
 

 

 University of Groningen

Control of electrical networks: robustness and power sharing
Weitenberg, Erik

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Weitenberg, E. (2018). Control of electrical networks: robustness and power sharing. [Groningen]:
Rijksuniversiteit Groningen.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 12-11-2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Groningen

https://core.ac.uk/display/232516818?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.rug.nl/research/portal/en/publications/control-of-electrical-networks-robustness-and-power-sharing(05e18e88-6ad4-4608-b039-e26bf5136997).html


4
Input-to-state stability with
restrictions of the leaky
integral controller

abstract
Frequency regulation in power systems is conventionally performed by broad-
casting a centralized signal to local controllers. As a result of the energy trans-
ition, technological advances, and the scientific interest in distributed con-
trol and optimization methods, a plethora of distributed frequency control
strategies have been proposed recently that rely on communication amongst
local controllers. In this chapter we propose a fully decentralized leaky integral
controller for frequency regulation that is derived from a classic lag element.
We study steady-state, asymptotic optimality, nominal stability, input-to-state
stability, noise rejection, transient performance, and robustness properties of
this controller in closed loop with a nonlinear and multi-variable power system
model. We demonstrate that the leaky integral controller can strike an accept-
able trade-off between performance and robustness as well as between asymp-
totic disturbance rejection and transient convergence rate by tuning its DC gain
and time constant. We compare our findings to conventional decentralized in-
tegral control and distributed-averaging-based integral control in theory and
simulations.

Published as:

E. Weitenberg, Y. Jiang, C. Zhao, E. Mallada, C. De Persis, and F. Dörfler, “Robust de-
centralized secondary frequency control in power systems: Merits and trade-offs,” IEEE
Transactions on Automatic Control, 2017, under review.

E. Weitenberg, Y. Jiang, C. Zhao, E. Mallada, F. Dörfler, and C. De Persis, “Robust
decentralized frequency control: A leaky integrator approach,” in Proceedings of the
European Control Conference, 2018.
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62 iss with restrictions of the leaky integral controller

4.1 introduction

The core operation principle of an AC power system is to balance supply and
demand in nearly real time. Any instantaneous imbalance results in a devi-
ation of the global system frequency from its nominal value. Thus, a cent-
ral control task is to regulate the frequency in an economically efficient way
and despite fluctuating loads, variable generation, and possibly faults. Fre-
quency control is conventionally performed in a hierarchical architecture: the
foundation is made of the generators’ rotational inertia providing an instant-
aneous frequency response, and three control layers – primary (droop), sec-
ondary automatic generation (AGC), and tertiary (economic dispatch) – oper-
ate at different time scales on top of it (Machowski et al., 2008; Bevrani, 2009).
Conventionally, droop controllers are installed at synchronous machines and
operate fully decentralized, but they cannot by themselves restore the system
frequency to its nominal value. To ensure a correct steady-state frequency and
a fair power sharing among generators, centralized AGC and economic dis-
patch schemes are employed on longer time scales.
This conventional operational strategy is currently challenged by increasing
volatility on all time scales (due to variable renewable generation and increas-
ing penetration of low-inertia sources) as well as the ever-growing complexity
of power systems integrating distributed generation, demand response, mi-
crogrids, and HVDC systems, among others. Motivated by these paradigm
shifts and recent advances in distributed control and optimization, an active
research area has emerged developing more flexible distributed schemes to
replace or complement the traditional frequency control layers.
In this chapter we focus on secondary control. We refer to Molzahn et al. (2017,
Section IV.C) for a survey covering recent approaches amongst which we high-
light semi-centralized broadcast-based schemes similar to AGC (Dörfler and
Grammatico, 2017; Andreasson et al., 2014b; Shafiee et al., 2014) and distrib-
uted schemes relying on consensus-based averaging (Zhao et al., 2015; Dörfler
et al., 2016; De Persis et al., 2016; Trip et al., 2016; Andreasson et al., 2014a;
Weitenberg et al., 2017a) or primal dual methods (Li et al., 2016; Zhang and
Papachristodoulou, 2015; Zhao et al., 2016; Mallada et al., 2017) that all rely on
communication amongst controllers. However, due to security, robustness,
and economic concerns it is desirable to regulate the frequency without rely-
ing on communication. A seemingly obvious and often advocated solution is
to complement local proportional droop control with decentralized integral
control (Ainsworth and Grijalva, 2013; Andreasson et al., 2014b; Zhao et al.,
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2015). In theory such schemes ensure nominal and global closed-loop stability
at a correct steady-state frequency, though in practice they suffer from poor
robustness to measurement bias and clock drifts (Andreasson et al., 2014a,b;
Dörfler and Grammatico, 2017; Schiffer et al., 2015). Furthermore, the power
injections resulting from decentralized integral control generally do not lead
to an efficient allocation of generation resources. A conventional remedy to
overcome performance and robustness issues of integral controllers is to im-
plement them as lag elements with finite DC gain (Franklin et al., 1994). In-
deed, such decentralized lag element approaches have been investigated by
practitioners: Ainsworth and Grijalva (2013) provides insights on the closed-
loop steady states and transient dynamics based on numerical analysis and
asymptotic arguments, Heidari et al. (2017) provides a numerical certificate
for ultimate boundedness, and Han et al. (2017) analyses lead-lag filters based
on a numerical small-signal analysis.

4.2 power system frequency control
4.2.1 system model
Consider a lossless, connected, and network-reduced power system with n
generators modelled by swing equations (Machowski et al., 2008)

θ̇ =ω (4.1a)
Mω̇ =− Dω + P −∇U(θ) + u , (4.1b)

where θ ∈ Tn and ω ∈ Rn are the generator rotor angles and frequencies relat-
ive to the utility frequency given by 2π50 rad s−1 or 2π60 rad s−1. The diagonal
matrices M,D ∈ Rn×n collect the inertia and damping coefficients Mi,Di > 0,
respectively. The generator primary (droop) control is integrated in the damp-
ing coefficient Di, P ∈ Rn is vector of nominal power injections, and u ∈ Rn is
a control input to be designed later. Finally, the magnetic energy stored in the
purely inductive (lossless) power transmission lines is (up to a constant) given
by

U(θ) = −1
2
∑n

i,j=1
BijViVj cos(θi − θj) ,

where Bij ≥ 0 is the susceptance of the line connecting generators i and j with
terminal voltage magnitudes Vi,Vj > 0, which are assumed to be constant.
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Observe that the vector of power injections

(∇U(θ))i =
∑n

j=1
BijViVj sin(θi − θj) (4.2)

satisfies a zero net power flow balance: 1⊤
n ∇U(θ) = 0, where 1n ∈ Rn is the

vector of unit entries. In what follows, we will also write these quantities in
compact notation as

U(θ) = −1⊤Γ cos(B⊤θ), ∇U(θ) = BΓ sin(B⊤θ) ,

whereB ∈ Rn×m is the incidence matrix (Bullo, 2017) of the power transmission
grid connecting the n generators with m transmission lines, and Γ ∈ Rm×m is
the diagonal matrix with its diagonal entries being all the non-zero ViVjBij’s
corresponding to the susceptance and voltage of the ith transmission line.
We note that all of our subsequent developments can also be extended to more
detailed structure-preserving models with first-order dynamics (e.g., due to
power converters), algebraic load flow equations, and variable voltages by
using the techniques developed in De Persis et al. (2016); Zhao et al. (2015).
In the interest of clarity, we present our ideas for the concise albeit stylized
model (4.1).

