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Abstract

Problem Definition:
Although compound Poisson demand is a popular choice in the inventory control literature and
practice, there exists hardly any guidance on obtaining its parameters from real demand data. The
forecasting literature focuses on predicting period demand, which does not yield consistent estimates
for the parameters of a compound Poisson process. Standard statistical methods have severe biases
in finite samples (method-of-moments - MM) and/or are not available in closed form (maximum
likelihood - ML). We propose an intuitive, consistent, closed-form MM alternative that dominates in
terms of estimation accuracy and achieved service level.

Academic / Practical Relevance:
The inaccuracies of current parameter estimators make inventory calculations flawed, leading to se-
vere deviations from target service levels and unnecessarily high inventory costs. Current commercial
software packages wrongly fit compound Poisson processes based on period demand estimators such
as Croston’s method.

Methodology:
First, we stipulate the consequences of mis-applying Croston-type methods for estimating compound
Poisson demand parameters. Second, we discuss our proposed method. The arrival rate is estimated
using the fraction of periods without demand, and this combined with the average of period demand
yields an estimate of the mean demand size. Finally, we compare that method to the standard MM
estimator and ML in terms of estimation bias and achieved service level.

Results:
Under compound Poisson demand, Croston-based order levels dramatically overshoot the target fill
rate. The proposed method outperforms standard MM and performs similarly to ML.

Managerial Implications:
Period forecasting techniques are not suitable for estimating compound Poisson demand parameters,
and doing so leads to excessive inventories and thus costs. The proposed method should be preferred
over standard MM, which is currently the norm in the inventory control literature.

1 Introduction

One of the most general and widely studied classes of demand models is that of compound Poisson
demand. Using a Poisson process to model customer arrivals and some general compounding distribution
to model their individual demands, it is flexible from a modeling perspective and shown to often provide
the best fit to demand data (Syntetos et al. 2012, 2013, Lengu et al. 2014, Turrini and Meissner 2018).
Many inventory control models using compound Poisson demand have been developed during the past
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60 years, starting with Galliher et al. (1959) who considered the special case of stuttering Poisson
demand (with Poisson arrivals and geometrically distributed demand sizes), and followed by Feeney and
Sherbrooke (1966) and Archibald and Silver (1978), who covered order-up-to policies and (s, S) policies,
respectively, for general compound Poisson processes. Compound Poisson demand is a standard choice
in textbooks (Silver et al. 2017, Zipkin 2000, Axsäter 2015) and in commercial software (e.g. Forecast
Pro, Oracle, SAP APO, SAS, and Slimstock).

Inventory control models with compound Poisson demand typically start from the assumption that
the arrival rate and demand size parameters are known, and from there derive the optimal replenishment
policy. The problem of how to obtain these parameters from a data set of observed demands is typically
not discussed or even mentioned. The forecasting literature remarkably also does not answer this ques-
tion, as this strand of literature is centered around producing point forecasts of demand per period or
during the lead time. This is in line with practice, where demand data is typically stored periodically,
for instance per day, week or month, and forecasting software uses period demand as input. However,
as we will show, such period forecasting procedures do not provide consistent estimates for the arrival
rate and average demand size of individual customers, as they do not distinguish between one large or
several smaller orders arriving in a period, but rather look at the resulting total demand. Using them as
parameter estimates for customer demand therefore leads to flawed inventory calculations and thereby
to deviations from the target service level, even if a long demand history is available. In fact, most of the
literature calculates order levels based on (implicit) normality assumptions or other ad-hoc procedures,
completely ignoring the actual distribution that was fitted to the demand data.

Croston (1972) proposed to estimate the arrival rate of customers and the average demand size sep-
arately, via two separate exponential smoothing equations. This simple method is very popular in the
forecasting literature and in practice, praised for its robustness, and many later forecasting papers discuss
approaches in the same spirit. All five above-mentioned software packages implement Croston’s method
to forecast demand and fit compound Poisson demand distributions. However, Croston’s method was
developed for forecasting period demand, and is therefore not suitable for estimating the parameters of a
compound Poisson process, which requires the arrival rate and average size of individual demands. Even
though corrections have been suggested, these deal with the bias in inversing the estimated number of
periods between two periods with positive demands, rather than with the discrepancy between period
demands and individual demands. The first contribution of this paper is a quantification of the asymp-
totic bias that results from mis-using Croston’s period demand interval and size estimates as demand
parameters at the individual customer level, and of the consequences on achieved service levels when
these parameter estimates are used in inventory calculations.

The few inventory control studies and books that do discuss how compound Poisson demand parame-
ters can be obtained from empirical data suggest standard method-of-moments (MM) estimators. Ward
(1978) and Axsäter (2015) do so for the Poisson-geometric (stuttering Poisson) and Poisson-logarithmic
(negative binomial) demand distribution, respectively. The class of MM estimators results from setting
certain distributional entities - typically central moments of the (full, compound) demand distribution,
such as the mean or variance - equal to their sample equivalents, and solving the resulting equations to
find expressions for the unknown parameters. This by definition yields consistent estimators (meaning
that if the sample of historical demands would be infinitely large, then the true parameter values would
be attained), but does not guarantee good estimation accuracy in finite samples of historical demands. In
fact, as our results will confirm, using a ‘higher’ moment of demand per period (for instance its variance)
makes the proposed MM estimators sensitive to very small or large (outlier) demand sizes, leading to
slow convergence and a substantial estimation bias even for reasonably large sample sizes.

