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Scheme 2. A bottom-up layer-by-layer
 approach was applied for the integration of fullerene derivatives into graphene oxide by combining the self-
assembly with the Langmuir-Schaefer deposition technique. Graphene oxide nanosheets were used as a template for accommodating C60 derivatives
(C60(OH)24 and C60Br24) within the interlayer space.
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The scientific and technological potential of graphene’s includes the development of light, open 3D hybrid
structures with high surface area, tunable pore size and aromatic functionalities. Towards this aim, we
describe a scalable and low-cost bottom-up approach that combines self-assembly and Langmuir-
Schaefer deposition for the production of fullerene-intercalated graphene oxide hybrids. This method
uses graphene oxide (GO) nanosheets as template for the attachment of two types of fullerene derivatives
(bromo-fullerenes, C60Br24 and fullerols, C60(OH)24) in a bi-dimensional arrangement, allowing a layer-
by-layer growth with control at nanoscale. Our film preparation approach relies on a bottom-up process
that includes the formation of a hybrid organo-graphene Langmuir film, which is transferred onto a sub-
strate and then brought in contact with C60(OH)24 molecules in solution to induce self-assembly. In the
case of grafting C60Br24 molecules into graphene a further modification of the GO platelets was performed
by bringing the surface of the transferred GO Langmuir film in contact with a second amino surfactant
solution. Repeating these deposition cycles, pillared structures were fabricated in thin films form.
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These fullerene-based hybrid thin films were characterized by Raman and X-ray photoelectron (XPS)
spectroscopies, X-ray diffraction (XRD), Atomic Force Microscopy (AFM) and contact angle
measurements.

� 2018 Elsevier Inc. All rights reserved.
1. Introduction skin rejuvenation cosmetic formulations [33], just to name a few
Buckminster fullerene (C60)wasdiscovered in1985byKroto, Curl
and Smalley [1]; it consists of 60 sp2 carbon atoms arranged in pen-
tagons and hexagons to form a spherical nanostructure (cage) [2].
Due to the size and electronic structure of C60 and larger fullerenes,
derivatives can be formed by inserting atoms or molecules inside
the cage (endohedral fullerenes) and by functionalizing with sub-
stituents outside the cage (exohedral fullerenes). As most organic
molecular materials, fullerenes and their derivatives can be insula-
tors, semiconductors, or even superconductors when doped with
other atoms or molecules [3,4]. These tunable conductivity proper-
ties render them very attractive as active materials for electronic
devices, such as light detectors, transistors, or solar cells [3,5].

Although halogenated fullerene derivatives are interesting for
their outstanding physical and chemical properties, investigations
of their potential for diverse applications are still scarce [6–8].
However the presence of halogens in other carbon materials has
been studied already decades ago. Doping with bromide was
demonstrated to increase the electrical conductivity of graphite
[9,10], and carbon nanotubes [11,12]. More specifically, S. Tongay
et al. [13] fabricated a superconductive bromine-intercalated gra-
phite by exposing highly ordered pyrolytic graphite (HOPG) to bro-
mine vapor [13]; with the same method Jung N. et al. [14] achieved
an enhancement of the conductivity for multilayered graphene
films and thick graphite. Bromine derivatives of graphene that
could be used for reversible bromine storage or as a starting mate-
rial for further chemical modifications were synthesized by O. Jan-
kovsky [15] and co-workers in 2014. In the same year, Klouda Karel
et al. [8] synthesized hybrid brominated nanostructures containing
fullerene molecules within graphene oxide by reacting graphene
oxide with brominated fullerene derivatives (C60Br14-18) and by
direct bromination (with liquid bromide) of an oxidized GO-C60

mixture. These authors reported that the brominated materials
thermally decomposed at higher temperatures than the unbromi-
nated ones, due to the retarding action of bromine [8]. A. E. Man-
sour et al. [16] investigated the doping of graphene with bromine
to develop high performance transparent conducting electrodes.

The functionalization of a fullerene cage can also be a first step
in the synthesis of more complex derivatives with different physi-
cal and chemical properties [3,5]. In this context the halogenation
of fullerenes (with fluorine, chlorine, or bromine) is one of the most
common chemical reactions to yield derivatives that can be either
used as they are or serve as precursors in substitution reactions to
sequentially attach aromatic groups to the fullerene cage [17–20].
In the case of brominated fullerene the substitution of the bromine
with OH groups results in derivatives with better solubility in
water and in aqueous solutions [21,22]. Polyhydroxylated fullerene
or fullerols (C60(OH)n), have attracted much scientific and indus-
trial attention in engineering [23–25], where they were found to
improve the corrosion resistance and microhardness of coatings
[23], to give better mechanical properties than C60, when incorpo-
rated in poly(styrene-co-4-vinylpyridine), in catalysis [26–28], for
optical limiting performance [24] or to reinforce and have anti-
oxidation effects when mixed with natural rubber to inhibit the
decrease of tensile strength after aging [25]. Fullerols improve have
been proposed for performing bio-oxidations [29,30]. They have
been tested as agents for Parkinson’s disease (PD) prevention and
therapy [31,32], and as active compounds in the preparation of
of the many fields of science and technology [34–37] where
C60(OH)n have been considered.