4.2.2 secondary frequency control

In what follows, we refer to a solution (θ(t),ω(t)) of (4.1) as a synchronous solu-
tion if it is of the form θ̇(t) = ω(t) = ωsync1n, where ωsync is the synchronous
frequency.

Lemma 4.1 (Synchronization frequency). If there is a synchronous solution to the
power system model (4.1), then the synchronous frequency is given by

ωsync =

∑n
i=1 P∗

i +
∑n

i=1 u∗
i∑n

i=1 Di
, (4.3)

where u∗
i denotes the steady-state control action.

Proof. In the synchronized case, (4.1b) reduces to Dωsync1n +∇U(θ) = P + u.
After multiplying this equation by 1⊤

n and using that 1⊤
n ∇U(θ) = 0, we arrive

at the claim (4.3). □
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Observe from (4.3) that ωsync = 0 if and only if all injections are balanced:∑n
i=1 P∗

i + u∗
i = 0. In this case, a synchronous solution coincides with an equi-

librium (θ∗,ω∗,u∗) ∈ Tn × {0n} × Rn of (4.1). Our first objective is frequency
regulation, also referred to as secondary frequency control.

Problem 4.1 (Frequency regulation). Given an unknown constant vector P,
design a control strategy u = u(ω) to stabilize the power system model (4.1) to
an equilibrium (θ∗,ω∗,u∗) ∈ Tn × {0n} × Rn so that

∑n
i=1 P∗

i + u∗
i = 0.

Observe that there are manifold choices of u∗ to achieve this task. Thus, a fur-
ther objective is the most economic allocation of steady-state control inputs u∗

given by a solution to the following so-called economic dispatch problem (Wood
and Wollenberg, 1996):

minimize
u∈Rn

∑n

i=1
aiu2

i (4.4a)

subject to
∑n

i=1
P∗

i +
∑n

i=1
ui = 0 . (4.4b)

The term aiu2
i with ai > 0 is the quadratic generation cost for generator i. Ob-

serve that the unique minimizer u⋆ of this linearly-constrained quadratic pro-
gram (4.4) guarantees identical marginal costs at optimality (Dörfler et al., 2016;
Trip et al., 2016):

aiu⋆
i = aju⋆

j ∀i, j ∈ {1, . . . , n} . (4.5)

We remark that a special case of the identical marginal cost criterion (4.5) is
fair proportional power sharing (Guerrero et al., 2011) when the coefficients ai are
chosen inversely to a reference power P̄i > 0 (normally the power rating) for
every generator i:

u⋆
i /P̄i = u⋆

j /P̄j ∀i, j ∈ {1, . . . , n} . (4.6)

Problem 4.2 (Optimal frequency regulation). Given an unknown constant vec-
tor P, design a control strategy u = u(ω) to stabilize the power system model
(4.1) to an equilibrium (θ∗,ω∗,u∗) ∈ Tn × {0n} × Rn where u∗ minimizes the
economic dispatch problem (4.4).

Aside from steady-state optimal frequency regulation, we will also pursue cer-
tain robustness and transient performance characteristics of the closed loop
that we specify later.
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4.3 fully decentralized frequency control
The frequency regulation Problems 4.1 and 4.2 have seen many centralized and
distributed control approaches. Since P is generally unknown, all approaches
explicitly or implicitly rely on integral control of the frequency error. In the
following we focus on fully decentralized integral control approaches making
use only of local frequency measurements: ui = ui(ωi).

4.3.1 decentralized pure integral control
One possible control action is decentralized pure integral control of the locally
measured frequency, that is,

u =− p (4.7a)
Tṗ =ω , (4.7b)

where p ∈ Rn is an auxiliary control variable, and T ∈ Rn×n is a diagonal
matrix of positive time constants Ti > 0. The closed-loop system (4.1),(4.7)
enjoys many favourable properties, such as solving the frequency regulation
Problem 4.1 with global convergence guarantees regardless of the system or
controller initial conditions or the unknown constant vector P.

Theorem 4.1 (Convergence under decentralized pure integral control). The
closed-loop system (4.1),(4.7) has a non-empty set X ∗ ⊆ Tn × {0n} × Rn of equi-
libria, and all trajectories (θ(t),ω(t), p(t)) globally converge to X ∗ as t → +∞.

Proof. This proof is based on an idea initially proposed in Zhao et al. (2015)
while we make some arguments and derivations more rigorous here. First note
that (4.7) can be explicitly integrated as

u = −T−1(θ − θ0)− p0 = −T−1(θ − θ′
0) , (4.8)

where we used θ′
0 = θ0 − Tp0 as a shorthand. In what follows, we study only

the state (θ(t),ω(t)) without p(t) since p(t) is a function of θ(t) and initial con-
ditions as defined in (4.8).
Next consider the Lyapunov candidate function

V(θ,ω) = 1
2ω⊤Mω + U(θ)− θ⊤P

+
1
2 (θ − θ′

0)
⊤T−1(θ − θ′

0) (4.9)
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The derivative of V along any trajectory of (4.1), (4.7) is

V̇(θ,ω) = −ω⊤Dω . (4.10)

Note that for any initial condition (θ0,ω0) ∈ Tn × Rn the sublevel set Ω :=
{(θ,ω) | V(θ,ω) ≤ V(θ0,ω0)} is compact. Indeed Ω is closed due to continuity
of V and bounded since V is radially unbounded due to quadratic terms in ω
and θ. The set Ω is also forward invariant since V̇ ≤ 0 by (4.10).
In order to proceed, define the zero-dissipation set

E =
{
(θ,ω) | V̇(θ,ω) = 0

}
= {(θ,ω) | ω = 0n} (4.11)

and EΩ := E ∩ Ω. By LaSalle’s theorem (Khalil, 2002, Theorem 4.4), as t →
+∞, (θ(t),ω(t)) converges to a non-empty, compact, invariant set LΩ which
is a subset of EΩ. In the following, we show that any point (θ′,ω′) ∈ LΩ is an
equilibrium of (4.1),(4.7). Due to the invariance ofLΩ, the trajectory (θ(t),ω(t))
starting from (θ′,ω′) stays identically in LΩ and thus in EΩ. Therefore, by (4.11)
we have ω(t) ≡ 0 and hence ω̇(t) ≡ 0. Thus, every point on this trajectory,
in particular the starting point (θ′,ω′), is an equilibrium of (4.1),(4.7). This
completes the proof. □
The global convergence merit of decentralized integral control comes at a cost
though. First, note that the steady-state injections from decentralized integral
control (4.7),

u∗ = −T−1 (θ∗ − θ0)− p0,

depend on initial conditions and the unknown values of P. Thus, in general
u∗ does not meet the optimality criterion (4.5). Second and more importantly,
internal instability due to decentralized integrators is a known phenomenon
in control systems (Campo and Morari, 1994; Åström and Hägglund, 2006).
In our particular scenario, as shown in Andreasson et al. (2014a, Theorem 1)
and Dörfler and Grammatico (2017, Proposition 1), the decentralized integral
controller (4.7) is not robust to arbitrarily small biased measurement errors
that may arise, e.g., due to clock drifts (Schiffer et al., 2015). More precisely
the closed-loop system consisting of (4.1) and the integral controller subject to
measurement bias η ∈ Rn

u =− p (4.12a)
Tṗ =ω + η , (4.12b)
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does not admit any synchronous solution unless η ∈ span(1n), that is, all biases
ηi, for all i ∈ {1, . . . , n}, are perfectly identical (Dörfler and Grammatico, 2017,
Proposition 1). Thus, while theoretically favourable, the decentralized integral
controller (4.7) is not practical.