Another approach discussed in the broader statistics literature is that of using maximum likelihood
(ML) estimators, which are guaranteed to be consistent and to have the lowest asymptotic variance.
However, ML estimators are not guaranteed to perform well in finite samples, and have the serious
drawback that they can often only be derived by numerically maximizing the likelihood function. This
numerical complexity and lack of a closed-form solution is a possible explanation of why such procedures
are unpopular in practice and typically left out in the inventory control and forecasting literature.
Furthermore, both (standard) MM and ML procedures lack practical intuition, such as a separation of
estimating the arrival rate and the average demand size.

The second and main contribution of this paper is the presentation of an alternative MM estimator
that retains Croston’s core idea of separately estimating customer arrival rates and demand sizes, but
(contrary to Croston’s method that estimates period demand parameters) yields consistent estimators
for compound Poisson demand parameters from period demand data. The proposed method bases the
customer arrival rate on the fraction of periods without demand, and then calculates the expected demand
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size for which the expected period demand equals the observed average period demand. Contrary to
standard MM estimators, no higher moments are involved, making this new method more robust to
outliers and contributing to its higher estimation accuracy. Simultaneously, contrary to ML estimators,
this new method does have an intuitive, closed-form solution, making it easily applicable in practice and
implementable in software.

In an extensive numerical study, using both the geometric and exponential compounding distribution,
we demonstrate for a wide range of intermittent demand scenarios that the proposed method has a
better estimation accuracy than the standard MM estimator, and performs similarly to ML (and in
some scenarios even slightly better). We study the service implications for the well-known order-up-to
(base stock) inventory model when a fill rate service measure is used, and show that the proposed method
converges equally fast to the target fill rate as ML, whereas standard MM converges very slowly and
leads to order levels that are significantly too low for a wide range of scenarios and sample sizes. The idea
of merging the logic and robustness of Croston-like estimators with the consistency of MM estimators
relates naturally to demand forecasting and inventory control, but can yield interesting insights in the
broader field of statistics.

The remainder of this paper is structured as follows. Section 2 discusses the relevant literature. Sec-
tion 3 specifies the demand and inventory model and discusses the consequences of mis-using Croston’s
estimator for estimating compound Poisson demand parameters. Section 4 discusses the standard MM
and ML benchmark parameter estimators from the literature and introduces the proposed estimator.
Section 5 presents the numerical results of comparing these three methods, first in terms of parameter
estimation accuracy, and then in terms of achieved fill rate in the base stock inventory model. Section 6
concludes.

2 Related Literature

We first review the adoption and development of compound Poisson processes in the theoretical inventory
control literature and their appraisal in empirical studies. Subsequently, we discuss the relevant demand
forecasting literature, and why techniques presented there are not suitable for estimating the parameters
of compound Poisson processes and therefore cannot serve as inputs for performing inventory control. We
then discuss the few studies that have addressed suitable estimation procedures, and provide background
for the new procedure that we propose.

After Galliher et al. (1959) studied the special case of Poisson-geometric demand, Feeney and Sher-
brooke (1966) (corrected by Chen et al. 2011) derived order-up-to policies under general compound
Poisson demand. Archibald and Silver (1978) extended this work to general (s, S) policies. Order-up-
to policies can be solved efficiently under compound Poisson demand, as shown by Sherbrooke (1968),
Graves (1985), and Babai et al. (2011), who provided approximate procedures, and Axsäter (1990), who
presented an exact method. Solving general batch ordering policies is more difficult, but an approximate
method is given by Axsäter et al. (1994) that replaces compound Poisson distributions by ‘equivalent’
Poisson distributions. Further extensions of inventory control models with compound Poisson demand
are given by e.g. Forsberg (1995) and Axsäter (2000), who studied two-echelon inventory systems; Che-
ung (1996), who introduced stochastic lead times; and Bensoussan et al. (2005), who showed optimality
of (s, S) policies when demand is a mixture of a compound Poisson process and either a diffusion process
or constant demand. Next to this, there are studies that have compared the fit of several distributions to
real demand data (Snyder et al. 2012, Syntetos et al. 2012, 2013, Lengu et al. 2014, Turrini and Meissner
2018). All conclude that especially if products are not fast-moving, compound Poisson distributions
provide a better fit for period demand than e.g. the normal or gamma distribution. Some of the many
examples of research applying compound Poisson demand are Rao (2003), Axsäter (2003), Liu and Song
(2012), Song and Zipkin (2013), and Shi et al. (2014).

Compound Poisson demand processes are obviously characterized by the demand rate (or degree of
intermittency) and the demand size distribution. Correspondingly, in the forecasting literature a stream
has developed on separately estimating these two components of demand, albeit for period demand rather
than individual customer demands. Croston (1972) was the first to do so, twice applying exponential
smoothing. Many others continued this research, as reviewed by Gardner (2006). Several papers show
that Croston’s method outperforms other simple methods such as single exponential smoothing (Ghob-
bar and Friend 2003, Eaves and Kingsman 2004, Gutierrez et al. 2008), and is competitive with more
complex non-parametric methods such as bootstrapping (Willemain et al. 2004, Teunter and Duncan
2009, Syntetos et al. 2015a). Since Croston’s method forecasts period demand from dividing the average
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demand size by the number of periods between positive demands, an inversion bias is present. This bias
was first pointed out by Syntetos and Boylan (2001) and approximately corrected (using a Taylor series
expansion) by Syntetos and Boylan (2005) for Bernoulli period demand arrivals. For Poisson demand
arrivals, Shale et al. (2006) derived an approximate mark-up term which was later proven incorrect and
improved by Syntetos et al. (2015b). However, we stress that despite these corrections, the fundamental
issue remains that Croston’s method estimates period demand, and thus does not yield arrival rate and
demand size estimates at the individual customer level. We stress that this discrepancy is not an error of
Croston’s method or period forecasting techniques in general, but rather an indication that one should
not derive demand distribution parameters from these at the individual customer level in order to make
inventory calculations.