In addition, since fullerols have better solubility in water than
brominated fullerene, nanotechnology can tune and control the
fundamental physicochemical properties of fullerenes derivatives
by ordering them into molecular thin films [38–47] fabricating
either hydrophilic or hydrophobic nanocoatings. The possibility
to control the size and the orientation of fullerene moieties in 2D
arrangements can lead to new functional low-dimensional materi-
als with interesting and promising properties for controllable wet-
ting applications [26] including corrosion resistant [48], smart
textiles [49], self-cleaning [50] and directional wetting [51] sur-
faces as well as for developing lab-on-a-chip (LOC) devices [52]
and biosensors [26].

Our recent study in incorporating pure C60 within graphene
matrices revealed an improvement in the electrical conductivity
of hybrid films by fabricating graphene nanobuds [47]. Concerning
the need of hybrid thin films and nanocoatings with more complex
derivatives and with different or enhanced physical and chemical
properties in combination with the need of devising hybrid mate-
rials through facile and economic production methods, here we
report a bottom-up layer-by-layer approach for the integration of
fullerene derivatives into graphene oxide by combining the self-
assembly with the Langmuir-Schaefer (LS) deposition technique.
Graphene oxide (GO) nanosheets were used as a template for
accommodating C60 derivatives (fullerol with chemical formula
C60(OH)24 and bromo-fullerene with chemical formula C60Br24)
within the interlayer space. More specifically, a dilute water sus-
pension of chemically oxidized graphene was used as subphase
in a Langmuir-Blodgett trough and an amino surfactant, which
covalently binds to GO, was applied for the formation of hybridized
GO platelets in the air-suspension interface. After the transfer of
the hybrid GO Langmuir film using the Langmuir-Schaefer method
(horizontal dipping), the substrate was dipped into a solution of
fullerols (C60(OH)24 to induce self-assembly (SA). Instead, in the
case of grafting C60Br24, after the transfer of the hybrid GO Lang-
muir film using the Langmuir-Schaefer method (horizontal dip-
ping), the substrate was first brought in contact with another
amino surfactant solution to induce functionalization by self-
assembly and then, as the final step, lowered in the solution of
the bromo-fullerene to complete the self-assembly with the
C60Br24 molecules. Hybrid graphene oxide multilayer thin films
hosting fullerene-derivatives molecules within their interlayer
space were fabricated by repeating these two procedures, as illus-
trated in Scheme 1. The samples were characterized by Raman and
X-ray photoelectron spectroscopies, X-ray diffraction, Atomic Force
Microscopy and contact angle measurements.
2. Experimental section

2.1. Materials

Buckminster fullerene (99.8%), octadecylamine (ODA, �99%),
hexamethylenediamine (HEX, �99%) acetone, methanol and etha-
nol were purchased from Sigma-Aldrich. Sodium hydroxide
(NaOH) pellets were obtained from Vioryl. Ultrapure deionized
water (18.2 MOhm) produced by a Millipore Simplicity� system



Scheme 1. Schematic representation of the synthetic procedures followed for fabricating hybrid films of (left) graphene oxide and C60(OH)24 (ODA-GO-C60(OH)24) and (right)
graphene oxide and C60Br24 (ODA-GO-HEX-C60Br24). Both procedures consist in a Langmuir-Schaefer deposition combined either with one self-assembly step (left) or two
self-assembly steps (right).
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was used throughout. The Si wafers (P/Bor, single side polished,
purchased from Si-Mat) used as substrates were cleaned prior to
use by ultrasonication in water, acetone, and ethanol for 15 min
each. All reagents were of analytical grade and were used without
further purification.

2.2. Synthesis of graphene oxide

Graphene oxide was produced from graphite using a modified
Staudenmaier method [53–56]. In a typical synthesis, 10 g of pow-
dered graphite (purum, powder � 0.2 mm; Fluka) were added to a
mixture of 400 mL of 95–97% H2SO4 and 200 mL of 65% HNO3,
while cooling in an ice-water bath. 200 g of powdered KClO3 were
added to the mixture in small portions under vigorous stirring and
cooling in an ice-water bath. The reaction was quenched after 18 h
by pouring the mixture into ultrapure water and the oxidation pro-
duct was washed until the pH reached 6.0. Finally, the sample was
dried at room temperature.

