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Stability pockets of a periodically forced oscillator in a
model for seasonality

Igor Hoveijn

University of Groningen, Faculty of Mathematics and Natural Sciences, The Netherlands

Abstract

A periodically forced oscillator in a model for seasonality shows chains of stability pockets in the param-
eter plane. The frequency of the oscillator and the length of the photoperiod in the Zeitgeber are the two pa-
rameters. The present study is intended as a theoretical complement to the numerical study of Schmal et al.
(2015) of stability pockets (or Arnol’d onions in their terminology). We construct the Poincaré map of the
forced oscillator and show that the Arnol’d tongues are taken into chains of stability pockets by a map with a
number of folds. This number is related to the rational point ( p

q , 0) on the frequency axis from which a chain
of p pockets emanates. Stability pockets are already observed in an article by van der Pol and Strutt in 1928,
see van der Pol and Strutt (1928) and later explained by Broer and Levi in 1995, see Broer and Levi (1995).
c⃝ 2016 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
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1. Introduction

The numerical study by Schmal et al. [10] of a model for seasonal effects on the circadian
clock of an organism (located in the supra chiasmatic nucleus), shows stability pockets and chains
thereof in the parameter plane. As in [10] the seasonal effect is in particular the variation of the
length of the daylight time interval, called photoperiod. This alternation of light and dark acts
as a forcing, called Zeitgeber, on the circadian clock. The present study aims to complement the
results of [10] by giving a theoretical background and moreover a geometrical explanation for the
observed phenomena. We also indicate what is to be expected when the system is perturbed. The
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Fig. 1. Stability pockets in the parameter plane of the oscillator forced with a periodic block function.

setting of the problem is bifurcations of parameter dependent dynamical systems, in particular
periodically forced oscillators.

1.1. Periodically forced oscillators

We start with a general periodically forced oscillator. Such an oscillator shows periodic dy-
namics (also called synchronization or entrainment) if the frequency of the forcing is close
enough to a rational multiple of the frequency of the oscillator. The latter is the frequency of
the isolated oscillator, that is in absence of forcing. On the other hand, if the frequency ratio is
not close enough to a rational number, the dynamics is quasi periodic for a large number of ir-
rational frequency ratio’s. Now we consider the periodically forced oscillator as a system of two
asymmetrically coupled oscillators. The first corresponds to the circadian clock and the second
corresponds to the Zeitgeber, thus the first is forced by the second. The latter has fixed dynam-
ics. In particular its frequency is fixed and we set it equal to one by a scaling of time. Thus the
frequency of the first oscillator becomes a parameter of the system. Another important parameter
is the coupling strength. In the parameter plane of coupling strength versus frequency there are
regions, called Arnol’d tongues (see [1]) or resonance regions, where the first oscillator synchro-
nizes with the second, that is there are one or more stable (and unstable) periodic solutions. These
tongues are wedge shaped and their vertices lie at rational points on the frequency axis. So for a
fixed value of the coupling strength there is a frequency interval where synchronization occurs.
On the boundary of this interval the periodic solutions disappear in saddle–node bifurcations.
If the coupling strength goes to zero the interval shrinks to a (rational) point on the frequency
axis. If the coupling strength increases there may be many other bifurcations, for example period
doubling bifurcations, see [6].

In certain examples of periodically forced oscillators the tongues close again in a second ver-
tex, forming a so called stability pocket (called Arnol’d onion by Schmal et al. [10]), see Fig. 1.
This phenomenon occurs for example in Hill’s equation and has already been observed by van
der Pol & Strutt [13], although they do not mention it explicitly as such. Much later Hill’s equa-
tion has been reanalyzed by Broer & Levi [3] and in a more general setting by Broer & Simó [5],
using methods not available to van der Pol & Strutt. Then the term instability pocket was in-
troduced. However, it depends on the point of view whether a pocket is called a stability or an
instability pocket, see Remark 3.4. Although the context of the Hill equation differs from ours,
the mechanism by which the pockets are formed is the same. In both systems a general under-
lying system has a wedge shaped resonance region. The map that takes the parameter space of
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Fig. 2. Stability pockets and folds of the map (σ, λ) → (δ, µ). Here only the folding part is shown. Left: the pocket for
the (1, 1)-tongue; right: the chain of pockets for the (2, 1)-tongue. See Section 3 for the meaning of σ , λ, δ and µ.

the specific example to the parameter space of the general system, has one or more folds, thus
generating pockets, see Fig. 2.