Interestingly, while inventory control theory for compound Poisson demand distributions has pro-
gressed during the past decades, the problem of estimating the demand process parameters remains
almost unaddressed. Most authors ignore this problem completely, often using ad-hoc methods to cal-
culate order levels based on the estimated mean and standard deviation of lead-time demand. Watson
(1987) assumes an Erlang distribution of lead-time demand, while Schultz (1987) argues that traditional
inventory control and forecasting methods are ill-suited for sporadic demands and uses a Croston-like
forecasting procedure. However, he subsequently calculates the order level based on normality assump-
tions. Dunsmuir and Snyder (1989) use a more realistic demand distribution with a positive probability
mass at zero to calculate the order level. Several more recent articles follow the logic of Schultz (1987)
and forecast lead-time demand, estimate the forecast error, and subsequently implicitly assume normal-
ity to compute order levels. This includes empirical studies (Syntetos and Boylan 2006) and numerical
studies where demands are explicitly generated from compound Poisson distributions (Syntetos et al.
2009, Teunter and Sani 2009). Altay et al. (2012) uses a power approximation, and Sani and Kingsman
(1997) compare various approximate methods. Given the fact that demand data is almost always stored
periodically, it is quite natural that so many authors directly estimate period or lead time demand rather
than the underlying demand process. However, this has an important drawback. The (estimated) lead
time demand distribution often does not allow exact inventory optimization, as for instance the so-called
undershoot depends on individual demand sizes. Indeed, many of the reviewed optimization procedures
for inventories under compound Poisson demand require estimates of the demand process parameters
themselves.

Very few authors discuss how the unknown parameters of compound Poisson demand (or of demand
processes in general) can be obtained from empirical demand data. Those who do, suggest the use of
standard MM estimators. Ward (1978) gives these for Poisson-geometric demand, and Axsäter (2015)
for Poisson-geometric and Poisson-logarithmic demand. For general compound Poisson demand such
estimators are not discussed in the inventory control literature. Öztürk (1981) derives standard MM
estimators for the Poisson-exponential distribution, albeit not for inventory control but for rainfall pre-
diction. However, these estimators lack intuition and are not guaranteed to perform well in finite samples.
We propose a different MM estimator for general compound Poisson demand that chooses its moments
such that the fraction of periods without demand is used to estimate the customer arrival rate, and this
estimate combined with the average demand in all periods is used to estimate the average demand size.
The inspiration for this method comes from Anscombe (1950), Ehrenberg (1959), and Savani and Zhigl-
javsky (2006). Although, in line with most of the forecasting literature, they estimated period demand
rather than the underlying compound demand process, they did exploit the intermittent nature of that
process to do so. They considered period demand that has a negative binomial distribution, correspond-
ing to a Poisson-logarithmic demand process, and showed that using the fraction of periods without
demand leads to a simpler and more efficient procedure for estimating per period demand parameters.
Our method is based on the same logic, but (a) we use it to estimate the parameters of the underlying
compound Poisson demand process, (b) we suggest its use for any type of compound Poisson demand
process, and (c) we do not only discuss its parameter estimation accuracy, but furthermore study its
inventory control performance. The demand model and inventory context are formally introduced in
Section 3, where we also quantify the consequences of mis-using Croston’s method as an estimator for
compound Poisson demand parameters.

3 Demand Model, Inventory Model, and Croston’s Method

In this section we specify the general compound Poisson demand model that we use throughout the paper,
and the two particular compounding distributions on which we base our numerical study. Thereafter we
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discuss the base stock inventory model which we apply and the fill rate calculation. Finally, we discuss
the consequences of mis-using Croston’s period estimates as compound Poisson demand parameters at
the customer level, quantify the resulting asymptotic bias of the parameter estimates and derive their
effects on the achieved fill rate.

3.1 Demand Model

We consider a model where demand follows a compound Poisson distribution with some general com-
pounding distribution. We observe n realizations of period demand from this compound Poisson distri-
bution. That is, for t = 1, 2, ..., n, we observe realizations of the random variable Xt =

∑K
i=1Di, where

K follows a Poisson distribution with mean λ and, independently, the Di follow some distribution with
mean µ. This set of demand realizations is used to estimate the parameters of the compound Poisson
process.

We focus in our numerical studies on the Poisson-geometric and Poisson-exponential distributions,
thereby discussing one of the most frequently used discrete compound Poisson distributions in the inven-
tory control literature and its continuous counterpart. In the former case, the individual demand sizes
Di have the (discrete) probability mass function

fG(x) = (1− β)βx−1,

for x = 1, 2, ... and 0 < β < 1, which has mean µ = 1/(1 − β). In the latter case, the Di have the
probability density function

fE(x) = θ exp(−θx),

for x ≥ 0 and θ > 0, with mean µ = 1/θ.

3.2 Inventory Model

We study a base stock inventory control model with a positive lead time of L periods, under a fill
rate constraint. Base-stock inventory models are widely used in practice, as they are relatively easy to
optimize (since they contain only one unknown parameter) and apply to any case where fixed ordering
costs can be ignored. This holds for instance for most relatively expensive and slow moving service parts.
The fill rate (the fraction of demand that can be serviced from on-hand inventory) is one of the most
used and realistic service measures from a customer perspective (Thomas 2005).

