problems and their most recent exact solution approaches. Finally, we review recent work on short-
term planning for maintenance services at offshore wind farms.

The first contribution of this paper is the formulation and use of a new variant of column-
dependent constraints, that is, the RER inequalities. Column-dependent constraints are constraints
that are generated for every column or variable (Feillet et al. 2010). Its use in column generation
applications expressly reveals these difficulties; the number of constraints grows with the number
of columns, thereby causing identification issues when generating new columns. We are able to
overcome this difficulty through the development of an alternative pricing strategy.

A framework for handling column-dependent constraints with a decomposition into two sub-
problems is developed in Muter, Birbil, and Bülbül (2013). This work has recently been extended
to an arbitrary number of subproblems in Maher (2015). Unlike these studies, the structure that
we study exhibits interaction between the variables generated in the different subproblems. By
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exploiting this specific problem structure, we are able to develop a general and optimal pricing
strategy that is broadly applicable to resource-constrained routing problems.

Our second contribution is the development of a branch-and-price-and-cut algorithm for the
MSPRP, a problem that exhibits a combination of multiple traditional pickup and delivery struc-
tures. Pickup and delivery problems, as reviewed in Berbeglia et al. (2007); Parragh, Doerner, and
Hartl (2008); and Battarra, Cordeau, and Iori (2014), involve finding cost-minimizing routes to
satisfy transportation requests between pickup and delivery locations. A particular class of pickup-
and-delivery problem is the vehicle routing problem with pickups and deliveries, where a one-to-one
relation between pickup and delivery nodes exists (Dumas, Desrosiers, and Soumis 1991, Savels-
bergh and Sol 1995). In the MSPRP, a one-to-one delivery and pickup structure exists between
nodes that represent the start and completion of a service. State-of-the-art solution approaches
are developed in Ropke, Cordeau, and Laporte (2007), and Ropke and Cordeau (2009). The for-
mer introduced many valid inequalities and tested the performance in a branch-and-cut algorithm,
where the latter developed a branch-and-price-and-cut algorithm. Another exact algorithm, based
on dual ascent heuristics and a cut-and-column generation procedure, is developed by Baldacci,
Bartolini, and Mingozzi (2011). The most recent work is presented by Gschwind et al. (2018),
where the authors present new dominance rules that allow for a bidirectional labeling algorithm.

Another class of pickup and delivery problem exhibits a many-to-many pickup and delivery
structure, that is, locations demand or supply one or multiple commodities and picked-up supply
may be used to satisfy demand. This pickup and delivery structure is encountered in the MSPRP
between different maintenance services, that is, the picked-up servicemen can then be used to
begin a new maintenance service. A branch-and-cut approach for a single vehicle is presented
in Hernández-Pérez and Salazar-González (2004). This has recently been extended to multiple
commodities in Hernández-Pérez and Salazar-González (2014). Looking into the multiple types of
servicemen and the heterogeneous fleet being present in the MSPRP, another observation is made.
If we consider a single servicemen type and a homogeneous fleet, the MSPRP can be categorized as
a pickup and delivery problem with maximum travel time (Subramanian and Cabral 2008, Polat
et al. 2015).

Summarizing, the MSPRP mixes a one-to-one pickup and delivery structure (between nodes
representing the same service) with a many-to-many pickup and delivery structure (between differ-
ent services). In addition, respecting the service times of the maintenance services yields so-called
delayed precedence constraints between the delivery and pickup of servicemen, that is, the earliest
possible departure time at the pickup location depends on the arrival time at the corresponding
delivery location. This pickup and delivery relationship is typical for offshore applications, see, for
example, Irawan et al. (2017).

The mix of traditional pickup and delivery structures leads to a new variant of the Elementary
Resource Constrained Shortest Path Problem as a pricing problem. Because both travel costs
and servicemen costs are being minimized, no efficient dominance criteria can be developed. We
therefore propose an efficient pulse algorithm (Lozano, Duque, and Medaglia 2015) to solve the
pricing problems, since that approach does not depend on dominance criteria. It relies on calculating
lower bounds instead, which appears effective for the MSPRP.

The paper’s third contribution is the development of a branch-and-price-and-cut algorithm in the
area of offshore wind maintenance service logistics, which is the first sophisticated exact solution
method in the setting we are studying. In the MSPRP we are studying a general, new setting of a
single large offshore wind farm that is operated from a single depot without predefined planning
restrictions. Some related studies exist, however; offshore wind farm maintenance service logistics
was first encountered in Dai, St̊alhane, and Utne (2015), and a follow up was presented by St̊alhane,
Hvattum, and Skaar (2015). They proposed a set covering formulation with a heuristic labeling
algorithm to solve the pricing problems, but restricted it to a single period, whereas the MSPRP
is situated in a multi-period setting. A first attempt to exactly solve realistically sized instances is
presented by Irawan et al. (2017). They propose a route-enumeration strategy to solve up to eight
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maintenance services for three wind farms operated from two depots in a three-period planning
horizon. The restriction that a route only contain services from a single wind farm reduces the
complexity of the problem drastically, only at the expense of a slight increase in complexity due to
the inclusion of multiple depots. In point of fact, only with a heuristic approach were they able to
solve instances of up to 12 services per wind farm. Inherently, such a route enumeration approach
is deemed impossible for the MSPRP, since we have no restrictions on the planning of services.
With the branch-and-price-and-cut algorithm we propose optimal solutions for instances of up to
45 services in a single wind farm.

More generally speaking, offshore wind maintenance service logistics, and thus the MSPRP, falls
into a particular stream of the technician routing and scheduling literature (Pillac, Gueret, and
Medaglia 2013, Pillac, Guéret, and Medaglia 2018). It entails the design of routes and schedules for
technicians such that a set of services is performed in a cost-minimizing way. The main difference
between the MSPRP and onshore applications (Tarantilis et al. 2016) is how vehicles are operated;
vehicles in offshore applications are flexibly deployed to satisfy transportation requests throughout
the time horizon, whereas vehicles are typically assigned upfront to servicemen in onshore applica-
tions. Recently, technician’s ability to become more experienced in an activity is discussed by Chen,
Thomas, and Hewitt (2016). This is extended to the stochastic case in which activities are uncer-
tain (Chen, Thomas, and Hewitt 2017). Another recent work discusses the combined maintenance
and routing problem (López-Santana et al. 2016), in which machines deteriorate stochastically
over time. We acknowledge that those innovations in onshore applications may be of relevance for
offshore wind maintenance service logistics. However, since offshore operations differ structurally
from onshore operations, and we present the first sophisticated approach for solving a large-scale
maintenance service logistics problem in offshore wind farms, we leave it for further research to
assess the impact of incorporating the earlier described onshore innovations.

The remainder of this paper is as follows. We give a mathematical description of the MSPRP
and, by means of a Danzig-Wolfe reformulation, a set covering formulation in Section 2. In Section
3, we describe valid inequalities for the MSPRP. In particular, we discuss the RER inequalities, the
new formulation based on column-dependent constraints, and the accompanying optimal pricing
strategy. Sections 4 and 5 discuss the pulse algorithm developed for solving the pricing problems
and the overall structure of the branch-and-price-and-cut algorithm, respectively. Computational
experiments showing the performance of the branch-and-price-and-cut algorithm and the impact
of the valid inequalities are presented in Section 6. We conclude the paper in Section 7.

2. Problem description
In this section, we will provide a mathematical representation of the Multi-period Service Planning
and Routing Problem (MSPRP) in the form of a Mixed Integer Program (MIP). After this, a
standard set-covering formulation will be presented.

2.1. Mixed integer programming formulation
Let G= (N,A) be a directed graph with a set of nodes N and a set of arcs A= {(i, j) | i, j ∈N, i 6=
j}. The node set N consists of delivery nodes Nd = {1, . . . , n}, pickup nodes Np = {n+ 1, . . .2n},
and the origin and destination depot {0,2n+1}. Every delivery node i has a corresponding pickup
node n+ i, which represent the start and the completion of service i, respectively.

Let T = {1, . . . , T} be the given time horizon in which every t∈ T represents a single period. We
consider a set of different type of servicemen L= {1, . . . ,L}. The demand for service-person type
` ∈ L at node i ∈N is given by Qi` ≥ 0, and it holds that Qn+i,` =−Qi`. The number of available
servicemen is restricted; there are Q̃` servicemen of type ` available in each period. The fixed costs
of using a service-person of type ` equals c̃` for each period. A precedence constraint exists between
node i and n+ i; node n+ i can be visited, at the earliest, si time after visiting node i, where si
denotes the duration of service i. The weight of the demanded spare parts is given by Q̂i > 0 for
each i∈Nd.
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A heterogeneous set of capacitated vehicles K= {1, . . . ,K} is available to deliver and pickup the
required servicemen in each period. As is typical for offshore operations, we assume that all vehicles
are different. For each arc (i, j) ∈A, the costs incurred of traversing it with vehicle k in period t
equals cktij and the corresponding travel time equals tktij . Maintenance costs are included in the travel
costs cktij , and we do not pose any restrictions on its modeling. This flexibility has two aims. First,
it allows us to make a distinction between preventive maintenance tasks, in which maintenance
costs are constant over the periods, and corrective maintenance tasks, in which maintenance costs
increase over the periods. Second, we can model the relative urgency of the maintenance services,
that is, higher costs reflect a greater urgency to perform a particular maintenance service. Both
aims are easily achieved by introducing exogenously given penalty costs for not performing a
maintenance service in a particular period (which could be zero).

Each vehicle k ∈K is capacitated in the total number of servicemen Q̄1
k and the total amount of

spare parts Q̄2
k it can transport. The maximum travel time of vehicle k in period t equals ωkt. This

reflects the restrictions on performing offshore maintenance services due to weather conditions.
Let xktij be a binary decision variable that equals 1 if if vehicle k traverses arc (i, j) in period t,

and 0 otherwise. Let qkti` be a nonnegative decision variable that indicates the number of servicemen
of type `∈L in vehicle k in period t upon leaving node i. Finally, let zkti be a nonnegative decision
variable that equals the time at which vehicle k leaves node i at period t.

To highlight the complexity of the MSPRP, an illustrative example is provided in Figure 1.
Example 1. Let n= 5, T = 2,K = 1, and L= 2. Spare parts demand Q̂i equals 0 and servicemen

availability Q̃` = 4 for all ` ∈ {1,2}. Maximum travel time ω1t equals 6 and 12 for t= 1 and t= 2,
respectively. In Figure 1(b), characteristics of the services are provided, and in Figure 1(c), a feasible
solution is depicted. “Dur.” indicates the travel time of the corresponding route. We assume that
all the arcs’ travel times equal 0.5, except for the edges between corresponding delivery and pickup
locations, those are assumed to take zero time in this example. Some calculations are as follows: 1)
Regarding the duration of the route in Period 1. Let a := t01 + t12 + max{t01 + s1, t01 + t12 + t26} be
the earliest possible departure from Node 6. The earliest possible departure from Node 7 is then
max{a+ t67, t01 + t12 +s2} := b. The route duration is then equal to b+ t7,11, which equals 4.5 in this
example. 2) The servicemen use in Period 2 is the sum of the servicemen used for Services 4 and
5, since Service 3 is supplied with servicemen that become available after having finished Services
4 and 5. 3). Note that a single route in Period 2 (0− 1− 2− 6− 7− 4− 5− 10− 9− 3− 8− 11) is a
feasible solution as well, as its duration is less than 12 and the servicemen use equals the maximum
of both individual routes.