1.2. Informal statement of results

Our model consists of two asymmetrically coupled oscillators. The first corresponds to the
circadian clock and the second to the Zeitgeber. Time has been scaled so that the frequency of
the Zeitgeber is equal to one. In particular the Zeitgeber is modeled by a periodic block function
where the length of the block corresponds to the photoperiod λ a parameter of the model, see
Fig. 3. There are several interpretations of this model. If λ = 1 there is constant light, which can
be interpreted as summer at the poles, if λ = 0 there is constant darkness: winter at the poles.
But, for example λ =

1
2 , corresponds to spring or autumn at mid latitudes but this could also

be interpreted as any day of the year at the equator. In the biological interpretation of the model
the range of admissible values of λ depends on the latitude. Another parameter of the system is
the frequency ω of the circadian clock. The parameter plane of the model, in which we find the
stability pockets, is the (ω, λ) plane.

Our main result is that at each rational point ( p
q , 0) on the frequency axis a chain of p stability

pockets emanates. We do this by showing that there is a map with precisely p folds taking the
Arnol’d tongues to stability pockets near each of these rational points, see Figs. 2 and 1. The
origin of the folds is that by varying λ from 0 to 1 the forcing is in fact constant at the endpoints
λ = 0 and λ = 1. Thus the Fourier coefficients of the Zeitgeber are parameterizations of curves
in the complex plane with both endpoints at zero. Since the coupling strength of the Zeitgeber
and the oscillator is proportional to the absolute value of the Fourier coefficients we get folding.
In case the Zeitgeber is a periodic block function, Fourier coefficients with a higher frequency
number parameterize a curve which goes through zero multiple times causing chains of stability
pockets. If we perturb the block function, the chains will in general open up to form a single
pocket, see Section 3 and Fig. 4. Apart from folding, this map also ‘skews’.

The stability pockets, being images of the resonance tongues, are again resonance regions
(or regions of entrainment). Taking a constant value for the photoperiod we find ranges of en-
trainment on the frequency axis, the horizontal line in Fig. 1 intersection the pockets. Taking
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Fig. 3. A periodic block function modeling daylight. The length of the photoperiod is λ.

Fig. 4. The image of the (2, 1)-tongue for gλ and for a small perturbation of gλ.

a constant value for the frequency of the circadian clock we find ranges of entrainment for the
photoperiod, the vertical line in Fig. 1. Also this line intersects several pockets, due to the skew-
ness. It shows for example that an organism might not be able to entrain to the Zeitgeber when
the photoperiod becomes long, but instead has for example a 3 : 4 resonance with the Zeitgeber,
see Fig. 1. The latter is mainly caused by the ‘skewing’. A similar phenomenon may occur for
a slightly larger frequency of the circadian clock for short photoperiods. For more biological
interpretation and examples refer to [10].

1.3. Outline

In Section 2 we introduce a system of asymmetrically coupled phase oscillators and the
Poincaré map by which we analyze the model. The main results are stated in Section 3 where
we first specify the details of the model. The statements of Section 3 are proved in Section 4. A
generalization of the model is briefly discussed in Section 3.

2. Setting: two asymmetrically coupled phase oscillators

The model in Schmal et al. [10] consists of a differential equation for a specific two dimen-
sional oscillator, in fact the normal form of the Hopf bifurcation, with periodic forcing. Here we
take a slightly different approach. Our oscillator will be a general phase oscillator asymmetrically
coupled to a second phase oscillator with constant frequency, the forcing oscillator or Zeitgeber.
First we study a general coupling and approximate the Poincaré map. Then we use these results
to study a model in which the forcing is a periodic block function where the photoperiod is a
parameter.

We could have started with a general oscillator in two dimensions with an external periodic
forcing. But then the technicalities of bringing the system in manageable form and keeping it
so when the external forcing is applied would obscure the phenomenon we want to study. Our
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primary goal is the way the dynamics in the phase direction of the oscillator changes when the
external force is applied: we are at the moment less interested in the change of the shape and
position of the periodic orbit. Therefore we start with a phase oscillator from the very beginning.

Let ψ and ϕ be phase angles so ψ, ϕ ∈ S1 where ψ is interpreted as the phase angle of the
oscillator and ϕ as the phase angle of the external forcing. Furthermore, let fµ be a function on
T2, smoothly depending on parameters µ ∈ Rm for some m. Moreover we assume that fµ has a
Fourier series in ψ and ϕ with rapidly decreasing coefficients. For more about regularity of fµ
see remarks after the main theorem. The following asymmetrically coupled system describes a
periodically forced phase oscillator.

ψ̇ = ω + µ fµ(ψ, ϕ)
ϕ̇ = 1.

