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Abstract 

Background: Early life adversities increases the vulnerability to psychiatric conditions 

later in life. However, it is still unknown how stress exposure influences the 

neurobiological response to a secondary stressful event at an older age. The present study 

aimed to evaluate glial, brain-metabolic and behavioral response to repeated social defeat 

(RSD) in stress-sensitized (SS, previously exposed to 5-day RSD protocol during 

adolescence) and stress-naïve (SN) aged rats through positron emission tomography 

(PET).  

Methods: Fourteen-month old SN (n=8) and SS (n=10) Wistar rats underwent a 5-day 

RSD protocol, repeated PET imaging with 11C-PBR28 (glial activation) and 18F-FDG 

(brain metabolism), and behavioral and biochemical assessments.  

Results: RSD at old age induced anhedonic-like behavior in SS rats only, while anxiety 

was present in both groups. RSD in aged SN rats increased corticosterone levels, whereas 

recurrence of RSD blunted the corticosterone response in SS rats. RSD increased 11C-

PBR28 uptake levels in SN rats, whereas re-exposure to RSD diminished tracer uptake in 

the brain of SS rats. Higher brain levels of the cytokines IL-1β and IL-10 were found in 

SN rats after RSD, as compared to SS rats. RSD caused hypometabolism in the brains of 

both groups.  

Conclusion: Recurrence of RSD in aged SS rats induced depressive- and anxiety-like 

behavior, despite diminished corticosterone and brain inflammatory responses, as 

compared to SN rats. In contrast to SN rats, the immune response in SS rats was not 

correlated with corticosterone levels, pointing towards an alternative pathway for coping 

with detrimental stressful stimuli or exhaustion of the brain immune cells in sensitized 

animals. 
 

Keywords: chronic stress, neuroinflammation, brain metabolism, PET imaging, repeated social 

defeat.

Introduction 

Psychosocial stress is a predominant environmental risk factor for several psychiatric 

disorders, including major depressive disorder (MDD) (1). It is estimated that 20-25% of 

individuals exposed to highly stressful events develop MDD (2). Interestingly, trauma 

exposure at a young age increases the likelihood of fulfilling the criteria for MDD at any 

point in life (3). It has been hypothesized that such exposures may modify the individual’s 

immune, endocrine, neural and behavioral responsiveness to recurrent stressful 

conditions at later ages (4).  

Stimuli such as chronic stress can activate microglia and astrocytes, the brain’s 

immune cells, which can subsequently release pro-inflammatory cytokines, such as 

interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) (5). Pro-

inflammatory cytokines produced during glial activation might influence central levels of 

neurotransmitters (6). In addition, stress-induced activation of the hypothalamic-

pituitary-adrenal (HPA) axis can cause an increase in glucocorticoid levels. These 

glucocorticoids can cross the blood-brain barrier (6) and act on receptors located in 

vulnerable brain regions. The brain is highly sensitive to stress and altered glucocorticoid 

levels during crucial periods of development (such as adolescence), mainly in brain areas 

as the medial prefrontal cortex (MPFC), cingulate cortex and orbitofrontal cortex (OBFC) 

(7). Interestingly, the prefrontal cortex (PFC) shows higher levels of glucocorticoid 

receptor mRNA in adolescence than during any other period of development (8), 

suggesting that the PFC may be especially sensitive to glucocorticoid regulation during 

this period. The aforementioned stress-sensitive brain regions are amply associated with 

reward, emotional regulation, and fear extinction and therefore appear to be of relevance 

for stress recovery (7). Negative neurobiological changes during developmental periods 

might have long-lasting detrimental effects and increase vulnerability to depression (9). 

As a potential reflection of these detrimental effects, stress has been found to decrease 

brain metabolism in several brain regions in animal models of stress (10). Notably, a 

similar decrease in brain metabolism is also found in patients with unipolar depressive 

disorder (11–14). Hence, immune activation and cytokine release in the central nervous 

system and abnormalities in the HPA axis have been suggested as key factors in the 

development and recurrence of depression (15). Although these mechanisms may not 

apply to all patients, they may be of particular interest for the subgroup of treatment-

resistant MDD patients (6).  
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The repeated social defeat (RSD) rat model has been widely used to mimic 

psychosocial stress in rodents, due to its high ethological validity (16; 17). RSD is able 

to provoke immune dysregulation, coupled with depressive- and anxiety-like behavior 

that resembles the MDD phenotype. Previous studies in adolescent rats demonstrated glial 

(mainly microglia) activation in response to RSD, in conjunction with an elevation of pro-

inflammatory cytokine levels (18–20). These alterations were transient and resolved 

within a month (21; 22). However, such a stressful event may have primed pro-

inflammatory microglial responses to a subsequent stress exposure (23). Consequently, 

transient effects of psychosocial stress early in life may translate into long-term 

(persistent) immunological, behavioral and brain metabolic disturbances, as the ones 

observed in (treatment-resistant) MDD patients. However, there is still no evidence 

available that supports such conjecture. Furthermore, it is also unknown whether an early 

exposure to psychosocial stress would influence the response to a secondary stressful 

event later in life. 