We follow the computation of the fill rate for compound Poisson demand models by Axsäter (2015),
and generalize it to handle also continuous compounding distributions. Specifically, denoting an in-
dividual demand by D and the inventory level by IL, for a given order level S, the fill rate is given
by

FR(S) =
EIL [ED [min(IL,D)]]

µ
,

which represents the expected fraction of a single order that can be fulfilled from on-hand stock at an
arbitrary point in time. The distribution of D is the selected compounding distribution with mean µ,
whereas the distribution of IL follows from the observation that the inventory level at time t + L is
equal to S minus the lead time demand. Since demand per period is compound Poisson with rate λ and
demand size mean µ, the lead time demand follows the same distribution, but with rate λL. Denoting
lead time demand by DL, we find the relationship P(IL ≤ S−x) = P(DL ≥ x), which completes the fill
rate calculation.

3.3 Mis-application of Croston’s Method

Croston’s method estimates the time between two periods with positive demand and the size of a non-
zero period demand both by exponential smoothing. Formally, given that we are currently at time t,
observe a positive demand xt, and have observed the previous positive demand q periods ago, Croston’s
method sets

µ̂t = α1xt + (1− α1)µ̂t−1,

p̂t = α2q + (1− α2)p̂t−1,
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where 0 < α1 < 1 and 0 < α2 < 1 are smoothing constants. If Croston’s period estimates are wrongly
taken as the estimates of the parameters of the demand distribution, then µ̂t is the estimate at time t
for the mean µ of the compounding distribution, whereas 1/p̂t is the estimate for λ. As Syntetos et al.
(2015b) show, using 1/p̂t as an estimate for λ leads to an inversion bias, as E[1/p̂t] 6= 1/E[p̂t]. Syntetos
et al. (2015b) approximately correct for this bias using a second-order Taylor expansion, and derive the
estimator (1 − α2/2)/p̂t for λ. The estimator for µ does not suffer from the inversion bias and remains
unaltered.

It is straightforward to show that, with or without the inversion bias correction, Croston’s method
yields inconsistent parameter estimates when applied to period demand. Consider µ̂t, which is unaffected
by the inversion bias. Instead of estimating the size of an individual demand, it estimates the size of a
positive period demand. Therefore,

lim
n→∞

E[µ̂t] = E(Xt|Xt > 0) =
µ
∑∞
k=1 k

exp(−λ)λk

k!

1− exp(−λ)
=

µλ

1− exp(−λ)
,

which is strictly larger than µ for all λ > 0 and µ > 0. This limit approaches µ as λ → 0, and µλ as
λ→∞. Observe that the estimator’s limit (and thus its bias) is proportional to µ.

The asymptotic bias of the arrival rate is more cumbersome to quantify. Instead of estimating
the time between two customer arrivals, p̂t estimates the number of periods between two periods with
positive demand. This number of periods (denoted by Q) follows a geometric distribution with success
probability 1−exp(−λ), mean 1/(1−exp(−λ)), and variance exp(−λ)/(1−exp(−λ))2. Although E[p̂t]→
1/(1 − exp(−λ)) as n → ∞, we can only approximate the limit of E[1/p̂t]. We do so by a second-order
Taylor expansion and find, using the mean and variance of the geometric distribution and the fact that
p̂t is an exponential smoothing estimator with asymptotic variance Var(Q)α2/(2− α2), that

lim
n→∞

E[1/p̂t] ≈
1

E[Q]
+

α2

2− α2

Var(Q)

E[Q]3
=

(
1 +

α2

2− α2
exp(−λ)

)
(1− exp(−λ)).

As α2 → 0, meaning that the weight given to old inter-arrival intervals is highest, this limit approaches
1− exp(−λ), which is the result without inversion bias. In that scenario, λ is strictly underestimated for
all λ > 0. The approximate limit of the estimator converges to 0 as λ→ 0, and converges to 1 as λ→∞.
As α2 increases, there are cases with low arrival rates where λ is actually overestimated, but as λ→ 0, the
approximate limit approaches 0, and as λ→∞, it approaches 1. Obviously, the bias correction proposed
by Syntetos et al. (2015b) scales the estimated arrival rate, and thus its expectation, by (1− α2/2). As
α2 → 0, this effect diminishes. In conclusion, Croston’s method generally underestimates the arrival
rate, but this is somewhat counteracted by its inversion bias, leading to an overestimation especially for
low values of λ and/or high values of α2. However, (approximately) correcting for that inversion bias
intensifies the underestimation.

Table 1 quantifies the (approximate) asymptotic bias resulting from using either standard Croston’s
method, or the corrected version by Syntetos et al. (2015b) (‘SBL’), for several parameter choices.
Furthermore, we report the fill rate that would be achieved for Poisson-exponential and Poisson-geometric
demand, under the true demand parameters, when the base stock order level is set to the minimum order
level that achieves the target fill rate of 95% under the asymptotic values of the estimated parameters.
We use a lead time of 2 periods.

Note from Table 1 that none of the results depend on µ, except for the achieved fill rates under
the geometric compounding distribution. The reason is that for discrete demand distributions, fill rates
cannot be achieved exactly, and the jumps in the achieved fill rate depend on all demand parameters.
Other than that, µ is only a scaling parameter of the asymptotic biases and the corresponding fill rates.
Another observation is that for low arrival rates and/or high smoothing parameter values, Croston’s
inversion bias results in an overall overestimation of λ. After the correction by Syntetos et al. (2015b),
for all parameter settings an asymptotic underestimation is achieved. The average demand size is always
overestimated. All asymptotic biases are increasing in λ and µ. Whereas for higher values of α2 negative
biases for λ are reduced and positive biases are enlarged, the correction has such a counteracting effect
that the biases of the corrected arrival rate estimates are also increasing in α2. Interestingly, all fill rates
are asymptotically too high, irrespective of whether λ is over- or underestimated. This is because the fill
rate calculation depends more heavily on µ, as we will further discuss in Section 5.2. The achieved fill
rates are increasing in λ, and for λ = 1, which is not an unrealistically high value, they are in the range
of 98 to 99%, depending on the variant and compounding distribution. This implies that the inventory
levels and associated costs are dramatically too high.
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Table 1: Asymptotic Biases and Achieved Fill Rates when Using Croston Type Methods for Compound Poisson
Parameter Estimation

