
 

 

 University of Groningen

What can and can't we say about indirect land-use change in Brazil using an integrated
economic - land-use change model?
Verstegen, Judith A.; van der  Hilst, Floor; Woltjer, Geert; Karssenberg, Derek; de Jong,
Steven M.; Faaij, Andre P. C.
Published in:
Biomass & Bioenergy

DOI:
10.1111/gcbb.12270

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2016

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Verstegen, J. A., van der  Hilst, F., Woltjer, G., Karssenberg, D., de Jong, S. M., & Faaij, A. P. C. (2016).
What can and can't we say about indirect land-use change in Brazil using an integrated economic - land-
use change model? Biomass & Bioenergy, 8(3), 561-578. https://doi.org/10.1111/gcbb.12270

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 13-11-2019

https://doi.org/10.1111/gcbb.12270
https://www.rug.nl/research/portal/en/publications/what-can-and-cant-we-say-about-indirect-landuse-change-in-brazil-using-an-integrated-economic--landuse-change-model(ee20fd4f-493e-48a4-b80c-99e572f2edcc).html


What can and can’t we say about indirect land-use
change in Brazil using an integrated economic – land-use
change model?
J UD I TH A . VERSTEGEN1 , FLOOR VAN DER H IL ST 1 , GEERT WOLT JER 2 ,

DEREK KARSSENBERG 3 , S TEVEN M . DE JONG 3 and ANDR �E P. C. FAAIJ4

1Faculty of Geosciences, Copernicus Institute for Sustainable Development, Utrecht University, Heidelberglaan 2, 3584 CS,

Utrecht, The Netherlands, 2LEI, Wageningen University & Research Centre, Alexanderveld 5, 2502 LS Den Haag, The

Netherlands, 3Department of Physical Geography, Faculty of Geosciences, Utrecht University, Heidelberglaan 2, 3584 CS,

Utrecht, The Netherlands, 4Energy and Sustainability Research Institute Groningen, University of Groningen, Blauwborgje 6,

PO Box 9700 AE, Groningen, The Netherlands

Abstract

It is commonly recognized that large uncertainties exist in modelled biofuel-induced indirect land-use change,

but until now, spatially explicit quantification of such uncertainties by means of error propagation modelling

has never been performed. In this study, we demonstrate a general methodology to stochastically calculate

direct and indirect land-use change (dLUC and iLUC) caused by an increasing demand for biofuels, with an
integrated economic – land-use change model. We use the global Computable General Equilibrium model MAG-

NET, connected to the spatially explicit land-use change model PLUC. We quantify important uncertainties in

the modelling chain. Next, dLUC and iLUC projections for Brazil up to 2030 at different spatial scales and the

uncertainty herein are assessed. Our results show that cell-based (5 9 5 km2) probabilities of dLUC range from

0 to 0.77, and of iLUC from 0 to 0.43, indicating that it is difficult to project exactly where dLUC and iLUC will

occur, with more difficulties for iLUC than for dLUC. At country level, dLUC area can be projected with high

certainty, having a coefficient of variation (cv) of only 0.02, while iLUC area is still uncertain, having a cv of

0.72. The latter means that, considering the 95% confidence interval, the iLUC area in Brazil might be 2.4 times
as high or as low as the projected mean. Because this confidence interval is so wide that it is likely to straddle

any legislation threshold, our opinion is that threshold evaluation for iLUC indicators should not be imple-

mented in legislation. For future studies, we emphasize the need for provision of quantitative uncertainty esti-

mates together with the calculated LUC indicators, to allow users to evaluate the reliability of these indicators

and the effects of their uncertainty on the impacts of land-use change, such as greenhouse gas emissions.
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Introduction

Governments throughout the world have set mandatory

biofuel targets for the transport sector, aiming at mitigat-

ing climate change, improving energy security, and stim-

ulating rural development (Sorda et al., 2010). Currently,

one of the central problems in the biofuel arena is the

premise of biofuel-induced land-use change (IPCC, 2011;

Creutzig et al., 2012; Finkbeiner, 2014; Warner et al.,

2014). These land-use changes can have negative impacts

such as carbon stock loss, rising food prices, loss of bio-

diversity, and water scarcity, reducing the eligibility of

the feedstock as a sustainable source for biofuels. An

increased demand for biofuel feedstocks can lead to

direct land-use change (dLUC): land use is changed

from some previous use to the biofuel feedstock. This, in

turn, can lead to indirect land-use change (iLUC): a

change of land use outside the biofuel feedstock cultiva-

tion area, induced by a change in use or production

quantity of that biofuel feedstock. This can happen either

when the agricultural land-use type converted to the bio-

fuel feedstock is displaced to elsewhere, in order to con-

tinue to meet the demand for its agricultural products,

or when the direct conversion triggers a change in the

price of agricultural products, causing land to be taken

into (or out of) production elsewhere (Wicke et al., 2012).

The question to be tackled is to what extent the global

increase in demand for biofuels (Broch et al., 2013) leads
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to dLUC and iLUC and how the negative effects can be

minimized.

Direct land-use changes are unambiguously visible

in both historical data and spatial land-use change

model results. DLUC takes place wherever a bioenergy

crop field appears and consequently displaces the pre-

vious land use. On the contrary, iLUC cannot be

directly observed (Finkbeiner, 2014), because if, for

example, pasture displaces forest in the presence of an

expansion of bioenergy cropland over pasture, this

does not necessarily mean that the pasture displace-

ment is caused by the expansion of bioenergy crop-

land. The pasture might have caused deforestation for

a reason unrelated to bioenergy. In other words, the

indirect effects of a particular demand increase cannot

be identified from historical data because the effects

are intertwined with a wide range of processes from

which the effects are also present in these data (O’Hare

et al., 2011; Overmars et al., 2011). Separate identifica-

tion is only possible by comparing all land-use changes

with and without the demand increase for bioenergy,

which can be performed using a simulation model

(Creutzig et al., 2014).

The processes governing dLUC and iLUC range from

global to local scale. For example, the impact of the bio-

fuel targets on demands for feedstocks in different parts

of the world is a global market issue. On the other hand,

at which location the land-use changes and which previ-

ous land use is replaced is primarily steered by local fac-

tors, such as accessibility and biophysical conditions

(Meyfroidt et al., 2013). Likewise, the impacts of the

land-use change are highly location-dependent (e.g. van

der Hilst et al., 2014). Therefore, a sound approach to

model iLUC is by using a global economic model cou-

pled to a spatially explicit land-use change (LUC) model

to take both the global- and local-scale level into account,

as, for example, demonstrated by Lapola et al. (2010).

It is commonly recognized that there is a large

uncertainty in modelled iLUC (Mathews & Tan, 2009;

Wicke et al., 2012; Malins, 2013; Creutzig et al., 2014;

Finkbeiner, 2014). The uncertainties arise from model

structure uncertainty (Refsgaard et al., 2006; Verstegen

et al., 2015), from data (inputs, calibration data set and

initial system state) (Dendoncker et al., 2008), and from

model coupling (Ray et al., 2012). For iLUC in particu-

lar, uncertainty in reported values also stems from the

fact that the assumptions, the employed models, and

the validity of these models are often not clearly com-

municated (Mathews & Tan, 2009). Information quanti-

fying uncertainty in iLUC is critical to evaluate

whether or not iLUC indicators are reliable enough to

be included in legislation, to identify which parts of

the modelling chain have the highest priority for

improvement, that is cause most uncertainty, and to

assess how this uncertainty propagates to the impacts

of iLUC, such as greenhouse gas (GHG) emissions (e.g.