Therefore, the aim of the present study was to evaluate the glial, brain-metabolic 

and behavioral response to repeated social defeat (RSD) in 1) stress-sensitized (SS) (i.e. 

with a history of previous exposure to psychosocial stress during adolescence) and 2) 

stress-naive (SN) aged rats through repeated neuroimaging. Positron emission 

tomography (PET) offers the opportunity to longitudinally image the 

(patho)physiological processes that are seemingly altered in MDD patients and animal 

models. PET has been successfully used to evaluate glial activation (24) with the 

translocator protein receptor (TSPO) tracer 11C-PBR28 (25), and to assess brain glucose 

metabolism (11) with the glucose analogue 2’-[18F]fluoro-2’-deoxyglucose (18F-FDG).  

 

Materials and Methods 

Experimental Animals 

Male outbred Wistar Unilever rats of fourteen months were used for the present study 

(n=18, 577±11g). They were purchased at the age of seven weeks from Harlan 

Laboratories (Horst, The Netherlands) and were allowed to age under monitored 

conditions during twelve months. Rats were kept in humidity-controlled, thermo-

regulated (21±2°C) rooms under a 12:12 hour light:dark cycle with lights on at 7 a.m. 

Rats had ad libitum access to food and water. During the RDS protocol, rats were housed 

individually and divided into two groups: stress-naïve (SN, n=8) and stress-sensitized 

(SS, n=10) rats. 

Animal experiments were performed in accordance with Dutch Regulations for 

Animal Welfare. All procedures were approved by the Institutional Animal Care and Use 

Committee of the University of Groningen (protocol DEC 6828A and 6828B). 

 

Study design 

The overall design of the study is depicted in Fig. 1. SS rats were subjected to five 

consecutive days of RSD when they were eight weeks old (22). During the RSD protocol, 

both groups were handled similarly. However, SN rats were only placed in another cage, 

but not exposed to an aggressive resident rat. After the RSD protocol at adolescence, rats 

were allowed to age for 12 months and housed in pairs to prevent isolation stress (26; 27). 

At the age of 14 months, rats from both groups (SN and SS) underwent a 5-day RSD 

protocol (day 0–4), PET scans with 11C-PBR28 and 18F-FDG (days -1, 6, 11 and 25), 

behavioral tests and biochemical assessments. Body weight was measured daily between 

day 0 and 25. On day 25, the rats were terminated and the brains were collected for the 

quantification of pro- and anti-inflammatory cytokines.  

 

 
 
Figure 1: Stress-naïve (SN) and stress-sensitized (SS) rats were subjected to a 5-day RSD protocol (day 0–
4) at the age of 14 months. PET scans with 11C-PBR28 and 18F-FDG were conducted on experimental days 
-1, 6, 11 and 25. In order to evaluate post-RSD behavioral alterations, the sucrose preference test (SPT) and 
open field (OF) were conducted on days -2 and 5. Corticosterone levels were assessed on days -1, 6, 11 and 
25.  On day 25, after the PET scans, rats were terminated and the brains were collected for the quantification 
of pro- and anti-inflammatory cytokines. 
 

Repeated Social Defeat  

RSD was carried out through the introduction of SN and SS rats (intruder) into the cage 

of a dominant (resident) male outbred Long Evans rat (537±28g; Harlan, Indianopolis, 
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Figure 1: Stress-naïve (SN) and stress-sensitized (SS) rats were subjected to a 5-day RSD protocol (day 0–
4) at the age of 14 months. PET scans with 11C-PBR28 and 18F-FDG were conducted on experimental days 
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USA). All the intruders were exposed to the same residents (using a different resident for 

each social defeat conflict to avoid habituation). The male Long Evans rats were housed 

in a separate experimental room in large cages (80x50x40 cm) with a tubal ligated Long 

Evans female rat to stimulate territorial aggression (16). The Long Evans residents were 

screened for aggressive behavior at least three times prior to the experiment (28; 29). 

Only residents with an attack latency shorter than 30 s were used for the actual social 

defeat experiment (30). 

The social defeat experiment was conducted as previously described (16), and it 

always took place between 16:00–18:00 p.m. Briefly, the females were removed from the 

cage of the resident before the introduction of the experimental rat (intruder). The total 

duration of the interaction between the resident and the intruder was of 60 min, but the 

physical interaction was limited to a maximum period of 10 min, or shorter, if the intruder 

assumed a supine (submissive) position for at least 3 seconds. Hereafter, the intruder was 

placed in a wire mesh cage inside the cage of the resident to avoid further physical contact, 

but still allowing intense visual, auditory and olfactory interactions for the remainder of 

the 60-min stress period. The social defeat protocol was repeated on 5 consecutive days 

using different residents. 