(1)

The system depends on small parameters µ, δ, . . . ∈ Rm . The frequency of the oscillator is ω
for µ = 0. In that case the dynamics of the system is quasi-periodic if ω is irrational, but if
ω is rational, the dynamics is periodic. Thus for µ = 0 periodic dynamics is exceptional and
quasi periodic dynamics is typical. This changes dramatically if µ ≠ 0, then periodic dynamics
becomes typical. Here typical dynamics is used in the sense that it occurs for a set of parameter
values having finite measure. The rationals have zero measure in the set of reals, but the union
of resonance regions if µ ≠ 0 has finite measure and for small µ it grows with µ. The fate
of quasi periodic dynamics is more subtle, see [7] for a systematic and comprehensive account.
Our interest is in the periodic dynamics. Thus it seems natural to take a closer look near rational
values of ω, therefore we set ω =

p
q + δ, with p and q relative prime integers and δ is a small

parameter. It is most efficient to study this system via a Poincaré map. A good candidate is the
map that scores ψ at consecutive crossings of ϕ = 0 (sometimes called the stroboscopic map).
Since all Poincaré maps are equivalent, results will not depend on this choice. For convenience
we switch to the lift of this system to R2, then the differential equation becomes

ẋ =
p
q + δ + µ fµ(x, y)

ẏ = 1.
(2)

Now we define the (lift of the) Poincaré map as follows.

Definition 2.1. Let Φt be the flow of Eq. (2), then the Poincaré map P is implicitly defined by
(P(x), 1) = Φ1(x, 0).

The map P in this definition is the lift of a circle map, the Poincaré map on the circle. In actual
computations it is easier to use the lift, therefore we only use P . Now since P is the lift of a circle
map it must be of the form P(x) = x +ω+µhµ(x) where hµ is a 1-periodic function. Note that
for hµ(x) = sin(2πx) we obtain the Arnol’d circle map, see [1], which already explains most
phenomena occurring in the forced oscillator. Unfortunately there is no easy connection between
hµ and fµ in Eq. (2). But by a so called normal form transformation we obtain a vectorfield
approximation of the Poincaré map P , see Section 4. The approximating vectorfield is on the
right-hand side of the following equation

u̇ = δ +


f̃k,l,m µ

m e2π iku (3)

where f̃k,l,m depends in a complicated way on the Taylor–Fourier coefficients of fµ and the sum
runs over all k and l with pk + ql = 0 and m ∈ {1, . . . , n}. The time-1 flow of this vector field
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approximates the Poincaré map P . In fact, to be more precise, the time-q flow approximates
Pq

− p. We will elaborate on this in Section 4.1.
The main property of the Poincaré map P we use is that a stationary or a periodic point of

P corresponds to a periodic solution of Eq. (1) and vice versa. Thus the existence of periodic
solutions of Eq. (1) can be read off from the existence of stationary or periodic points of P . The
vectorfield approximation does not cover the full dynamics of the original system. But hyperbolic
stationary points of (3) correspond to stationary points of the Poincaré map P . Moreover by
persistence of saddle–node bifurcations we recover the well-known picture of resonance tongues
for P in the (ω, µ)-plane from Eq. (3). For each pair (p, q) a tongue emanates from the ω-axis
at ω =

p
q . The tongue at (p, q) = (1, 1) is called the main tongue, the others are just labeled by

the pair (p, q). Indeed we may rewrite the differential equation as follows

u̇ = δ + µ f̃µ(u) (4)

where f̃µ is a 1-periodic function. Then at least near (0, 0) stationary points exist in a region
in the (δ, µ)-plane bounded by curves of saddle–node bifurcations of the form µ = γ1δ and
µ = γ2δ, for some constants γ1 and γ2. In the simplest case where f̃µ(u) = sin(2πu) we have
µ = ±δ.

In the next section we take a specific form for Eq. (2) containing parameters σ and λ and we
study the map (σ, λ) → (δ, µ). The inverse image of this map takes the tongues of the general
equation for two asymmetrically coupled oscillators to the resonance regions of model with λ
dependent forcing.

3. Main results: stability pockets

In a simple model of forcing depending on photoperiod we take a phase oscillator with a
particular 1-periodic forcing. The general form will be the following.

ψ̇ = ω + η f (ψ)+ εgλ(ϕ)
ϕ̇ = 1.

(5)

To ascertain that our approximation methods in Section 4.1 work we require that f and gλ are
functions on S1 with rapidly decreasing Fourier coefficients. The function f describes the non-
linearity of the oscillator and gλ determines the external periodic forcing. As before we take
ω =

p
q + σ , with positive integers p and q. The parameters σ , η and ε are small, but not

necessarily of the same order.
In the forcing we use a function as in [10], namely one that depends on a non-small parameter

λ, which determines the fraction of the period the forcing is ‘on’, see Fig. 3. A simple example
being a block function with a block of length λ ∈ [0, 1]

g̃λ(t) =


1, 0 ≤ t < λ

0, λ ≤ t < 1
(6)

with g̃λ(t + 1) = g̃λ(t) for all t . This function is not continuous and its Fourier coefficients
are not rapidly decreasing. Therefore we replace g̃λ by another function, namely the convolution
φ ∗ g̃λ which does have rapidly decreasing Fourier coefficients. In Section 4.3 we will show that
the results in the sequel do not depend on the choice of φ.
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Definition 3.1. The periodic forcing gλ in Eq. (5) will be gλ = φ ∗ g̃λ where φ is the function

φ(x) =


α
π

exp(−αx2).