Plevin et al., 2015). Uncertainty information can be

obtained by (1) being explicit about the applied mod-

els, the processes included in these models, and the

parameter settings used, as well as the uncertainty in

the various model components and the performance of

these models (Mathews & Tan, 2009; Broch et al., 2013),

and (2) assessment of the magnitude of the output

uncertainty by, for example, doing Monte Carlo analy-

ses of iLUC (Wicke et al., 2012, 2015; Nelson et al.,

2014; Warner et al., 2014; Plevin et al., 2015). Uncer-

tainty should be assessed at different spatial scales

because different types of impacts play a role at differ-

ent scales and it is known that uncertainty is highly

scale-dependent (e.g. Pontius Jr. and Spencer; Verste-

gen et al., 2012). Yet, such information is currently scar-

cely reported for iLUC; a status we aim to improve

with this study.

We have set up a model study with the global Com-

putable General Equilibrium (CGE) model MAGNET

(e.g. Kavallari et al., 2014; Woltjer & Kuiper, 2014), inte-

grated with the spatially explicit land-use change

model PLUC (e.g. Verstegen et al., 2012). With this inte-

grated model, we project land-use change caused by

an increasing demand for biofuels up to 2030 for Bra-

zil, one of the main bioethanol producers in the world.

As Brazil holds the world’s major potential for agricul-

tural expansion (Alexandratos & Bruinsma, 2012), pro-

duction and export of bioethanol are likely to increase

in the future (IEA, 2013; OECD/Food and Agriculture

Organization, 2014, Walter et al., 2014). Yet, the country

also maintains the largest area of natural remnants,

with high carbon stocks and high levels of biodiversity,

stressing the need to assess potential negative impacts.

For this case study, we seek to answer the following

research questions: (1) What are the dLUC and iLUC

projections for Brazil up to 2030 at different spatial

scales and what is the uncertainty herein? (2) What are

the sources of uncertainty for each step in the model

chain and how do these uncertainties influence dLUC

and iLUC projections? (3) What is the contribution of

the economic and land-use change model to the uncer-

tainty in dLUC and iLUC at the different spatial

scales?

The next section introduces the Brazilian case study,

presents the LUC model, the CGE model, and the way

they are coupled, describes the calibration method,

defines the projection scenario for the increased demand

for biofuels, and explains how iLUC is derived from the

results. Section three illustrates the results for the three

research questions. The final section discusses these

results in the light of the research questions and gives

suggestions for further research.

© 2015 The Authors Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., 8, 561–578
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Materials and methods

Overview

The projection of dLUC and iLUC in Brazil caused by an

increasing demand for biofuels and the uncertainty herein is

performed using MAGNET (Woltjer & Kuiper, 2014), a global

Computable General Equilibrium (CGE) model, connected to

the land-use change model PLUC (e.g. Verstegen et al., 2012),

tailored to Brazil (Fig. 1). For 2006, an initial land-use map is

created by combining tabular area data per land-use type and

land-use maps with satellite data. This map is used as the ini-

tial system state for PLUC. Next, PLUC is calibrated from 2007

until 2012 based on trends per land-use type from agricultural

statistics databases. To project the dLUC and iLUC effects of

the biofuel mandates, we define both a ‘biofuel scenario’ that

includes these mandates and a ‘reference scenario’ that does

not include them. For both scenarios, MAGNET determines the

supply and demand of all commodities in all world regions up

to 2030 and, related to that, the areas they occupy. This 2013–

2030 time series of land area demands per land-use type for

Brazil is then input for the spatially explicit land-use change

projection up to 2030 by PLUC. The PLUC outputs are a time

series of land-use maps. By comparison of the maps of the two

scenarios, dLUC and iLUC are assessed.

In the model chain, uncertainties in the inputs, calibration data

set, initial system state, and model structure are quantified, part

of which propagates through the model coupling (Fig. 1). To

quantify uncertainty in MAGNET, it is run with two different

parameter sets, resulting in an upper and a lower demand limit.

PLUC, including the generation of the initial land-use map, the

calibration, and the demand coming from MAGNET, is used sto-

chastically by running it inMonte Carlo mode (Fig. 1).

Case study

Brazil has been producing bioethanol from sugar cane since the

beginning of the 20th century and has been exporting the etha-

nol since 1989 (Andrade de S�a et al., 2013). Sugar cane currently

occupies the third largest area of all crops in Brazil, topped

only by soya and maize (although a large quantity of the maize

is cultivated as second crop) (IBGE, 2013b). The main sugar

cane production areas are the Central South region and the

north-east region. Recent expansion has mainly taken place in

the Central South region: in the past decade, the total area ded-

icated to sugar cane cultivation has more than doubled in that

region (Rudorff et al., 2010). It expected that future expansion

will also predominantly occur in the Central South region

(Nassar et al., 2008; Lapola et al., 2010). According to Adami

et al. (2012), over 99% of all sugar cane expansion in the last

decade has taken place over existing agricultural land, signify-

ing that the direct effect of increasing ethanol demand on

deforestation is negligible. However, deforestation can still take

place through iLUC, which is also shown by others (Lapola

et al., 2010; e.g., de Souza Ferreira Filho & Horridge, 2014).

Initial land-use map and land-use change model

We distinguish 11 different land-use types n, where n = 1, 2,

. . ., 11: urban, water, natural forest, rangeland, planted forest,

crops (excluding sugar cane), grass and shrubs, sugar cane,

planted pasture, bare soil, and abandoned agricultural land.

Planted pasture and natural pasture (rangeland) are modelled

separately because the extensively managed, naturally vege-

tated rangelands have a stocking rate of about 70% lower than

the intensively managed planted pastures (IBGE, 2006, Aguiar

& d’Athayde, 2014). Cropland includes both annual and per-

manent crops. Sugar cane is modelled as a separate land-use

type to be able to evaluate where sugar cane expands in reac-

tion to the increased ethanol demand and which other land

uses it replaces.

PLUC (PCRaster Land Use Change model) (van der Hilst

et al., 2012, 2014; Verstegen et al., 2012; Diogo et al., 2014) is

founded on the separation between the quantity of change per

land-use type and the spatial allocation of this change, like

many other land-use change models (Pontius Jr. and Neeti,

2010). The quantity of land demanded per land-use type n is

called ‘demand’ dn,t, in which t is the time step in years, with

t = 1, 2, . . ., T. The total area per land-use type in the demand

time series (tabular area data from agricultural statistics) for

the initial year of the simulation should match the total area

per land-use type in the initial land-use map, that is the initial

system state of the model. If the time series and initial map are

coming from different sources, which is likely, a perfect match

is obviously never going to be the case. You & Wood (2005)

provide a deterministic method to create a land-use map that

matches the time series, by spatially disaggregating land-use

areas per administrative region from the time series into raster

cells within that region, using prior knowledge maps. We

apply this procedure, using municipalities as administrative

regions (5566 in total for Brazil), to create an initial land-use

map for Brazil with a cell size of 5 9 5 km2 for the year 2006.

This year is chosen because it was the year in the recent past

(to have a calibration period) with the best data availability for

both the tabular and prior knowledge map data. Compared to

You & Wood (2005), we do a few things differently, most

importantly adding a method to make a stochastic map instead

Area 
per LU 
type

Historic 
demand 
per LU type

Scenario assumptions for, e.g., 
population, policies and 
yield improvements

2006 2007 2013 2030

Prior
knowledge
maps

MAGNET 
(Computable general 
equilibrium model)

Uncalibrated    Calibrated PLUC
(spatially explicit land use change model)

C
alibration

Land use and
transition
matrices

Demand

dLUC and iLUC 
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Initial
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M
onte C

arlo
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ulation

Fig. 1 Overview of the modelling chain and model run-time

frame to simulate the probability of dLUC and iLUC in Brazil

up to 2030.
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of a deterministic map, in order to include uncertainty arising

from errors in the initial land-use map into the model chain, as

explained in Methods S1.

Of the eleven land-use types considered in PLUC, five are

assumed to respond to changes in the economy by expanding

or contracting: rangeland, planted forest, crops, sugar cane,

and planted pasture. These active land-use types are demand-

driven (Table 1). The other six land-use types do not have

demands. They are either passive, meaning that they can con-

tract or expand due to the dynamics of the active land-use

types, or static, meaning that they cannot change and are thus

fixed on the map. Passive land-use types are natural forest,

grass and shrubs, bare soil, and abandoned agricultural land.