0 11

1 6

2 7

3 8

4 9

5 10

(a) Network and route visualization

i, n+ i si Qi1 Qi2

1, 6 2.0 3 2
2, 7 3.0 1 2
3, 8 1.5 2 1
4, 9 1.5 3 1
5, 10 3.5 1 2

(b) Overview of instance characteristics

t route q1t01 q1t02 Dur.

1 0− 1− 2− 6− 7− 11 4 4 4.5
2 0− 4− 5− 10− 9− 3− 8− 11 4 3 7.5

(c) Route characteristics

Figure 1 (Color online) An illustrative example of the MSPRP.
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The following MIP models the MSPRP.

min
∑
t∈T

∑
k∈K

∑
(i,j)∈A

cktijx
kt
ij +

∑
t∈T

∑
k∈K

∑
`∈L

qkt0` c̃` (1)

s.t
∑
t∈T

∑
k∈K

∑
j:(i,j)∈A

xktij = 1 ∀i∈Nd, (2)∑
j:(i,j)∈A

xktij −
∑

j:(j,i)∈A

xktji = 0 ∀ i∈Nd ∪Np, k ∈K, t∈ T , (3)∑
j:(0,j)∈A

xkt0j = 1 ∀ k ∈K,t∈ T , (4)∑
j:(j,2n+1)∈A

xktj,2n+1 = 1 ∀ k ∈K,t∈ T , (5)∑
j:(i,j)∈A

xktji −
∑

j:(n+i,j)∈A

xktn+i,j = 0 ∀ i∈Nd, k ∈K, t∈ T , (6)

tktijx
kt
ij −M(1−xktij )≤ zktj − zkti ∀ (i, j)∈A, k ∈K, t∈ T , (7)

zkti + si ≤ zkti+n ∀ i∈Nd, k ∈K, t∈ T , (8)

Qj`x
kt
ij −M(1−xktij )≤ qkti` − qktj` ∀ (i, j)∈A, `∈L, k ∈K, t∈ T , (9)

max{0,−Qi`} ≤ qkti` ∀ i∈Nd ∪Np, `∈L, k ∈K, t∈ T , (10)∑
`∈L

qktj` ≤min{Q̄1
k, Q̄

1
k +

∑
`∈L

Qi`} ∀ j ∈∈Nd ∪Np, k ∈K, t∈ T , (11)∑
(i,j)∈A:j∈Nd

xktij Q̂j ≤ Q̄2
k ∀ k ∈K, t∈ T (12)

zkt2n+1 ≤ ωkt ∀ k ∈K, t∈ T , (13)∑
k∈K

qkt0` ≤ Q̃` ∀ `∈L, t∈ T , (14)

xktij ∈ {0,1} ∀ (i, j)∈A, k ∈K, t∈ T , (15)

qkti` ≥ 0 ∀ i∈N, `∈L, k ∈K, t∈ T , (16)

zkti ≥ 0 ∀ i∈N, k ∈K, t∈ T . (17)

Objective (1) minimizes the costs of traveling and for servicemen usage. The travel costs may
include maintenance costs or penalty costs. Constraints (2) ensure that every node is visited only
once and constraints (3) are the traditional flow conservation constraints. Constraints (4) and
(5) ensure that every route starts and end at the origin and destination depot, respectively. The
vehicle that delivers the servicemen must also pickup the servicemen, as denoted by Constraints
(6). Constraints (7) and (8) model travel and service times, respectively. In (7), M denotes a big
enough number so that the constraints are redundant if they need to be. A valid value of M is ωkt.
Constraints (9) model the servicemen demand at every node. With Constraints (10) and (11) we
strengthen the lower bound and upper bound of qktj` , respectively. The maximum capacity for spare
parts is respected due to Constraints (12). Finally, Constraints (13) limit the maximum travel
time of a vehicle and Constraints (14) ensure feasibility with respect to the limited availability of
servicemen.

The MIP formulation exhibits an interesting structure. It is decomposable for every vehicle
k ∈ K and period t ∈ T . The constraints that link the decisions among the (k, t)-subproblems
are Constraints (2) and (14). We, therefore, apply a Dantzig-Wolfe reformulation resulting into a
set-covering formulation as presented in the following section.
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2.2. Set covering formulation
Let R be the set of all feasible routes that can be constructed in the MSPRP. A route’s costs
and feasibility may differ between vehicles and periods, since vehicles are heterogeneous and arc
costs, as well as maximum travel times, differ among periods. Therefore, let R = ∪k∈K,t∈TRkt,
where Rkt denotes the set of feasible routes of vehicle k in period t. For notational convenience, let
Rk =∪t∈TRkt and Rt =∪k∈KRkt. For each route r ∈Rkt, let yr be a binary decision variable that
equals 1 if route r is chosen and 0 otherwise. In addition, let cr be the corresponding costs, βri be
the number of times node i∈Nd is visited, and γr` be the number of servicemen of type `∈L used
by route r ∈Rkt.

A set-covering formulation is then given by:

min
∑
t∈T

∑
k∈K

∑
r∈Rkt

cryr (18)

s.t.
∑
t∈T

∑
k∈K

∑
r∈Rkt

yrβ
r
i ≥ 1 ∀ i∈Nd, (19)∑

r∈Rkt

yr ≤ 1 ∀ k ∈K, t∈ T , (20)∑
k∈K

∑
r∈Rkt

yrγ
r
` ≤ Q̃` ∀ `∈L, t∈ T , (21)

yr ∈ {0,1} ∀r ∈Rkt, k ∈K, t∈ T . (22)

The objective (18) minimizes the costs for using the selected routes from each subset Rkt. Con-
straints (19) ensure that every node is visited at least once. Constraints (20) ensure that every
vehicle in every period is used at most once, which is necessary due to the heterogeneity of vehicles
and periods. Constraints (21) ensure that the maximum number of servicemen used in every period
does not exceed the servicemen availability. We will refer to the model described by equations
(18)-(22) as the Integer Programming Master (IPM) problem. Its linear relaxation, obtained by
replacing Constraints (22) with yr ≥ 0, is referred to as the Linear Programming Master (LPM)
problem.

Due to the exponential size of R, solutions to LPM are usually obtained by column generation
(Barnhart et al. 1998). To that extent, consider restricted route sets Rkt ⊂Rkt. Notice that by a
Dantzig-Wolfe decomposition we arrive at K ·T subproblems, that is, for vehicle k and period t we
obtain the (k, t)-pricing problem. We iteratively solve LPM subject to Rkt and generate new routes
for each Rkt by solving the (k, t)-pricing problems. Model LPM is solved if no route of negative
reduced cost can be found for any (k, t)-pricing problem. Then, a dual optimal solution is found
and by strong duality it is a primal optimal solution as well.

To formulate the (k, t)-pricing problems, let µi, λkt, and πt` be dual variables corresponding to
Constraints (19) - (21), respectively. Let dktij be the costs of traversing arc (i, j) in some (k, t)-pricing
problem. We define

dktij =

{
cktij −µj if j ∈Nd,

cktij otherwise.
(23)

Similarly, let d̃t` = c̃` − πt` be the reduced servicemen costs in an arbitrary (k, t)-pricing problem.
Then the (k, t)-pricing problems are given by

min
r∈Rkt

 ∑
(i,j)∈A

dktij rij +
∑
`∈L

d̃t`γ
r
` −λkt

 ,∀ k ∈K, t∈ T , (24)

where rij = 1 for all arcs (i, j), j 6= n+ i, which are used by path r ∈Rkt, and is 0 otherwise.
An illustrative example of a route in an arbitrary (k, t) pricing problem is presented in Figure 2.
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Example 2. Let K = T =L= 1 and let n= 5. Consider three Services 1,2 and 3 that demand
2,2, and 3 servicemen, respectively. As observed from Figure 2, only c̃1 − π1

1 reduced servicemen
costs are incurred when visiting Service 3 (instead of 3c̃1 − 3π1

1) since 2 servicemen just become
available after visiting node 7. Furthermore, note that the traveling costs between correspond-
ing delivery and pickup nodes equals zero, and observe that only reduced servicemen costs are
considered when visiting a delivery node.
The (k, t)-pricing problems are new variants of the Elementary Resource Constrained Shortest Path
Problem. In line with Irnich and Desaulniers (2005), it can be categorized as a multi-commodity
resource constrained shortest path problem with delayed paired precedence constraints, a prob-
lem that, to the best of the authors’ knowledge, has not been solved before. The delayed paired
precedence constraints refer to the one-to-one relationship between pickup and delivery nodes in
combination with the corresponding service time constraint. For simplicity, we refer to this new
variant of the Elementary Resource Constrained Shortest Path Problem by using the general term
Pricing Problem (PP). The main complicating factor that appears in (24) are the servicemen costs
d̃t`, as is indicated in Figure 2 as well. These cannot be incorporated directly into individual edge
costs, henceforth leading to algorithmic difficulties, as will be explained in detail in Section 4.

3. Valid inequalities
Model IPM, presented in Section 2.2, is a set covering formulation as encountered in many branch-
and-price (and branch-and-price-and-cut) approaches. It is, although valid for solving the MSPRP,
relatively weak due to the inclusion of knapsack-type Constraints (21). These constraints cannot
be taken into account in the pricing problems directly, thereby reducing the overall efficiency,
since it weakens the LP relaxation. In this section, we will develop Resource-exceeding Route
(RER) inequalities, which are a specialized form of knapsack cover inequalities (Gu, Nemhauser,
and Savelsbergh 1998, 1999). They are applied in branch-and-price algorithms for the generalized
assignment problem (Savelsbergh 1997) and multicommodity flow problems (Barnhart, Hane, and
Vance 2000), for instance. The RER inequalities very efficiently restrict the number of servicemen
that routes can use, since this is a resource “consumed” by vehicles whose its availability at the
depot is restricted. What differs here from the current applications of cover inequalities is that
the sequence of visits within a tour may change the resource consumption. This causes difficulties
during the pricing of routes. The inclusion of multiple resource types complicates the construction
of RER inequalities further, which can be observed in the remainder of this section.

We present two approaches for including RER inequalities that are tractable in pricing problems.
In the first approach, we develop a new formulation of the MSPRP in which we replace Constraints
(21) with column-dependent Constraints (Muter, Birbil, and Bülbül 2013). These constraints are
generated when the restricted route set (as used in column generation) is enlarged. Its applica-
bility is not restricted to this case only: The proposed reformulation and corresponding solution
approach are applicable for any linear program being solved with column generation in which a
system of constraints as described by (21) is present. The approach is easy to understand and it
provides interesting theoretical insights into the inclusion of valid inequalities. In order to test its

1 2 7 3 8 60 11

c1101 −µ1 c1112 −µ2 c1127 = 0 c1173 −µ3 c1138 = 0 c1186 c116,11

2c̃1 − 2π1
1 2c̃1 − 2π1

1 c̃1 −π1
1

Reduced
routing costs (d)

Route
(−λ11 init cost)

Reduced
servicemen costs (d̃)

Figure 2 (Color online) An illustrative example of a route in a (k, t) pricing problem.
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competitiveness, we propose a second approach that separates the RER inequalities by a tradi-
tional separation procedure, which is called upon dynamically during the branch-and-price-and-cut
algorithm. So, where the first approach adds the RER inequalities while generating new routes,
the second approach adds RER inequalities after generating new routes.