2.3. Synthesis of fullerene derivatives

Fullerene derivatives were synthesized as described in detail
elsewhere [22]. In a typical synthesis of polybrominated fullerene
(C60Br24), 300 mg of Buckminster fullerene were dissolved in 2
mL of elementary bromine, in the presence of a catalytic quantity
of FeBr3. The mixture was stirred for 40 min at room temperature.
When the reaction was completed, the excess of unreacted bro-
mine was evaporated and the catalyst was separated by dissolving
in a mixture of ethanol/H2O (1:2, v/v). Polyhydroxylated fullerene
(fullerol, C60(OH)24) was synthesized by using polybrominated
fullerenes as precursor [22]. More specifically, fullerol was
obtained by reacting 50 mg of C60Br24 with 5 mL of NaOH aqueous
solution 2 M (pH = 13) for 2 h at room temperature. After comple-
tion of the reaction, the solvent was evaporated at 40 �C; then the
mixture was filtered and washed 5 times with 10 mL of ethanol
(purity 70%). The dark brown powder product obtained after the
filtration was soluble in polar solvents like water [22].
2.4. Preparation of hybrid multilayers of graphene oxide and C60-
derivatives

A Langmuir Blodgett (LB) trough (KSV 2000 Nima Technology)
was cleaned with ethanol and distilled-deionized water. GO sus-
pensions in ultrapure water (0.02 mg mL�1) were prepared and
used as subphase. To achieve the hybridization of the GO sheets
in the LB trough, 200 lL of a 0.2 mg mL�1 ODA dissolved in a chlo-
roform/methanol mixture (9/1, v/v) were spread onto the water
surface using a microsyringe. After a waiting time of 20 min to
allow for solvent evaporation and functionalization of ODA to
occur at the top side of GO surface, the hybrid ODA-GO layer was
compressed at a rate of 5 mmmin�1 until the chosen stabilization
pressure of 20 mNm�1 was reached. This pressure was maintained
throughout the deposition process. The hybrid Langmuir layers
(ODA-GO) were transferred onto the Si-wafer substrates by hori-
zontal dipping (Langmuir Schaefer technique), with downward
and lifting speeds of 10 and 5 mmmin�1, respectively [47,57].
After the horizontal lift of a substrate, the ODA-GO film was dipped
into an aqueous solution of fullerols (0.2 mg mL�1). A hybrid gra-
phene/C60(OH)24 multilayer film was constructed by repeating this
procedure for 60 times, as shown in Scheme 1 (sample denoted as
ODA-GO-C60(OH)24). For the formation of the hybrid graphene
oxide film hosting polybrominated fullerene in its interlayer space,
a further surface modification of the GO nanosheets was performed
by bringing the surface of the transferred Langmuir film (ODA-GO)
in contact with a amino surfactant, HEX dissolved in methanol (0.2
mg mL�1), and making use of a self-assembly step [47,54]. After
this functionalization, in a final stage, the hybrid organo-GO
(ODA-GO-HEX) filmwas lowered into a solution of polybrominated
fullerene (0.2 mg mL�1) dissolved in a ethanol/H2O mixture (2/1, v/
v) to induce the formation of a hybrid ODA-GO-HEX-C60Br24 layer
by self-assembly. By repeating this procedure 60 times, a hybrid
multilayer film was constructed as shown in Scheme 1 (sample
denoted as ODA-GO-HEX-C60Br24) where the surface termination
of each hybrid film contains a fullerene-derivative plane layer.
Moreover, every time when the substrate was lowered, it was
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allowed to touch the air-water interface or the solution surface in a
very gentle dip of max 0.5 mm below the liquid surface for 90s.
After each deposition step samples were rinsed several times by
dipping into ultrapure water (to eliminate any weakly attached
cations or molecules that remained from the deposition steps)
and dried with nitrogen flow (to avoid contaminating either the
LB air-water interface or the other solutions) [44,58].