Abandoned land originates when an active land-use type con-

tracts; it is not present in the initial land-use map. Static land-

use types are urban and water.

The demands for the five dynamic land-use types over time

in Brazil have been subdivided into six regions (Fig. 2), corre-

sponding to the macroregions defined by the Brazilian Institute

of Geography and Statistics (IBGE). We added one region by

splitting the north-eastern macroregion into two regions, as

suggested by Nassar et al. (2010), because the north-east coast

differs significantly from the north-east Cerrado (savannah) in

terms of agricultural production.

In PLUC, the spatial allocation is regulated by spatial attri-

butes that serve as proxies for important drivers of location,

that is processes that determine where a land-use type expands

or contracts. These are called suitability factors k, with k = 1, 2,

. . ., Kn (each active land-use type n can have a different number

of suitability factors). For each n defined as active, a weighted

sum of these suitability factors forms the total suitability map.

In one model time step, representing 1 year, the demands of

the active land-use types are allocated sequentially for each

macroregion, as follows. For the first active land-use type n,

the total suitability map is sorted, and cells are allocated to n,

starting with the cell with the highest suitability value that is

not yet of type n, until dn,t is fulfilled. Next, the same is per-

formed for the second land-use type in the sequence, with the

exception that cells occupied by the first land-use type cannot

Table 1 Suitability factors, k, of the active land-use types, n, for the Brazilian case study

n Land-use type k Process represented Suitability factor

4 Rangeland 1 Economies of scale n in the neighbourhood

2 Transportation costs Distance to roads

3 Potential profits per hectare Potential yield of n

5 Planted forest 1 Economies of scale n in the neighbourhood

2 Transportation costs Distance to roads

3 Potential profits per hectare Potential yield of n

6 Crops 1 Economies of scale n in the neighbourhood

2 Transportation costs Travel time to hubs for n

3 Potential profits per hectare Potential yield of n

4 Costs to make the land cultivatable Conversion elasticity

5 Double-cropping potential Growing season length

8 Sugar cane 1 Economies of scale n in the neighbourhood

2 Transportation costs Travel time to hubs for n

3 Potential profits per hectare Potential yield of n

4 Costs to make the land cultivatable Conversion elasticity

9 Planted pasture 1 Economies of scale n in the neighbourhood

2 Transportation costs Distance to hubs for n

3 Potential profits per hectare Potential yield of n

Legend
States
macro regions
Northern Amazon
Northeast Cerrado
Northeast Coast
Centre West Cerrado
Southeast
South

AC

AL

AM
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BA

CE
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GO
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PE

PI
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Fig. 2 The six macroregions in Brazil (six different colours)

used as demand input units in PLUC and the 27 states (black

lines), or in fact 26 states and one federal district, used as cali-

bration units. The state name abbreviations are as follows: AC,

Acre; AL, Alagoas; AM, Amazonas; AP, Amap�a; BA, Bahia;

CE, Cear�a; DF, Distrito Federal; ES, Esp�ırito Santo; GO, Goi�as;

MA, Maranh~ao; MG, Minas Gerais; MS, Mato Grosso do Sul;

MT, Mato Grosso; PA, Par�a; PB, Para�ıba; PI, Piau�ı; PR, Paran�a;

RJ, Rio de Janeiro; RN, Rio Grande do Norte; RO, Rondônia;

RR, Roirama; RS, Rio Grande do Sul; SC, Santa Catarina; SE,

Sergipe; SP, S~ao Paulo; TO, Tocatins.
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be changed. This procedure continues until the demands of all

active land-use types in all macroregions have been allocated

(see also Methods S2).

The suitability factors for the Brazilian case study are given

in Table 1. To represent economies of scale (k = 1), the number

of neighbours of the same land-use type is counted in a square

window of 5 by 5 cells (25 9 25 km2). For transportation costs

(k = 2), the travel time to hubs is used as a proxy. This is the

time it takes to transport the products originating from the

land-use type to the nearest production facility. For planted

forest, we have no data about the location of hubs (e.g. saw

mills), and for rangelands, we believe that the livestock hubs

are of lower importance, because livestock from rangeland is

often ‘finished’ elsewhere before being slaughtered. Therefore,

for these two land uses, we apply distance to roads as the

proxy for transportation costs. Potential profits per hectare

(k = 3) are represented by potential yield maps, using IIASA’s

GAEZ data (T�oth et al., 2012). As, to our knowledge, no poten-

tial yield map exists for woody biomass, we use IIASA’s map

of the length of the growing season as a proxy for the potential

yield of planted forest. The costs to make the land cultivatable

(k = 4) are estimated using a conversion elasticity, that is a frac-

tion indicating the ease with which a certain land-use type can

be transformed into the land-use type that implements the suit-

ability factor, especially relevant for crops. Double-cropping

potential (k = 5) is an important suitability factor in Brazil,

indicated by the rapid increase in double-cropped area or even

triple-cropped area over the last decade (Galford et al., 2008,

Conab, 2014). We do not have a map of double-cropping poten-

tial, so we use the growing season length as a proxy, which is

supported by an analysis of the relation between these two by

Arvor et al. (2014).

The no-go map, that is areas where expansion is not allowed,

is an overlay of military areas, areas of indigenous people, and

federal and state conservation units (Gurgel et al., 2009). Con-

servation policies or initiatives which have historically not been

well enforced, such as the Forest Act (Sparovek et al., 2012), the

soy moratorium (Rudorff et al., 2011), and the sugar cane zon-

ing (Padua Junior et al., 2012), are not taken into account in this

simulation. We are preparing another study, in which we

include more scenarios with, among other things, stricter nat-

ure conservation rules (F. van der Hilst, J.A. Verstegen, G.

Woltjer, E.M.W. Smeets, A.P.C. Faaij, unpublished results).

We use a Monte Carlo simulation with 5000 realizations. The

weights of the suitability factors and the order of allocation are

modelled stochastically. Their prior probability distributions

are uninformed (see Methods S2).

Calibration

The aim of the calibration phase, 2007 to 2012, is to narrow the

probability distributions of all stochastic elements: the order of

the land-use types and all weights of the suitability factors

(Table 1). The model calibration is performed using a Bayesian

data assimilation technique, the sequential importance resam-

pling (SIR) particle filter (van Leeuwen, 2009). In short, the SIR

particle filter compares the land-use system simulated by

PLUC and observations of the land-use system from the real

world, taking into account the uncertainty in these observa-

tions. Next, it updates the Monte Carlo ensemble in such a way

that well-performing realizations are progressed and poorly

performing realizations are discarded. An extensive explana-

tion of this model structure identification and calibration

method for a case study in the S~ao Paulo state is provided by

Verstegen et al. (2014).

For calibration, a time series of land-use/cover data is

required as observational data. For Brazil, we use time series of

areal data per land-use type per state (Fig. 2). These time series

are derived using information from agricultural statistics data-

bases (IBGE, 2013a,b, ABRAF, 2013, see F. van der Hilst, J.A.

Verstegen, G. Woltjer, E.M.W. Smeets, A.P.C. Faaij, unpub-

lished results). These observational data are not error free.

Between the yearly (IBGE, 2013b (for crops), IBGE, 2013a (for

livestock)), and the 10-yearly (IBGE, 2006) census data sources,

areas and area increases differ from zero up to more than

100%. As one cannot calculate a standard deviation based on

two values, we make an educated guess of the average error

based on these data sources. Under the assumption that the

observational errors are uncorrelated over space and time, we

assign an observation error to the observed increase in area

with a standard deviation of 20% of the observed increase in

that time step.