Achieved fill rates (compounding distr.)
True parameters Asymptotic bias (Exponential) (Geometric)
λ µ α2 λ standard λ SBL µ Standard SBL Standard SBL

1/16 2 0.1 +1.7% -3.6% +3.2% 95.5% 95.4% 97.2% 97.2%
1/16 2 0.5 +27.3% -4.5% +3.2% 95.8% 95.4% 97.2% 97.2%
1/16 5 0.1 +1.7% -3.6% +3.2% 95.5% 95.4% 95.7% 95.7%
1/16 5 0.5 +27.3% -4.5% +3.2% 95.8% 95.4% 96.5% 95.7%
1/4 2 0.1 -7.9% -12.5% +13.0% 96.5% 96.3% 97.0% 97.0%
1/4 2 0.5 +11.4% -16.4% +13.0% 97.1% 96.1% 98.2% 97.0%
1/4 5 0.1 -7.9% -12.5% +13.0% 96.5% 96.3% 97.0% 96.4%
1/4 5 0.5 +11.4% -16.4% +13.0% 97.1% 96.1% 97.5% 96.4%
1 2 0.1 -35.6% -38.8% +58.2% 98.6% 98.4% 99.3% 99.0%
1 2 0.5 -29.0% -46.8% +58.2% 98.9% 97.8% 99.3% 98.5%
1 5 0.1 -35.6% -38.8% +58.2% 98.6% 98.4% 98.8% 98.6%
1 5 0.5 -29.0% -46.8% +58.2% 98.9% 97.8% 99.1% 98.2%

The conclusion of this section is that mis-applying Croston’s method to estimate compound Poisson
demand parameters leads to severely overestimated average demand sizes, significantly overshot fill rates
and correspondingly excessive inventory costs. For the special case of pure Poisson demand (where every
customer has a fixed demand size of 1), Croston’s period arrival rate and demand mean estimates are still
inconsistent estimates for the arrival rate and mean demand size of individual customers. However, the
estimate that Croston’s method yields for the overall mean of period demand (including periods without
demands), is µ̂t/p̂t, which does converge to the true arrival rate of that Poisson distribution. Hence, in
this special case there exists a way to convert Croston’s period estimates into a consistent estimate of
the demand parameter, whereas this is generally not possible.

4 Consistent Estimators

Having discussed the mis-application of Croston’s method for obtaining compound Poisson demand pa-
rameters, we move to consistent estimation methods. We revisit the compound Poisson demand model
introduced in the previous section and discuss the standard MM estimator (from the inventory control
literature), the ML estimator, and our proposed estimator.

4.1 The Standard Method-of-Moments Estimator

Standard MM estimators equate the mean and variance of the (compound Poisson) demand distribution
to their corresponding sample equivalents, and solve the resulting equations for the unknown parameters.
For the geometric compounding distribution this is described by Ward (1978) and Axsäter (2015), and for
the exponential compounding distribution by Öztürk (1981). Denote the sample mean of the observations
xi by x̄, and their sample variance by s2. Then for the geometric compounding distribution we find

λ̂ =
2x̄2

x̄+ s2
and µ̂ =

x̄+ s2

2x̄
,

and for the exponential compounding distribution we find

λ̂ =
2x̄2

s2
and µ̂ =

s2

2x̄
.

These estimators are by definition consistent, but may still have severe finite-sample biases and variances.
The use of the sample variance makes these estimators sensitive to outliers and leads to slow convergence,
as our numerical results will confirm.
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4.2 The Maximum Likelihood Estimator

The ML estimator for the two demand parameters can be obtained by maximizing the log-likelihood
function with respect to these parameters. For both demand distributions that we study, the ML
estimator does not exist in closed form, and has to be found by a numerical search procedure. Given the
sample x1, ..., xn of period demand observations, the log-likelihood is defined as

L(λ, µ|x1, ..., xn) =

n∑
i=1

log(f(xi|λ, µ)),

where f(·|λ, µ) denotes the probability mass function (for the geometric compounding distribution) or
the probability density function (for the exponential compounding distribution) given λ and µ.

The probability mass function of the Poisson-geometric distribution is given by (Balakrishnan et al.
2017)

fPG(x) = exp(−λ)

x∑
i=0

1

i!

(
x− 1

i− 1

)
(λ/µ)i

(
1− 1

µ

)x−i
,

and the probability density function of the Poisson-exponential distribution is given by (Öztürk 1981)

fPE(x) = exp(−λ− x/µ)

∞∑
i=0

(
(λ/µ)ixi−1

i!(i− 1)!

)
,

for x > 0, whereas this distribution has a positive probability mass of exp(−λ) at x = 0.
Since the probability mass function and probability density function already contain finite and infinite

summations, and the log-likelihood (which is again a summation of these functions over the sample size)
is to be optimized by a search procedure, it is evident that ML is the most cumbersome and computa-
tionally demanding. However, ML is guaranteed to provide a consistent estimator that asymptotically
has the lowest variance, although it offers no guarantee for good performance in finite samples.

4.3 The Proposed Method

We propose an alternative MM estimator and choose its moments such that the intuition of Croston’s
method - explicitly separating the estimation of the customer arrival rate and the average demand size -
is employed. Denote by N0 the (stochastic) number of periods in the sample of size n in which no demand
occurred. The corresponding realization of that number of periods is denoted by n0. The occurrence of
no demand in a period is Bernoulli distributed with probability exp(−λ), and therefore the number of
periods without demand out of n periods in total follows a binomial distribution with parameters n and
exp(−λ). Therefore

E[N0] = n exp(−λ).