We use the methods of the previous section to find a vectorfield approximation of the Poincaré
map for the oscillator. The following theorem gives a more precise statement. For a proof see
Section 4.2 where also the meaning of degree will be clarified.

Theorem 3.2. Consider Eq. (5) with conditions of Section 4.1 on the functions f and gλ. Let P
be the lift of the Poincaré map of (5), then the vectorfield approximation up to degree two of P
is

u̇ = σ −
q

p


η2


k

fk f−k + εη


m
fmq g−mp(λ)e

2π imqu


(7)

where u = x −
p
q y. The Fourier coefficients of f and gλ are fk and gk(λ) respectively, where

gk(λ) = exp


−
π2k2

α


i

2πk


exp(−2π ikλ)− 1


.

We wish to find a region in the parameter space of the oscillator, that is in the (σ, λ)-plane, where
stationary points of Eq. (7) exist. Since this equation is a special form of Eq. (3) we consider the
map (σ, λ) → (δ, µ). The result is formulated in the following theorem.

Theorem 3.3. Let p and q be relative prime as mentioned before. Then the leading term of the
map (σ, λ) → (δ, µ) is implicitly given by:

(δ, µ) = (σ − η2c1 − εηλc2, εη| sin(πpλ)|c3)

where c1, c2 and c3 are constants. This implies that the (p, q)-tongue has p stability pockets.

The map implicitly defined in the theorem takes the main tongue of a general periodically forced
oscillator into a so called stability pocket in the (σ, λ)-plane of the oscillator. Other tongues,
depending on p, are mapped to a chain of stability pockets. In Fig. 2 a graphical representation
of this result is shown. The graph of he map (σ, λ) → (δ, µ) is a two dimensional surface in a
four dimensional space. Since this is hard to draw we only show the folding direction.

Remark 3.4.

(i) Theorems 3.2 and 3.3 together support the numerical results in [10], there is an excellent
qualitative agreement with their findings and the propositions. There is no reason to doubt
that with some more effort this agreement can also be made quantitative.

(ii) In [10] the stability pocket is called “Arnol’d onion”. Here the term stability pocket is used
to connect with the existing literature on Hill’s equation, see [3]. In Hill’s equation the
zero solution becomes unstable in the resonance tongues. In case such a tongue closes, a
“pocket” is formed which is then called an instability pocket. In our case we are interested
in synchronization, that is in the existence of stable periodic solutions. Since these exist
in resonance tongues, a tongue closing and forming a “pocket” is now called a stability
pocket.

(iii) In the special case f (ψ) = sin(2πψ) the map becomes simpler, namely (δ, µ) = (σ−η2c1
− εηλc2, εη

√
2| sin(πpλ)|). In fact the map (δ, µ) = (σ − λ, | sin(πpλ)|) has essentially

the same properties. This map is used to draw the graphs in Fig. 2.
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(iv) In Figs. 1 and 2 the implicit assumption is that the fold projects in the ‘lower part’ of the
tongue, that is in a region in the parameter plane where the map is a diffeomorphism. If the
fold projects in a higher part of the tongue where the map is no longer be a diffeomorphism
and the tongues may start to overlap, which will then be reflected in overlapping stability
pockets.

(v) We have to find the map (σ, λ) → (δ, µ) for each tongue. The reason is that no single
parameterization of all normal forms exists: for each resonance p : q we have to compute
a new normal form.

(vi) In a more accurate model of seasonality, the parameter λ will no longer be a constant,
but vary in time. Since this variation is slow with respect to the frequency of the forcing
we may consider a model based on a slow–fast system. From this perspective here we are
studying the fast limit of such a system.

(vii) To be able to prove Theorem 3.2 we need that the vectorfield in Eq. (2) has a Fourier–Taylor
series in x, y and µ. In the proof of this normal form theorem we get Fourier series as coef-
ficients. These must exist, therefore we impose the condition that the Fourier coefficients of
the vectorfield are rapidly decreasing. Intuitively the periodic block function in the vector
field of Schmal et al. [10] is a simple approximation of day and night. However due to the
discontinuities it has poor regularity, in particular its Fourier coefficients are not rapidly de-
creasing. Fortunately the discontinuities have little or nothing to do with the phenomenon
we wish to explain. Therefore we consider a convolution with the block function, which
approximates the original function as closely as needed and moreover satisfies the condi-
tions of the normal form theorem. The latter are probably stronger than necessary. But for
our purposes we do not need the most general conditions.