 

Body weight gain 

Body weight gain was calculated individually for each rat as the difference between the 

body weight at a certain time point minus the body weight on experimental day 0 (first 

day of RSD). 

 

Behavioral Tests 

To assess RDS-induced behavioral changes, the open field (anxiety, locomotion) (31), 

novel object recognition (visual memory) (32) and sucrose preference test (anhedonia) 

(29) were performed. The open field and novel object recognition tests were recorded on 

video for further analysis using Ethovision XT8.5 software (Noldus Information 

Technology, Wageningen, The Netherlands).  

 

Open field (OF)  

Rats were placed inside a square box (100x100x40 cm) for 10 min. The time spent in the 

center of the arena relative to the time spent at the borders (anxiety), and the total distance 

moved (locomotion) were documented. 

 

Novel object recognition (NOR)  

On day 24, rats were placed in a square box (50x50x40 cm) with two identical objects 

(plastic bottles or Lego cubes) (33; 34). They were allowed to explore the objects for 3 

min. The objects were removed and after 2 h one familiar and one new object were 

presented to the rat for 3 min. The preference index (PI) was calculated as the ratio 

between time spent on exploring the new object and the total time spent on object 

exploration. 

 

Sucrose Preference (SPT) 

Rats were habituated to a 1% sucrose solution for 1h during 4 days prior to the 

experiment. At baseline and after 5 days of RSD, rats were exposed to two bottles placed 

randomly in the cage, one containing water and one with 1% sucrose. Preference for 

sucrose was calculated as the total intake of sucrose solution divided by the total liquid 

intake and multiplied by 100% (29; 35). 

 

Corticosterone Levels 

For determination of corticosterone levels, rats were anesthetized with isoflurane mixed 

with oxygen and 0.5 mL of whole blood was quickly collected from the tail vein on day 

-1, 6, 11 and 25. Samples were always collected at 10 a.m. to avoid circadian fluctuations. 

The blood was allowed to clot for 15 min and centrifuged at 6.000 rpm (3.5g) for 8 min 

at room temperature to obtain serum samples. Samples were stored at -20°C until further 

analysis by radioimmunoassay. Corticosterone (Sigma Chemical Co., Missouri, USA.) 

was used as standard and 3H-corticosterone as tracer (Perkin & Elmer, Massachusetts, 

USA).  

 

PET 

PET scans were performed using a small animal PET scanner (Focus 220, Siemens 

Medical Solutions, USA). 11C-PBR28 PET scans were always carried out in the morning. 

The rats were anesthetized with isoflurane mixed with oxygen (5% for induction, 2% for 

maintenance) and 11C-PBR28 was injected via the penile vein (73±34 MBq, 1.25±1.91 

nmol). Immediately after injection, rats were allowed to wake up and recover in their 

home cage. Rats were anesthetized 45 min after tracer injection and placed in prone 

position into the camera with the head in the field of view. A 30-min static scan was 
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acquired. The body temperature was maintained at 37°C with heating pads, heart rate and 

blood oxygen saturation were monitored, and eye salve was applied to prevent 

conjunctival dehydration. After completion of the emission scan, a transmission scan was 

obtained using a 57Co point source enabling attenuation and scatter correction of PET 

images. 

 After at least 10 half-lives of the radioisotope 11C, a 18F-FDG PET scan was 

acquired. Between scans, rats were deprived of food for 4-6 h. Rats were injected 

intraperitoneally (36; 37) with 18F-FDG (27±5 MBq) and returned to their home cage. 

After 45 min, 18F-FDG PET acquisition was performed as described above for 11C-PBR28 

PET. 

The reconstruction of the scans was performed iteratively (OSEM2D, 4 iterations 

and 16 subsets) into a single frame after being normalized and corrected for attenuation 

and decay of radioactivity. Images with a 128x128x95 matrix, a pixel width of 0.632 mm, 

and a slice thickness of 0.762 mm were obtained. PET images were automatically co-

registered to a functional 11C-PBR28  or 18F-FDG rat brain template (25; 38), using 

PMOD 3.6 software (PMOD technologies Ltd., Switzerland). Aligned images were 

resliced into cubic voxels (0.2 mm) and converted into standardized uptake value (SUV) 

images: SUV = [tissue activity concentration (MBq/g) x body weight (g)] / [injected dose 

(MBq)], assuming a tissue density of 1g/mL. 18F-FDG uptake was not corrected for blood 

glucose levels (39). 