4.3.2 decentralized lag and leaky integral control
In standard frequency-domain control design (Franklin et al., 1994) a stable
and finite DC-gain implementation of a proportional-integral (PI) controller is
given by a lag element parametrized as

α Ts + 1
αTs + 1 = 1︸︷︷︸

proportional control

+
α − 1

αTs + 1︸ ︷︷ ︸
leaky integral control

,

where T > 0 and α ≫ 1. The lag element consists of a proportional channel as
well as a first-order lag often referred to as a leaky integrator. In our context, a
state-space realization of a decentralized lag element for frequency control is

u =− ω − (α − 1)p
αTṗ =ω − p ,

where T is a diagonal matrix of time constants, and α ≫ 1 is scalar. In what
follows we disregard the proportional channel (that would add further droop)
and focus on the leaky integrator to remedy the shortcomings of pure integral
control (4.7).
Consider the leaky integral controller

u =− p (4.13a)
Tṗ =ω − K p , (4.13b)

where K,T ∈ Rn×n are diagonal matrices of positive control gains Ki,Ti > 0.
The transfer function of the leaky integral controller (4.13) at a node i (from ωi
to −ui) given by

Ki(s) =
1

Tis + Ki
=

K−1
i

(Ti/Ki) · s + 1 , (4.14)

i.e., the leaky integrator is a first-order lag with DC gain K−1
i and time constant

Ti/Ki (which also equals the bandwidth). It is instructive to consider the lim-
iting values for the gains:
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1. For Ti ↘ 0, leaky integral control (4.13) reduces to proportional (droop)
control with gain K−1

i ;

2. for Ki ↘ 0, we recover the pure integral control (4.7);

3. and for Ki ↗ ∞ or Ti ↗ ∞, we obtain an open-loop system without
control action.

Thus, from loop-shaping perspective for open-loop stable SISO systems, we
expect good steady-state frequency regulation for a large DC gain K−1

i , and a
large (respectively, small) cut-off frequency Ki/Ti likely results in good nominal
transient performance (respectively, good noise rejection). We will confirm
these intuitions in the next section, where we analyse the leaky integrator (4.13)
in closed loop with the nonlinear and multi-variable power system (4.1) and
highlight its merits and trade-offs as function of the gains K and T.

4.4 properties of the leaky integral controller
The power system model (4.1) controlled by the leaky integrator (4.13) gives
rise to the closed-loop system

θ̇ =ω (4.15a)
Mω̇ =− Dω + P −∇U(θ)− p (4.15b)
Tṗ =ω − K p . (4.15c)

We make the following standing assumption on this system.

Assumption 4.1 (Existence of a synchronous solution). Assume that the closed-
loop (4.15) admits a synchronous solution (θ∗,ω∗, p∗) of the form

θ̇
∗
=ω∗ (4.16a)

0n =− Dω∗ + P −∇U(θ∗)− p∗ (4.16b)
0n =ω∗ − K p∗ . (4.16c)

where ω∗ = ωsync1n for some ωsync ∈ R.

By eliminating the variable p∗ from (4.16), we arrive at

P − (D + K−1)ωsync1n = ∇U(θ∗) . (4.17)
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Equations (4.17) take the form of lossless active power flow equations (Machow-
ski et al., 2008) with injections P − (D + K−1)ωsync1n. Thus, Assumption 4.1 is
equivalent assuming feasibility of the power flow (4.17) which is always true
for sufficiently small ∥P∥.
Under this assumption, we now show various properties of the closed-loop
system (4.15) under leaky integral control (4.13).

4.4.1 steady-state analysis
We begin our analysis by studying the steady-state characteristics. At steady
state, the control input u∗ takes the value

u∗ = −P = −K−1ω∗ = −K−1ωsync1n , (4.18)

that is, it has a finite DC gain K−1 similar to a primary droop control. The
following result is analogous to Lemma 4.1.

Lemma 4.2 (Steady-state frequency). Consider the closed-loop system (4.15) and
its equilibria (4.16). The explicit synchronization frequency is given by

ωsync =

∑n
i=1 P∗

i∑n
i=1 Di + K−1

i
(4.19)

Unsurprisingly, the leaky integral controller (4.13) does generally not regulate
the synchronous frequency ωsync to zero unless

∑
i P∗

i = 0. However, it can
achieve approximate frequency regulation within a pre-specified tolerance band.

Corollary 4.1 (Banded frequency regulation). Consider the closed-loop system
(4.15). The synchronous frequency ωsync takes value in a band around zero that can be
made arbitrarily small by choosing the gains Ki > 0 sufficiently small. In particular,
for any ϵ > 0, if∑n

i=1
K−1

i ≥
∣∣∑n

i=1 P∗
i
∣∣

ϵ
−
∑n

i=1
Di ,

then |ωsync| ≤ ϵ.

While regulating the frequencies to a narrow band is sufficient in practical
applications, the closed-loop performance may suffer since the control input
(4.13) may become ineffective due to a small bandwidth Ki/Ti. Similar obser-
vations have also been made in Ainsworth and Grijalva (2013); Heidari et al.
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(2017). We will repeatedly encounter this trade-off for the decentralized leaky
integral controller (4.13) between choosing a small gain K (for desirable steady-
state properties) and large gain (for transient performance).
The closed-loop steady-state injections are given by (4.18), and we conclude
that the leaky integral controller achieves proportional power sharing by tun-
ing its gains appropriately:

Corollary 4.2 (Steady-state power sharing). Consider the closed-loop system (4.15).
The steady-state injections u∗ of the leaky integral controller achieve fair proportional
power sharing as follows:

Kiu∗
i = Kju∗

j ∀i, j ∈ {1, . . . , n} . (4.20)

Hence, arbitrary power sharing ratios as in (4.6) can be prescribed by choos-
ing the control gains as Ki ∼ 1/P̄i. Similarly, we have the following result on
steady-state optimality:

Corollary 4.3 (Steady-state optimality). Consider the closed-loop system (4.15).
The steady-state injections u∗ of the leaky integral controller minimize the economic
dispatch problem

minimize
u∈Rn

∑n

i=1
Kiu2

i (4.21a)

subject to
n∑

i=1
P∗

i +

n∑
i=1

(1 + DiKi)ui = 0 . (4.21b)

Proof. Observe from (4.20) that the steady-state injections (4.18) meet the
identical marginal cost requirement (4.5) with ai = Ki. Additionally, the steady-
state equations (4.16b), (4.16c), and (4.18) can be merged to the expression

0n = DK u∗ + P −∇U(θ∗) + u∗ .