After calibration, a land-use matrix, summarizing the total

areas per land-use type in 2012, is computed per macroregion,

representing the initial system state for MAGNET (Fig. 1). In

addition, a land transition matrix is calculated per macrore-

gion, to be used for the calibration of MAGNET. These six land

transition matrices show the average area of conversion from

every land-use type to every other land-use type derived from

PLUC over the whole calibration period.

As a measure of model performance, we calculate root-

mean-squared error (RMSE), the root of the summed squared

differences between the median of the modelled area and

observed area over all states. We determine the reduction in

RMSE (%) for the results of the calibrated model, that is with

uncertainty reduced by the SIR particle filter, compared to the

non-calibrated model. To evaluate the effect of calibration, we

apply a split-sample approach: PLUC is calibrated using data

from 2007 to 2009, and the model reduction in RMSE is evalu-

ated from 2010 to 2012. This split-sample approach is used only

to evaluate the effect of calibration. The model parameters we

use for the projection, integrated with the MAGNET model, are

calibrated based on all available observational data (2007–

2012).

Economic (CGE) model

The growing demand for food, feed, fibre, and bioenergy

requires an increased agricultural output. This can be reached

by raising inputs such as fertilizers, machinery and labour

(bound by technological limitations), that is expansion at the

intensive margin, or by converting new land to agriculture, that

is expansion at the extensive margin (Hertel, 2011), which can

result in iLUC. At what ratio both alternatives are applied in

face of a growing demand depends on, for example, land avail-

ability, prices, and policies that vary worldwide. To evaluate
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how demand grows over time and to assess to what extent this

demand is fulfilled by expansion at the intensive and extensive

margins, we use a global Computable General Equilibrium

(CGE) model (Rose, 1995). Key parameters in CGE models are

the elasticities, simulating behavioural responses, for example

the response of the demand for a commodity to a change in

price or the response of consumption to a change in GDP per

capita.

The CGE model used is MAGNET (Modular Applied GeN-

eral Equilibrium Toolbox) (see for an extensive explanation

Woltjer & Kuiper, 2014). This is the modularized and

improved version of LEITAP (e.g. Banse et al., 2011; Hoefna-

gels et al., 2013). MAGNET uses the GTAP database version

8 (Narayanan et al., 2012), in an extended and adaptable

form. For this case study, we use the database with 42 sec-

tors (including various ethanol sectors that take into account

co- and by-products such as molasses and electricity, and a

difference between planted pasture and rangeland), 45 com-

modities and 15 regions, of which Brazil is one. Brazil has

been subdivided into six regions, matching the input macro-

regions for PLUC (Fig. 2). These six macroregions are a sub-

division in MAGNET in terms of agricultural production and

land area only; for international trade, Brazil is considered as

one region. Total land availability per macroregion is calcu-

lated from the no-go map.

To model land cover change, a regional land transition

approach has been developed that is inspired on the work of

de Souza Ferreira Filho & Horridge (2014) and further devel-

oped by Woltjer (2013). Herein, the area of land that is chan-

ged from one particular land-use type n to another one m

depends on the land transition elasticity en,m. Using expert

knowledge and trial and error, we test for all combinations

of n and m for what values of en,m MAGNET can best repro-

duce the 2012 system state given by the land-use matrix from

PLUC, and the transitions given by the land transition

matrix.

To assess the uncertainty related to the key parameters in

the economic model, two runs are performed, one with consid-

erably higher (200%) and one with considerably lower (25%)

land transition elasticities en,m than the values found by the

procedure above. This results in two demand time series per

land-use type, one for the upper land transition elasticities, du,n,

t, and one for the lower land transition elasticities, dl,n,t, where

all potential lines between these time series are assumed to

have equal likelihood:

dn;t ¼ dl;n;t þ Zd � ðdu;n;t � dl;n;tÞ; withZd � Uð0; 1Þ; ð1Þ
for each active n in each t.

Equation 1 shows that the demand input of PLUC dn,t in the

projection phase has an error model based on a uniform distri-

bution between du,n,t and dl,n,t.

Projection

In the projection from 2013 to 2030, the socio-economic devel-

opments are based on the Shared Socioeconomic Pathways

(SSPs) (O’Neill et al., 2014). The SSPs quantify global drivers of

the energy–economy–land-use system such as demographics

and economic development. In these pathways, projections are

included on population and GDP growth. We use SSP2, the

Middle of the Road pathway with some additional assump-

tions on, for example, the agricultural intensification over time

(see F. van der Hilst, J.A. Verstegen, G. Woltjer, E.M.W. Smeets,

A.P.C. Faaij, unpublished results).

Using SSP2 and these assumptions, MAGNET is run up to

2030, providing total land areas occupied by all land-use types

for all world regions and the six macroregions in Brazil for the

years 2013, 2015, 2020, 2025, and 2030. Yearly demand time ser-

ies for the six macroregions to serve as an input for PLUC are

obtained by a linear interpolation between these years and an

aggregation of the areas of all individual crops, except sugar

cane, into the single class cropland.

To evaluate the future dLUC and iLUC effects caused by

current and planned ethanol mandates worldwide, we define

both a ‘biofuel scenario’ including these mandates and a ‘refer-

ence scenario’ excluding them. This does not mean that there is

no increase in the demand for sugar cane in the reference sce-

nario, only that there is no (additional) increase originating

from the increased ethanol demand. All other inputs and

parameters of both models are kept the same as in the biofuel

scenario.

Direct land-use change (dLUC) and indirect land-use
change (iLUC)

Normally, direct land-use change can be assessed using one

scenario, as the difference between current and projected

land use. In our case, however, we want to assess dLUC

from sugar cane caused by the biofuel mandates, that is,

only sugar cane expansion for ethanol. Therefore, we want

to exclude sugar cane expansion that is a result of an

increased demand for sugar over time. Hence, both dLUC

and iLUC originating from the mandates are assessed

through the difference between the reference and the biofuel

scenario (Table 2) in 2030. A grid cell that is sugar cane in

the biofuel scenario, and something else in the reference sce-

nario, is considered dLUC, that is sugar cane expansion

Table 2 Classification of differences in land use between the

reference and the biofuel scenario that are considered undesir-

able effects of increasing ethanol demand (dLUC and iLUC,

dark grey), and the opposite effects (neg_dLUC and neg_iLUC,

light grey). The class ‘other agriculture’ includes rangeland,

planted forest, crops, and planted pasture. The class ‘nature’

includes natural forest, grass and shrubs, bare soil, and aban-

doned agricultural land, thereby assuming that land will even-

tually become nature when left abandoned. Zero stands for no

difference, that is neither (neg_)dLUC nor (neg_)iLUC

Reference scenario

Biofuel scenario

Sugar cane Other agriculture Nature

Sugar cane 0 neg_dLUC neg_dLUC

Other agriculture dLUC 0 neg_iLUC

Nature dLUC iLUC 0
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resulting from the biofuel mandates. A grid cell that is nat-

ure in the reference scenario and agricultural land but not

sugar cane is considered iLUC. The opposite effects exist as

well. A grid cell that is sugar cane in the reference scenario

and something else in the biofuel scenario is negative dLUC

(neg_dLUC), and a grid cell that is agriculture in the refer-

ence scenario and nature or abandoned land in the biofuel

scenario is negative iLUC (neg_iLUC).

Especially for iLUC, this opposite effect might appear in

the real world. If, for example, an area of 10 000 ha of

wheat fields is present, and 80% of this area is taken over

by sugar cane for ethanol, then the remaining 20% of wheat

land might be abandoned because the advantages of econo-

mies of scale have disappeared. The 8000 ha of displaced

wheat land and the 2000 ha of wheat land now grown else-

where make 10 000 ha of iLUC. In our methodology, we

count the abandoned land as �2000 ha of iLUC [and there-

fore, we call it neg_iLUC (Table 2)], coming to a total of

8000 ha iLUC, which was indeed the area of land shifted by

sugar cane.