(viii) Related to the previous but from a more general point of view, the regularity of the vector-
field in Eq. (5) greatly influences the accuracy of the vectorfield approximation from the
normal form theorem. In case of a C∞ vectorfield we can invoke the Borel theorem to get
at least a formal normal form from which we obtain for example results about existence of
stationary points and even bifurcations thereof. In case of (real) analytic vectorfields we get
a normal form which differs an exponentially small amount (in terms of parameters) from
the original vectorfield. This for example puts bounds on chaotic regions. For an overview
see [2] and for an early account on exponentially small estimates see [8].

(ix) The occurrence of resonance tongues and (in)stability pockets is not limited to periodically
forced oscillators, see [4] for such phenomena in quasi periodically forced systems. Like in
the present case, averaging is a key procedure in obtaining estimates, see for example [11].

Proof of Theorem 3.3. Compare Eq. (4)

u̇ = δ + µ f̃µ(u)

to Eq. (7)

u̇ = σ −
q

p


η2


k

fk f−k + εη


m
fmq g−mp(λ)e2π imqu


to determine the map (δ, µ) → (σ, λ). We immediately see that the first component of the map
is δ = σ − η2c1 − εηλc2 with c1 =

q
p


k fk f−k and c2 =

q
p f0. Recall that g0 = λ. The

second component is determined by


m fmq g−mp exp(2π imqu), a periodic function of u with
Fourier coefficients fmq g−mp. The λ dependent factor of the modulus of these coefficients is
| sin(πmpλ)|, see Lemma 4.5 in Section 4.3. The latter is a periodic function of λ with p + 1
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zeros for all m on [0, 1]. Or, put differently, with at least p folds for all m. Thus the number
of stability pockets is determined by the first (and largest) non-zero Fourier coefficients, f1 and
f−1, and thus by the map (δ, µ) = (σ − η2c1 − εηλc2, εη| sin(πpλ)|). Therefore the (p, q)-
tongues have a chain of p stability pockets. To describe their shape in detail one would need the
remaining Fourier coefficients. �

Let us now look at a generalization of the system in the following sense. We still consider a
periodically forced oscillator but now the forcing is no longer a block function for all λ ∈ [0, 1].
To be more precise, let hλ be a periodic function with h0 = 0, h1 = 1 and hλ − gλ, C0 small.
Then the chains of stability pockets open up, see the image of the (2, 1)-tongue in Fig. 4.

Theorem 3.5. Let hλ be a generic perturbation of the forcing in the oscillator of Eq. (5). Then
each chain emanating from (ω, λ) = (

p
q , 0) opens up to form a single stability pocket.

Proof. Just like the Fourier coefficients of gλ, those of hλ can be regarded as parameterizations
of a closed curve in C with endpoints at zero, the parameter being λ. Now for k ≠ 0 the λ
dependent factor of gk(λ) is


exp(−2π ikλ)− 1


, see Section 4.3, which passes through zero for

λ =
n
k for n ∈ {0, 1, . . . , k}. When we perturb gλ to hλ subject to the condition that h0 = 0 and

h1 = 1, the Fourier coefficients again parameterize closed curves in C with endpoints at zero,
but in general not passing through zero for λ ∈ (0, 1). Thus we will still have stability pockets
for the more general system, but the chains of stability pockets will open up. �

4. Proofs

This section contains the proofs of the theorems in the previous sections. We first give a short
review of approximating a Poincaré map and then apply this to our coupled oscillators. In a last
section we discuss how to deal with a non-smooth forcing.

4.1. A vectorfield approximation of the Poincaré map

In this section we consider vectorfields on the phase space R2 as lifts of vectorfields on the
two torus. Our aim is to construct a vectorfield approximation of the Poincaré map. Where the
latter is the lift of the Poincaré map on the two torus. We will work in the context of vectorfields
with smooth dependence on parameters and rapidly decreasing Fourier coefficients.

First we define a parameter dependent differential equation on R2. Let fµ be a function
R2

→ R, 1-periodic in both arguments and assume f has a Taylor–Fourier expansion

fµ(x, y) =


k,l,m

fk,l,m µ
me2π i(kx+ly)

with coefficients fk,l,m . The indices k and l run over Z and m runs over N. Now consider the
differential equation

ẋ =
p
q + δ + µ fµ(x, y)

ẏ = 1
(8)

depending on parameters δ and µ. The first will be interpreted as a detuning and the second as
the strength of the non-linearity. The Poincaré map P of this system is defined as (P(x), 1) =

Φ1(x, 0), where Φt is the flow over time t of Eq. (8).
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Computing the vectorfield approximation. By a sequence of near identity transformations we
put system (8) in a form such that the y dependence in the first component becomes trivial,
at least up to a certain order. Here we use perturbation theory so we have to be precise about
the size of various components. The grading we use will come from the parameters only. The
reason is that the vectorfield is periodic in x and y therefore we set degree(x) = degree(y) = 0.
Furthermore we set degree(µ) = degree(δ) = 1. With these definitions the function fµ has a
formal Fourier–Taylor expansion in x , y and µ