By multiplying this equation from the left by 1⊤
n , we arrive at the condition

(4.21b). Hence, the injections u∗ are also feasible for (4.21) and thus optimal
for the program (4.21). □
The steady-state injections of the leaky integrator are optimal for the modified
dispatch problem (4.21) with appropriately chosen cost functions. By (4.21b),
the leaky integrator does not achieve perfect power balancing

∑n
i=1 P∗

i +u∗
i = 0

and underestimates the net load, but it can satisfy the power balance (4.4b)
arbitrarily well for K chosen sufficiently small.
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4.4.2 stability & robustness analysis
For ease of analysis, in this subsection we introduce a change of coordinates
for the voltage phase angle θ. Let δ = θ − 1

n1n1⊤
n θ = Πθ be the centre-of-

inertia coordinates (see e.g. Sauer and Pai, 1998; De Persis et al., 2016), where
Π = I − 1

n1n1⊤
n . In these coordinates, the open-loop system (4.1) becomes

δ̇ = Πω (4.22a)
Mω̇ = −Dω + P −∇U(δ) + u, (4.22b)

where by an abuse of notation we use the same symbol U for the potential
function expressed in terms of δ,

U(δ) = −1⊤Γ cos(B⊤δ), ∇U(δ) = BΓ sin(B⊤δ).

Note that B⊤Π = B⊤ since B⊤1n = 0n (Bullo, 2017). The synchronous solution
(θ∗,ω∗, p∗)1 defined in (4.16) is mapped into the point (δ∗,ω∗, p∗), with δ∗ =
Πθ∗, satisfying

δ̇
∗
= 0n (4.23a)

0n = −Dω∗ + P −∇U(δ∗)− P (4.23b)
0n = ω∗ − K P. (4.23c)

The existence of (δ∗,ω∗, p∗) is guaranteed by Assumption 4.1. Additionally,
we make the following standard assumption constraining steady-state angle
differences.

Assumption 4.2 (Security constraint). The synchronous solution (4.23) is such
that B⊤δ∗ ∈ Θ := (−π

2 + ρ, π
2 − ρ)m for a constant scalar ρ ∈

(
0, π

2
)
.

Remark 4.1. Compared with the conventional security constraint assumption
(Dörfler et al., 2016), we introduce an extra margin ρ on the constraint to be
able to explicitly quantify the decay of the Lyapunov function we use in proofs
of Theorems 4.2 and 4.3.

By using Lyapunov techniques following Weitenberg et al. (2017a), it is pos-
sible to show that the leaky integral controller (4.13) guarantees exponential
stability of the synchronous solution (4.23).

1Of course, care must be taken when interpreting the results in this section since the steady-
state itself depends on the controller gain K (see Section 4.4.1). Here we are merely interested in
the stability relative to the equilibrium.
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Theorem 4.2 (Exponential stability under leaky integral control). Consider the
closed-loop system (4.22), (4.13). Let Assumptions 4.1 and 4.2 hold. The equilibrium
(δ∗,ω∗, p∗) is locally exponentially stable. In particular, given the incremental state

x = x(δ,ω, p) = col(δ − δ∗,ω − ω∗, p − p∗), (4.24)

the solutions x(t) = col(δ(t) − δ∗,ω(t) − ω∗, p(t) − p∗), with (δ(t),ω(t), p(t)) a
solution to (4.22), (4.13) that start sufficiently close to the origin satisfy for all t ≥ 0,

∥x(t)∥2 ≤ λe−αt∥x0∥2, (4.25)

where λ and α are positive constants. In particular, when multiplying the gains K and
T by the positive scalars κ and τ respectively, α is monotonically non-decreasing as a
function of the gain κ and non-increasing as a function of τ.

Proof. Consider the incremental Lyapunov function from Weitenberg et al.
(2017a) including a cross-term between potential and kinetic energy:

V(x) = 1
2 (ω − ω∗)⊤M(ω − ω∗)

+ U(δ)− U(δ∗)−∇U(δ∗)⊤(δ − δ∗)

+
1
2 (p − P)⊤T(p − P)

+ ε(∇U(δ)−∇U(δ∗))⊤Mω , (4.26)

where ε ∈ R is a small positive parameter. For sufficiently small values of ε
and if Assumption 4.2 holds, V(x) satisfies

β1∥x∥2 ≤ V(x) ≤ β2∥x∥2 (4.27)

for some β1, β2 > 0 and for all x with B⊤δ ∈ Θ, by Lemma 4.3 in Appendix 4.7.
The derivative of V(x) can be expressed as

V̇(x) = −χ⊤H(δ)χ,

where χ(δ,ω, p) := col(∇U(δ)−∇U(δ∗),ω − ω∗, p − p∗),

H(δ) =

 εI 1
2 εD − 1

2 εI
1
2 εD D − εE(δ) 0n×n
− 1

2 εI 0n×n K

 , (4.28)
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and we defined the shorthand E(δ) = sp(M∇2U(δ)) with sp(A) = 1
2 (A + A⊤).

We claim that for all δ, H(δ) > 0. To see this, apply Lemma 2.5 from Ap-
pendix 4.7 to obtain H(δ) ≥ H′(δ) with

H′(δ) :=

 ε
2 I 0n×n 0n×n

0n×n D − ε(E(δ) + D2) 0n×n
0n×n 0n×n K − εI

 .

Given that D and K are positive definite matrices, one can select ε to be positive
yet sufficiently small so that H′(δ) > 0.
Additionally, we claim that a positive constant β3, dependent on ρ from As-
sumption 4.2, exists such that ∥χ∥2 ≥ β3∥x∥2. To see this, we note that from
Lemma 2.4 that a constant β′

3 exists so that

∥∇U(δ)−∇U(δ̄)∥2 ≤ β′
3∥δ − δ∗∥2. (4.29)

The claim then follows with β3 = min(1, β′
3
−1

).
In order to proceed, we set β4 := minB⊤δ∈Θ λmin(H(δ)). Then, it follows using
(4.27) that, as far as B⊤δ ∈ Θ,

V̇(x) ≤ −β4∥χ∥2 ≤ −β3β4∥x∥2 ≤ −
β3β4
β2

V =: −αV(x) .