To compare outcomes at different spatial scales, we focus

our analysis on local, regional, and national level, calculated

from output of PLUC. At the regional level, we use

250 9 250 km2 blocks. We do not use administrative levels,

like states, because these differ in size and are thus prob-

lematic to compare. The coefficient of variation (cv) (stan-

dard deviation of dLUC or iLUC area over all Monte Carlo

realizations divided by the mean of dLUC or iLUC area

over all Monte Carlo realizations) is used as the measure of

uncertainty. As this measure of uncertainty is standardized

by the mean, the cv is comparable between dLUC and iLUC

and between regions with different magnitudes of dLUC or

iLUC. As the local level, we use probabilities of dLUC and

iLUC in single cells (5 9 5 km2).

Contribution of the two models to total output
uncertainty

We compare the contribution of the two models to the

total output uncertainty, by running the projection until

2030 three times, all three with 5000 realizations. One

Monte Carlo run is with both models stochastic (the

default run used in all analysis described above). One run

is with only PLUC stochastic (including the uncertainty in

the initial land-use map and calibration time series). In

this run the demand dn,t is fixed at the mean between the

upper and lower time series, by setting Zd (equation 1) to

0.5 for all Monte Carlo realizations to exclude uncertainty

from MAGNET. The uncertainty in the output of this run

is thus caused by uncertainty in PLUC only. The final run

is with only MAGNET stochastic. In PLUC, the weights,

the order of allocation, and the land-use map for 2012 are

fixed by taking the medians hereof from the calibrated

model, to exclude uncertainty from PLUC. This run results

in information about output uncertainty caused by MAG-

NET. For the three runs, we compare the mean and the

coefficient of variation in dLUC and iLUC area at the

different spatial scales.

Results

Sources of uncertainty for each step in the model chain
and their influence on dLUC and iLUC projections

Initial land-use map. For the initial year, 2006, a land-

use map was created for each Monte Carlo realization

to serve as the initial system state (Fig. 3). The total

area per land-use type per macroregion is the same for

all realizations and also the locations of individual

patches within the macroregion are the same, but the

shape of these patches differs slightly, see, for exam-

ple, the patch of sugar cane at the bottom of the map

view in Fig. 3. The patches of land-use types that were

assumed to be known precisely, being urban, water,

and bare soil (see Methods S1) always have the same

shape, see, for example, the shape of the city Natal, in

the north-east of the map. We can conclude that the

uncertainty in the initial land-use map is very local,

important only at cell level. The effect for projected

iLUC will mainly be that when sugar cane expands in

a certain grid cell, uncertainty in the initial land-use

map makes that in some realizations, it expands over

agricultural land, which may result in iLUC through

displacement (depending on the demand trend for the

displaced agricultural land-use type), and in other real-

izations over nature, not resulting in iLUC, because

there is no displacement effect.

Land-use change model, calibration. The input demand

time series that were constructed from agricultural sta-

tistics for calibration are shown in Fig. 4 (2007–2012,
indicated by an arrow). After calibration using this

demand and the observations, of the 120 possible

sequences (see Methods S2) for the order of allocation

of the land-use types, 72 obtain a posterior probability

of zero, that is they are not present anymore in the

ensemble. So, 48 unique sequences remain, with poster-

ior probabilities ranging between 0.002 and 0.19. The

land-use sequence with the highest posterior probability

is planted pasture–planted forest–sugar cane–range-
land–crops. An analysis of all other sequences and their

posterior probabilities reveals that there is a dichotomy

in this most common sequence. Planted pasture, planted

forest, and sugar cane usually (in about 80% of the real-

izations) come in the first part of the sequence, and

rangeland and crops in the last part, but the order

among them fluctuates.

Sugar cane can only displace land-use types coming

after it in the sequence. So, in 80% of the realizations, it

predominantly replaces crops and rangeland. An impor-

tant consequence of this calibration result with regard

to iLUC is that the iLUC within a macroregion will

originate mainly from the displacement of crops and
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rangeland, which is in line with the findings of Lapola

et al. (2010).

The weights of the suitability factors have been cali-

brated as well (Table 3). In general, suitability factor

k = 1, representing n in the neighbourhood, obtains a

high weight. This means that a land-use type is likely to

expand in regions in which it is already cultivated. This

factor has the highest median posterior weight for

rangeland, sugar cane, and planted pasture. Accord-

ingly, dLUC will take place close to existing sugar cane

patches. For cropland, the double-cropping potential

(k = 5) is the most important suitability factor for expan-

sion. Galford et al. (2008) have found in a case study in

Matto Grosso (an important expansion region, see

Fig. 2) by means of remote sensing that newly estab-

lished cropland is usually single cropped, but is con-

verted to double cropping after 2–3 years. The high

weight for the double-cropping potential factor indi-

cates that this potential already plays a role at the estab-

lishment of the cropland, while the actual

implementation of double cropping takes place a few

years later. As a consequence, the location of iLUC in

the case of displaced cropland is likely to be a location

with a high double-cropping potential. In conclusion,

the calibrated land-use change model mainly influences

the location of dLUC and iLUC within the macroregion,

that is distribution between and also within states in a

macroregion.

The results above were based on calibration over

2007–2012. To show the effect of calibration, we have

applied a split-sample approach, with calibration only

from 2007 to 2009, to allow a comparison with observa-

tional data in the validation period from 2010 to 2012.

We compare the modelled against observed area of crop-

land (Fig. 5), because this land-use type gives the most

information on model performance as it both expands

and contracts in the calibration period. For most states

without a clear break in their trend, for example Roirama

(RR), Cear�a (CE), and Mato Grosso (MT), the modelled

median remains good in the validation period. However,

the areas of states that do show a trend break, for exam-

ple Maranh~ao (MA) and Rio de Janeiro (RJ), are poorly

simulated, although at least for Maranh~ao, the observed

cropland area falls within the 95% confidence interval of

the modelled area.

To summarize the effect of calibration for all land-use

types, we compare the root-mean-squared error (RMSE)

in area summed over all states of the calibrated and

noncalibrated model (Table 4). For crops, sugar cane,

and planted pasture, a considerable RMSE reduction is

achieved. The highest reduction is achieved for crops,

with a maximum of 53% in 2010. For sugar cane, the

States
Land use type

Legend

Urban

Water

Natural forest

Rangeland

Planted forest

Crops

Grass and shrubs

Sugar cane

Planted pasture

Bare soil

0 100 20050
km

Fig. 3 Five randomly selected realizations out of the total of 5000 realizations of the initial land-use map (year 2006) zoomed in to

the state Para�ıba, in the north-east coast region of Brazil (see Fig. 2).

Fig. 4 Demand for the five dynamic land-use types in the six macroregions and Brazil as a whole for the initial year, for the calibra-

tion period [using data from IBGE (2013a,b) and ABRAF (2013)], and for two of the five output years in the projection period (output

from the MAGNET model). The ranges of the y-axes differ between macroregions to improve the visibility of trends. In the projection

period, the hatched bar is the reference scenario and the nonhatched bar is the biofuel scenario. The thick box on top of the bars indi-

cates the uncertainty in the output, that is the difference between du,n,t (elasticities set to 200%) and dl,n,t (elasticities set to 25%). In the

case of a filled box, dl,n,t is higher than du,n,t, and in case of an unfilled box, dl,n,t is lower.
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average reduction is 24%. A significant reduction for

sugar cane is important, as it is the land-use type of

main interest. Being able to correctly project the location

of sugar cane expansion connotes correct modelling of

dLUC, which is the first step in also correctly projecting

iLUC as the two are chained. For rangeland and planted

forest, the calibration does not bring the modelled med-

ian area per state closer to the observed area. The mod-

elled median even becomes worse, although not

significantly, only a few percentage. The reason why

PLUC cannot find weights for the suitability factors that

result in a correct projection is probably the poor data

availability for these two land-use types. For example,

for the initial land-use map, no good prior knowledge

maps were available (see Methods S1), and for the suit-

ability factors, we have no information about the loca-

tions of the hubs for these land-use types.