3. Characterization techniques

Atomic force microscopy (AFM) images of single layers of ODA-
GO and ODA-GO-C60(OH)24 or ODA-GO-HEX-C60Br24 deposited on
Si wafers were collected in tapping mode with a Bruker Multimode
3D Nanoscope, equipped with a microfabricated silicon cantilever
type TAP-300G, with a tip radius <10 nm and a force constant of
� 20–75 N m�1. Raman spectra were recorded with a Micro-
Raman system RM 1000 RENISHAW using a laser excitation line
at 532 nm. A 0.5–1 mW laser power was used with a 1 lm focus
spot in order to avoid photodecomposition of the hybrid multilay-
ers. Powder samples of C60 and C60Br24 were measured using a Lab-
ram Horiba HR spectrometer integrated with a laser line at 514
nm. A 1.5 mW laser power was used with a 2 lm focus spot. X-
ray photoelectron spectroscopy (XPS) data of the hybrid multilay-
ers were collected at a base pressure of 5 * 10�10 mbar in a SPECS
GmbH spectrometer equipped with a monochromatic Mg Ka
source (hv = 1253.6 eV) and a Phoibos-100 hemispherical analyzer.
The energy resolution was set to 1.16 eV and the photoelectron
Fig. 1. Left: FTIR spectra of (a) polybrominated fullerene (C60Br24) and (b) fullerol
polybrominated fullerene (C60Br24).
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Fig. 2. Thermogravimetric analysis (TGA) and thermal analysis (DTA) measurements
take-off angle was 37�with respect to the surface normal. All bind-
ing energies were referenced to the C1s core level photoemission
line at 284.6 eV. Spectral analysis included a Shirley background
subtraction and a peak deconvolution employing mixed
Gaussian-Lorentzian functions, in a least squares curve-fitting pro-
gram (WinSpec) developed at the Laboratoire Interdisciplinaire de
Spectroscopie Electronique, University of Namur, Belgium. X-ray
diffraction (XRD) patterns of the hybrid multilayers were collected
on a D8 Advance Bruker diffractometer by using Cu Ka (40 kV, 40
mA) radiation and a secondary beam graphite monochromator. The
patterns were recorded in the 2-theta (2h) range from 1.5 to 15�, in
steps of 0.02� and with a counting time of 2 s per step. Infrared
spectra covering the spectral range 400–4000 cm�1 were measured
with a Shimadzu FT-IR 8400 infrared spectrometer, equipped with
a deuterated triglycine sulphate (DTGS) detector. Each spectrum
was the average of 128 scans collected at 2 cm�1 resolution. Fuller-
ene derivatives were in the form of KBr pellets containing ca. 2 wt%
of C60(OH)24 or C60Br24. Thermogravimetric (TGA) and differential
thermal (DTA) analyses were performed using a Perkin Elmer Pyris
Diamond TG/DTA. Powder samples of approximately 5 mg were
heated in air from 25 �C to 850 �C, at a rate of 5 �C/min. Water con-
tact angle (CA) measurements were performed by a SL200 KS con-
tact angle meter from Kino at ambient atmospheric conditions. 5
lL distilled water droplets were used for all CA measurements.
The CAs were recorded from the time the droplet touched the sur-
face (CA t = 0) until CA reached a plateau value, approximately 1
min after the first touch (CA t = 1 min). After this first static mea-
(C60(OH)24). Right: Raman spectra of (a) Pristine Buckminster fullerene and (b)
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Fig. 3. p-Α isotherms recorded during the compression of ODA monolayers both on
pure water and on an aqueous suspension of 20 mg dm�3 GO.

Fig. 4. AFM height images of ODA-GO monolayers deposited on Si-wafer substrates at di
mN m�1 during the compression process.
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surement and at the same point, dynamic water CA measurements
were performed. Advancing and receding CA were measured on a
water droplet of decreasing/increasing volume [59].
4. Results-discussion

4.1. Structural characterization of C60 derivatives

FTIR spectra of polybrominated fullerene (C60Br24) and fullerol
(C60(OH)24) are shown in Fig. 1 (left). In the case of polybrominated
fullerene, the stretching vibrations of the C-Br groups were
observed in the range of 500–610 cm�1 (515 cm�1, 545 cm�1 and
609 cm�1) [60]. Based on the Sadtler Handbook of Infrared spectra
[61] bands in the region of 1000–1200 cm�1 can be attributed to
vibrations of C-Br groups; for C60Br24, these bands appear at
1045 cm�1, 1086 cm�1, 1144 cm�1, 1180 cm�1. The FTIR spectrum
of C60(OH)24 is typical for fullerols shows characteristic bands due
to the presence of hydroxyl groups at 1065 and 1458 cm�1 (bend-
ing vibrations of C-OH groups), as well as at 685 cm�1, 849 cm�1

and 905 cm�1 (wagging vibrations of OH). The bands at 3465
fferent surface pressures of (a) 5 mNm�1, (b) 10 mNm�1, (c) 15 mNm�1 and (d) 20
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cm�1 (stretching vibration) and 1690 cm�1 (bending vibration) are
instead indicative of the presence of water molecules. The band at
3465 cm�1 corresponds to the stretching vibration of the AOH
bond and is observed also in liquid water. These data are in agree-
ment with similar FTIR features of fullerols as described elsewhere
[22].