For this inequality to lead to the claimed exponential stability, we must guar-
antee that the solutions do not leave Θ. Recall that the sublevel sets of V(x)
are invariant and thus solutions x(t) are bounded for all t ≥ 0 in sublevel sets
{x : V(x) ≤ V(x0)} for which B⊤δ ∈ Θ. Hence, we require the initial condi-
tions x0 of solutions x(t) to be within a suitable sublevel set {x : V(x) ≤ V(x0)}
where B⊤δ ∈ Θ. We now construct such a sublevel set. Let

c := β1
ξ2

λmax(BB⊤)
(4.30)

and ξ > 0 a parameter with the property that any δ satisfying ∥B⊤δ−B⊤δ∗∥ ≤
ξ also satisfies B⊤δ ∈ Θ. The parameter ξ exists because B⊤δ∗ ∈ Θ and Θ is
an open set. Accordingly, define the sublevel set Ωc := {x : V(x) ≤ c}, with c
defined above, and note that any point in Ωc satisfies B⊤δ ∈ Θ. As a matter of
fact V(x) ≤ c implies ∥x∥2 ≤ ξ2

λmax(BB⊤)
and therefore ∥δ − δ∗∥2 ≤ ξ2

λmax(BB⊤)
.
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This in turn implies that ∥B⊤(δ−δ∗)∥2 ≤ ξ2, and hence B⊤δ ∈ Θ by the choice
of ξ.
We conclude that any solution issuing from the sublevel set Ωc will remain
inside of it. Hence along these solutions the inequality V̇(x) ≤ −αV(x) holds
for all time.
By the comparison lemma (Khalil, 2014, Lemma B.2), this inequality yields
V(x(t)) ≤ e−αtV(x(0)), which we combine again with (4.27) to arrive at (4.25)
with λ = β2/β1.
Finally, we address the effect of K and T on α by introducing the scalar factors κ
and τ multiplying K and T. Note that α is a monotonically increasing function
of β4 = minB⊤δ∈Θ λmin(H(δ)). Recall that for any vector z,

λmin(H(δ))∥z∥2 ≤ z⊤H(δ)z,

with equality if z is the eigenvector corresponding to λmin(H(δ)). Let emin de-
note the normalized eigenvector corresponding to λmin(H(δ)). Then, for any
vector z satisfying ∥z∥ = 1, λmin(H(δ)) = e⊤minH(δ)emin ≤ z⊤H(δ)z. Hence,

β4 = min
B⊤δ∈Θ

λmin(H(δ)) = minB⊤δ∈Θ , z:∥z∥=1 z⊤H(δ)z,

where the last equality holds by noting that emin is one of the vectors z at which
the minimum is attained.
Now suppose we multiply K by a factor κ > 1. Let

H′(δ) = H(δ) + block diag(0,0, (κ − 1)K).

The new value of β4 is

β′
4 = min

B⊤δ∈Θ , z:∥z∥=1

(
z⊤H(δ)z +

∑n

i=1
(κ − 1)Kiz2

2n+i

)
︸ ︷︷ ︸

=z⊤H′(δ)z

.

The argument of the minimization is not smaller than z⊤H(δ)z for any z. It
follows that β′

4 ≥ minB⊤δ∈Θ , z:∥z∥=1 z⊤H(δ)z = β4. Similarly, if 0 < κ < 1,
then β′

4 ≤ minB⊤δ∈Θ , z:∥z∥=1 z⊤H(δ)z = β4. Hence, β4 is a monotonically non-
decreasing function of the gain κ. Likewise, α is a monotonically decreasing
function of β2, which itself is a non-decreasing function of τ. □
Theorem 4.2 is in line with the loop-shaping insight that the bandwidth Ki/Ti
determines nominal performance, that is, the decay rate α is monotonically
non-decreasing in Ki/Ti.
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We now depart from nominal performance and focus on robustness. Recall
a key disadvantage of pure integral control: it is not robust to biased meas-
urement errors of the form (4.12). We now show that leaky integral control
(4.13) is robust to such measurement errors. In what follows, instead of (4.13),
consider leaky integral control subjected to measurement errors

u = −p (4.31a)
Tṗ = ω − K p + η , (4.31b)

where the measurement noise η = η(t) ∈ Rn is assumed to be an ∞-norm
bounded disturbance. In this case, the bias-induced instability (reported in
Section 4.3.1) does not occur.
Let us first offer a qualitative steady-state analysis. For a constant vector η, the
equilibrium equation (4.16c) becomes

0n = ω∗ − K P + η.

so that the closed loop (4.1), (4.31) will admit synchronous equilibria. Indeed,
the governing equations (4.17) determining the synchronous frequency ωsync
change to

(D + K−1)ωsync1 = P −∇U(θ∗)− K−1η .

Observe that the noise terms η now takes the same role as the constant injec-
tions P, and their effect can be made arbitrarily small by increasing K. We now
make this qualitative steady-state reasoning more precise and derive a robust-
ness criterion by means of the same Lyapunov approach used to prove The-
orem 4.2. We take the measurement error η as disturbance input and quantify
its effect on the convergence behaviour along the lines of input-to-state sta-
bility. First, we define the specific robust stability criterion that we will use,
repeating Definition 3.1.

Definition 4.1. A system ẋ = f(x, η) is said to be input-to-state stable (ISS) with
restriction X on x(0) = x0 and restriction η ∈ R>0 on η(·) if there exist a class
KL-function β and a class K∞-function γ such that for all t ∈ R≥0, x0 ∈ X , and
all η(·) ∈ Ln

∞ satisfying

∥η(·)∥∞ := ess sup
t∈R≥0

∥η(t)∥ ≤ η,

we have

∥x(t)∥ ≤ β(∥x0∥, t) + γ(∥η(·)∥∞).
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Theorem 4.3 (ISS under biased leaky integral control). Consider system (4.22)
in closed-loop with the biased leaky integral controller (4.31). Let Assumptions 4.1
and 4.2 hold. Given a diagonal matrix K > 0, there exist a positive constant η and a
set X such that the closed-loop system is ISS from the noise η to the state x = col(δ −
δ∗,ω − ω∗, p − p∗) with restrictions X on x0 and η on η(·), where (δ∗,ω∗,P) is
the equilibrium of the nominal system, i.e., with η = 0. In particular, the solutions
x(t) = col(δ(t)−δ∗,ω(t)−ω∗, p(t)−p∗), with (δ(t),ω(t), p(t)) a solution to (4.22),
(4.31) for which x(0) ∈ X and ∥η(·)∥∞ ≤ η satisfy for all t ∈ R≥0,

∥x(t)∥2 ≤ λe−α̂t∥x(0)∥2 + γ∥η(·)∥2
∞, (4.32)

where α̂, λ and γ are positive constants. Furthermore, when multiplying the gains K
and T by the positive scalars κ and τ respectively, then γ is monotonically decreasing
(respectively, non-increasing) as a function of κ (respectively, τ), and α̂ is monotonic-
ally non-decreasing as a function of κ and non-increasing as a function of τ.

Proof. From the proof of Theorem 4.2 recall the Lyapunov function derivative
V̇(x) = −χ⊤H(δ)χ − (p − P)⊤η. Since for any positive parameter μ,

−(p − P)⊤η ≤ μ∥p − P∥2 +
1
μ
∥η∥2 ,

one further obtains

V̇(x) ≤ −χ⊤

H(δ)−

0 0 0
0 0 0
0 0 μI


︸ ︷︷ ︸

=Ĥ(δ)

χ +
1
μ
∥η∥2 .