Economic model, projection. Demands are projected by

MAGNET per land-use type for 2013, 2015, 2020, 2025,

and 2030. To illustrate the trend, the demands for

2020 and 2030 for the reference and the biofuel sce-

nario and the uncertainty herein are shown in Fig. 4.

An interesting result is that the uncertainty within a

scenario is often higher than the difference between

the scenarios. This indicates that it can be problematic

to draw conclusions about the effect of, for example, a

policy by means of comparing scenarios from the CGE

model. If the land transition elasticities are uncorrelat-

ed between the two scenarios, the large uncertainty

makes that the policy effects might be negative as well

as positive. Yet, we believe that although the elastici-

ties are uncertain, they are correlated between the two

scenarios, as these scenarios represent the same sys-

tem, as long as the difference between scenarios is not

too large. Others doubt this; a discussion that is

known in economic modelling as the Lucas critique.

Lucas (1976) argues in his work that the parameters in

economic models are not policy-invariant and that

they would therefore change when a policy is imple-

mented. This discussion is interesting, but goes

beyond the scope of this study. Nevertheless, we

should be aware, that if Lucas is correct, the uncer-

tainties in dLUC and iLUC shown in the next sections

might be significantly higher.

In the reference scenario, sugar cane mainly expands

in the Centre West Cerrado and the South-east

(together called the Central South). The extra demand

for sugar cane for ethanol from the mandates (biofuel

scenario) also mainly ends up in these two regions. In

the biofuel scenario, the total area of sugar cane in the

Centre West Cerrado almost triples by 2030 compared

to 2012.

The difference between the reference scenario and the

biofuel scenario for the other land-use types within Bra-

zil is the largest in the South-east (Fig. 4). In this macro-

region, the areas of crops and rangeland are

significantly smaller in the biofuel scenario than in the

reference scenario. As the productivity of all land-use

types are roughly the same in these two scenarios, this

decrease in area means that MAGNET assumes that

these areas of crops and rangeland are displaced by

Table 3 The mean, first quartile, and third quartile of the weights of the suitability factors k of all active land-use types n resulting

from the calibration

n Name k Suitability factors First quartile Median Third quartile

4 Rangeland 1 n in the neighbourhood 0.35 0.46 0.60

2 Distance to roads 0.24 0.35 0.45

3 Potential yield of n 0.03 0.19 0.28

5 Planted forest 1 n in the neighbourhood 0.19 0.29 0.36

2 Distance to roads 0.27 0.34 0.37

3 Potential yield of n 0.32 0.37 0.51

6 Crops 1 n in the neighbourhood 0.11 0.22 0.36

2 Travel time to hubs for n 0.05 0.14 0.22

3 Potential yield of n 0.05 0.11 0.20

4 Conversion elasticity 0.12 0.23 0.33

5 Growing season length 0.21 0.30 0.36

8 Sugar cane 1 n in the neighbourhood 0.23 0.29 0.36

2 Travel time to hubs for n 0.21 0.28 0.33

3 Potential yield of n 0.15 0.22 0.26

4 Conversion elasticity 0.17 0.21 0.24

9 Planted pasture 1 n in the neighbourhood 0.40 0.53 0.66

2 Distance to hubs for n 0.33 0.45 0.56

3 Potential yield of n 0.00 0.02 0.03

© 2015 The Authors Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., 8, 561–578

570 J . A. VERSTEGEN et al.



sugar cane. The displaced land uses are shifted to the

north-east Cerrado and the Northern Amazon: here,

crops and rangeland occupy a larger area in the biofuel

scenario than in the reference scenario (Fig. 4, difference

between the hatched and plain bars).

Conceptual differences between the two models. Despite the

‘shared’ conversion matrix between MAGNET and

PLUC and despite the fact that MAGNET provides the

demand as an input for PLUC, the conversion dynamics

between the two models differ because of conceptual

differences between the models. A result of this is that

the area of iLUC for the whole of Brazil calculated from

MAGNET differs from the area calculated by PLUC

(further discussed later on), although ideally these two

would be the same. This problem does not occur for

dLUC, only for iLUC, and in the following we explain

why.

The origin of the problem is that in PLUC sugar cane

expands in the projection period, besides over cropland

and rangeland, also often over planted pasture; a dis-

placement also observed in other studies (e.g. Rudorff

et al., 2010; Adami et al., 2012). In MAGNET, however,

the area of conversion from planted pasture to sugar

cane is negligible. This displacement of planted pasture

in PLUC, not present in MAGNET, has two effects. One

Fig. 5 Modelled and observed areas per state, for the land-use type cropland as an example. Vertical dashed lines: calibration years,

dashed lines: observed area, solid lines: modelled median area, coloured planes: 95% confidence interval of the modelled area, where

the colour corresponds to the colour of the macroregion in Fig. 2, to be able to quickly see which states belong to the same macrore-

gion. The state name abbreviations are as follows: AC, Acre; AL, Alagoas; AM, Amazonas; AP, Amap�a; BA, Bahia; CE, Cear�a; DF,

Distrito Federal; ES, Esp�ırito Santo; GO, Goi�as; MA, Maranh~ao; MG, Minas Gerais; MS, Mato Grosso do Sul; MT, Mato Grosso; PA,

Par�a; PB, Para�ıba; PI, Piau�ı; PR, Paran�a; RJ, Rio de Janeiro; RN, Rio Grande do Norte; RO, Rondônia; RR, Roirama; RS, Rio Grande do

Sul; SC, Santa Catarina; SE, Sergipe; SP, S~ao Paulo; TO, Tocatins.
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is that in PLUC, the area of planted pasture is decreased

in a region, such that, in that same year, planted pasture

should expand (in addition to the expansion caused by

a potential increase in demand already given by MAG-

NET) elsewhere in that region in order to make up for

the lost acreage. This causes iLUC in the region, not

anticipated by MAGNET. Another effect is that the

areas of rangeland and/or crops in PLUC are larger

than dictated by the demand in MAGNET for that year,

so that these land uses will contract, resulting in aban-

doned land. This causes negative iLUC, which by defi-

nition never occurs in MAGNET. It can be debated

which of the two models, if any, is correct. But the most

important implication for our study is that uncertainty

in iLUC projections does not only stem from uncertain-

ties of parameters and model structure within one

model component, but also from the dissimilarity in

model concepts between the two models within the

integrated model chain.

DLUC and iLUC projections for Brazil up to 2030 at
different spatial scales and the uncertainty herein

The direct land-use change as a result of an increased

ethanol production from 2013 to 2030 mainly takes

place in the Central South region. The highest

(5 9 5 km2) cell-based probabilities, up to 0.77, exist in

the south of Mato Grosso do Sul and the west of S~ao

Paulo (Fig. 6, frame 1). The highest probabilities of indi-

rect land-use change, with a maximum of 0.43, occur in

the Amazonian states Rondônia, Amap�a, and Roirama

(Fig. 6, frame 2). Probabilities in these three small states

are high because they are the only places in the north-

ern Amazon where any agricultural land-use type can

expand, as the rest of the northern Amazon has very

few roads, almost no existing agriculture and thus few

hubs, and many protected areas. Implementation of

new roads in the Amazon could change the spatial dis-

tribution drastically, but this is not included into the

model due to limited spatial planning data availability.

In the other macroregions, there are more options for

expansion, and there is more variation in the suitability

maps (best locations for expansion) between the differ-

ent land-use types and between the individual Monte

Carlo realizations, that is more uncertainty. In these

other macroregions, iLUC locations with high probabili-

ties are the frontier of the sugar cane expansion area

(Goi�as, Mato Grosso do Sul, and Mato Grosso) as well

as the ‘arc of deforestation’, the transition area from cul-

tivated land to mainly natural vegetation (Mato Grosso,

Par�a, and Rondônia).

As expected, there are only very few cells experienc-

ing negative dLUC, and with negligibly low probabili-

ties, with a maximum of 0.07 (Fig. 6, frame 3).