We equate this sample moment to its expectation to find an estimator for the arrival rate as follows:

n exp(−λ̂) = n0,

leading to
λ̂ = − ln(n0/n).

Using λ̂ and the expected total period demand λµ, we solve for the mean demand size:

λ̂µ̂ = x̄,

leading to

µ̂ = − x̄

ln(n0/n)
.

It is evident that to calculate these estimates, one only needs to obtain the fraction of periods
without demand and the overall mean demand during all periods. Furthermore, whereas the standard
MM estimator and the ML estimator have to be derived specifically for every compounding distribution,
this new method is generally applicable to any compounding distribution with one parameter. If the
compounding distribution contains several parameters, then one can simply add a moment equation for
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the variance of total demand per period, or if necessary for higher moments. Irrespective of the number
of parameters to be estimated, the explicit use of the fraction of periods without demand to estimate
the arrival rate always implies that the highest order of moments used by this method is one less than
for the standard MM approach.

The simple structure of the arrival rate estimator allows the use of Taylor’s theorem to approximate
its finite-sample bias. Since N0 is binomially distributed with parameters n and exp(−λ), we have that
E[N0/n] = exp(−λ) and Var[N0/n] = exp(−λ)(1− exp(−λ))/n. Using a second-order Taylor expansion,
we find

E
[
λ̂
]
≈ λ+

exp(λ)− 1

2n
,

Var
[
λ̂
]
≈ exp(λ)− 1

n
.

It is evident that as λ→ 0, both the bias and the variance tend to 0, whereas as λ increases, both increase
exponentially. This indicates that the best performance of this estimator is achieved for relatively
low arrival rates, i.e. for intermittent demand patterns. When the sample size goes to infinity, the
bias and variance go to 0, as expected. The correlations of the different sample moments such as the
average, variance, and number of periods without demand make it impossible to derive simple, closed-
form approximations in a similar fashion for the other estimators, but the numerical study in the next
section will aid to compare the finite-sample performance of all estimators.

Two scenarios for the observed sample of historical demands deserve special attention. The first is
the case where no demands have occurred at all, so that only periods without demand are observed. In
practice one will not fit any demand distribution if this is the case, but in (our) numerical experiments
with many repetitions it does occasionally occur. All methods are then undefined and to enable a fair
comparison, we set in this case the estimated arrival rate to 0 for all methods and do not define an esti-
mate for the demand size. The other extreme scenario is that where no periods have occurred without
demand. Again, the practical relevance of this case is rather minor as a compound Poisson process is
typically used to describe slow-moving demand, and so one would expect some degree of intermittency in
the observed period demands. However, to cope with this unlikely event, we set the new method equal
to the standard MM estimator if it does happen in our numerical investigation.

5 Numerical Study: Comparing Consistent Estimators

To analyze the performance of the different estimators that were discussed in the previous section, we
perform a numerical study. For both the geometric and exponential compounding distribution, for var-
ious choices of the arrival rate λ and the average demand size µ, and for sample sizes n = 4, 5, ..., 200,
each time we draw 1,000,000 times a period demand history from the corresponding compound Poisson
distribution. So each draw consists of n period demands, each of which may be zero or positive. For each
draw, we calculate the parameter estimates for λ and µ using (i) the standard MM estimator, (ii) the
ML estimator, and (iii) the proposed alternative MM estimator. We present per parameter combination,
per sample size, and per estimator, the average of all obtained estimates. In the next subsection we
compare the estimation accuracy of the different estimators. In Section 5.2 we discuss the implications
for inventory control. Specifically, we compare the achieved fill rates in a base stock inventory model.

5.1 Estimation Accuracy

We present the averages of the demand parameter estimates for λ = 1/16, 1/4 and 1. For λ = 1/16 we
initially discuss the scenarios µ = 2 and µ = 5, but thereafter we restrict attention to µ = 5, as the
results are very similar. The setting λ = 1/16 corresponds to a demand occurring on average once every
15 periods, whereas λ = 1 corresponds to approximately 1 out of 3 periods without demand. These
values cover a wide range of intermittent demand patterns similar to those classified in the empirical
literature (Syntetos et al. 2012, 2013, Lengu et al. 2014, Turrini and Meissner 2018). As the results differ
only marginally between the geometric and exponential compounding distribution, we focus here on the
former, and select one scenario to compare the results with those under the latter.

Figure 1 shows the results for λ = 1/16. This scenario corresponds to a 94% probability of having
no demand in a period. All methods yield consistent estimates for both parameters, but show largely
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Figure 1: Averages of Demand Parameter Estimates
Geometric Compounding Distribution, True Value λ = 1/16
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(a) Estimated Arrival Rate for µ = 2
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(b) Estimated Demand Mean for µ = 2
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(c) Estimated Arrival Rate for µ = 5
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(d) Estimated Demand Mean for µ = 5
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Figure 2: Averages of Demand Parameter Estimates,
True Values λ = 1/4, µ = 5
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(a) Geometric Compounding Distribution,
Estimated Arrival Rate
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(b) Geometric Compounding Distribution,
Estimated Demand Mean
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(c) Exponential Compounding Distribution,
Estimated Arrival Rate
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(d) Exponential Compounding Distribution,
Estimated Demand Mean
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Figure 3: Averages of Demand Parameter Estimates
Geometric Compounding Distribution, True Values λ = 1, µ = 5
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(a) Estimated Arrival Rate
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(b) Estimated Demand Mean

different convergence speeds. Especially the standard MM estimator converges slowly. For µ = 2 and
n = 200, its arrival rate estimate is still 5% too high, whereas its demand mean estimate is 4% too
low. For µ = 5 these relative errors are even larger (9% and 6%, respectively). The proposed method
and the ML estimator perform almost identically, and are considerably more accurate than ML. For
µ = 2 and n ≥ 50 the difference with the true parameters is below 1%, and also for smaller sample sizes
these two methods differ only slightly. For µ = 5 and n = 25, both are approximately 17 times more
accurate than standard MM in estimating the arrival rate, and 30 times in estimating the demand mean.
Interestingly, whereas for µ = 2 the ML estimator performs slightly better than the proposed estimator,
their performance is practically identical for µ = 5. We therefore conclude that the proposed estimator
is considerably more accurate than the standard MM estimator. The proposed method’s performance is
comparable to that of the ML estimator, which is considerably more complex to apply.