Raman spectra of pristine and polybrominated fullerene
(C60Br24) are shown in Fig. 1 (right). C60 is characterized by high
Ih symmetry and presents 46 vibrational modes distributed over
the 174 vibrational degrees of freedom. From the 46 vibrational
modes, 4(T1u) are active in the infrared region and 10 (2Ag + 8Hg)
are active in Raman, while the remaining are optically inactive
[62].

Cvib C60ð Þ ¼ 2Ag Ramanð Þ þ 3F1g þ F2g þ 6Gg þ 8Hg Ramanð Þ þ Au

þ 4F1u IRð Þ þ 5F2u þ 6Gu þ 7Hu

In the case of polybrominated fullerene, the bromines are
attached to the twelve six-membered rings of the fullerene struc-
ture at the 1 and 4 position induce a ‘‘boat” conformation, while
for the remaining 8 six-membered rings, the bromine atoms bound
to the carbons 1, 3 and 5, create a ‘‘chair” conformation [63,64]. The
active vibrations of the C-Br groups are five, more specifically
stretching vibrations of these groups are observed at 505 cm�1,
516 cm�1, 549 cm�1, 562 cm�1 and 585 cm�1. The presence of
the band at 1463 cm�1 in the spectra of the C60Br24, corresponds
to the Ag symmetry of the fullerene, indicating that the icosahedral
structure remains unaffected after the functionalization. The
appearance of a new band at 308 cm�1 can be attributed to a neu-
tral molecular Br2 in a charge transfer complex between C60 and
Br2 [65,66].
3 nm

Fig. 5. AFM height images and cross section analysis profile of ODA-GO-H
Thermogravimetric analysis (TGA) and thermal analysis (DTA)
measurements for polybrominated and polyhydroxylated fullerene
are presented in Fig. 2. The TGA curve of C60Br24 (a) presents a 9%
weight loss up to 100 �C corresponding to absorbed water and
unreacted molecular bromine (Br2). At the temperature range
between 100 and 180 �C, a mass loss (�31%) is observed, which
can be attributed to the removal of functional groups. The curve
of DTA shows an exothermic peak at 430 �C related to the combus-
tion of the fullerene carbon cage, which is followed by the total
weight loss of the sample (�60 wt%). In the case of fullerols (b), a
mass loss of �20 wt% in the temperature range up to 120 �C, points
to the presence of naturally absorbed water molecules and demon-
strates the hydrophilic character of the C60(OH)24. The removal of
the hydroxyl groups occurs between 150 and 320 �C, and corre-
sponds to a weight loss of �13%. Above 350 �C the decomposition
of the carbon structure resulting in a weight loss close to 37%. The
removal of the hydroxyl groups and the decomposition of the full-
erene are not separated in the DTA curve, indicating an interdepen-
dence of these two phenomena, and consequently testifying to the
successful chemical functionalization of the fullerene.
4.2. Structural control of hybrid monolayers

To demonstrate the attachment of octadecylamine (ODA) sur-
factant to the graphene oxide (GO) flakes, we recorded (p-Α) iso-
therms of the surface pressure versus the mean molecular area
while compressing the Langmuir film by means of the movable
barriers of the LB trough. Fig. 3 displays the p-Α isotherms of an
ODA monolayer both on pure water and on a GO suspension. The
curves show changes in slope corresponding to the phase transi-
1.2 nm

EX-C60Br24 (left) and ODA-GO-C60(OH)24 (right) hybrid single layers.
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tions from two dimensional gas to condensed liquid and then to
solid during the compression process. The fact that the compres-
sion of ODA on top of the GO suspension gives rise to an increase
the surface pressure much earlier during the compression com-
pared to that for ODA spread on pure water, indicates that a hybrid
floating layer of functionalised ODA-GO has been formed [47,57],
that is related to the hybridization of GO nanosheets by covalent
bonding via the amide functionality of ODA [67].

Representative AFM images of hybrid Langmuir monolayers
(ODA-GO) transferred onto the Si-wafer at different surface pres-
sures in the LB trough, namely 5, 10, 15 and 20 mN/m, are shown
in Fig. 4. The topographic images revealed that the substrate sur-
face coverage of the hybrid ODA-GO monolayers is higher as the
surface pressure increases. GO nanosheets with well-defined edges
are easily observed in the AFM micrographs, verifying the forma-
tion of a hybrid Langmuir film at the air-suspension interface. More
specifically, when the Langmuir film was compressed at 5 mNm�1

(Fig. 4a), the GO platelets appear isolated with an empty space
between them. When the Langmuir film was further compressed
at 10 mNm�1 (Fig. 4b), the GO platelets contact each other, with
still rather large voids between them and at even higher surface
pressure of 15 mN m�1 (Fig. 4c), the nanosheets become more clo-
sely packed. When deposited at 20 mNm�1 the hybrid film
becomes very dense but with only very few overlaps between adja-
cent flakes (Fig. 4d). Furthermore, the GO layers exhibit an ampli-
tude of wrinkles that may be related to water-GO interactions
during the dipping and drying process. GO sheets can be wrinkled
during water evaporation due to surface tension [68,69]. The aver-
age thickness of the flakes is 1–1.5 ± 0.2 nm as derived from topo-
graphical height profile (section analysis) corresponding to the size
of single graphene oxide layers.