Following the reasoning in the proof of Theorem 4.2, we note that Ĥ(δ) ≥
Ĥ′(δ), where

Ĥ′(δ) :=

 ε
2 I 0n×n 0n×n

0n×n D − ε(E(δ) + D2) 0n×n
0n×n 0n×n K − εI − μI

 .

It follows that for sufficiently small values of ε and μ, Ĥ(δ) ≥ Ĥ′(δ) > 0. To
continue, let β̂4 := minB⊤δ∈Θ λmin(Ĥ(δ)). As a result, we find that for a positive
constant α̂ =

β3 β̂4
β2

,

V̇(x) ≤ −α̂V(x) + 1
μ
∥η∥2 (4.33)
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for all x such that B⊤δ ∈ Θ. In the remainder of the proof, we fix η̄ such that

η̄ = α̂cμ.

with c defined as in (4.30) in the proof of Theorem 4.2.
Define the sublevel set Ωc, again as in the proof of Theorem 4.2. We now claim
that the solutions of the closed-loop system cannot leave Ωc. In fact, on the
boundary ∂Ωc of the sublevel set Ωc, the right-hand side of (4.33) equals −α̂c+
1
μ∥η∥2, which is a non-positive constant by the choice of η̄. Hence a solution
leaving Ωc would contradict the property that V̇(x) ≤ 0 for all x ∈ ∂Ωc. We
conclude that all solutions must satisfy (4.33) for all t ∈ R≥0. Hence, we choose
X = Ωc.
By applying the Comparison Lemma, the use of a convolution integral and
bounding ∥η(t)∥2 by ∥η(·)∥2

∞, we arrive at

V(x(t)) ≤ e−α̂tV(x0) +
1

α̂μ
∥η(·)∥2

∞.

We combine this inequality with (4.27) and (4.29) to arrive at (4.32) with λ =
β2/β1 and γ = (α̂β1μ)−1.
Finally, we address the effect of K and T on α̂ and γ by introducing the scalar
factors κ and τ multiplying K and T.
As κ increases, there is no need to increase ε, while it is possible to increase
μ. Analogously to the reasoning in the proof of Theorem 4.2, increasing the
value of κ for constant ε and increasing μ can not lower the value of β̂4 and α̂,
and decreases the value of γ. If one decreases κ, but multiplies μ by the same
factor so as to keep β̂4 constant, μ will also decrease. This guarantees α̂ remains
constant in this case, preserving its status as a non-decreasing function of κ. On
the other hand, a decrease in μ results in an increase in γ, retaining its status
as a decreasing function of κ. Therefore, α̂ is non-decreasing as a function of κ
and γ is decreasing.
As in Theorem 4.2, τ affects only β1 and β2, and the same result holds: α̂ is a
monotonically non-increasing function of τ. Analogously, γ is monotonically
non-increasing in τ. □
Theorem 4.3 shows that larger gains K (and T) reduce (respectively, do not
amplify) the effect of the noise η on the state x. This further emphasizes the
trade-off between frequency banding and controller performance already noted
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Figure 4.1: The 39-bus New England system used in simulations.

in Section 4.4.1. The intuition that a large gain T is beneficial (more precisely
not detrimental) for noise rejection was expected from a loop-shaping per-
spective. Theorem 4.3 extends these observations to the dynamic response
of the nonlinear and multi-variable closed-loop system. Notice, however, that
K affects the safety region as well as the equilibrium of the system and should
be selected carefully.

Remark 4.2 (Exponential ISS with restrictions). The KL–function from the ISS
inequality (4.32) is an exponential function, so the stability property is in fact
exponential ISS with restrictions. The need to include restrictions X on the
initial conditions and η̄ on the noise is due to the requirement of maintaining
the state response within the safety region Θ.

4.5 case study: ieee 39 new england system
In this section we perform a case study with the 39-bus New England system,
see Figure 4.1, which is modelled as in (4.1)-(4.2) with parameters Mi (for the
10 generator buses), Vi, and Bij taken from Chow et al. (2000). The inertia
coefficients Mi are set to zero for the 29 (load) buses without generators. For
every generator bus i, the damping coefficient Di is chosen as 20 per unit (pu) so
that a 0.05 pu (3 Hz) change in frequency will cause a 1 pu (1000 MW) change
in the generator output power. For every load bus i, Di is chosen as 1/200
of that of a generator. For all simulations below, a 300 MW step increase in
active-power load occurs at each of buses 15, 23, 39 at time t = 5 s.
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4.5.1 comparison between controllers without noise

We implement each of the following controllers across the 10 generators to
stabilize the system after the increase in load:

1. distributed-averaging based integral control (DAI):

u =− p (4.34a)
Tṗ =A−1ω − LAp . (4.34b)

Here L = L⊤ is the Laplacian matrix of a communication graph among
the controllers, which we choose as a ring graph with uniform weights
0.1. The matrix A is diagonal with entries Aii = ai being the cost coef-
ficients in (4.4a) chosen as 1.0 for generators G3, G5, G6, G9, G10 and
2.0 for all others. We choose the time constant Ti = 0.05 s for every gen-
erator i. The DAI control (4.34) is known to achieve stable and optimal
frequency regulation as in Problem 4.2; see Zhao et al. (2015); Dörfler
et al. (2016); De Persis et al. (2016); Trip et al. (2016); Andreasson et al.
(2014a); Weitenberg et al. (2017a). Even DAI control is based on a reliable
and fast communication environment, we include it here as a baseline for
comparison purposes.

2. decentralized pure integral control (4.7) with time constant Ti = 0.05 s for
every generator i.

3. decentralized leaky integral control (4.13) with time constant Ti = 0.05 s for
every generator i. The gain Ki equals 0.005 for generators G3, G5, G6, G9,
G10 and 0.01 for the others. The Ki’s are proportional to ai’s in DAI (4.34)
so that the dispatch objectives (4.4a) and (4.21a) are identical.

Figure 4.2 (dashed plots) shows the frequency at G1 (all other generators dis-
play similar frequency trends), and Figure 4.3 shows the active-power out-
puts of all generators, under the different controllers above and without noisy
measurements. First, note that all closed-loop systems reach stable steady-
states; see Theorems 4.1 and 4.3. Second, observe from Figure 4.2 that both
pure integral and DAI control can perfectly restore the frequencies to the nom-
inal value, whereas leaky integral control leads to a steady-state frequency er-
ror as predicted in Lemma 4.2. Third, as observed from Figure 4.3, both DAI
and leaky integral control achieve the desired asymptotic power sharing (2:1
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Figure 4.2: Frequency at generator 1 under different control methods.
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Figure 4.3: Changes in active-power outputs of all the generators without
noise.
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Figure 4.4: Changes in active-power outputs of all the generators, under a fre-
quency measurement noise bounded by η = 0.01Hz.

ratio between G3, G5, G6, G9, G10 and other generators) as predicted in Co-
rollary 4.2. However, leaky integral control solves the dispatch problem (4.21)
thereby underestimating the net load compared to DAI which solves (4.4); see
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Corollary 4.3. We conclude that fully decentralized leaky integral controller
can achieve a performance similar to the communication-based DAI control-
ler – though at the cost of steady-state offsets in both frequency and power
adjustment.