Conversely, negative iLUC (land abandonment in the

biofuel scenario and not in the reference scenario, Fig. 6,

frame 4) does appear, with probabilities up to 0.48,

mainly in Esp�ırito Santo, Minas Gerais, and the Pant-

anal, which is the wetland area in the west of Mato

Grosso do Sul and the south of Mato Grosso. These are

areas where the suitability for most agriculture is low,

resulting in land abandonment when the demand in the

biofuel scenario is lower than in the reference scenario

(see also the discussion in the previous section). With

lower probabilities, up to 0.1, this effect also occurs in

the rest of the Central South.

In the following, we add up dLUC and negative

dLUC, and iLUC and negative iLUC, obtaining net

dLUC and net iLUC. Scaling up to 250 9 250 km2

blocks (Fig. 7), we can calculate the coefficient of varia-

tion (cv), indicating relative uncertainty in dLUC and

iLUC. Clearly, the uncertainty in iLUC is generally lar-

ger than in dLUC. The median cv over all selected

blocks for dLUC is 0.91, while for iLUC, it is 1.61. This

is caused by the fact that dLUC is affected by the

dynamics of sugar cane only, while iLUC is an effect of

the interplay of all land-use types, thereby being sub-

jected to the uncertainties in all weights of all suitability

factors (Table 3) and the order of allocation. The maxi-

mum cv value of dLUC is 4. The maxima occur at the

expansion frontier of sugar cane, through Mato Grosso,

Goi�as, and Minas Gerais. The maximum cv value of

iLUC is 6. This means that, when considering the 95%

confidence interval, mean iLUC values might be as

much as 13 times as high or as low. In a nutshell, the

uncertainty in these blocks is so high that we can say

practically nothing about expected iLUC there, except

when mean iLUC is (very close to) zero (13 times zero

is still zero). Coefficients of variation in the arc of defor-

estation generally range from 1 to 3, which is a bit bet-

ter, but still very uncertain.

Comparing Figs 6 and 7, it becomes apparent that

blocks of maxima in cv of iLUC area correspond to

Table 4 Reduction in root-mean-squared error (%) of the

median area of land-use type n for the calibrated model com-

pared to the reference case (Monte Carlo run without particle

filter), summed over all states, given per year for the validation

period (2010–2012)

n Land-use type

Year

2010 2011 2012

4 Rangeland �1 �2 �4

5 Planted forest �6 0 2

6 Crops 53 50 42

8 Sugar cane 26 21 24

9 Planted pasture 33 35 25
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regions where both iLUC and negative iLUC might

appear. When some Monte Carlo realizations have neg-

ative iLUC values and others positive iLUC values, the

standard deviation is large, and correspondingly the cv.

In these blocks, the net iLUC effect might be positive as

well as negative, so that the impacts on, for example,

biodiversity, might be negative as well as positive,

respectively.

When looking at the cv for dLUC and iLUC area for

Brazil as a whole (Table 5, both models stochastic), the

values are many times smaller. The total amount for the

whole of Brazil can be determined about nine times as

Legend
probability

High : 0.5

Low : 0

Direct land use change
(dLUC)

Negative direct land use change
(neg_dLUC)

Indirect land use change 
(iLUC)

a default

b MAGNET
stochastic

Negative indirect land use change 
(neg_iLUC)

a default

b MAGNET
stochastic

c PLUC
stochastic

c PLUC
stochastic

0 1000 2000500
kilometers

(a) (b)

(d)(c)

Fig. 6 Probability of (1) dLUC, (2) iLUC, (3) negative dLUC, and (4) negative iLUC per grid cell. Probabilities are shown at a com-

mon scale from 0 to 0.5. Only for dLUC, a few cells with higher probabilities exist, up to 0.77, but stretching the scale up to 0.77

reduces discernibility between different cells with low probability in all four maps. For dLUC and iLUC map, detail frames at a loca-

tion in the expansion area are provided, showing probabilities for the three runs: (a) the default with both models stochastic, (b) with

only PLUC stochastic, and (c) with only MAGNET stochastic.
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precise for dLUC and about two times as precise for

iLUC compared to the median of the 250 9 250 km2

blocks, because small-scale errors balance each other

out when aggregating.

Contribution of the economic and land-use change model to
the uncertainty in dLUC and iLUC at different spatial scales

The cv of the dLUC area at national level is for 100%

caused by MAGNET (Table 5), which is logical, as

MAGNET determines the total demand for sugar cane,

and PLUC only allocates it within the macroregions. For

iLUC area, this is not the case. The cv value of iLUC

area for the run with only MAGNET stochastic is about

sixteen times higher than cv value of iLUC area for the

run with only PLUC stochastic, so about 93% of uncer-

tainty in iLUC stems from MAGNET. Yet, the exact

contribution of both models cannot be determined,

because errors from the two models partly compensate

each other (the cv values of the two runs do not add up

to the cv value of 0.72 found in the default run). The

reason that uncertainty in iLUC at national level is not

fully determined by MAGNET is that in PLUC iLUC

can occur within a macroregion that is additional to the

iLUC between macroregions from MAGNET.

At the grid cell level, many cells have some probability

of experiencing dLUC or iLUC when both models are

stochastic (Fig. 6, detail frame 1a). With only PLUC sto-

chastic and MAGNET deterministic, there is in general

not much difference with the results of the default run

(Fig. 6, panel 1c), although somewhat fewer cells have a

probability above zero on dLUC and iLUC. This indi-

cates that only a small part of the uncertainty at cell level

is caused by MAGNET. With only MAGNET stochastic

and PLUC deterministic, compared to the default run

less than half of the cells have a probability above zero

Legend
Mean dLUC
Net area (km2)

High : 10 000

Low : 0

coefficient of
variation (–)

0.1

0.5

1

Legend
Mean iLUC
Net area (km2)

High : 3000

Low : –3000

coefficient of
variation (–)

1

5

10

iLUC per 250 km blockdLUC per 250 km block

Fig. 7 Mean net area (km2) (colour of the block) and the coefficient of variation (cv) (�) (size of the red circle) of dLUC (left) and

iLUC (right), per 250 9 250 km2 block. For the display of the cv, blocks smaller than 31 250 km2 (half of a 250 9 250 km2 block,

occurring at the map edges) are filtered out, as the cv is heavily influenced by the support size of the block. Also blocks with mean

dLUC or iLUC smaller than 25 km2 (one cell) are filtered out, because when the mean goes to zero, the cv becomes infinite.

Table 5 Total area (Mha), standard deviations (SD) (Mha), and coefficients of variation (cv) (�) of dLUC and iLUC for Brazil for

three different runs: (1) both the land-use change model and the economic model stochastic, (2) land-use change model stochastic and

the economic model deterministic, (3) the land-use change model deterministic and the economic model stochastic

Run Mean dLUC SD dLUC cv dLUC Mean iLUC SD iLUC cv iLUC

Both models stochastic 4.20 0.10 0.02 3.13 2.25 0.72

PLUC stochastic 4.21 0.00 0.00 3.15 0.61 0.06

MAGNET stochastic 4.20 0.10 0.02 2.62 2.19 0.84
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on dLUC and iLUC, and the ones that have, have a rela-

tively high probability, indicating much lower uncer-

tainty (Fig. 6, panel 1b). The uncertainty now mainly

exists at the edges of the expansion patches, caused by

the variation in demand from MAGNET. For iLUC

(Fig. 6, panels 2a–c), the same reasoning applies. In

conclusion, uncertainty at grid cell level is mainly caused

by uncertainty in PLUC, for both dLUC and iLUC.

Discussion

In this study, we have demonstrated a general method-

ology to calculate direct and indirect land-use change

(dLUC and iLUC) stochastically with an integrated eco-

nomic – land-use change model, taking into account the

important uncertainties in all components of the model-

ling chain. The proficiencies of this methodology were

shown for a case study of land-use change in Brazil up

to 2030, steered by the current and planned ethanol

mandates worldwide. Here, we shortly discuss the

answers to our three research questions and give recom-

mendations for further studies.