In the following, we will first develop the alternative formulation for the MSPRP by using
column-dependent constraints. The column-dependent constraints are problem defining, and a valid
formulation of the MSPRP is obtained by replacing the knapsack-type Constraints (21). We refer
to this alternative formulation as the Alternative Integer Programming Master Problem (AIPM).
We analyze the strength of the formulation and prove that for special cases its LP relaxation is
stronger than LPM. We present an alternative pricing strategy and prove its optimality. After this,
a description of a traditional separation procedure of RER inequalities is given, in order to be able
to judge the computational performance of the column-dependent constraints approach. We will
end this section with some well-known valid inequalities that are included in our exact algorithm
as well.

3.1. Column-dependent constraints approach
By exploiting the notion of resource-exceeding routes, that is, routes that cannot simultaneously
enter a feasible integer solution due to their servicemen use, we will replace the relatively weak Con-
straints (21) by a set of column-dependent constraints that restricts the use of resource-exceeding
routes. Consider the following example. It illustrates the concept of resource-exceeding routes and
of the corresponding valid inequalities.
Example 3. Let L,T = 1 and Q̃` = 6. Consider routes ri ∈ Rit, i ∈ {1,2,3} with γri1 = 3 such

that ri = (0, i, n+ i,2n+1). In other words, Vehicle 1 performs Service 1, Vehicle 2 performs Service
2, and Vehicle 3 performs Service 3. Then the constraint

∑
i∈{1,2,3} yri ≤ 2 is valid, whereas no

restriction should be put on any subset of these routes. Consider now a fourth route r4 with γr41 = 4.
Then there are i valid inequalities of the form yr4 + yri ≤ 1 for all i∈ {1,2,3}.

The valid inequalities shown in Example 1 are problem-defining for the MSPRP. A valid for-
mulation of the MSPRP is obtained if we include those valid inequalities in IPM and leave out
Constraints (21). In the following, we present an approach that generates such valid inequalities for
any subset of routes from different vehicles, of size at least 1 and at most K− 1. For every subset,
we include column dependent constraints that restrict the maximum number of allowed routes, so
that the servicemen availability is respected.

3.1.1. Resource-exceeding route inequalities Let k(r) and t(r) be the vehicle and period
index of route r ∈Rkt, respectively. The complement route set RC

r of route r is defined as the set
of routes from different vehicles in the same period as r, that is, RCr := {r̃ ∈R | t(r̃) = t(r), k(r̃) 6=
k(r)}. We call a set of routes a partial solution if it contains at most a single route for each vehicle
and if it does not contain a route for all the vehicles. The collection of partial solutions is formally
defined as follows:
Definition 1 (partial solution). The collection St of partial solutions is defined as

St := {S ⊆Rt | |Sk| ≤ 1 ∀k ∈K,1≤ |S| ≤K − 1} , (25)

with Sk = {r ∈ S | k(r) = k}.
Now the collection of route sets St contains all partial solutions, and for each of those partial
solutions we need to check how many of those routes can be present in a feasible integer solution.
Therefore, we let φS be the maximum number of allowed routes from S ∈ St in a feasible integer
solution, that is.,

φS := max

{
|v| :

∑
v∈V⊆S

γv` ≤ Q̃` ∀`∈L

}
(26)

We will continue with a brief example to clarify the intuition behind φS and St.
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Example 4. Consider the setting as in example 1 with routes r1, r2, r3 and r4. Two partial
solutions are given by S1 = {r1, r4} and S2 = {r1, r2, r4}. Here φS1 = 1 as only r1 or r4 could be
present in a feasible integer solution. On the other hand, φS2 = 2 as r1 and r2 can both be present
in a feasible integer solution.

The concept of RER inequalities is as follows. Suppose we select a partial solution, the subset
of whose routes is part of a feasible integer solution. Since it is a partial solution, some routes for
other vehicles (of which no routes are contained in the selected partial solution) could be part of
the optimal solution as well. We can, however, put restrictions on the use of those routes for other
vehicles in combination with a partial solution, depending on φS.

To model these restrictions neatly, we introduce γφS` as the minimum use of servicemen over the
sets V that results in φS, see (26). Consider the following three special cases for the value of γφS` .
First, for |S|= 2 and φS = 1, γφS` equals the minimum use of servicemen type ` among the routes
from S. Second, for |S|= 2 and φS = 2 it results in the sum of servicemen types ` among the routes
from S. Finally, for |S|= 3 and φS = 2, γφS` equals the minimum sum of servicemen use among two
routes of S, for each ` independently.

For any feasible integer solution we ensure that at most φS routes are selected from a partial
solution S ∈ St. Let the complement route sets of S be given by RC

S = {r ∈ R | ∀s ∈ S, t(s) =
t(r), k(r)∈ kC(S)}, where kC(S) = {C ⊂K | k′ 6= k(s),∀s∈ S,k′ ∈C}. It reflects all routes belong-
ing to vehicles for which no routes are contained in the partial solution S but are in the same
period as the routes of S. Then we can formally define a resource-exceeding route as:

Definition 2 (Resource-exceeding Route). A route r ∈ Rkt is resource-exceeding with
respect to some partial solution S ∈ St if it belongs to the set ES of resource-exceeding routes with
respect to S. The set ES is defined as:

ES :=
{
r̃ ∈RCS | ∃ `∈L : γ r̃` + γφS` > Q̃`

}
(27)

Hence a route is resource-exceeding with respect to a partial solution S if it cannot be added to
the partial solution without changing the value of φS.

To model RER inequalities, let ΥS,r = 1 if r ∈ ES, and 0 otherwise. In addition, let ΓS,r = 1 if
there exists an s∈ S such that k(s) = k(r) and for all `∈L it holds that γsl ≥ γr` , and 0 otherwise.
Then constraints (21) can be rewritten as the complete set of RER inequalities∑

r∈Rt

ΓS,ryr +
∑
r∈RC

S

ΥS,ryr ≤ φS ∀ C ∈ kC(S), S ∈ St, t∈ T . (28)

We call S the constraint-generating subset of routes. We refer to RER inequalities of size s as the
constraints (28) when |S|= s.

The model described by equations (18)-(20), (22) and (28) is a valid description of the MSPRP,
and we refer to it as the Alternative Integer Programming Master Problem (AIPM). Its Linear
Relaxation is referred to as ALPM. Since we will work with only a subset R⊂R in our pricing
procedure, let St denote St with respect to the restricted route setR. The resulting restricted integer
and linear programming master problems are then denoted by RAIPM and RALPM, respectively.

An extensive comparison between the different models is given in Section 6. We will especially
focus on the strength of the root node relaxations of models IPM and AIPM. In addition, we will
investigate the effect of extending IPM with (28) and of extending AIPM with (21).

3.1.2. Properties of resource exceeding route inequalities First, we show that AIPM
has stronger LP relaxations then IPM, for L= 1. This is characterized by the following proposition.

Proposition 1 (Improved relaxation). Assume that L = 1. Let c(ALPM) and c(LPM) be
the objective values of model ALPM and LPM, respectively. Then for any given R⊆R, it holds
that c(ALPM)≥ c(LPM)
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Proof. We show that the constraints generated by (21) are a subset of the constraints generated
by (28). Without loss of generality, assume that T = 1, yr > 0 for all r ∈ R̄ and that γr` 6= γr

′
` (r 6= r′)

for any r, r′ ∈ R̄k. Consider an arbitrary constraint (21) that is violated. It implies that there
is a minimum set of routes U such that

∑
u∈U yuγu > Q̃`; otherwise, constraint (21) cannot be

violated. We show that there will always exist a RER inequality (28) that is violated if the following
procedure is followed. For every vehicle K whose routes are included in U , let γk` be the minimum
servicemen use of that vehicle. Let U ′ ⊂U be the collection of routes with that minimum resource
usage among the K vehicles. Then, for at least a single subset U ′′ ⊂ U ′, an RER inequality (28)
with generating subset of routes U ′′ will be violated. This follows directly from the definition of
Υ(·) and Γ(·). Hence the constraints generated by (21) are a subset of the constraints generated
by (28), and therefore the objective value of ALPM is at least the objective value of LPM, that is,
c(ALPM)≥ c(LPM). �

Hence, for a single resource (i.e., servicemen) type, model ALPM provides us with tighter LP
relaxations. However, the differences between AIPM and IPM become less clear when multiple
resource types are considered. The following propositions, therefore, provide insights into the dif-
ferences between the models for practical scenarios.

Proposition 2. Let t ∈ T be arbitrarily given and assume that L = 1. Let S ⊂ St be an arbi-
trary partial solution such that

∑
s∈S γ

s
` > Q`. Then for any solution y with

∑
r∈S yr > φS and∑

r∈Rt
yrγ

r
` ≤Q it follows that y /∈ALPM while y ∈ LPM.

Proposition 3. Let t ∈ T be arbitrarily given. Suppose that for all r ∈R it holds that γr` =Q`

for all `∈L. Then y ∈ (LPM) implies that y ∈ (ALPM) and therefore Conv(ALPM) =Conv(LPM).

We briefly sketch the proofs of Propositions 2 and 3, as they follow trivially by the definitions of Υ(·)
and Γ(·). For Proposition 2, notice that

∑
r∈Rt

yrγ
r
` ≤Q implies that constraints (21) are satisfied,

while constraints (28) are not satisfied since
∑

s∈S γ
s
` >Q`. For Proposition 3, all servicemen are

transported by a single vehicle, and therefore constraints (21) and (28) coincide.
Propositions 2 and 3 tell us that AIPM is especially beneficial compared with IPM if the number

of servicemen is restrictive but not fully utilized by single vehicles, that is, servicemen are max-
imally deployed but among different vehicles. In addition, both propositions made clear that for
many (practical) route sets R̄, it may hold that c(ALPM)> c(LPM). This especially holds for the
MSPRP, where a shared resource (servicemen) is completely utilized among multiple vehicles.

3.1.3. Pricing of resource exceeding route inequalities Difficulties arise during the pric-
ing step of the branch-and-price-and-cut algorithm. Normally, the added columns are found by
solving the pricing problem, and we continue doing that until no new columns are found. However,
when a new column is added to ALPM, new constraints must be included as well (constraints (28)).
These constraints are, however, not yet known when the pricing problem is solved and columns
might, therefore, be priced incorrectly. For general linear programs, this could lead to incorrectly
priced columns and non-terminating pricing procedures. In the next subsection, we will describe
an alternative pricing strategy that will provide optimal solutions to ALPM and is guaranteed to
terminate.

Let dktij , rij and λkt be as defined in Section 2.2 and let ψS be the dual costs corresponding to

constraints (28). For readability, let S=∪t∈T St and let S be the set S with respect to the restricted
route set R. The (reduced) servicemen costs in the (k, t)-pricing problem corresponding to some
route r equals

dr =
∑
`∈L

c̃`γ
r
` −

∑
S′∈A(S),S∈St

(ΓS,r + ΥS,r)ψS′ −
∑

S′∈B(S),S∈St

(ΓS,r + ΥS,r)ψS′ , (29)

where A(S) is the set of constraints (28) generated by route set S already existing when route r is
being generated, and B(S) is the set of constraints (28) being generated by all generating subsets
S that include r. That is, the constraints in A(S) can be automatically priced , since r can only
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enter as a resource exceeding route in those inequalities, whereas the constraints in B(S) do not
exist at the moment of pricing, since they are generated due to generating r.

