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Abstract 

Hypercholesterolemia is characterized by high plasma low density lipoprotein (LDL) cholesterol and often 

caused by genetic mutations in LDLR, APOB or PCSK9. However, a substantial proportion of 

hypercholesterolemic subjects do not have any mutations in these canonical genes, leaving the underlying 

pathobiology to be determined. In this study, we investigated whether combining plasma metabolomics 

with genetic information increases insight in the biology of hypercholesterolemia. For this proof of 

concept study, we combined plasma metabolites from 119 hypercholesterolemic females with genetic 

information on the LDL canonical genes. Using hierarchical clustering we identified four subtypes of 

hypercholesterolemia, which could be distinguished along two axes represented by triglyceride and large 

LDL particle concentration. Subjects with mutations in LDLR or APOB preferentially clustered together 

suggesting that patients with defects in the LDL receptor pathway show a distinctive metabolomics 

profile. In conclusion, we show the potential of using metabolomics to segregate hypercholesterolemic 

subjects in different clusters, which may help in targeting genetic analysis. 

Keywords: Hypercholesterolemia; Triglyceride; LDL; Genetics; Metabolomics; 
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Introduction 

Hypercholesterolemia due to a high concentration of plasma low density lipoprotein (LDL) cholesterol has 

been shown to be a causal factor in accelerating atherosclerosis in a plethora of studies (1, 2). The liver 

plays a pivotal role in the regulation of cholesterol metabolism. It secretes cholesterol packaged in VLDL 

(very low density lipoprotein) particles that are subsequently converted into IDL (intermediate density 

lipoprotein) and LDL particles largely by the action of different lipases in the periphery (3). A key step in 

the uptake of cholesterol is the internalization of LDL via the LDL receptor (LDLR) (4). Mutations in the 

LDLR as well as mutations in genes encoding apolipoprotein B (APOB) or proprotein convertase 

subtilisin/kexin type 9 (PCSK9), are causally related with hypercholesterolemia (5). These genetic 

mutations, however, do not explain all hypercholesterolemic cases. For instance, in the UK pilot cascade 

project, 403 of 635 (63.5%) hypercholesterolemic subjects did not have mutations in LDLR, APOB, or 

PCSK9 (6). In a recent large scale study designed to evaluate the prevalence of a familial 

hypercholesterolemia (FH) mutation among individuals with severe hypercholesterolemia (7), only 24 of 

1,386 subjects with LDL cholesterol above 5 mmol/L were identified to have mutations in these three 

canonical genes. Although the prevalence of genetically defined hypercholesterolemia varies across 

studies (8), a substantial proportion of hypercholesterolemic subjects do not have mutations in LDLR, 

APOB or PCSK9. A major reason for this finding will be the presence of disease-causing mutations in 

other genes involved in cholesterol homeostasis either affecting the LDL receptor pathway or other yet to 

be defined mechanisms. Interestingly, whole exome sequencing of a cohort with FH subjects without 

mutations in LDLR, APOB and PCSK9 did not identify novel causal mutations (9). 

Recently, we analyzed a cohort of 119 young females with plasma LDL cholesterol above the 99th 

percentile for their age. In 20 hypercholesterolemic females, we identified 12 causal heterozygous 

mutations in LDLR and one causal heterozygous mutation in APOB (10). In the 99 remaining females we 

found 8 subjects carrying a variant in LDLR or APOB with unknown clinical significance (10). This left us 

with 91 females that suffered from hypercholesterolemia caused by either a polygenic (11) or epigenetic 
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(12) mechanism, or presence of pathogenic variant in yet unknown genes. To get further insight in the 

underlying pathobiology of hypercholesterolemia of unknown origin, we performed plasma metabolite 

analysis on all the 119 hypercholesterolemic females. We hypothesized that mutations in genes belonging 

to the same metabolic pathway (e.g. the LDL receptor pathway) should render a similar plasma 

metabolome. This analysis differentiated four subgroups, which could be distinguished along two axes 

represented by plasma triglyceride and large LDL particle concentration. 
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Materials and Methods 

Participants 

The selection of the participants (N = 119) in this study is described in detail elsewhere (10). In brief, 

these women were apparently healthy, aged 25 to 40 year and had plasma LDL cholesterol level above 4.7 

mmol/l. Exclusion criteria were diagnosis of cardiovascular disease (e.g. myocardial infarction, stroke or 

coronary surgery), diabetes mellitus, use of lipid-lowering drug, or having aberrant thyroid, liver or kidney 

function. 