µ fµ(x, y) =


k,l,m

fk,l,m µ
me2π i(kx+ly)

with Fourier–Taylor coefficients fk,l,m . Finally we define the vectorfield

X = X0 + X1 + · · · + Xn + · · ·

X0 =
p
q
∂

∂x
+
∂

∂y

Xm =


k,l

fk,l,m µ
me2π i(kx+ly) ∂

∂x

. (9)

Now we apply a standard normalization procedure (which amounts to averaging in this case) to
obtain a normal form of the vectorfield X . For an overview see [2,9] and references therein, also
see Remark 3.4. The result is formulated in the next proposition.

Proposition 4.1. Let X be a parameter dependent vectorfield as in (9). Assume that X is C∞ in
the parameter µ and that the Fourier coefficients fk,l,m are rapidly decreasing in k and l. By a
sequence of n near-identity transformations the vectorfield X is transformed into X̃ with

X̃ = X0 + X̃1 + · · · + X̃n + O(|µ|
n+1)

X̃m =


pk+ql=0

f̃k,l,m µ
me2π i(kx+ly) ∂

∂x
.

The new coefficients f̃k,l,m depend on the original coefficients in a complicated way. One
exception being X̃1 for which f̃k,l,m = fk,l,m . The transformed vectorfield up to order n only
contains resonant terms, that is in general f̃k,l,m ≠ 0 only if the index (k, l,m) satisfies the
resonance condition pk + ql = 0.

Proof. This will only be a sketch of the proof, for more details see the references above. The key
idea of the proof is that every C∞ near identity coordinate transformation can be approximated
as closely as needed by the flow of a C∞ vectorfield [12]. Since we work in the context of C∞

vectorfields on the two torus (or lifts thereof) the transformation has to respect this property. The
flow of a C∞ vectorfield on the two torus is such a transformation. Since these vectorfields form
a Lie algebra we can use rather standard normal form theory. Our aim is to get rid of the time
(y) dependence without transforming time, therefore we apply an asymmetric transformation
generated by the vectorfield Y = g(x, y) ∂

∂x so that the new x depends on y but not the
other way around. The procedure is inductive by degree. Let X be the set of C∞ vectorfields
on the two torus depending on one or more small parameters µ. We define a grading by the
degree of µ: Xk ⊂ X is the set of vectorfields of degree k or higher in µ. In the normal form
procedure we frequently use the commutator [·, ·] of vectorfields, then for Xm ∈ Xm we have
[Xm, Xn] ∈ Xm+n . Furthermore if Ym ∈ Xm is a fixed vectorfield and adYm : X → [Ym, X ] then
(adYm)

k(Xn) ∈ Xkm+n . Because of these relations we may normalize for increasing degree.
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Now suppose we have normalized up to degree n − 1, then take Y of degree n. The
transformation acts on the vectorfield X as exp(ad Y ), namely

exp(ad Y )(X) = eadY (X) = X0 + X1 + · · · + Xn−1 + Xn + adY (X0)+ h.o.t.

where adY (x) = [Y, X ]. As usual in normal form theory we try to solve Xn + adY (X0) = 0 for
g. Let gk,l be the Fourier coefficients of g then on the level of coefficients the equation becomes
q fk,l − 2π i(pk + ql)gk,l = 0. Thus we set gk,l =

q fk,l
2π i(pk+ql) provided that pk + ql ≠ 0. This

implies that in the normal form the so called resonant terms with coefficient fk,l satisfying the
resonance condition pk + ql = 0 are retained. �

Assuming we have normalized the vectorfield up to sufficiently high order, we only keep
terms up to order n by truncation. As a last step we again change coordinates: u = x −

p
q y and

v = y. Then the new vectorfield Z becomes

Z =


δ +

n
j=1


|m|= j,pk+ql=0

f̃k,l,m µ
me2π iku

 ∂
∂u

+
∂

∂v
.

Indeed, if pk +ql = 0 then changing to coordinates u and v we get kx + ly = k(u +
p
q y)+ ly =

ku +
pk+ql

q y = ku.

Interpretation of vectorfield Z . Now let X̃ be the truncated normal form of X and Z be the
vectorfield defined above. The corresponding flows are denoted by respectively Φ̃, Φ and Ψ . Let
P be the Poincaré map of Φ defined as (P(x), 1) = Φ1(x, 0). In a similar way we define P̃ ,
then this P̃ is an approximation up to order n of P . Furthermore let ψ be the flow of the first
component of Z . Then we have Ψs(u, 0) = (ψs(u), s) but also Ψs(u, 0) = (Πx Φ̃s(u, 0)−s p

q , s),

where Πx is the projection Πx (x, y) = x . This means that P̃q(u) = Πx Φ̃q(u, 0) = ψq(u) + p.
Thus P̃q − p is equal to the time q flow of the first component of Z . Therefore we call Z a
vectorfield approximation of P .