Next we discuss the results for λ = 1/4 and µ = 5 (see Figure 2). This scenario corresponds to a 78%
probability of having no demand in a period. We first discuss the results for the geometric compounding
distribution, and then compare them with those for an exponential compounding distribution. We again
observe that the standard MM estimator converges slowest, and still shows a significant deviation from
the true value for n = 200 (3.3% for λ and 1.6% for µ). The proposed method and the ML estimator
are again the most accurate and perform almost identically. The arrival rate estimates of ML and the
proposed method converge more slowly than their demand mean estimates. It is worthwhile to notice
that the estimation accuracy of the three estimators for µ increases more quickly in the true value of the
arrival rate than those for λ, whereas the estimation accuracy for µ is already higher than that for λ.
This will also affect the inventory control performance, as we will see in Section 5.2. For samples of at
least 75 observations, they are both within 0.1% of the true demand mean in this scenario, whereas the
arrival rate still shows a 0.3% error for n = 200. In this case the proposed estimator actually (slightly)
outperforms ML. This is an interesting observation of the fact that whereas ML has asymptotically
the lowest variance, no guarantees can be given about its performance in finite samples. The results
for the exponential distribution are very similar, with the main difference being that the standard MM
estimator performs worse in this case (a bias of 4.5% for λ and 2% for µ, for n = 200). In conclusion,
whereas the standard MM estimator converges more quickly here than in the previous scenario, it is still
outperformed considerably by the proposed estimator and ML.

In Figure 3, the arrival rate is increased to 1, corresponding to a probability of 37% that a period
has zero demand. The standard MM estimator still performs worst (with an error of 1.5% in λ and 0.4%
in µ for n = 200), but the gap with the proposed estimator and ML is smaller than for lower arrival
rates. The proposed method again outperforms ML, now by a larger margin. Also in this scenario it
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is confirmed that when the arrival rate increases, the accuracy of the estimated demand mean increases
more quickly than that of the estimated arrival rate.

We conclude that, especially for relatively low values of λ, the standard MM estimator performs very
poorly, even for large sample sizes. The new estimator shows fast convergence in all these scenarios,
either comparable to or slightly better than the ML estimator. We remark that if λ is larger than ap-
proximately 2 (corresponding to a 14% chance of observing a period without demand), then the standard
MM estimator has a slight performance advantage over both ML and the proposed estimator. This can
be explained by the fact that in such cases the specific moment that the proposed method utilizes for
estimating λ (the fraction of periods without demand) becomes very small. Arguably, such scenarios are
less relevant in practice, as compound Poisson distributions are most popular for intermittent demand
patterns.

5.2 Inventory Control

For the base stock inventory model that we described in Section 3.2, we study the service effects when
demand parameters are obtained according to the 3 methods discussed in Section 4. We use a target fill
rate of 95%. Based on the average estimates for the various methods, for a certain scenario and sample
size, we search for the smallest order level S that achieves this fill rate. We report the fill rates that
are achieved by these order levels under the true demand parameters. Please note that the achieved fill
rate increases monotonically with the order level and thus with the inventory holding costs. Contrary
to the previous subsection, we limit our discussion here to the exponential compounding distribution
to simplify interpretation of the results, as the target fill rate can be achieved exactly for a continuous
demand distribution but not for a discrete one.

Figure 4a shows the results for λ = 1/16, µ = 5, and L = 2. Consistently with the results of the
previous subsection, the MM and ML estimators all lead to fill rates that converge to the target. The
proposed estimator and the ML estimator perform almost identically (in accordance with the results of
the previous subsection) and converge much more quickly than the standard MM estimator. The order
level (and achieved fill rate) that is set in a given scenario by any of the three methods is driven by the
(slight) overestimation of λ (leading to overshooting the order level and fill rate) and the underestimation
of µ (leading to an undershoot). In this scenario the underestimation of µ dominates for all three methods,
leading to fill rates that converge to their targets from below. Although the overestimation of λ is more
severe, this parameter only affects the inventory level distribution (via the lead time demand), whereas
µ affects this as well and also the distribution of a single customer’s demand size, which are both needed
for the fill rate computation. Whereas the proposed method and ML are already at the 95% fill rate
target for a sample of 50 observations, standard MM only attains 93.8% even for n = 200.

An interesting phenomenon occurs when λ = 1/4 (see Figure 4b). In this case, the overestimation of
λ and underestimation of µ by the proposed method and ML almost cancel each other out at the order
level calculation, leading to a realized fill rate very close to its target over the entire range of sample
sizes. Standard MM still leads to fill rates that are approaching their optima from below, and although
also this method is more accurate now, it nevertheless converges more slowly than the proposed method
and ML.

In Figure 4c the arrival rate is increased to 1. All methods now lead to fill rate overshoots rather than
undershoots, indicating that the overestimation of λ dominates the fill rate effects. Standard MM still
performs worst and ML performs best, but only marginally better than the proposed method. This is
an interesting result, as in terms of estimation accuracy ML was actually outperformed by the proposed
method. The explanation is also here that the estimation errors in λ and µ counteract each other in the
order level calculation. The differences between the three approaches are diminishing.