4.5.2 comparison between controllers with noise

Next, a noise term ηi(t) is added to the frequency measurements ω in (4.34b),
(4.7b), and (4.13b) for DAI, pure integral, and leaky integral control, respect-
ively. The noise ηi(t) is sampled from a uniform distribution on [0, ηi], with ηi
selected such that the ratios of ηi between generators are 1 : 2 : 3 : · · · : 10 and
∥[η1, η2, . . . ]∥ = η = 0.01Hz. The meaning of η here is consistent with that in
Definition 4.1 and Theorem 4.3. At each generator i, the noise has non-zero
mean ηi/2 (inducing a constant measurement bias) and variance σ2

η,i = η2
i /12.

Figure 4.2 (solid plots) shows the frequency at generator 1, and Figure 4.4
shows the changes in active-power outputs of all the generators under such
a measurement noise. Observe from Figures 4.2(b)–4.2(c) and Figures 4.4(b)–
4.4(c) that leaky integral control is more robust to measurement noise than
pure integral control. Figures 4.4(a) and 4.4(c) show that the DAI control is
even more robust than the leaky integral control in terms of generator power
outputs, which is not surprising since the averaging process between neigh-
bouring DAI controllers can effectively mitigate the effect of noise – thanks to
communication.

4.5.3 impacts of leaky integral control parameters

Next we investigate the impacts of inverse DC gains Ki and time constants Ti
on the performance of leaky integral control.
First, we fix the integral time constant Ti = τ = 0.05 s for every generator i, and
tune the gains Ki = k for generators G3, G5, G6, G9, G10; Ki = 2k for other gen-
erators to ensure the same asymptotic power sharing as above. The following
metrics of controller performance are calculated for the frequency at generator
1: (i) the steady-state frequency error without noise; (ii) the convergence time,
which is defined as the time when frequency error enters and stays within
[0.95, 1.05] times its steady state; and (iii) the frequency root-mean-square-
error (RMSE) from its nominal steady state, calculated over 60–80 seconds
(the average RMSE over 100 random realizations is taken). The RMSE res-
ults from measurement noise ηi(t) generated every second at every generator
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Figure 4.5: Steady-state error (upper), convergence time (middle), and RMSE
(lower) of frequency at generator 1, as functions of the gain k for leaky integral
control. The time constants are Ti = τ = 0.05 s for all generators.

i from a uniform distribution on [−ηi, ηi], where the meaning of ηi is the same
as in Section 4.5.2; ηi(t) has zero mean so that the performance in mitigating
steady-state bias and variance can be observed separately. Figure 4.5 shows
these metrics as functions of k. It can be observed that the steady-state error in-
creases with k, as predicted by Lemma 4.2; convergence is faster as k increases,
in agreement with Theorem 4.2; and robustness to measurement noise is im-
proved as k increases, as predicted by Theorem 4.3.
Next, we tune the integral time constants Ti = τ for all generators and fix
k = 0.005, i.e., Ki = 0.005 for G3, G5, G6, G9, G10 and Ki = 0.01 for other gen-
erators, for a balance between steady-state and transient performance. Since
the steady state is independent from τ, only the convergence time and RMSE
of frequency at generator 1 are shown in Figure 4.6. It can be observed that
convergence is faster as τ decreases, which is in line with Theorem 4.2. Ro-
bustness to measurement noise is improved as τ increases, which is in line
with Theorem 4.3.
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Figure 4.6: Convergence time (upper) and RMSE (lower) of frequency at gen-
erator 1, as functions of the time constant Ti = τ for leaky integral control. The
gains Ki are 0.005 for G3, G5, G6, G9, G10 and 0.01 for other generators.

4.6 summary and discussion

In the following, we summarize our findings and the various trade-offs that
need to be taken into account for the tuning of the proposed leaky integral
controller (4.13).
From the discussion following the Laplace-domain representation (4.14), the
gains Ki and Ti of the leaky integral controller (4.13) can be understood as inter-
polation parameters for which the leaky integral controller reduces to a pure
integrator (Ki ↘ 0) with gain Ti, a proportional (droop) controller (Ti ↘ 0)
with gain K−1

i , or no control action (Ki,Ti ↗ ∞). Within these extreme para-
metrizations, we found the following trade-offs: The steady-state analysis in
Section 4.4.1 showed that proportional power sharing and banded frequency
regulation is achieved for any choice of gains Ki > 0: their sum gives a desired
steady-state frequency performance (see Corollary 4.1), and their ratios give
rise to the desired proportional power sharing (see Corollary (4.2)). However,
a vanishingly small gain Ki is required for asymptotically exact frequency reg-
ulation (see Corollary 4.3), i.e., the case of integral control. Otherwise, the net
load is always underestimated. With regards to stability, we inferred global
stability for vanishing Ki ↘ 0 (see Theorem 4.1) but also an absence of ro-
bustness to measurement errors as in (4.12). On the other hand, for positive
gains Ki > 0 we obtained nominal local exponential stability (see Theorem 4.2)
with exponential rate as a function of Ki/Ti and robustness (in the form of
exponential ISS with restrictions) to bounded measurement errors (see The-
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orem 4.3) with increasing (respectively, non-decreasing) robustness margins
to measurement noise as Ki (or Ti) become larger.
Our findings pose the question whether the leaky integral controller (4.13) ac-
tually improves upon proportional (droop) control (the case Ti = 0) with suf-
ficiently large droop gain K−1

i . The answers to this question can be found in
practical advantages: (i) leaky integral control obviously low-pass filters meas-
urement noise; (ii) has a finite bandwidth thus resulting in a less aggressive
control action more suitable for slowly-ramping generators; and (iii) is not sus-
ceptible to wind-up (indeed, a proportional-integral control action with anti-
windup reduces to a lag element (Franklin et al., 1994)). (iv) Other benefits
that we did not touch upon in our analysis are related to classical loop shap-
ing; e.g., the frequency for the phase shift can be specified for leaky integral
control (4.13) to give a desired phase margin (and thus also practically relevant
delay margin) where needed for robustness or overshoot.
In summary, our lag-element-inspired leaky integral control is fully decentral-
ized, stabilizing, and can be tuned to achieve robust noise rejection, satisfact-
ory steady-state regulation, and a desirable transient performance with expo-
nential convergence. We showed that these objectives are not always aligned,
and trade-offs have to be found. From a practical perspective, we recommend
to tune the leaky integral controller towards robust steady-state regulation and
to address transient performance with related lead-element-inspired control-
lers (Jiang et al., 2017).

4.7 technical lemmas
We recall a technical lemma used in the main text.