The first term of equation (29) consists of the primal service-person costs for the generated route
r, the second term consists of the dual costs corresponding to constraints (28) where route r enters,
and the third term consists of the dual costs corresponding to constraints (28) that are not yet
in RALPM at the moment of generating r. The completely specified (k, t)-pricing problem then
equals

min
r∈Rkt

ĉr :=
∑

(i,j)∈A

dktij rij + d̄r−λkt, (30)

In (29), the dual values corresponding to the constraints generated by including the new columns
are unknown, and therefore (29) cannot be determined at the moment of generating new routes.
In the remaining part of this section, we will develop an alternative pricing strategy that provides
us with an optimal solution to ALPM and is guaranteed to terminate as well.

For readability, let ∆(r) =
∑

S′∈B(S),S∈St
(ΓS,r + ΥS,r)ψS′ , and let ˆ̄dr := d̄r + ∆(r). Since ψS′ ≤ 0

for all S′, it follows that ∆(r)≤ 0 and subsequently that ˆ̄dr ≤ d̄r for all r ∈R. By replacing d̄r with
ˆ̄dr in (29), we arrive at the alternative (k, t)-th pricing problem:

min
r∈Rkt

ˆ̂cr :=
∑

(i,j)∈A

dktij rij + ˆ̄dr−λkt. (31)

All dual values corresponding to RER inequalities are nonnegative and, consequently, ˆ̂cr ≤ ĉr.
Hence the alternative pricing problem will correctly identify routes that cause dual infeasibility
after being included in the restricted route set, which is needed for a correct column generation
approach. The following proposition summarizes the above reasoning.

Proposition 4. Let k ∈ K and t ∈ T be arbitrarily given. Consider the (k, t)-pricing problem
(29) and the alternative (k, t)-pricing problem (31). Consider an arbitrarily dual solution and cor-

responding to this dual solution, let R̂ := {r ∈Rkt | ĉr < 0} and
ˆ̂
R := {r ∈Rkt | ˆ̂cr < 0}. Then R̂⊆ ˆ̂

R.

From this proposition, we conclude that using the alternative pricing problem will not result in
any suboptimal solution of ALPM. What remains to be shown is that using (31) instead of (29)
will result in a column generation procedure that terminates.

The complete column and row generation procedure (CRG) is outlined in Algorithm 1. It consists
of iteratively solving the alternative (k, t)-th pricing problem and solving RALPM. If no negative
reduced cost routes are found in some (k, t)-th pricing problem, we continue searching for negative
reduced cost routes in the next (k, t)-th pricing problem. If negative reduced cost routes are found
by some (k, t)-pricing problem, we add those to RALPM and generate constraints (28). We then
solve RALPM and restart the procedure. The procedure terminates if there is not a single route
of negative reduced cost for any (k, t)-pricing problem.

Proposition 5. Let ĉr and ˆ̂cr be the reduced costs according to (29) and (31), respectively. Let

R̂ := {r ∈Rkt | ĉr < 0} and
ˆ̂
R := {r ∈Rkt | ˆ̂cr < 0}. Then

ˆ̂
R\R̂= ∅.

Proof. We show that there is no route r such that ĉr > 0 while ˆ̂cr is negative. Let k ∈ K and
t∈ T be arbitrarily given. There are two cases that we need to consider.

1. Consider the possibility that we generate a route r that is already included in Rkt. Now
assume ˆ̂cr < 0. We know that there exists a route r′ already included in Rkt before generating r.
That implies that ĉr′ < 0, since ∆(r′) is already known. However, ĉr′ > 0 since it is contained in
the restricted route set before obtaining the optimal solution to RALPM. Hence, such a route r
cannot be generated.
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Algorithm 1: Column and Row Generation procedure (CRG)

1 while true do
2 LP ← SolveRLPM();
3 for k ∈K do
4 for t∈ T do
5 Set of columns S ← SolveAlternativePricing(k, t, LP);
6 if S = empty then
7 goTo line 2;
8 end
9 end

10 end
11 break;
12 end

2. Assume we generate route r ∈Rkt\Rkt with ˆ̂cr < 0 and ĉr > 0. If ˆ̂c < 0, this implies that route
r cuts off the current dual solution, if we ignore the constraints (28) generated by r. However,
including those constraints results in a larger dual feasible region. It automatically follows that
route r still cuts off the same dual solution in the enlarged dual space. Hence ĉr < 0 as well. As a
result, we have shown that there are no such routes r.

By Proposition 5 and the above results, it follows that
ˆ̂
R\R̂= ∅. �

Theorem 1. The procedure (CRG) terminates and solves ALPM to optimality.

Proof. Follows directly from Propositions 4 and 5. �

3.2. Separating resource exceeding route inequalities
The concept of resource-exceeding route inequalities is explained in depth in Section 3.1. A novel
method of adding the inequalities based on column-dependent rows has been discussed above. In
order to compare its computational efficiency, we present a traditional separation procedure for
adding the resource-exceeding route inequalities in this section.

A resource-exceeding route inequality is determined by a subset S ∈ St, a set C ⊆KC(S) and the
resource consumption level φS` . Instead of taking the perspective from individual routes, we now
take the perspective of a resource consumption level uk = (u1, u2, . . . , uL) of vehicle k. A resource
level uk and a subset of vehicle indices K ⊂ K, where k ∈ K, defines a single resource-exceeding
route inequality in the following way:

Let resource consumption levels uk = (u1, . . . , uL), k ∈ K be given. Consider the set of dummy
routes S′ = {rk}k∈K such that route rk has resource consumption level uk. Then, resource-exceeding
inequalities are defined as inequalities (28) for S = S′.

The two approaches for adding resource exceeding-route inequalities have their benefits and
drawbacks. The column-dependent constraints approach does not rely on a separation procedure;
it adds resource exceeding route inequalities while generating the routes. This may become less
efficient when K becomes large, since the number of added inequalities will then quickly increase.
On the other hand, it remains very efficient when the number of servicemen type L becomes large.
In addition, the column-dependent constraints approach does not rely on the exact defintion of
resource-exceeding, that is, the approach remains valid even if other applications require nonlinear
relations to determine whether or not routes are resource-exceeding. The separation approach
becomes relatively inefficient for larger L due to the increasing number of combinations of resource
levels. In addition, the separation approach will not result in a problem-defining set of constraints,
whereas the column dependent constraints approach will.

3.3. Other valid inequalities
We will continue by discussing two well-known valid inequalities that are included in our algorithm
for solving the MSPRP. For a set of nodes S ⊆N , let δ+(S) := {(i, j)∈A | i∈ S, j /∈ S}.
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3.3.1. 2-path inequalities Since the MSPRP inherits aspects from the one-to-one pickup
and delivery problem, we have included so-called 2-path inequalities that have been shown to be
effective in a set-covering formulation (Ropke, Cordeau, and Laporte 2007, Ropke and Cordeau
2009). They are formulated as follows:

Let S ⊆ (Nd ∪Np) be such that it cannot be visited by a single vehicle k in some period t. Then
the following inequality is valid for the MSPRP,∑

yr∈δ+(S)

yr ≥ 2. (32)

The 2-path inequalities are separated by means of a greedy heuristic and an exact labeling algo-
rithm, as is discussed in Ropke and Cordeau (2009). Since a 2-path inequality is a single cut on the
yr variables, corresponding dual costs can be incorporated in the pricing problem by subtracting
it from the arc costs that leave the set S.

3.3.2. Subset-row inequalities We include subset-row inequalities, in the form of Chvátal-
Gomory rank 1 cuts on Constraints (19). They are defined as follows:

For any S ⊆Nd and k ∈N such that 0<k≤ |S|,∑
r∈R

⌊1

k

∑
i∈S

βri

⌋
yr ≤

⌊ |S|
k

⌋
. (33)

The dual values corresponding to the subset-row inequalities (33) are incorporated in the pricing
problem as discussed by Jepsen et al. (2008). We adopted their separation procedure as well.
Initial experiments have shown that including subset-row inequalities for k = 2 and |S| = 3 is
computationally efficient, whereas inequalities for other values of k and |S| are not effective and
are therefore not taken into account.

4. Pricing problems
The previous section defined (k, t)-pricing problems for both LPM and ALPM. Since the structure
of each pricing problem is similar, we describe how to solve an arbitrarily given (k, t)-pricing
problem. We first motivate the choice for developing a new variant of the pulse algorithm. Then, we
discuss how to incorporate the dual values into the pricing problem, especially those corresponding
to the RER inequalities (28). After this, we present the pulse algorithm in detail and prove its
correctness.

4.1. The pricing problem
The pricing problem is a new variant of the Elementary Resource Constrained Shortest Path
Problem (ERCSPP), introduced by Desrochers (1987) and discussed in Feillet et al. (2004) and
Irnich and Desaulniers (2005), for instance. It can be classified as a Multi-Commodity Elementary
Resource Constrained Shortest Path Problem with Delayed Paired Precedence Constraints, which
has, to the best of the authors’ knowledge, not been solved before. For readability, we refer to it
by the term Pricing Problem (PP). Let us briefly summarize the problem characteristics included
in the PP. The multi-commodity part refers to the different types of servicemen demanded at each
service. Each service has a pickup and a delivery node, where the delivery node needs to be visited
before the pickup node (precedence relation), the pickup node needs to be visited if the delivery
node is visited (pairing relation), and the corresponding service time needs to be respected between
the delivery and pickup node (“delayed time” relation).

Traditionally, ERCSPPs are solved with labeling algorithms (Desrochers, Desrosiers, and
Solomon 1992). These are dynamic programming approaches in which non-dominated partial paths
are extended with nodes until the optimal solution is found. The extent to which non-dominated
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Algorithm 2: Construction of Ĉ.

Data: Matrix Ĉ, set of RER inequalities S with for each S ∈ S, corresponding C ⊂KC(S),
period t and vehicle k of the current (k, t)-th PP

1 for RER inequality S ∈ S with corresponding set KC(S) do
2 for route r ∈ S do
3 if k(r) = k then
4 u = findResourceLevel(r);

5 setMatrixSameVehicle(u, Q̃1, . . . , Q̃L)
6 end
7 end
8 if k ∈ kC(S) then
9 u = findResourceLevel(r);

10 setMatrixOtherVehicle(u, Q̃1, . . . , Q̃L)
11 end
12 end

partial paths can be identified determines the labeling algorithm’s computational efficiency. Dom-
inance criteria are often based on the validity of the triangle inequality regarding the costs of
traversing a path: It is more expensive to make a detour instead directly traversing an arc.

The nature of the MSPRP complicates the construction of efficient dominance criteria, since
there are costs c̃` for using servicemen of type `. This destroys the validity of the triangle inequality,
i.e., it can be cheaper to make a detour instead of directly traversing an arc. The method proposed
by Ropke and Cordeau (2009) to restore the, in their case, triangle inequality for the pickup nodes,
can be used to partially restore the triangle inequality for the delivery nodes. In particular, travel
costs (including possible penalty or maintenance costs) could be restructured as they depend solely
on the arcs traversed, but the servicemen costs incurred could not.

A major consequence of this is that the dominance criteria developed by Ropke and Cordeau
(2009) are not valid for solving our PP, and, henceforth, cannot be used for the PP. This leads to
less label dominance and to a slower labeling algorithm. Therefore, we need to resort to another
algorithm to solve PP efficiently. We develop a new variant of the pulse algorithm (Lozano, Duque,
and Medaglia 2015) tailored for solving the PP without relying on dominance criteria. The pulse
algorithm is shown to be competitive with the state-of-the-art labeling algorithm of Baldacci,
Bartolini, and Mingozzi (2011) for solving the ERCSPP. The general overview of the pulse algorithm
for solving the PP is given in Algorithms 3 and 4.