Detailed AFM images of single ODA-GO-HEX-C60Br24 and ODA-
GO-C60(OH)24 hybrid layers deposited on Si-wafer are shown in
Fig. 5. The micrographs reveal the presence of quite uniform and
nearly spherical particles decorating several micrometer size lay-
ers indicating the successful attachment of the C60 derivatives on
the graphene oxide surface while wrinkled sheets were also
observed. More specifically, the C60Br24 decoration in the hybrid
ODA-GO-HEX monolayer is relatively uniform revealing small par-
ticles in all over the surface of the GO sheets. In the other hand, the
hybrid ODA-GO-C60(OH)24 layer exhibit a smoother distribution
and higher coverage of C60(OH)24 molecules on the graphene oxide
layers as compared to C60Br24 in the hybrid ODA-GO-HEX-C60Br24
layer. This different morphology is due to the direct attachment
of C60(OH)24 to the polar oxygen-containing groups homoge-
neously distributed on the graphitic surface (without interposed
surfactant like in the case of brominated fullerene). The average
size of decorating C60Br24 and C60(OH)24 molecules was about 3
± 0.2 nm and 1.8 ± 0.2 nm respectively as deduced from the height
profile analysis. The larger size of the C60Br24 moieties arises prob-
ably from the presence of the hexamethylenediamine (HEX) mole-
cules attached between the C60Br24 and GO nanosheets during the
2nd self-assembly step of the synthetic approach.

4.3. Characterization of graphene/C60-derivative hybrid multilayers

The X-ray diffraction patterns of the produced ODA-GO-HEX-
C60Br24 and ODA-GO-C60(OH)24 hybrid multilayers (60 layers) are
shown in Fig. 6 (top). The hybrid multilayer with C60Br24 shows a
001 diffraction peak at 2h = 2.3� from which a d001-spacing of
38.4 Å is deduced. This d001 value corresponds to an interlayer
space of D = 38.4–6.1 = 32.3 Å, where the value of 6.1 Å represents
the thickness of the GO single layer [70], indicating the successful
insertion of the C60Br24 molecules as pillars between GO sheets.
Moreover, the presence of higher order (0 0 l) reflections in the
XRD pattern of ODA-GO-HEX-C60Br24 suggests very high order in
the stacking of the GO layers. On the other hand, the ODA-GO-
C60(OH)24 hybrid multilayer shows a 0 0 1 diffraction peak at 2h
= 2.7�, resulting in a smaller d001-spacing of 32.7 Å. This value cor-
responds to an interlayer space of D = 32.7–6.1 = 26.6 Å, testifying
to the presence of C60(OH)24 molecules in the interlayer space [71].
This value is smaller as compared to the d001-spacing of ODA-GO-
HEX-C60Br24 because the C60(OH)24 molecules are directly attached
to the graphene oxide layers without an interposed surfactant.
Since the nucleus diameter of fullerenes and fullerene derivatives
is less than 10 Å [72–74] while the size of ODA and HEX molecules
is 23 Å and 4.5 Å respectively, we conclude that both surfactants
must adopt a configuration with the linear alkyl chains to be
inclined within the interlayer space of graphene oxide layers.

The Raman spectra of the produced ODA-GO-HEX-C60Br24 and
ODA-GO-C60(OH)24 hybrid multilayers deposited on a Si wafer
are shown in Fig. 6 (bottom). Spectra of graphene-based thin films
exhibit the characteristics bands. The second order D band at
around 1350 that is connected to sp3 hybridized carbon arising
from lattice defects and distortions while the first order G band
at around 1600 cm�1 is linked with sp2 hybridized carbon atoms
of the graphitic lattice [75,76]. The ratio of the D- to G-band inten-
sities (ID/IG) is indicative of the quality of the graphitic lattice and
was found to be 0.81 for the pristine GO (Fig. 6 bottom, inset)
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which is in agreement with typical GO ID/IG values found in the lit-
erature [77,78]. The ratio of the D- to G-band intensities (ID/IG) for
the hybrids ODA-GO-HEX-C60Br24 and ODA-GO-C60(OH)24 multi-
layers is 1.1 and 1.06 respectively. This increase of the ID/IG ratio
in the case of the hybrid films could be assigned to the relative
increase of the bands related to the graphitic disorder (D band at
1350 cm�1 and D’ band at 1620 cm�1) suggesting the hybridization
of GO due to the covalent bonding of the amide functionalities [79]
of ODA and HEX. Moreover, both spectra displays three broad
bands in the 2D region at �2700, �2930 and �3200 cm�1 which
are typical of GO materials. These are related with the 2D (or else
G’) vibrational mode, the D + D’ mode, and the 2D’ mode in that
order [75,76,80].