Using the vectorfield approximation. The vectorfield Z approximates the Poincaré map of the
vectorfield X in (8) but there is no equivalence. Therefore we have to be careful when drawing
conclusions about the dynamics of (8) from analysis of the vectorfield Z . Here we will be mainly
interested in stationary points of Z . A first observation is that hyperbolic stationary points of Z
correspond to relative equilibria of X̃ and thus to periodic orbits of X (provided that the difference
between X and X̃ is small enough). Stationary points of Z satisfy equation

0 = δ +

n
j=1


|m|= j,pk+ql=0

f̃k,l,m µ
me2π iku . (10)

Given p and q , the right hand side is a 2π
q periodic function. Therefore solutions, if they

exist, come in q pairs. Now suppose solutions exist, then upon varying parameters µ they may
disappear in tangencies. Assuming for simplicity a single parameter µ, we find a wedge shaped
region in parameter space defined by γ1µ < δ < γ2µ where solutions exist. This inequality
only holds near (δ, µ) = (0, 0) and the constants γ1 and γ2 depend on the Taylor–Fourier
coefficients f̃k,l,m . Dynamically speaking the boundaries of the wedge are curves of saddle–node
bifurcations. These form the familiar stability tongues or Arnol’d tongues. Since saddle–node
bifurcations in one parameter families persist under small perturbations, the stability tongues of
vectorfield Z approximate those of the Poincaré map P .
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For each combination of p and q (positive and relative prime) we find a tongue. The one for
(p, q) = (1, 1) is called the main tongue. Since we assumed that the Taylor–Fourier coefficients
rapidly decrease for increasing k and l then the leading terms in Eq. (10) are

0 = δ + γµ sin(2πu + χ) (11)

where γ and χ are determined by f̃1,−1,1 and f̃−1,1,1. This little calculation at least shows that
the tip of the tongue is a straight cone.

Similarly the tongues for (p, q) = (1, q) are determined by an equation whose leading terms
are as in Eq. (11), but now γ and χ are determined by f̃q,−1,1 and f̃−q,1,1. Again this shows that
the tip of the tongue is a straight cone, but the angle of the cone decreases with increasing q.

Remark 4.2. We collect some remarks about the vectorfield approximation.

(i) The transformation u = x −
p
q y and v = y is not just useful but originates from the

following. By construction the truncated vectorfield X̃ = X0 + X̃1 + · · · + X̃n commutes
with X0 implying that their flows Φ̃ and Φ0 also commute. In other words the flow of X0
generates a symmetry group of X̃ . By switching to ‘co-moving’ coordinates, thus by the
transformation Φ0

t , the vectorfield X̃ transforms to X̃ − X0. Therefore stationary points of
X̃ − X0 correspond to periodic orbits of X̃ . Because of this property such stationary points
are called relative equilibria.

(ii) In the normal form of the oscillator we will only need terms up to degree two. Then we have
to compute a few higher order (h.o.t.) terms. Let X and Y be as in the proof, but now Y is of
degree 1 then the terms we need are

exp(ad Y )(X) = X0 + X1 + adY (X0)+ adY (X1)+
1
2
(adY )2(X0).

(iii) The coefficients of the vectorfield are Fourier series. To ensure that the normal form makes
sense these series must exist. Although not apparent from the discussion above, the coeffi-
cients are sums, products and convolutions of Fourier coefficients of the original vectorfield
in Eq. (8). Therefore we impose the rather strong condition that the Fourier coefficients in
(8) are rapidly decreasing.

4.2. Approximation of Poincaré map of the oscillator

We apply Proposition 4.1 to the differential equation of the oscillator. The starting point is the
general form of the lift of Eq. (5)

ẋ = ω + η f (x)+ εgλ(y)
ẏ = 1.

We normalize this vectorfield to obtain an approximate Poincaré map. We assume that f and g
both have a Fourier series with coefficients fk and gk . Then the vectorfield is

X = X0 + X1 + X2

X0 =
p

q

∂

∂x
+
∂

∂y

X1 = (η f (x)+ εg(y))
∂

∂x
=


k,l

fk,le2π i(kx+ly) ∂

∂x

X2 = δ
∂

∂x
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where fk,0 = η fk and f0,l = εgl . For both k ≠ 0 and l ≠ 0 we set fk,l = 0. In view of the
resonance condition pk +ql = 0 for a term exp(2π i(kx + ly)) ∂

∂x , see Proposition 4.1, there will
be no resonant terms of degree 1, therefore we set degree(δ) = 2 and degree(ε) = degree(η) = 1.
Note that ω =

p
q + δ.