In the last scenario that we discuss, λ is reset to 1/4, but the lead time is quadrupled to 8 periods.
Figure 4d shows the results. Comparing this scenario with that where λ = 1/4 and L = 2, we observe
that standard MM actually performs better under a longer lead time. This can be explained by the fact
that for this parameter setting the underestimation of µ dominates the overestimation of λ, implying
that if by extending the lead time more weight is given to the estimation error in λ, then the overall
negative effect on the fill rate is counteracted. For ML and the proposed method this is not the case, as
for the majority of the studied sample sizes the achieved fill rate was already (slightly) above the target
fill rate.

Summarizing the results of all scenarios, we find that the standard MM estimators as applied in the
inventory control literature show poor estimation accuracy and slow convergence, especially for low val-
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Figure 4: Achieved Fill Rates for an Exponential Compounding Distribution with Target Fill Rate 95%
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(a) True Values λ = 1/16, µ = 5, and L = 2
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(b) True Values λ = 1/4, µ = 5, and L = 2

0 50 100 150 200

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

Number of periods

A
ch

ie
ve

d 
fil

l r
at

e

●

●
● ● ● ● ● ● ● ● ● ● ●

●

Target
Standard method of moments
Maximum Likelihood
Proposed method

(c) True Values λ = 1, µ = 5, and L = 2
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(d) True Values λ = 1/4, µ = 5, and L = 8
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ues of the arrival rate, i.e. for highly intermittent demand patterns with relatively many periods without
demand. ML and the proposed method yield more accurate estimates, and therefore lead to fill rates
that are closer to their targets. Whereas they are similar in convergence speed, the proposed estimator
has the advantage that it is available in a simple, closed form. The effect of a method’s estimation inac-
curacy on the achieved fill rate depends mainly on the proportions of its estimation error in the arrival
rate and the mean demand size. For low arrival rates, the proposed method, ML, and standard MM
all converge to the optimal fill rate from below, whereas for higher arrival rates this pattern shifts to a
convergence from above. In conclusion, as long as the demand pattern shows at least some intermittency,
the proposed estimator outperforms standard MM, which is the norm in the inventory control literature.

6 Conclusions

Inventory models using a compound Poisson demand distribution cannot be applied until (estimates
of) the demand parameters have been obtained. The focus of the demand forecasting literature is not
on obtaining such estimates or on performing inventory control, but on forecasting period or lead time
demand. Period demand forecasts cannot be directly transformed into compound Poisson parameter
estimates, even if the forecasting procedure explicitly yields separate estimates for the time between
periods with positive demands and the average (period) demand size, as methods based on Croston (1972)
do. Mis-using Croston’s period estimates to obtain demand parameters, as several leading commercial
software packages do, leads - also asymptotically - to severely biased estimates, overshot fill rates, and
therefore excessive inventories and associated costs.

The inventory control literature provides, apart from sparse mentions of standard MM estimators,
hardly any guidance on obtaining demand parameters from periodic demand data, although companies
typically store historical demand observations per period (e.g. day, week, or month), and software
packages also use period demand as input for their forecasts. We have addressed this lack of connection
between the forecasting and inventory control literature, and proposed an alternative estimator that
takes a sample of period demands as input and uses them to estimate the parameters of the compound
Poisson distribution. The estimator uses the method-of-moments principle, but with a non-standard
choice of moments that reflects the intermittent nature of the demand. The fraction of periods without
demand is exploited to calculate the customer arrival rate, and this estimate together with the overall
mean of period demand is used to obtain the mean of an individual demand size. This reflects the
intuition of Croston’s method in the sense that arrival rate and demand mean are estimated separately.

Our results show that, for the distributions examined, and for intermittent demand, the proposed
estimator outperforms standard MM estimator in terms of convergence speed, and its deviation from the
true value of both parameters is smaller over the entire range of sample sizes. Furthermore, the proposed
estimator performs very similarly to the ML estimator, which does not exist in closed form and has to be
found by a numerical search. In some scenarios the proposed estimator even slightly outperforms ML.
Using the standard MM estimator can more than double the fraction of demand that cannot be serviced.
The high accuracy of the proposed method also implies that the performance loss due to storing demands
periodically rather than individually is minimal if this estimator is used.

The major managerial insights of this research are twofold. Firstly, despite current practice, standard
forecasting techniques for period demand should not be used to obtain compound Poisson parameter
estimates for performing inventory control. This leads to drastically excessive inventory levels and costs,
and overshooting of target fill rates. Secondly, order levels (and thereby average inventories) can be
reduced by using the proposed estimator. A decision rule results that is easily implementable in software
packages: one should select the proposed estimator if the observed demand pattern is intermittent, and
standard MM otherwise.

This research could be expanded by studying our proposed method for different compounding dis-
tributions, also with more than one parameter. Our estimator will use higher sample moments in such
cases, but the highest moment used by our method will always be one less than that of the standard MM
estimator. Important empirical research avenues are to compare the new estimator and other methods
on real life data sets, and to study the effect of bucketing the demand observations in different period
lengths, leading to demand patterns with higher and lower degrees of intermittency. Finally, an overall
connection is lacking in the broader sense between the forecasting literature on the one hand, and the
inventory control literature on the other hand. For example, the quality of a certain forecasting method
is typically assessed via loss measures such as the Mean Square Error or Mean Absolute Deviation,
whereas from an inventory control perspective the resulting cost or service level is important. A study
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comparing different forecasting methods from this perspective may lead to insights that are different
from those currently known in the forecasting literature.
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