Next generation sequencing 

With a custom target sequencing array developed based on the SureSelect capture system, we sequenced 

the coding regions of 11 genes, including LDLR, APOB, PCSK9, LDLRAP1, APOE, ABCG5, LIPA, 

STAP1, MTTP, ANGPTL3, and SAR1B to assess a monogenic cause of hypercholesterolemia. If a 

mutation had minor allele frequency below 0.1% in the Genome of Netherlands (13), it was considered a 

rare mutation. Mutations that are verified to cause hypercholesterolemia were listed in our previous 

publication (10). 

Detection of copy number variations (CNV) was performed using the CoNVaDING (Copy Number 

Variation Detection in Next-generation sequencing Gene panels) (14). Detected CNVs were validated 

using either multiplex ligation-dependent probe amplification, or by long-range PCR or real-time PCR 

(10). 

Genetic risk score calculation 

To study a possible polygenic cause of hypercholesterolemia, we calculated the weighted genetic risk 

score (wGRS). The Global Lipid Genetic Consortium (GLGC) meta-analysis of genome-wide association 

studies identified 95 loci affecting LDL cholesterol concentration (15). Among these loci, 12 single 

nucleotide polymorphisms (SNP) had the highest power to discriminate between FH mutation-negative 

individuals and the general population (11, 16). For each individual, we calculated the wGRS using the 
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weighted sum of the risk allele (the LDL-C-raising allele) (10). The weights used were the corresponding 

per-allele effect in plasma LDL cholesterol changes reported by the GLGC (15). 

Lifestyle score calculation 

To investigate the association between lifestyle and plasma metabolome in hypercholesterolemic females, 

we used a recently described healthy lifestyle score (17). Points were given for the major lifestyle 

parameters including smoking status and eating habits. The details were described in our previous 

publication (10). In short, a maximum of 4 points reflects a very healthy lifestyle. The smaller the score is, 

the less healthy lifestyle will be. The minimum point is 0. 

Metabolite measurements 

Fasting plasma samples were routinely collected by Lifelines (www.lifelines.nl) and stored at −80∘ until 

analysis on the Nightingale metabolomics platform (Nightingale Health, Finland). This platform includes 

225 metabolic features including lipids, lipoproteins, fatty acids, amino acids, and glycolysis precursor 

molecules listed on https://nightingalehealth.com/biomarkers, using a NMR spectroscopy platform (18, 

19). 

Statistical analysis 

To explore subtypes of hypercholesterolemia, we performed hierarchical clustering based on the plasma 

metabolomics data. Since the metabolomics data contains measurements of different units, we first scaled 

the data so that every variable had mean 0 and standard deviation 1. Next, we ran the hierarchical 

clustering with the function hclust from R. We used Elucidation distance as the dissimilarity measure and 

complete linkage as the similarity measure between the clusters. The dendrogram was made by using the 

ggdendro and ggplot2 (20) R package. Finally, we cut the dendrogram into four clusters by using cutree 

function in R. 

To identify the cluster corresponding to hypercholesterolemia due to defects in the LDL receptor pathway, 

we performed principal component analysis (PCA) on the metabolomics data. Since the data contains 

measurements of different units, we converted the metabolomics data into ranks, so that every metabolite 
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had value ranging between 1 and 119. We then calculated the covariance matrix and performed 

eigenvector decomposition. Entries of every eigenvector are also called loadings. Based on the loadings, 

we identified metabolites that most correlated to the first and second principal components by calculating 

the Spearman correlation coefficients. 

To evaluate associations between genetic risk/lifestyle scores and metabolite concentrations, we applied a 

nonparametric method, namely the Kendall’s tau correlation test. We reported the Kendall’s tau 

correlation coefficient and p value. A p value below 0.05 is considered significant. 
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Result 

A group of 119 young women with hypercholesterolemia, defined as plasma LDL cholesterol levels above 

the 99th percentile for their age, was selected from the Lifelines cohort. The baseline characteristics are 

presented in Table 1. To analyze the underlying pathobiology of the hypercholesterolemic phenotype, 

plasma metabolomics was performed using the Nightingale platform. Although the absolute values 

measured in the Nightingale platform are lower than the conventional measured plasma lipids, the two 

measurements showed similar pattern (Table 1). A summary of all the results of metabolite analysis is 

presented in Supplemental Table S1. Hierarchical clustering analysis of the metabolomics data set 

revealed three main clusters and one cluster containing only one sample (Figure 1). The size of the cluster 

1, 2, 3, and 4 was 43, 15, 60 and 1, respectively. 

To analyze the divergence of the different clusters, we ran principal component analysis. The first and 

second principal component explained 38% and 21% of the total variance of the metabolic variables 

across the 119 individuals, respectively (Figure 2). To understand which metabolites correspond to the 

first and second principal component the most, we calculated the Spearman correlation coefficients 

between original variables and principal components (Supplemental Table S2). We observed that plasma 

triglyceride and large LDL particle concentration were the most correlated variables with the PC1 

(Spearman correlation coefficient -0.988) and PC2 (Spearman correlation coefficient -0.978), respectively. 