The proof of Theorem 3.2 consists of determining the vectorfield of degree 1 and computing
terms up to degree 2.

Proof of Theorem 3.2. Following the proof of Proposition 4.1 we take a vectorfield Y of degree
1 and we try to solve X1 + adY (X0) = 0 for the Fourier coefficients of Y . The degree is
determined by the parameters δ, ε and η. Let Y = a(x, y) ∂

∂x and a has Fourier coefficients ak,l .
Then on the level of Fourier coefficients we get ak,0 = η

q
p

1
2π ik fk if k ≠ 0 and a0,l = ε 1

2π il gl if

l ≠ 0. Since we have solved equation X1 + adY (X0) = 0 we have adY (X1) +
1
2 (adY )2(X0) =

−
1
2 adY (X1). Thus we obtain up to degree two

X̃ = exp(ad Y )(X) = X0 + X1 + adY (X0)+ adY (X1)+
1
2
(adY )2(X0)+ h.o.t.

= X0 +
1
2

adY (X1)+ h.o.t.

As a shorthand write X1 = f ∂
∂x , Y = a ∂

∂x and adY (X1) = h ∂
∂x then h = a ∂ f

∂x − f ∂a
∂x . From this

expression we select the resonant terms, that is the hk,l satisfying pk + ql = 0, then we are left
with

h(x, y) = −2η2 q

p


k

fk f−k − 2εη
q

p


pk+ql=0

fk gle2π i(kx+ly)

= σ −
q

p


η2


k

fk f−k + εη


m
fmq g−mp(λ)e2π im(qx−py)


.

Setting u = x −
p
q y and v = y the vectorfield approximation of the Poincaré map becomesu̇ = δ − η2 q

p


k

fk f−k − εη


m
fmq g−mp(λ)e2π imqu

v̇ = 1.
�

With this result we find the stability tongues of the vectorfield approximation. If for example
(p, q) = (1, 1) then the tongue boundaries follow from solving equation

0 = δ − η2


k

fk f−k − εη


k

f−k gke2π iku

for u, see Section 4.1.

4.3. The Fourier coefficients of the forcing

The forcing gλ of the oscillator, see Eq. (6), is a piecewise constant function and therefore
not even C∞, in particular its Fourier coefficients are not rapidly decreasing as required in
Proposition 4.1. In order to get a suitable approximation of gλ we use convolution with a so called
Schwartz function. For this approximation we find the Fourier coefficients. We are in particular
interested in the dependence on the parameter λ. The proofs of the following proposition and
lemmas are found by straightforward arguments and computations.
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Proposition 4.3. Let φ be a normalized Schwartz function and let φ̂ be its Fourier transform.
Then the Fourier coefficients of the convolution φ ∗ gλ are φ̂(k) · gk where g0 = 0 and
gk =

i
2πk


e−2π ikλ

− 1


if k ≠ 0. In particular we have |gk | =
1

2πk | sin(πkλ)|.

Let φ be a normalized Schwartz function, that is

(i) for all positive integers m and n we have supR |xm( d
dx )

nφ(x)| < ∞,
(ii)


R φ(x) dx = 1.

The familiar Gauss function φ(x) =
1

√
π

e−x2
is an example of such a function. For all α > 0 the

function φα(x) = αφ(αx) is again a normalized Schwartz function and the larger α, the closer
φα ∗ gλ is to gλ.

Lemma 4.4. Let g be a possibly non-smooth 1-periodic function with a Fourier series such that
g(x) =


k gk exp(2πkx) and let φ be a normalized Schwartz function with Fourier transform

φ̂. Then φ ∗ g is a smooth 1-periodic function which has a Fourier series with rapidly decreasing
coefficients φ̂(k) · gk .

This lemma shows that the results in Theorem 3.3 do not depend on the choice of the Schwartz
function φ since the zeros of φ̂(k) · gk(λ), as a function of λ, are exactly those of gk(λ).

By an elementary calculation we immediately find the Fourier coefficients of gλ and φ ∗ gλ.

Lemma 4.5. The Fourier coefficients gk of the function gλ as defined in Eq. (6), are g0 = λ and

gk =
i

2πk


e−2π ikλ

− 1


if k ≠ 0. The Fourier transform of φα is φ̂α(y) = exp(−π2 y2

α
).

Our main interest is in the λ dependence of the Fourier coefficients. So far we found
φ̂(k) · gk = exp(−π2k2

α
) i

2πk


exp(−2π ikλ)− 1


if k ≠ 0, from which we infer that

|φ̂(k) · gk | = e−
π2k2
α

1
2πk


2(1 − cos(2πkλ)) = e−

π2k2
α

1
πk

| sin(πkλ)|.
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