4.2. Incorporating the dual values
Recall that µi, λkt, and πt` are the dual variables corresponding to constraints (19)-(21), and let their
value be zero if one of the corresponding constraints is not included in the problem formulation.
For example, πt` equals zero in the PP of ALPM, since constraints (21) are replaced by constraints
(28).

Let the initial costs of any partial path be −λkt. In order to incorporate the dual values corre-
sponding to visiting nodes, we let the costs of traversing an arc (i, j) ∈A be dktij and let the costs

for using a service-person of type ` be d̃t`, as defined in Section 2.2. Dual values corresponding to
other cuts or valid inequalities (as long they correspond to visiting nodes or a set of nodes only)
can be included in the travel costs by subtracting them from their corresponding arcs.

To incorporate the dual costs ψ of every RER inequality generated by all subsets S ⊂ R, we
define an L−dimensional array Ĉ of size (Q̃1 +1)×(Q̃2 +1)×· · ·×(Q̃L+1). Entry Qu1...,uL contains
the dual costs corresponding to the RER inequalities generated by subsets S where a generated
route r using u1, . . . , uL servicemen will enter.
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Algorithm 3: pulse main

Data: Time t, time step δ.
1 κ = createLowerBounds(t, δ);
2 z̄ =∞;
3 Set of negative reduced cost routes S;
4 pulse(L, {0}, z̄);
5 return S;

Algorithm 4: pulse(L, n, z̄)

Data: Label L, node n, best objective z̄
1 if feasible(L, n) then
2 if checkBounds(L, n) then
3 Label L′ = extend(L,n);

4 if d(L′) + d̃(L′)< z̄ then

5 z̄ = d(L′) + d̃(L′);
6 end

7 if d(L′) + d̃(L′)< 0 then
8 S = S ∪{L′}
9 end

10 for n′ ∈N do
11 pulse(L′, n′, z̄);
12 end
13 end
14 end

The algorithm to construct Ĉ is given in Algorithm 2. The function ‘findResourceLevel(r)’
returns the servicemen use u of the route r in the inequality generating subset S. Then, if k(r) = k,
we subtract the dual cost for every entry Qũ1,...,ũL for which ũ` ≥ u` for all ` ∈ L. However, if
k ∈ kC(S) we subtract the dual costs for every entry Qũ1,...,ũL if there exists an ` ∈ L such that
ũ` + γφS` >Q`, that is, the servicemen-use is such that it is resource exceeding with respect to S.
All dual values corresponding to RER inequalities are non-positive. This leads to the following
observation:

Proposition 6. Let u = (u1, . . . , uL) be an arbitrarily given resource level. Then for any u′ =
(u′1, . . . , u

′
L), such that u′` ≥ u` for all `∈L, it holds that Ĉu1,...,uL ≤ Ĉu′1,...,u′L.

Proof Let r and r′ be routes consuming u and u′ resources, respectively. Then the set of
constraints where r enters is a subset of the set of constraints where r′ enters. Since all dual values
are negative, it follows that Ĉu1,...,uL ≤ Ĉu′1,...,u′L . �

4.3. The pulse algorithm for PP
As can be seen from Algorithms 3 and 4, the pulse algorithm uses a depth-first search for exploring
the solution space. Pruning of partial paths is performed by a lower bound criterion, initialized
in the “createLowerBounds” function. Then the “pulse” procedure is called upon recursively, in
which the “feasible” and “checkBounds” procedures prune partial paths based on feasibility and a
lower bound criterion, respectively. All procedures will be explained in detail subsequently.

We store the information of a partial path as a label L, consisting of the following elements:
• The corresponding partial path ~η(L);
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• The vector of departure times ~t(L) corresponding to ~η(L),
• The travel costs d(L);
• The servicemen costs d̃(L) including the dual costs from Ĉ(L);
• The number of servicemen ζ`(L) of type ` currently working at delivery nodes;
• The maximum number of servicemen ζ̄`(L) of type ` used so far;
• The cumulative weight ξ(L) of spare parts delivered so far;
• The set of pickup nodes S(L) whose delivery node is visited and the pickup node is still

unvisited;
• And a set of delivery nodes U(L) that have already been visited.

The notation d(L) and ~η(L) is used to denote the costs and the partial path of label L, respectively.
This notation is used consistently for referring to the elements of label L. For a partial path of size
s, the vectors ~η(L) and ~η(t) are of dimension 1×s. With t(L) and η(L) we denote the last element
of ~t(L) and ~η(L), respectively.

We introduce time windows [ai, bi] for nodes i∈N . For i∈Nd, time windows are set as [t0i, ω−
si− ti,2n+1], and for i∈Np they are set as [t0i+si, ω− ti,2n+1]. In each call of the ‘pulse’ function, we
extend a label L with some node i∈N , resulting in a new label L′ that is constructed as follows.

~η(L′) = (~η(L), i), (34)

ζ`(L
′) = ζ`(L) +Qi` ∀`∈L, (35)

ξ(L′) = ξ(L) +Qi, (36)

~t(L′) = (~t(L),max{t(L) + tktη(L),i, ai}), (37)

ζ̄`(L
′) = max{ζ`(L) +Qi`, ζ̄`(L)} ∀`∈L, (38)

d̃(L′) =
∑
`∈L

ζ̄`(L
′) · d̃t`− Ĉζ̄(L) + Ĉζ̄(L′), (39)

d(L′) = d(L) + dktη(L),i, (40)

S(L′) =

{
S(L)∪{n+ i} if i∈Nd

S(L)\{i} if i∈Np

, (41)

U(L′) =

{
U(L)∪{i} if i∈Nd

U(L) if i∈Np

. (42)

A label is pruned if it appears to be infeasible or if it cannot improve the current best solution.
Both pruning criteria will be discussed next.

4.3.1. Feasibility In the “feasible” procedure, we consider a label L that we extend with some
node i. Similarly as in Ropke and Cordeau (2009), we only need to consider nodes i that satisfy

i /∈U if i∈Nd, i∈ S if i∈Np, S = ∅ if i= 2n+ 1. (43)

These indicate that a delivery node can be visited once at most; a pickup node can only be visited
if the corresponding delivery node is visited, and visiting the destination depot is only feasible if
there are no pickup nodes unvisited whose corresponding delivery node is visited.

If a node i satisfies the precedence and pairing relationships (43), we need to check the feasibility
of the resource constraints:

ξ(L) +Qi ≤ Q̄2,
∑
`∈L

max{ζ̄(L), ζ`(L) +Qil} ≤ Q̄1, ζ`(L) +Qil ≤ Q̃` ∀`∈L, t(L) + tη(L),i ≤ bi.

(44)
These model the spare part capacity as well as the servicemen capacity restrictions of the vehicle,
the restricted availability of servicemen, and feasibility with respect to the time windows intro-
duced. To conclude, the “feasible” procedure returns false if one of the conditions (43) or (44) is
violated; otherwise true is returned.
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4.3.2. Lower Bounds The “createLowerBounds” procedure constructs a series of lower
bounds κti for visiting node i at discrete time steps t ∈ [t, t+ δ, t+ 2δ+, . . . , ω− δ] for all i ∈Nd,
where δ is a parameter determining the discrete time steps. The κti can be interpreted as a lower
bound on the maximum possible gain for a path starting at i at time t. Let z̄ denote the best
solution to PP so far, that is, a valid upper bound on the optimal solution of the PP.

Consider a feasible label L with i being the last-added node to ~η, and let ti be departure time of
i. The “checkBounds” procedure prunes a Label L if d(L) + d̃(L) + κt̃i > z̄, where t̃ ∈ [t, t+ δ, t+
2δ+, . . . , ω− δ] and t̃≤ ti. We choose t̃ as large as possible, since this will give the tightest lower
bound at time ti.

The lower bounds are calculated before solving the PP. They are based on the validity of the
pickup-triangle inequality with respect to the incurred travel costs d, that is, the travel costs cannot
decrease due to visiting an additional pickup location. Initially, this property does not hold, since
dual costs corresponding to valid inequalities and branching decisions may be included in the travel
cost.

The following procedure restores the pickup-triangle inequality with respect to the travel costs:
Assume that the dual costs of the pickup-triangle inequality breaking constraints are already
incorporated in d̄ij. We search for the largest violation vj of the pickup-triangle inequality, that is,
vj := maxi,k∈N{d̄ik − (d̄i,j+n + d̄j+n,k)} for all j ∈Nd. For all j ∈Nd, we subtract vj from d̄ij and
add vj to d̄i,j+n for all i∈N . For a proof of the correctness of this, we refer to Ropke and Cordeau
(2009).

The following proposition describes how a valid lower bound is obtained.

Proposition 7 (Lower Bounds). A valid lower bound κti for all i ∈ Nd, t ∈ [t, t + δ, t +
2δ+, . . . , ω− δ] is obtained by solving the pulse algorithm starting with label L, where L is defined
as

~η(L) = (i), d(L) = 0, d̃(L′) = 0, ~t(L) = (t), ξ(L) =Qi

ζ`(L) =Qi`, ζ̄`(L) = Q̃` ∀`∈L
S(L) = {n+ i}, U(L) = {i},

In addition, we assume that Ĉ = 0 during the construction of κti.

Proof Let L? be the solution of the pulse algorithm if it starts with label L as defined above.
Then the following two properties of L? hold:

1. d̃(L?) = 0, since Ĉ = 0 and ζ̄`(L
?) = Q̃` ∀` ∈ L. Hence z̄ = d(L?) after running the pulse

algorithm.
2. For any label L̃ starting at {0} and ending at i, it holds that S(L)⊆S(L̃) and U(L)⊆S(L̃).

Then, let L̃? be the solution of the pulse algorithm if we start with some label L̃ at time t, and let
d(L̃?)+ d̃(L̃?) be its costs. By Property 2 and the pickup triangle inequality, it follows that d(L̃?)≥
d(L?). By Property 1, and non-negativity of the servicemen costs, it follows that d(L?)≥ d(D̃?).

Since κti = z̄ = d(L?) after running the pulse algorithm starting with label L, it follows that
d(L̃) + d̃(L̃) + κti ≤ d(L̃?) + d̃(L̃?) for any label L̃ starting at {0} arriving at node i at time t̃≥ t.
Hence κti is a valid lower bound for any i∈Nd, t∈ [t, t+ δ, t+ 2δ+, . . . , ω− δ]. �

5. Branch-and-price-and-cut algorithm
We will now continue by presenting the general outline of the branch-and-price-and-cut algorithm.
Recall that IPM is defined by equations (18)-(22), whereas AIPM is defined by equations (18)-(20),
(22), and (28). We will elaborate on a simple heuristic for the construction of an initial route set,
and we will discuss the branching and node selection strategy used.

5.1. Initial solution
Starting with a high-quality set of initial solutions may help to prune nodes of the branch-and-
bound tree at an earlier stage. To that extent, we have used a small randomized search strategy
inspired by the Two-stage Adaptive Large Neighbourhood Search in Schrotenboer et al. (2018).
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It consists of randomly sequencing all services and inserting them by Cheapest Feasible Insertion.
After this, it consists of an iterative procedure of two main steps: first, removing all services from a
randomly selected number of routes and reinserting them in a random order with cheapest feasible
insertion, and, second, removing some random services from the solution and reinserting them in
a random order by cheapest feasible insertion. The new solution is accepted based on some simple
simulated annealing criteria, see Schrotenboer et al. (2018) for details. The general outline of this
procedure is given in Algorithm 5.