Therefore, we used these two variables to represent the axes of PC1 and PC2 (Figure 3). Our next question 

was whether the 4 clusters derived from the hierarchical clustering analysis (Figure 1) were indeed 

separated by PC1 and PC2. To answer that, we added the hierarchical clustering results to the scatterplot 

(Figure 3). Inspection reveals that the females in cluster 3 are separated from the other groups by showing 

a high plasma large LDL particle concentration coupled with relatively low plasma triglyceride, 

suggesting a defect in hepatic LDL uptake. 

Since we sequenced LDLR, APOB and PCSK9 in all subjects, we could verify whether indeed the females 

with known heterozygous mutations in the LDL receptor pathway plot in the region of cluster 3. Indeed, 
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from 20 subjects with heterozygous mutations in LDLR or APOB 15 subjects were located in cluster 3 

(Figure 4). The other 5 carriers were found in cluster 1 (n = 3) and cluster 2 (n = 2). In addition, we 

identified 8 women who were heterozygous carrier of a novel variant in LDLR or APOB from which the 

pathogenicity has not yet been determined. Five of these 8 subjects were positioned in cluster 3 and three 

in cluster 1 (Figure 5). 

To improve our understanding of the underlying pathobiology of the elevated plasma LDL cholesterol in 

the remaining 91 women, we calculated the weighted genetic risk score (wGRS) and lifestyle score, and 

assessed the associations between both scores and plasma concentrations of large LDL particle and 

triglyceride. As shown in Supplemental Figure S1 and Supplemental Figure S2, no relation could be 

demonstrated between both scores and plasma large LDL particle concentration (wGRS: Kendall tau 

correlation coefficient -0.017, p value = 0.80. Lifestyle score: Kendall tau correlation coefficient -0.04, p 

value = 0.57). Both scores showed moderate association with plasma triglyceride concentration (wGRS: 

Kendall tau correlation coefficient -0.156, p value = 0.02. Lifestyle score: Kendall tau correlation 

coefficient -0.198, p value = 0.0099). 
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Discussion 

In the current study, we showed that combining plasma metabolomics data with genetic information can 

improve our understanding of the origin of severe hypercholesterolemia in young healthy women. These 

analyses may help the diagnosis and personalized treatment of patients with hypercholesterolemia in 

which no causal mutations in the canonical LDL genes can be identified. 

Metabolic profiling has been used in a large number of cohort studies to assess the value of circulating 

metabolites in prediction of risk for cardiovascular events (21, 22). More specifically, metabolomics has 

been used to study associations between circulating metabolites and statin usage (23), CETP inhibition 

(24) and PCSK9 inhibition (25), generating insight in the broad metabolic effects of these interventions. 

Nightingale metabolomics data contain not only concentrations in different units, but also other quantities 

such as ratios, percentages, degrees of saturation and lipoprotein particle size. Therefore, in the current 

study, we scaled all the metabolic variables to make them have equal importance in the hierarchical 

clustering. 

The hierarchical clustering analysis revealed four clusters in the 119 hypercholesterolemic females with 

plasma LDL cholesterol above 99th percentile for their age. We hypothesized that mutations in genes 

belonging to the same metabolic pathway (e.g. the LDL receptor pathway) should render a similar plasma 

metabolome (one cluster). The principal component analysis revealed that plasma triglyceride and large 

LDL particle concentrations were the major discriminators for the four clusters. Since cluster 3 is 

characterized by a high concentration of large LDL particle and relatively low triglyceride in plasma, we 

hypothesized that this cluster represented the hypercholesterolemia due to defective LDL clearance. 

Incorporation of the genetic information provided us the verdict, because we expected the 20 subjects 

carrying a known functional heterozygous mutation in LDLR or APOB positioning in cluster 3. Indeed, 15 

subjects fit this hypothesis and were located in cluster 3. 

Then we came up with the question “Can we get insight if a novel variant in LDLR or APOB is the 

underlying cause for the severe hypercholesterolemia based on the metabolome profile?”. Indeed, 6 out of 
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8 carriers of a novel mutation fit in cluster 3, suggesting potential effects of these variants on LDL 

receptor mediated uptake. This observation suggests that metabolic profiling is useful to delineate the 

subjects with a pathogenic mutation from those that do not carry any variant in either LDLR or APOB. 

However, not all subjects in cluster 3 do carry a variant in LDLR or APOB. We realize that the pathway of 

LDL receptor mediated endocytosis and intracellular cholesterol trafficking contains many more genes 

(26–28) than we have sequenced in our cohort. So expansion of the number of genes on the chip or 

choosing whole genome sequencing will ultimately improve the information on all genes involved in the 

LDL receptor pathway and may thus help to identify additional genetic variants underlying the 

pathobiology in the remaining 40 females in cluster 3. Meanwhile, we cannot exclude other processes 

underlying the hypercholesterolemia such as epigenetic changes (12), lincRNA (29), microRNA (30) or 

combinations thereof. 