Lemma 4.3 (Positivity of V). Suppose that Assumption 4.2 holds and that B⊤δ ∈ Θ.
The Lyapunov function V specified in (4.26) satisfies

β1∥x∥2 ≤ V(x) ≤ β2∥x∥2

for some positive constants β1 and β2, with x given in (4.24), provided that ε is suffi-
ciently small.

Proof. This proof follows the same line of arguments as the proof of Weiten-
berg et al. (2017a, Lemma 8), but accounts for our slightly different Lyapunov
function. We will bound V(x) in (4.26) term-by-term. The quadratic terms in
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ω−ω∗ and p−p∗ are easily bounded in terms of the eigenvalues of the matrices
M and T, respectively. The term in δ and δ∗ is addressed in the second state-
ment of Lemma 2.4. These three terms lead to the early bound

min(λmin(M),λmin(T),α3)∥x∥2 ≤ V(x)|ε=0

≤ max(λmax(M),λmax(T),α4)∥x∥2.

The cross-term ε(∇U(δ)−∇U(δ∗))⊤Mω can be written as(
∇U(δ)−∇U(δ∗)

ω

)⊤ [
0 ε

2 M
ε
2 M 0

](
∇U(δ)−∇U(δ∗)

ω

)
.

This allows us to apply Lemma 2.5, which yields

− ∥∇U(δ)−∇U(δ∗)∥2 − λmax(M)2∥ω∥2

≤ (∇U(δ)−∇U(δ∗))⊤Mω
≤ ∥∇U(δ) −∇U(δ∗)∥2 + λmax(M)2∥ω∥2.

By applying the first statement of Lemma 2.4, we can bound the entire Lya-
punov function using

β1 = min(λmin(M)− ελmax(M)2,λmin(T),α3 − εα2
2)

β2 = max(λmax(M) + ελmax(M)2,λmax(T),α4 + εα2
2).

Finally, we select ε sufficiently small so that β1 > 0. □
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Introduction

In this part, we exchange the AC power grid for the DC microgrid.
Many energy sources, storage devices and appliances intrinsically operate us-
ing direct current. This stimulates interest in the design and use of DC mi-
crogrids, which have the additional desirable feature of preventing the use of
inefficient power conversions at different stages. Such grids are already in use
in some small-scale grids e.g. on ships, planes and trains. In addition, if power
is generated far away from its consumers, e.g. in wind farms at sea, it should
be transported to the consumption sites with low losses. High Voltage Dir-
ect Current (HVDC) networks perform comparatively better at this than AC
networks.
Given these developments, the need arises for a deeper understanding of sta-
bility and control of these dynamical networks. In this part, we propose and
analyse control algorithms for DC microgrids, that aim for economic optimal-
ity by enforcing power sharing among the different power sources.
Below, we give a short survey of previous approaches to control of DC power
networks. Conventionally, secondary control adjusts the set point for a local
proportional (droop) controller. Zhao and Dörfler (2015) complement this
approach with a consensus control algorithm, preventing voltage drift and
achieving optimal current injection. A similar approach is found by Tucci et al.
(2016), allowing additionally for ‘Plug-and-Play’ addition and removal of gen-
erators. Nasirian et al. (2015) replace the secondary control instead by a separ-
ate voltage and current regulator, and Belk et al. (2016) use the Brayton-Moser
formalism to show that voltage regulation can be achieved by decentralized
integral control. Moayedi and Davoudi (2016) propose a distributed control
method for enforcing power sharing among a cluster of DC microgrids, but
provide no formal analysis.
Various auxiliary challenges have been considered as well. Meng et al. (2016)
study the interaction between the communication network and the physical
network which occurs in consensus-like control methods, and their effects on
stability of the microgrid. The feasibility of the nonlinear algebraic equations
in DC power circuits is studied by Barabanov et al. (2016); Simpson-Porco et al.
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(2015); Lavei et al. (2011).
Finally, several works have focused on the particular research area of HVDC
transmission systems. Sarlette et al. (2012) focuses on frequency control in
HVDC grids connecting multiple AC power networks. Andreasson et al. (2014c)
study a distributed control strategy that keeps the voltages close to a nom-
inal value and guarantees fair power sharing are considered. Zonetti et al.
(2015) exploit a port-Hamiltonian framework to show that HVDC networks
can be asymptotically stabilized using decentralized PI controllers. Zonetti
et al. (2016) study existence of equilibria and power sharing under decentral-
ized droop control. We refer to Zonetti (2016, Chapter 4) for an extensive bib-
liography of HVDC transmission systems.

contributions
In this part, we aim to provide control algorithms that exhibit the following
features.
Power sharing, i.e. the power sources provide power in prescribed ratios for

a wide range of load magnitudes,
Voltage regulation, i.e. all voltages remain within a compact set around the

nominal voltage.
In addition, we allow for various kinds and combinations of loads, referred to
hereafter as ZIP loads, which stands for constant impedance, constant current
and constant power loads respectively. We will also encounter ZI loads, which
are ZIP loads without the constant power load component.
Power sharing is an important feature in microgrid control algorithms. It forces
all generation units to generate a portion of the power required by the loads in
the network. Absent this feature, certain load configurations can force a small
set of generators to provide a disproportionate amount of the power required
by the network, which might lead to them exceeding their capacity limits.
Proportional (droop) controllers are traditionally used for microgrid control.
They strike a trade-off between power sharing and voltage control, and there-
fore require careful tuning given the load ranges to regulate the voltages and
power generation to safe levels. The controllers proposed in this part do not
have this limitation, and are thus an improvement upon droop control. This is
enabled by assuming the presence of a communication network between the
generators, which allows the exchange of various measurements.
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chapter 5
In this chapter, we restrict ourselves to DC networks with resistive transmis-
sion lines. In this setting, we propose a distributed control algorithm, en-
abled by communicating power measurements among the source nodes using
a communication network. The controllers set the source voltages such that
the power provided by each power source becomes proportional to a user-
configurable weight distribution. Additionally, the weighted geometric aver-
age of source voltages is preserved.
To analyse the system of non-linear DAE resulting from the controller, net-
work and ZIP loads, we use Lyapunov arguments. Our Lyapunov function
of choice is constructed from the power dissipated in the network, together
with various terms to take into account the specific dynamics of the system.
In an interesting development, we then see that the system can be written as
a weighted gradient of the Lyapunov function, which is crucial to the stability
analysis. Moreover, the voltage excursion can be bounded using the sub-level
sets of the Lyapunov function, combined with the aforementioned conserva-
tion of the geometric average of the source voltages.

chapter 6
This Chapter provides an extension to the previous Chapter to power networks
with resistive-inductive (RL) power lines. In this extension, we omit the con-
stant power loads discussed previously, and focus on networks with ZI-loads.
Again, we propose a distributed control algorithm, in which the power sources
employ a communication network to exchange current flow measurements.
These new controllers are able to regulate the power injected by each source to
the average power injected by the sources. In addition, the geometric average
of the voltages at the sources is preserved.
Using a slightly modified version of the Lyapunov function from Chapter 5, the
system can once more be viewed as a weighted gradient system. This allows
to show convergence of the power injected by the sources, and boundedness
of the voltages at the sources.
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