What are the dLUC and iLUC projections for Brazil up to
2030 at different spatial scales and what is the uncertainty
herein?

Cell-based (5 9 5 km2) probabilities of dLUC range

from 0 to 0.77, and of iLUC from 0 to 0.43. Thus, given

our scenario assumptions, there is no single cell in Bra-

zil for which it can be said with certainty that dLUC or

iLUC will take place up to 2030. So, it is difficult to pro-

ject exactly where dLUC and iLUC will occur, but it is

certain that it will occur (there are no Monte Carlo reali-

zation without dLUC or iLUC effects). Yet, overall loca-

tions of iLUC are in line with the locations projected by

Lapola et al. (2010). For dLUC, our study shows some

locations with high probabilities in Mato Grosso do Sul

and Goi�as, where Lapola et al. (2010) do not project

dLUC. As there are the ‘new’ expansion areas, this

inconsistency is likely caused by the fact that their pro-

jection is for 2020, while we project up to 2030. Also, in

our projections, there are many cells for which it can be

concluded with certainty that no dLUC or iLUC will

take place in 2030, which is surely relevant information.

In 250 9 250 km2 blocks, the coefficient of variation (cv)

ranges from 0 to 4 for dLUC and from 0 to 6 for iLUC.

Large cv values for dLUC occur at the frontier of sugar

cane expansion. High cv values for iLUC occur where

both iLUC and the opposite effect (agriculture in the

reference scenario is abandoned land in the biofuel sce-

nario), introduced in this study, might take place.

The uncertainty in iLUC area and location is generally

higher than in dLUC, because iLUC is caused by the

interplay of various land-use types that each have their

uncertain model parameters, while dLUC is mainly

affected by the parameters for sugar cane. Uncertainty

in dLUC and iLUC is lower at higher aggregation lev-

els. For iLUC, the decrease in uncertainty by aggrega-

tion is smaller. At country level, the cv for iLUC is 36

times higher than for dLUC in our case study. At this

level, dLUC can be projected with high certainty, hav-

ing a cv of only 0.02, while iLUC is still uncertain, hav-

ing a cv of 0.72. Thus, to answer the question posed in

the title, what we can and cannot say about iLUC: we

can merely say things about iLUC with high uncertain-

ties. Estimated iLUC areas, even at country level, might

as well be 2.4 times as high or as low, given the 95%

confidence interval.

What are the sources of uncertainty for each step in the
model chain and how do these uncertainties influence
dLUC and iLUC projections?

Uncertain components in the land-use change model

are (1) the initial land-use map, causing uncertainty at

cell level, (2) the order of allocation of the land uses,

causing uncertainty in especially iLUC, and (3) the

selection and weights of the suitability factors for alloca-

tion of the land-use types, causing mainly uncertainty at

intermediate aggregation levels, like states. The reduc-

tion in root-mean-squared error in the modelled median

land-use areas per state by model calibration, compared

to a noncalibrated model is on average 20%. Poor-per-

forming land-use types are rangeland and planted

forest, probably due to poor data availability for the

drivers of location of land-use change.

For the economic model, we have assessed only the

effect of one of the most critical parameters: the land

transition elasticities that simulate the likelihood of par-

ticular land transitions. The uncertainty caused by vary-

ing these elasticities mainly plays a role at national

level. At the cell level, it only causes uncertainty at the

edge of the patch of expansion.

The final aspect generating uncertainty in the output

is the difference in the conceptual model between the

economic and the land-use change model concerning

the reclaiming of abandoned land. This conceptual dif-

ference affects the total amount of iLUC and the oppo-

site iLUC effect.

What is the contribution of the economic and land-use
change model to the uncertainty in dLUC and iLUC at
the different spatial scales?

At the cell level, uncertainty is primarily determined by

the land-use change model. Going to higher aggregation

levels, the influence of the uncertainty in the Comput-
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able General Equilibrium (CGE) model on output uncer-

tainty increases. At national level, the cv of dLUC is

caused by the CGE model for 100%. The contribution of

the economic model to the cv of iLUC at this level is

about 93%, although this cannot be determined pre-

cisely, because errors from the two models partly com-

pensate each other.

Implications and recommendations

From the above, we can conclude that projected iLUC

areas and locations are highly uncertain. Based on the

case study, our opinion is that threshold evaluation for

iLUC indicators should not be implemented in legisla-

tion. Thresholds (cf. Malins, 2013) have no use when

the model, used to check whether an indicator for a

specific case is above or below this threshold, gives an

output confidence interval that straddles the threshold.

This is likely to happen considering the high uncertain-

ties found in our study. As most iLUC (or LUC) indica-

tors in legislation are provided in terms of greenhouse

gas (GHG) emissions generated, the impacts of the

uncertainty in dLUC and iLUC projections on GHG

emissions should be assessed to underpin our conclu-

sion. Error propagation assessment for other impacts,

such as biodiversity and water availability, is also

desirable. Our opposition to thresholds for iLUC fac-

tors in legislation does not mean we favour negligence

of biofuel-induced land-use change. We propose, in

line with, for example, Finkbeiner (2014) and Mathews

& Tan (2009), a change of focus from quantifying iLUC

to taking proactive measures to mitigate iLUC, even

though the effectiveness of these measures might be

difficult to quantify.

Our quantification of the sources of uncertainty

allows identification of the parts of the modelling chain

having the highest priority for improvement. If one

wants better estimates of dLUC and iLUC at cell level

for a given case study, for example to be able to better

quantify local GHG emissions caused by the biofuel tar-

gets, one should focus on improving the land-use

change model. Spatially explicit input data could be

improved, especially for land-use types that are prob-

lematic to derive from remote sensing: rangeland (prob-

lematic to distinguish from natural savannah) and

planted forest (problematic to distinguish from natural

forest). And data that are now only included at an

aggregate level, such as land management and yield

level, could be included spatially to account for spatial

variation. Also, better information on data accuracy

would be helpful. Due to the lack of accuracy informa-

tion we had to make strong assumptions on the errors

in the maps used to create the initial land-use map and

the observational data used for calibration.

If one wants better estimates of dLUC and iLUC at

country level, one should focus on improving the eco-

nomic model. Our current estimates of uncertainty in

the CGE model might be underestimated, because we

have evaluated the uncertainty from the and transition

elasticities only, while land-use changes might be sensi-

tive to other parameters as well (Kavallari et al., 2014).

Yet, making other parameters stochastic could also

reduce uncertainty, when they cancel out each other’s

errors. It would be good if making parameters stochas-

tic and running Monte Carlo simulations would become

common practice in economic modelling. Another

option for better country level estimates might be the

usage of a whole different type of model or tool, obvi-

ously also stochastic, although our current study gives

cannot ascertain whether and to what extent that could

reduce uncertainty.

One thing that could improve iLUC estimates at all

spatial scales is a better match between the economic

and land-use change model. The best solution would be

to link the economic and the land-use model with a

hard link that includes a feedback, as also suggested by

Wicke et al. (2015). However, there is an inherent risk

that this feedback loop is infinite, meaning that the

land-use dynamics cannot be resolved, and there are

many technical obstacles that complicate hard linking.

Yet, even if improved models, or improved model

connections are used, in all cases, we strongly advise to

provide quantitative uncertainty estimates together with

the calculated dLUC, iLUC, or LUC indicators so that

users of these indicators can evaluate the reliability of

the indicators.
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Supporting Information

Additional Supporting Information may be found in the
online version of this article:

Methods S1. Initial land use map.
Methods S2. Land use change model.
Table S1. Sources of the tabular area per land use type per
municipality, sources of the prior knowledge maps, and the
standard deviation, ra,n, used to create an ensemble of ini-
tial land use maps (Equation S1).
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