In order to gain further information for the type of bonding
between the graphite oxide layers and the C60 derivatives we
employed x-ray photoelectron spectroscopy measurements. Fig. 7
(top) displays C1s and N1s core level region of the ODA-GO-
C60(OH)24 hybrid multilayer. Four contributions located at binding
energies of 284.6 eV, 286.1 eV, 287.2 eV and 288.6 eV can be iden-
tified. The peak at 284.6, which accounts for 61.1% of the total car-
Fig. 7. Top: C1s (left) and N1s (right) core level X-ray photoemission spectrum of a ODA-G
ray photoemission spectrum of the ODA-GO-HEX-C60Br24 hybrid multilayer film.
bon intensity, originates from the carbon-carbon bonds of graphite
oxide and of the fullerene cage, as well the CAC of ODA. The peak at
286.1 eV is due to CAO of GO and of the hydroxyl groups of fullerol.
The same peak also contains contributions from CAN bonds of ODA
molecules when reacted with the epoxy groups of graphite oxide.
The contribution at 287.2 eV is due to C@O (carbonyl) as well
CAOAC (epoxy) functional groups and accounts for 10.7% of the
total carbon intensity. A last peak centered at 288.6 eV stems from
carboxyl groups of graphite oxide (3.1%). Additionally there is no
observation of the characteristics shake up peaks of C60 [81] due
to the delocalization of the pi electrons from the anchoring hydro-
xyl groups of fullerol [82,83]. In the Nitrogen 1s photoelectron
spectra we identify three contributions, one at 399.3 eV attributed
to CANAC bond of ODA with the epoxy groups of graphite oxide, a
second one at 400.8 eV corresponding to the primary amines that
may interact with the GO surface by non-covalent bonding, and a
third one, which originates from the protonated amines of ODA-
GO-C60(OH)24.

Fig. 7 (bottom) shows the C1s and N1s photoelectron spectra of
the ODA-GO-HEX-C60Br24 hybrid multilayer. The main contribu-
O-C60(OH)24 hybrid multilayer film. Bottom: C1s (left) and N1s (right) core level X-



Table 1
Water contact angle measurements.

Sample CA (t = 0) CA (t = 1 min) Advancing CA Receding CA

ODA-GO-HEX-C60Br24 (30 layers) 59 ± 1� 55 ± 1� 64 ± 1� <20 ± 1�
ODA-GO-C60(OH)24 (30 layers) 98 ± 1� 85 ± 1� 103 ± 1� 40 ± 1�
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tion to the C1s line at 284.6 eV binding energy results from carbon-
carbon bonds of graphite oxide and of the fullerene cage, as well as
from the CAC bonds of ODA and accounts for 57.4% of the total car-
bon intensity. A less intense peak (17.1%) arises from the CAO of
GO and the CABr bond of fullerene derivative and contains also
contributions from CAN bonds of ODA molecules due to the chem-
ical grafting of the amino groups of ODA with the epoxy groups of
GO. The contribution at 287.2 eV is attributed to the C@O (car-
bonyl) as well CAOAC (epoxy) functional groups and accounts
for 8.9% of the total carbon intensity while the presence of carboxyl
groups is demonstrated from the peak located at 288.6 eV (7.7%).
The additional peaks at 290.0 eV and 291.5 eV in the ODA-GO-
HEX-C60Br24 spectrum are due to C1s shake up features of C60

[84,85] resulting from p–p* transitions excited in the photoemis-
sion process, and therefore gives proof to the presence of fullerene
derivatives in the hybrid multilayer. From the Nitrogen 1s photo-
electron spectra of hybrid ODA-GO-HEX-C60Br24 multilayer we
identify three contributions like in the case of ODA-GO-
C60(OH)24, one at 399.4 eV attributed to CANAC bond of ODA
and/or HEX molecules with the epoxy groups of graphite oxide, a
second one at 400.8 eV corresponding to the primary amines that
may interact with the GO surface by non-covalent bonding or lie
down on the graphene surface unreacted, and a third one, which
derives from the protonated amines of ODA-GO-HEX-C60Br24 sys-
tem. Furthermore, we observe an increase of the NH3

+ amines of
the hybrid ODA-GO-HEX-C60Br24 multilayer implying that a higher
percentage of NH3

+ amines interact electrostatically with the gra-
phene surface resulting a lower CANAC peak (32.9% of the total
N1s intensity) compared to the CANAC peak (38.3% of the total
N1s intensity) of the hybrid ODA-GO-C60(OH)24 film.