5.2. Branching and node selection strategy
Branching rules and node selection rules should be selected with care in column-generation applica-
tions. We apply branching inspired by the approach in Naddef and Rinaldi (2001). Before explaining
the exact branching procedure, notice that we are branching on edges in the original formulation.
We need to define the values of xktij for every (i, j) ∈A,k ∈K, t ∈ T . These can easily be obtained
from the values of the LP solution ȳr, r ∈R, that is, xktij =

∑
r∈Rkt

rij ȳr, where rij equals 1 if edge
(i, j) is visited in route r.

The branching rule is simple, but effective. We search for a set S ⊆ (Nd∪Np), for every period t
and vehicle k, such that xkt(δ+(S)) is as fractional as possible. Here, xkt(δ+(S)) :=

∑
(i,j)∈δ+(S) x

kt
ij .

A simple greedy procedure is used to determine suitable candidates S for every combination of
k and t. Preliminary experiments have shown that often a set of two nodes is found for which it
holds that xkt(δ+(S)) - bxkt(δ+(S))c= 0.5.

When a suitable candidate set S, a period index t and a vehicle index k, are found, branching is
performed by imposing the constraint

∑
r∈R̄kt

∑
(i,j)∈δ+(S) rijyr ≤ bxkt(δ+(S))c on one child node,

and
∑

r∈R̄kt

∑
(i,j)∈δ+(S) rijyr ≥ dxkt(δ+(S))e on the other child node. The branching constraints

impose single cuts on (A)IPM, whose corresponding dual values should be considered in the pricing
problem. This is done by incorporating the dual values into the costs of traversing arcs δ+(S) in
the (k, t)-pricing problem. The node selection strategy, i.e., which nodes of the branch and bound
tree to explore first, is based on a best first search strategy. Initial experiments have shown that
this works well.

Algorithm 5: Randomized search procedure

Data: Set of services S
1 randomSort(S);
2 s, s′, s′′ = CheapestFeasibleInsertion(S);
3 k = 1;
4 while k < kmax do
5 s′′ = s′ S ′ = removeVessel(s′′, i);
6 s′′ = CheapestFeasibleInsertion(s′′,S ′);
7 S ′ = removeJobs(s′′, j);
8 s′′ = CheapestFeasibleInsertion(s′′,S ′);
9 k = k+ 1;

10 if accept(s′′) then
11 s′ = s′′

12 end
13 if s′′ < s then
14 s = s′′

15 end
16 end
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Table 1 Benchmark characteristics.

Benchmark ωt Qi` Q̃` Q̃i si pi p̂ Vehicle Q̄1 Q̄2 speed cost

A [6,10] [1,3] 6 [400,800] [2,5] [50,1000] 0.25 1 9 2000 60 20
2 12 3000 35 32

B [6,12] [0,4] 7 [400,800] [3,6] [50,1000] 0 1 9 2000 8 80
2 12 3000 35 128

C [6,10] [1,3] 6 [400,800] [2,5] [50,1000] 0.25 1 8 2000 60 30
2 8 2000 50 25
3 10 2000 50 20

6. Computational experiments
The goal of this section is twofold. First, we will provide insights into the efficiency of RER inequal-
ities for different sizes of the corresponding generating subsets. Recall that that the maximum size
of the RER inequalities equals the number of vehicles minus one. Second, we will show that the
column dependent approach (Section 3.1) is, besides being theoretically interesting, competitive
with a traditional separation method (Section 3.2). Recall that model formulation AIPM inher-
ently uses the column-dependent constraints approach, since the knapsack-type constraints (21)
are replaced with RER inequalities (28). On the other hand, we are making use of the separation
procedure when we include RER inequalities into model IPM. In particular, we refer to IPM if
we use the traditional set-covering formulation without RER inequalities. If we include the RER
inequalities in IPM, we will refer to it as IPM + RERx, where x is the size of the included RER
inequalities.

All experiments are conducted on three newly created benchmark sets of practically inspired
instances, described below. We implemented the branch-and-price-and-cut algorithm with the
framework for constraint programming SCIP 3.2.1 (Gamrath et al. 2016) in combination with
CPLEX 12.6.3 as an LP-solver. The overall program is coded in C++. All experiments are per-
formed on a Xeon E5 2680v3 CPU (2.5 GHz) processor with 16 GB of RAM. The implementation
is completely single-threaded. The maximum calculation time is set to 10800 seconds or the time
that 16GB of RAM is used, whichever comes first.

The benchmark sets are constructed based on a practical setting of offshore wind maintenance
service logistics off the coast of the Netherlands. The instance characteristics are in line with recent
work in offshore wind maintenance service logistics (Dai, St̊alhane, and Utne 2015, Irawan et al.
2017) and follow from interviews with stakeholders in maintenance service logistics for offshore wind
farms in the Netherlands. Benchmarking our branch-and-price-and-cut algorithm with existing
approaches and benchmarks in this area is either not possible due to the inclusion of multiple depots
and of multiple distinct wind farms that led to restrictions in the planning of the maintenance
services (Irawan et al. 2017), or the benchmark instances are too small (solved within a second)
to provide additional insights (Dai, St̊alhane, and Utne 2015). We would like to stress that the
approach of Irawan et al. (2017), in which the complete solution space is enumerated, has its limits
at 8 services per wind farm. The instance sets that we propose, and are able to solve, contain up
to 45 services for a single wind farm.

The lower bound procedure incorporated in the pulse algorithm for solving the pricing problem is
run with δ= 1 and t= b0.4ωtc for all t∈ T . The separation procedure for RER inequalities (model
IPM) is a simple enumeration based on the current route set. It is run once every five branch and
bound nodes, but only if the current branch and bound node provides the smallest lower bound on
the optimal solution. The subset-row and 2-path inequalities are only included in the root node.
This appears computationally to be most efficient.

6.1. Benchmark characteristics
We created three benchmark sets (A, B and C) that each entail different problem characteristics. A
detailed description of the parameters is given in Table 1. Benchmark Set A resembles a practical
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Table 2 Average optimality gaps (%) of the root node relaxations for the inclusion of different
valid inequalities.

AIPM IPM dif.

Benchmark n none 2p ss full troot none 2p ss full troot full troot

A 10 1.14 1.05 0.73 0.73 0.12 2.46 2.34 2.16 2.16 0.17 65.96 1.35
15 0.76 0.76 0.70 0.70 0.74 2.69 2.69 2.61 2.60 0.53 73.08 0.72

20 1.13 1.13 1.02 1.02 4.09 2.65 2.62 2.42 2.42 6.95 57.41 1.70

23 0.79 0.79 0.66 0.64 5.59 2.43 2.43 2.29 2.29 4.97 72.24 0.89
26 1.33 1.33 1.28 1.27 13.36 3.27 3.27 3.23 3.23 8.14 60.66 0.61

29 1.19 1.19 1.18 1.16 11.95 2.63 2.63 2.58 2.57 21.46 54.89 1.80

32 1.16 1.16 1.14 1.12 30.56 2.96 2.94 2.95 2.93 48.75 61.70 1.59
35 0.98 0.98 0.95 0.96 53.46 2.74 2.74 2.72 2.72 59.42 64.57 1.11

38 1.00 0.99 0.99 0.98 77.97 3.25 3.25 3.24 3.24 130.41 69.81 1.67

B 30 0.65 0.65 0.64 0.62 6.36 1.42 1.42 1.40 1.40 9.85 55.74 1.55
40 0.73 0.72 0.70 0.70 24.41 1.60 1.58 1.59 1.55 31.52 54.41 1.29

45 0.65 0.64 0.61 0.64 46.57 1.61 1.61 1.61 1.59 57.01 59.80 1.22

Avg. 0.96 0.95 0.88 0.88 22.93 2.48 2.46 2.40 2.39 31.60 63.20 1.38

situation with two vessels, a relatively fast and cheap but small vessel and a larger but slower
and more expensive vessel. It consists of relatively short time horizons (T ≤ 10). Benchmark Set B
shares the same vessel characteristics as Benchmark A, but travel costs are increased. In addition,
time horizons are larger (T > 10) and the number of services of the instances is larger. Finally,
Benchmark Set C resembles a practical situation with three relatively small vessels with small
differences regarding their capacity, travel costs, and travel speed. We would like to stress that
the benchmarks are created such that vehicles will not be deployed in every period, since weather
conditions are such that it is more profitable to cluster services in particular periods, instead of
visiting the wind farm with each vehicle on a daily basis.

For each benchmark, the coordinates of the depot are fixed at (0,30), and the maintenance jobs
are drawn in a box with lower left corner (20,20) and upper right corner (40,40). We consider three
different types of servicemen, resembling servicemen with mechanical, electrical and electromechan-
ical specialties. Their costs ĉ` equal 300,325 and 375, respectively. The demand for service-person
type `, as well as the weight of the spare parts needed for each service, is independent of other
services’ demands and is (uniformly) randomly drawn as specified in Table 1. This table also spec-
ifies the service times. In order to make a distinction between services, we consider a constant, per
period, penalty pi for not performing service i. The probability of a job having pi = 0 equals p̂. This
resembles preventive maintenance tasks, while higher values of pi resemble the relative urgency of
performing a service and can be interpreted as corrective maintenance tasks.

The maximum driving time (in hours) of the vehicles is uniformly drawn as denoted by ωt in
Table 1. This resembles practical situations at offshore wind farms where daily working hours are
limited due to weather conditions (e.g., wind speeds or fog). In addition, it specifies the vessels’
capacity for servicemen Q̄1 and the vessels’ maximum allowed spare parts weight Q̄2. The vessels’
cost parameter specifies the costs per unit of Euclidean distance traveled, and their speed parameter
specifies the units of distance that can be traveled in an hour. For Benchmark A, we let the second
vehicle have maximum driving time at least as large as the first vehicle, while for Benchmark B
and C we did not make that distinction between the vehicles. Finally, it takes 0.25 time to transfer
between a vessel and an offshore location. We incorporated this by increasing the travel time of
every arc by 0.25. The instances from each benchmark set are named after the number of services
n and time periods T that they consist of, followed by an index, for example, instance An20T5-1
and An20T5-2 are, respectively, the first and second instance with 20 services and 5 time periods
in Benchmark Set A. For every combination of the number of services n and the number of periods
T , we generated 10 instances and included the first three feasible instances in the benchmarks.
The total number of instances is 49 for Benchmark Set A, 18 for Benchmark Set B and 26 for
Benchmark Set C.
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Table 3 Optimality gaps (%) of the root node relaxations of benchmark C
with different RER inequalities included.

IPM IPM + RER1 IPM + RER2 IPM + RER1+2

n T Opt. gap troot Opt. gap troot Opt. gap troot Opt. gap troot

10 2 1.04 0.08 1.04 0.07 0.61 0.13 0.61 0.13
10 3 0.60 0.06 0.60 0.07 0.57 0.08 0.57 0.08

14 3 1.68 0.21 1.64 0.21 1.40 0.26 1.27 0.27

14 4 1.05 0.23 1.05 0.25 0.94 0.30 0.94 0.29
18 3 1.23 0.63 1.23 0.60 0.63 0.75 0.63 0.75

18 4 1.28 0.45 1.28 0.44 0.84 0.73 0.84 0.69

22 4 1.50 0.95 1.50 0.93 1.22 1.37 1.22 1.35
22 5 1.23 0.96 1.22 0.96 1.04 1.47 1.03 1.55

26 5 2.23 1.25 2.16 1.29 1.53 2.01 1.50 1.54

avg. 1.31 0.54 1.30 0.54 0.98 0.79 0.96 0.74

We tried to solve the instances by directly plugging the compact model formulation (Section
2.1) into CPLEX without including RER inequalities. This led to far worse results than the results
presented here; CPLEX was only able to solve the very small instances in reasonable computation
times.