Cluster 4 contained only one subject, and the individual had the highest large LDL particle concentration 

among the 119 hypercholesterolemic females. Interestingly, we did not identify any mutations in the 

sequenced genes including LDLR, APOB and PCSK9. This female subject was 28 years with BMI 21.7. 

Her waist circumference was 69 centimeters. When we compared her plasma metabolomics data to the 

other 118 hypercholesterolemic females, we identified 77 outlier variables (either below the 1st quantile 

1.5×IQR or above the 3rd quantile 1.5×IQR, IQR refers to interquantile range. Supplemental Table S3). 

We noticed that this female had a high proportion of esterified cholesterol in VLDL and HDL particles 

compared to the remaining 118 subjects. Interestingly, the CETPtg/apoCI-/- mouse model showed a very 

similar phenotype (31). Apolipoprotein C1 is an important regulator for CETP activity, which may partly 

underlie the observed phenotype (32). So far no mutations in APOC1 have been described. 

A recent study (33) showed that hypercholesterolemic subjects without any known genetic defect had 

lower levels of LDL cholesterol than those with a mutation. Therefore, we hypothesized that the origin of 

the hypercholesterolemia in cluster 1 may be either polygenic or due to lifestyle factors. Additional 

analysis of relationships between the wGRS or lifestyle score and triglyceride or large LDL particle 
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concentration, we observed that only genetic risk scores were negatively associated with triglyceride 

concentration (Kendall tau correlation coefficient -0.23, p value = 0.04). This observation suggests that 

this cluster of hypercholesterolemic subjects may be caused by less damaging mutations in genes involved 

in the LDL receptor pathway. The major observation in the subjects located in cluster 2 is that they had 

elevated plasma triglyceride. The genetic array used in the current study does not contain the genes 

involved in triglyceride metabolism. Our data suggest that generation of a triglyceride specific gene array 

may generate interesting results in the subjects in this cluster. 

In summary, this study shows that bioinformatic analysis of metabolomics data derived from 

hypercholesterolemic subjects generates interesting clusters of patients that may help guiding targeted 

genomics approaches hypercholesterolemia. 
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Tables 

Table 1 Characteristics of 119 hypercholesterolemic females 

 N Mean  

Standard deviation 

 

Age (year) 119 32.90 ± 4.37  

BMI 119 27.9 ± 5.10  

  Clinical 

chemistry 

Nightingale 

metabolomics 

Spearman correlation 

coefficients 

LDL cholesterol 

(mmol/l) 

119 5.25 ± 0.50 2.27 ± 0.26 0.66 

Total cholesterol 

(mmol/l) 

119 7.17 ± 0.64 5.57 ± 0.43 0.68 

Triglyceride 

(mmol/l) 

119 1.50 ± 0.68 1.45 ± 0.47 0.96 

HDL cholesterol 

(mmol/l) 

119 1.39 ± 0.28 1.47 ± 0.22 0.84 

ApoB (g/l) 119 1.25 ± 0.14 1.10 ± 0.11 0.78 
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Figures and figure legends 

	
Figure 1 Hierarchical clustering of plasma metabolomics data derived from 119 hypercholesterolemic 

females. Elucidation distance was used as the dissimilarity measure and complete linkage was used as the 

dissimilarity measure between the clusters. 
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Figure 2 Proportion of variance explained by principal components derived from plasma metabolomics 
data of 119 hypercholesterolemic females. 
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Figure 3 Plasma triglyceride against large LDL particle concentration in 119 hypercholesterolemic 

females. Different colors refer to the hierarchical clustering outcomes (red: cluster 1, blue: cluster 2, 

green: cluster 3, purple: cluster 4). 
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Figure 4 Plasma triglyceride against large LDL particle concentration in 119 hypercholesterolemic 

females. Different colors refer to the hierarchical clustering outcomes (red: cluster 1, blue: cluster 2, 

green: cluster 3, purple: cluster 4). The hypercholesterolemic females with mutations that were known to 

affect the LDL receptor pathway were highlighted. 
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Figure 5 Plasma triglyceride against large LDL particle concentration in 119 hypercholesterolemic 

females. Different colors refer to the hierarchical clustering outcomes (red: cluster 1, blue: cluster 2, 

green: cluster 3, purple: cluster 4). The highlighted dots represent 8 individuals who carry a heterozygous 

variant in LDLR or APOB of unknown clinical significance. The specific variant in LDLR or APOB is 

shown. 	
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