Water contact angle (CA) measurements are presented in
Table 1. The CA for the ODA-GO-C60(OH)24 hybrid multilayer film
results systematically higher than that of the ODA-GO-C60Br24
hybrid multilayer film, with the first exhibiting CA = 85� and the
latter CA = 55�, ca. 1 min after the droplet touches the surfaces.
Both advancing and receding CA are higher for the ODA-GO-
C60(OH)24 system.

Despite the fact that C60(OH)24 molecules are considered to be
more hydrophilic than of C60Br24 due to the AOH functionalities,
our results from CA measurements revealed that the hybrid
ODA-GO-C60(OH)24 system exhibits a more hydrophobic character
compared to the more hydrophilic character of the ODA-GO-HEX-
C60Br24 system. AFM studies revealed a more uniform distribution
of the C60(OH)24 molecules on the graphene layer compared to the
ODA-GO-HEX-C60Br24 system. However, the hydrophilic behaviour
of the ODA-GO-HEX-C60Br24 film, compared to the more hydropho-
bic behaviour of the ODA-GO-C60(OH)24 is corroborated by the XPS
data provided above. As mentioned previously the absence of C60

shake up peaks indicates anchoring of hydroxyl groups of fullerol.
Moreover as may be seen in Fig. 7, the contributions of the hydro-
philic C(O)O (7.7% of the total C1s intensity) and NH3

+ (24.8% of the
total N1s intensity) groups for ODA-GO-HEX-C60Br24, are greater
than the corresponding ones for ODA-GO-C60(OH)24 (3.1% of the
total C1s intensity and 19.5% of the total N1s intensity), while
the contribution due to aliphatic/hydrophobic carbon bonds
(CAC) is higher for ODA-GO-C60(OH)24 (61.1% of the total C1s
intensity) than for ODA-GO-HEX-C60Br24 (57.4% of the total C1s
intensity).
5. Conclusions

C60(OH)24 and C60Br24 fullerene derivatives molecules were
effectively inserted between graphene oxide layers through a
layer-by-layer synthetic approach, which combines Langmuir-
Schaefer deposition and self-assembly steps. The effectiveness of
this method in terms of uniformity, coverage and single-layer level
control of the formed nanostructures was confirmed by p-Α iso-
therms and AFM measurements. X-ray diffraction measurements
revealed the successful insertion of C60Br24 and C60(OH)24 mole-
cules between graphene oxide nanosheets resulting in hybrid mul-
tilayer structures. The existence of C60(OH)24 and C60Br24 in the
hybrid system was revealed by X-ray photoelectron spectroscopy,
while Raman spectroscopy showed that the insertion of the fuller-
ene derivatives between the graphene oxide nanosheets caused an
increase of the ID/IG ratio confirming the hybridization of GO due to
the covalent bonding of the amide functionality of ODA. Contact
angle measurements corroborated the XPS results, revealed the
hybrid graphene/C60(OH)24 film exhibiting a more hydrophobic
character, while graphene/C60Br24 hybrid film was more hydrophi-
lic suggesting that the hydrophobicity doesn’t depend on the func-
tional groups of the nanomaterials but on the formed morphology
of the hybrid systems.

These novel fullerene-based hybrid films are excellent candi-
date nanomaterials for potential application where graphene is
already been studied such us gas/liquid separation [57], sensors
[55,58], photovoltaics [86] or electronic devices [54]. Moreover,
the different surface properties of the hybrid films are crucial for
a plethora of bio-applications since the adsorption or the adhesion
of cells or enzymes depends on the surface energy related to the
wetting nature of the surface [87,88]. Thus, thin films with differ-
ent wetting properties could be used as biosensors, diagnostic (lab-
on-a-chip) devices as well as smart surfaces for directional wetting,
anti-fogging, inkjet printing and thin-film lubrication [89,90].

In conclusion, the synthesis of hybrid films, combining the
properties of 2D materials with fullerene derivatives is a great
challenge for fabricating novel pillared structures with modified,
adjusted or improved properties. The rise of two-dimensional
nanomaterials in combination with the tunable conductivity prop-
erties of C60 moieties can lead to innovative hybrid materials with
fascinating (opto)electronic and biomedical properties.
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