6.2. Root node relaxations
We study the effect of the RER inequalities of size 1, the subset-row inequalities, and the 2-path
inequalities by comparing the optimality gap of the root node relaxations on the instances of
Benchmarks A and B. Recall that RER inequalities are bounded in size by the number of vehicles
minus one. The impact of RER inequalities of size 1 and 2 is shown by comparing the root node
relaxations of Benchmark C for different model formulations. If one of the instances is not solved
to optimality by any of the models, the best upper bound is used (see Tables 4 - 6) to compute
the corresponding root node optimality gaps.

The results are given in Tables 2 and 3. The results are presented according to the number of
services the corresponding instances consist of, that is, each row represents averages of the bench-
mark instances with the corresponding number of services. The results in Table 2 below “IPM”
are obtained without including RER inequalities of size 1, whereas the results below “AIPM”
include RER inequalities of size 1 as model AIPM is based on the column dependent constraints
approach. The columns indicated by “none” provide the root node optimality gap in percent-
ages without using additional valid inequalities. The root node optimality gaps are calculated as
(UB−LBroot)/LBroot×100%, where LBroot is the lower bound after processing the root node and
UB equals the best upper bound (see Tables 4-6). Columns “2p” and “ss” denote the root node
optimality gaps with 2-path inequalities and subset-row inequalities, respectively. The root node
optimality gap of the full model specification, including both subset-row inequalities and 2-path
inequalities, is given in the column “full”. Next to that, troot denotes the root node computation
time of the full model specification. Differences between IPM and AIPM are given in the columns
under “dif.”. Here, “full” denotes the percentage decrease of the optimality gap resulting from
using AIPM instead of IPM (i.e., the difference between AIPM’s and IPM’s root node optimality
gaps as a percentage of IPM’s root optimality gap), and troot indicates the relative speed increase
(i.e., troot of IPM divided by troot of AIPM).

Replacing the knapsack type constraints (21) with RER inequalities of size 1, that is, using
AIPM instead of IPM, results in an average decrease of 63.20% of the root node optimality gap.
The time needed for computing the root node relaxations differs significantly among the instances,
but on average the root node relaxations of AIPM take 22.93 seconds, whereas the IPM’s root node
relaxations are obtained in 31.60 seconds on average. The effect of the subset-row inequalities on
both AIPM and IPM is noticeable, whereas 2-path inequalities seem less effective.
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The results in Table 3 show root node optimality gaps for the instances of benchmark C. We
compare model formulation IPM (without RER inequalities), IPM with RER inequalities of size
1 (“IPM + RER1”), IPM with RER inequalities of size 2 (“IPM + RER2”), and IPM with RER
inequalities of size 1 and 2 (“IPM + RER1+2”). All experiments include both 2-path inequalities
and subset-row inequalities. Table 2 presents for each of the four formulations, the root node
optimality gap (as calculated in Table 2) and the corresponding calculation time for processing the
root node. The formulation “IPM + RER 1+2” provides the best root node relaxations. With an
average root node optimality gap of 0.96%, it closes IPM’s root node optimality gap with 26.71%.
This is mainly due to the inclusion of RER inequalities of size 2, since they individually close IPM’s
optimality gap with 25.19%.

6.3. Full model comparison
The solutions to Benchmark sets A, B, and C are given in Tables 4 - 6, respectively. Each instance
is solved with AIPM, which relies on the column dependent constraints approach, and with IPM
+ RER1 (Benchmark Set A and B) or IPM + RER1+2 (Benchmark Set C) in which the RER
inequalities are separated in a traditional way. We included subset-row and 2-path inequalities in
all the presented results. The columns “UB”, and “gap” present the best upper bound found and
the corresponding optimality gap in percentages, respectively. The optimality gap is calculated as
(UB − LB)/LB × 100%, where LB is the best lower bound. Next, the column “nodes” denotes
the number of explored nodes of the branch-and-bound tree, and the column “Sec.” denotes the
total runtime. Finally, the percentage difference in runtime is denoted in the column “∆ Sec.”,
calculated as [Sec.(AIPM) - Sec.(IPM + RER1)]/[Sec. (IPM + RER1)]× 100 %, and the root node
optimality gaps are provide in the last column.

As can be seen from Table 4 and Table 5, both methods of handling the RER inequalities provide
competitive results. The optimality gaps of both methods are comparable and the computation
time of AIPM is slightly lower than the computation time of IPM + RER1, that is, from 1464.80
to 1296.35 seconds for Benchmark A and from 4031.17 to 3132.50 seconds for Benchmark B. This
difference is explained by the decrease of the searched branch and bound nodes in the column
dependent constraints approach. This is probably caused by a better structured solution space
as RER inequalities are generated earlier, which then may increase the efficiency of branching.
Furthermore, both methods can solve instances of up to 45 services over a time horizon of 21 days
to optimality, showing the strength of the branch-and-price-and-cut algorithm developed. Out of
the 117 instances, only five instances remain unsolved within the time limit. Nevertheless, resulting
optimality gaps for the 5 unsolved instances are small, that is, on average 0.676 % for AIPM. The
root node optimality gaps are on average 1.00% and 0.68% for the instances of Benchmark Sets A
and B, respectively. It can be observed that instances that are more difficult to solve suffer indeed
from a larger root node optimality gap. However, all resulting gaps are relatively small which can
be contributed to the effectiveness of the RER inequalities.

A typical optimal solution of the MSPRP consists of a mixture of routes in which jobs are
scheduled simultaneously, sequentially, or a combination of both (see, e.g., Table 7). This is caused
by several factors driving the structure of the optimal solutions: 1) minimizing travel costs, 2)
minimizing servicemen costs, 3) capacitated vehicles in spare parts and servicemen, and 4) for
each job and period exogenous costs are present reflecting the services’ relative urgency. This
results in a small fraction of the routes being devoted to a single service, i.e., the number of
such scheduled services is 8% and 11% for benchmark sets A and B, respectively. The remaining
routes’ lengths, in the number of visited nodes, equals 4.8 on average over all instances, and routes
consisting of 10 nodes are typically part of the optimal solution. This implies that in 40% of the
periods a vehicle is not used due to being suboptimal. In addition, we like to stress that during
the execution of the branch-and-price-and-cut algorithm routes of large sizes need to be generated,
otherwise no optimality guarantee can be provided. These observations and statistics indicate that
an enumerative approach, as is taken in Irawan et al. (2018), is indeed not able to solve the MSPRP
to optimality.
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Table 4 Solutions to instances benchmark set A with IPM + RER1 and AIPM. RER inequalities of size 1 are
included in IPM.

IPM + RER1 AIPM

Instance UB Gap Nodes Sec. UB Gap Nodes Sec. ∆ Sec. Gap (root)

An10T3-1 28087.55 0.00 99 2 28087.55 0.00 11 0 -76.70 1.54
An10T3-2 20970.66 0.00 7 0 20970.66 0.00 3 0 -34.88 0.29
An10T3-3 26617.57 0.00 5 0 26617.57 0.00 5 0 -48.98 0.26
An10T4-1 27098.09 0.00 19 0 27098.09 0.00 11 0 -38.89 0.62
An10T4-2 28152.48 0.00 112 2 28152.48 0.00 27 1 -75.00 1.04
An10T4-3 23789.15 0.00 19 0 23789.15 0.00 9 0 -21.95 0.65
An15T4-1 43793.93 0.00 46 3 43793.93 0.00 15 3 -3.23 0.81
An15T4-2 43458.52 0.00 11 1 43458.52 0.00 5 1 32.95 0.43
An15T4-3 48748.17 0.00 182 8 48748.17 0.00 27 4 -47.49 2.23
An15T5-1 43025.34 0.00 41 3 43025.34 0.00 55 4 39.33 0.67
An15T5-2 47227.70 0.00 1 1 47227.70 0.00 1 0 -43.64 0.00
An15T5-3 51964.74 0.00 3 1 51964.74 0.00 3 0 -46.74 0.05
An20T5-1 63872.94 0.00 1824 145 63872.94 0.00 337 126 -13.30 2.07
An20T5-2 38780.62 0.00 1 6 38780.62 0.00 1 11 73.50 0.00
An20T5-3 49958.59 0.00 164 52 49958.59 0.00 51 23 -56.43 1.10
An20T6-1 69517.70 0.00 216 11 69517.70 0.00 68 5 -51.21 1.04
An20T6-2 65297.03 0.00 1 2 65297.03 0.00 1 1 -42.54 0.00
An20T6-3 64001.64 0.00 567 155 64001.64 0.00 201 188 21.19 1.97
An23T6-1 68871.16 0.00 301 92 68871.16 0.00 82 80 -13.60 0.84
An23T6-2 59077.44 0.00 147 43 59077.44 0.00 161 139 221.40 0.79
An23T6-3 62875.43 0.00 27 16 62875.43 0.00 11 15 -5.26 0.38
An23T7-1 68931.47 0.00 164 22 68931.47 0.00 123 32 44.86 0.73
An23T7-2 70931.07 0.00 508 94 70931.07 0.00 145 56 -40.67 0.78
An23T7-3 62269.57 0.00 12 12 62269.57 0.00 9 13 12.04 0.29
An26T7-1 84364.62 0.00 34 24 84364.62 0.00 3 41 73.01 0.12
An26T7-2 72722.87 0.00 7537 2506 72722.87 0.00 1548 1081 -56.85 1.64
An26T7-3 73208.39 0.00 1989 660 73208.39 0.00 864 780 18.04 1.95
An26T8-1 72019.28 0.00 787 128 72019.28 0.00 63 50 -60.88 0.47
An26T8-2 92919.51 0.00 10465 1799 92919.51 0.00 2951 1534 -14.75 1.97
An26T8-3 76139.09 0.00 1602 375 76139.09 0.00 528 401 6.79 1.48
An29T8-1 78543.35 0.00 4247 3157 78543.35 0.00 2167 4010 27.02 1.36
An29T8-2 96981.64 0.00 2488 438 96981.64 0.00 874 492 12.35 0.93
An29T8-3 114259.36 0.00 1591 466 114259.36 0.00 476 469 0.61 1.14
An29T9-1 78185.67 0.00 233 549 78185.67 0.00 117 394 -28.13 1.10
An29T9-2 93382.71 0.00 579 249 93382.71 0.00 141 290 16.28 1.20
An29T9-3 85954.50 0.00 2025 850 85954.50 0.00 953 778 -8.43 1.22
An32T9-1 101388.52 0.00 8447 3352 101388.52 0.00 1542 1078 -67.85 1.37
An32T9-2 111095.36 0.00 1669 2727 111095.36 0.00 1281 4518 65.69 1.38
An32T9-3 100752.91 0.00 798 289 100752.91 0.00 124 186 -35.74 0.95

An32T10-1 84453.77 0.00 3208 6130 84453.77 0.00 987 3554 -42.03 1.43
An32T10-2 123195.44 0.00 3613 3491 123195.44 0.00 1085 1273 -63.55 0.55
An32T10-3 89877.16 0.00 805 2773 89877.16 0.00 443 2607 -6.00 1.05
An35T10-1 119355.72 0.00 1082 1812 119355.72 0.00 442 1144 -36.85 0.60
An35T10-2 115930.11 0.00 1170 1603 115930.11 0.00 501 2193 36.82 0.92
An35T10-3 120197.78 0.00 1435 2757 120197.78 0.00 747 2880 4.45 1.37
An38T10-1 135434.78 0.00 2629 4893 135434.78 0.00 682 2632 -46.20 1.00
An38T10-2 128006.98 0.00 1395 1482 128006.98 0.00 554 2591 74.81 0.97
An38T10-3 135708.68 0.00 1650 9896 135708.68 0.00 760 8794 -11.13 0.96
An41T10-1 0.00 1 24 0.00 1 39 64.65
An41T10-2 196225.73 1.43 6767 10800 196225.73 1.40 2241 10800 0.00 2.97
An41T10-3 133740.76 0.60 4116 10800 134029.73 0.82 967 10800 0.00 1.36

Avg. 0.04 1506.65 1465 0.04 478.51 1296 -5.75 1.00
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Table 6 presents the result for solving Benchmark Set C. The average number of explored branch
and bound nodes is almost four times smaller for AIPM (1004.58 vs. 252.92). Nevertheless, the
number of constraints included in the column-dependent constraints approach causes nodes to be
processed more slowly, and, consequently, the overall computation time becomes greater in some
instances. Finally, all instances could be solved to optimality with both AIPM and IPM + RER1+2.

Table 5 Solutions to instances benchmark set B with IPM + RER1 and AIPM.

IPM + RER1 AIPM

Instance UB Gap Nodes Sec. UB Gap Nodes Sec. ∆ Sec. Gap (root)

Bn30T14-1 255600.40 0.00 3 7 255600.40 0.00 5 6 -13.63 1.00
Bn30T14-2 164668.12 0.00 84 50 164668.12 0.00 44 59 17.04 0.01
Bn30T14-3 229575.13 0.00 546 93 229575.13 0.00 261 80 -13.22 0.22
Bn30T21-1 223300.89 0.00 5613 2255 223300.89 0.00 849 432 -80.82 0.71
Bn30T21-2 198642.60 0.00 85 95 198642.60 0.00 57 44 -53.51 0.96
Bn30T21-3 187745.43 0.00 2282 1741 187745.43 0.00 738 924 -46.93 0.60
Bn40T14-1 274446.27 0.12 13736 10800 274446.27 0.08 6289 10800 0.00 1.22
Bn40T14-2 266032.66 0.00 396 498 266032.66 0.00 179 382 -23.33 1.27
Bn40T14-3 259001.17 0.00 2508 2999 259001.17 0.00 894 2019 -32.67 0.28
Bn40T21-1 293918.58 0.00 1894 1304 293918.58 0.00 1307 1186 -9.00 0.72
Bn40T21-2 316379.51 0.00 82 64 316379.51 0.00 11 31 -51.14 0.96
Bn40T21-3 265363.92 0.17 6281 10800 265363.92 0.00 3106 7727 -28.46 0.33
Bn45T14-1 316761.50 0.73 5003 10801 317716.30 0.80 2922 10800 -0.01 0.68
Bn45T14-2 367451.65 0.00 3004 1629 367451.65 0.00 3475 3733 129.15 1.27
Bn45T14-3 309185.47 0.00 1778 2160 309185.47 0.00 336 961 -55.52 0.57
Bn45T21-1 311858.05 0.00 4220 6466 311858.05 0.00 931 2164 -66.53 0.27
Bn45T21-2 326823.04 0.00 12704 7951 326823.04 0.00 4307 4235 -46.73 0.42
Bn45T21-3 313399.50 0.32 12342 10800 313638.42 0.28 6184 10800 0.00 0.67

Avg. 0.07 4031.17 3917.46 0.06 1771.94 3132.50 -20.85 0.68

6.4. Ignoring technician costs
Looking into the structure of the optimal solutions, it should be noted that routes of length up
to 5 services are observed among the optimal solutions, which is in line with the results presented
in Irawan et al. (2017). When technician costs are ignored, the driving factor that disperses ser-
vices over the time horizon is removed. To assess the performance of the branch-and-price-and-cut
algorithm under such circumstances we resolved the instances of Benchmark Set A by removing
technician costs. The average optimality gap equals 0.19% on average with an average computation
time of 1331 seconds. Comparing withe results in Table 4, it is observed that the performance is
similar. Hence we can conclude that the branch-and-price-and-cut algorithm developed is able to
solve the variant of the MSPRP in which servicemen costs are ignored.

6.5. Short service times
To test the performance of the branch-and-price-and-cut algorithm developed, we resolved Bench-
mark Set B with service times cut in half using AIPM. Although this may not reflect current
practices in offshore wind, it might become a reality in a more mature offshore wind industry, in
which short inspections and minor repairs might become reality (Willis et al. 2018). We increased
the computation time allowed to 24 hours and the maximum memory usage to 64 GB. Average
optimality gap after termination equalled 1.10 %, mainly due to instance 2n45T14 (6.8%) for which
the memory limit was reached. We clearly observe that only a limited number of periods are being
utilized by the vehicles. The average number of routes among the best upper bounds found equals
10.68, with a maximum of 13 routes and a minimum of 8 routes. In Table 7, we provide an example
solution (Bn40T21-2) consisting of 11 routes, out of a total possibility of 42 routes (21 periods times
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Table 6 Solutions to instances benchmark set C with IPM and AIPM. RER inequalities of size 1 and 2 included
in IPM.

IPM + RER1+2 AIPM

Instance UB Gap Nodes Sec. UB Gap Nodes Sec. ∆ Sec. Gap (root)

Cn10T2-1 30463.24 0 23 0 30463.239 0 31 0 81.25 1.60
Cn10T2-2 25253.40 0 3 0 25253.396 0 1 0 -46.15 0.20
Cn10T2-3 29919.01 0 8 0 29919.01 0 1 0 -61.54 0.03
Cn10T3-1 27419.56 0 3 0 27419.559 0 1 0 -41.18 0.00
Cn10T3-2 27250.62 0 1 0 27250.615 0 1 0 -33.33 0.00
Cn10T3-3 29503.38 0 36 0 29503.382 0 20 0 31.25 1.72
Cn14T3-1 38699.91 0 61 1 38699.914 0 41 3 226.83 0.98
Cn14T3-2 41705.84 0 11 0 41705.835 0 3 0 88.89 0.05
Cn14T3-3 41317.37 0 414 2 41317.365 0 143 9 276.76 2.79
Cn14T4-1 40873.76 0 95 1 40873.758 0 26 1 -36.46 0.87
Cn14T4-2 36218.82 0 30 1 36218.821 0 50 5 590.91 1.35
Cn14T4-3 37699.02 0 3 0 37699.022 0 7 0 53.33 0.62
Cn18T3-1 51376.73 0 13 1 51376.725 0 1 2 77.45 0.25
Cn18T3-2 49947.32 0 87 4 49947.321 0 11 5 45.79 1.02
Cn18T4-1 58605.42 0 15 1 58605.42 0 23 1 106.15 0.71
Cn18T4-2 50437.17 0 163 8 50437.17 0 59 8 4.96 1.06
Cn18T4-3 57105.47 0 37 1 57105.47 0 30 2 26.61 0.74
Cn22T4-1 61700.09 0 35 4 61700.09 0 17 5 14.29 0.33
Cn22T4-2 56387.57 0 1489 26 56387.57 0 1964 6028 23428.81 1.91
Cn22T4-3 69951.25 0 6191 370 69951.25 0 879 1277 244.64 1.44
Cn22T5-1 69566.61 0 1233 84 69566.61 0 196 55 -34.43 1.38
Cn22T5-2 68890.12 0 654 15 68890.12 0 219 44 187.17 1.21
Cn22T5-3 75468.34 0 99 3 75468.34 0 101 8 148.84 0.48
Cn26T5-1 81605.927 0 209 11 81605.927 0 35 30 172.94 0.67
Cn26T5-2 80033.842 0 1018 48 80033.842 0 219 282 490.28 1.88
Cn26T5-3 86571.154 0 14188 512 86571.154 0 2497 4860 848.92 1.96

Avg. 0.00 1004.58 42.08 0.00 252.92 485.58 1034.35 0.97

2 vehicles). Looking into the structure of the solution in Table 7, once could clearly observe the
mixture of routes in which jobs are scheduled simultaneously (e.g., in Table 7, the route of Vehicle
1 in Period 1) and routes in which jobs are scheduled sequentially (e.g., in Table 7, the route of
vehicle 0 in Period 2). This is caused by the several characteristics of the MSPRP influencing the
structure of the optimal solution, as is discussed in Section 6.3.

Table 7 Optimal solution of instance Bn40T21-2 with small
service times.

Vehicle period route

0 0 0 25 16 56 65 28 68 81
0 2 0 8 48 35 75 11 51 81
0 4 0 10 50 26 66 27 67 81
0 6 0 12 52 23 63 29 69 81
0 7 0 4 44 5 45 32 72 13 53 81
0 13 0 40 80 34 74 39 79 81
1 0 0 31 71 18 33 73 58 81
1 1 0 24 14 54 64 1 20 60 17 41 2 42 57 81
1 2 0 6 15 55 46 9 49 21 61 81
1 4 0 7 47 38 37 77 78 22 30 62 70 81
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7. Conclusions
In this paper, we introduced resource exceeding route inequalities, a specialized form of knap-
sack cover inequalities. These resource-exceeding route inequalities are applicable for any routing
problem involving the consumption of a scarce set of resources. Two different approaches for includ-
ing the resource-exceeding route inequalities were presented. In the first approach, we make use
of column-dependent constraints to replace knapsack-type inequalities that model the resource
scarcity. We showed that the convex hull of this new formulation is contained in the convex hull
of a traditional set-covering formulation for particular cases, and we provided insights in instance
characteristics that benefit the most from the new formulation. In order to use the new formula-
tion in a column-generation approach, we formulated an alternative pricing procedure and proved
that it provides optimal solutions. A traditional separation procedure for RER inequalities is also
presented, in order to assess the computational performance of the column-dependent constraints
approach.

The strength of the resource-exceeding route inequalities and the effectiveness of the column-
dependent constraints approach has been tested on a new problem in the area of offshore wind
maintenance service logistics: the Multi-period Service Planning and Routing Problem. This is
the first problem in this area without predefined planning restrictions. A branch-and-price-and-cut
algorithm, which is the first sophisticated exact solution approach in the area of offshore wind
maintenance service logistics, has been developed to solve the Multi-period Service Planning and
Routing Problem. A tailored pulse algorithm with a novel lower bounding procedure was developed
to solve the pricing problems.

Computational experiments on a practically inspired set of benchmark instances showed the
strength of RER inequalities. Optimality gaps of the root node relaxations on instances with
two vehicles were reduced, on average, by 63.20%, a scenario widely encountered throughout the
literature. The column-dependent constraints approach appears very effective in searching the
branch and bound tree, as compared to a standard separation procedure. Overall, both methods
of including RER inequalities are competitive in terms of computational efficiency. Instances of up
to 92 nodes and 21 time periods could be solved to optimality in reasonable computation times.

A promising direction for further research is the inclusion of stochastic elements in the Multi-
Period Service Planning and Routing Problem. For example, one could model uncertain weather
conditions and thereby uncertainty in travel times. Another promising direction is to include what
are known as experience-based service times. By doing so, service times become more predictable
when servicemen become more experienced in their work.
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