Tracer uptake was calculated in several predefined volumes-of-interest (VOI). 

VOIs were selected based on previous findings (11; 18; 24; 40–45), taking the size of the 

brain regions into consideration. Small brain regions were excluded to minimize partial 

volume effects (47). The investigated regions were the amygdala/piriform complex, 

brainstem, cerebellum, cingulate cortex, entorhinal cortex, frontal association cortex 

(FCA), hippocampus, hypothalamus, insular cortex, MPFC, motor/somatosensory cortex, 

OBFC, and striatum. 

 

Enzyme linked immunoassay (ELISA) for pro-inflammatory cytokines in the brain 

On day 25, rats were terminated under deep anesthesia by transcardial perfusion with 

phosphate-buffered saline pH 7.4. Brains were collected and rapidly frozen and stored 

at -80°C. Frontal cortex, hippocampus, cerebellum and parietal/temporal/occipital cortex 

were dissected and prepared as published (34). IL-6, IL-1β, and IL-10 (Thermo Scientific, 

Rockford, USA) concentrations were determined in these brain regions by ELISA 

according to the manufacturer’s instructions and the cytokine levels were corrected for 

the amount of proteins, as determined through a Bradford Assay. 

 

Statistical Analysis 

Statistical analyses were performed with IBM SPSS 23 software (IBM Corp, New York, 

USA). Continuous data are expressed as mean ± standard error of the mean (SEM). The 

Generalized Estimating Equations (GEE) model (48) was used for statistical analysis of 

body weight measurements, behavioral tests (OF and SPT), corticosterone levels, and 

PET data, in order to account for repeated measurements in the longitudinal design and 

missing data. The parameters “group”, “day of measurement” and the interaction “group 

× day of measurement” were included as independent variables for the statistical analysis 

of body weight gain, corticosterone levels, and the behavioral tests. For the statistical 

analysis of 11C-PBR28 and 18F-FDG uptake (SUV), the GEE model was applied 

independently for each brain region, using the variables “group”, “day of scan” and the 

interaction “group × day of scan” in the model. The data was further explored through 

pairwise comparison of “group × day of scan” in each brain region for all scan time points 

combined. The AR(1) working correlation matrix was selected according to the quasi-

likelihood under the independence model information criterion value. Wald’s statistics 

and associated p-values were considered statistically significant if p<0.05, after the 

sequentially rejective Bonferroni-Holm correction for multiple comparisons was applied 

to ensure that the Type I error resulting from multiple tests never exceeded the p set level 

of statistical significance at α= 0.05 (49; 50). Spearman correlations were performed to 

investigate the relationship between corticosterone levels, cytokines, behavior and tracer 

uptake levels between groups at different timepoints. Between-group differences in the 

PI (NOR) and brain cytokines levels were assessed through the Mann-Whitney U test and 

the results were reported as the median and the 0.25-0.75 interquartile range (IQR).  

 

Results 

 

RSD significantly decreases body weight gain  

No statistically significant difference in body weight between groups was found before 

the start of RSD (SN: 571±19 vs. SS: 581±12, p=0.66). The GEE analysis revealed a 

significant main effect for the factor “day of measurement” (p<0.001) and the interaction 

“day of measurement x group” (p<0.001), but not for “group”. Pairwise analysis of the 
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acquired. The body temperature was maintained at 37°C with heating pads, heart rate and 

blood oxygen saturation were monitored, and eye salve was applied to prevent 

conjunctival dehydration. After completion of the emission scan, a transmission scan was 

obtained using a 57Co point source enabling attenuation and scatter correction of PET 

images. 

 After at least 10 half-lives of the radioisotope 11C, a 18F-FDG PET scan was 

acquired. Between scans, rats were deprived of food for 4-6 h. Rats were injected 

intraperitoneally (36; 37) with 18F-FDG (27±5 MBq) and returned to their home cage. 

After 45 min, 18F-FDG PET acquisition was performed as described above for 11C-PBR28 

PET. 

The reconstruction of the scans was performed iteratively (OSEM2D, 4 iterations 

and 16 subsets) into a single frame after being normalized and corrected for attenuation 

and decay of radioactivity. Images with a 128x128x95 matrix, a pixel width of 0.632 mm, 

and a slice thickness of 0.762 mm were obtained. PET images were automatically co-

registered to a functional 11C-PBR28  or 18F-FDG rat brain template (25; 38), using 

PMOD 3.6 software (PMOD technologies Ltd., Switzerland). Aligned images were 

resliced into cubic voxels (0.2 mm) and converted into standardized uptake value (SUV) 

images: SUV = [tissue activity concentration (MBq/g) x body weight (g)] / [injected dose 

(MBq)], assuming a tissue density of 1g/mL. 18F-FDG uptake was not corrected for blood 

glucose levels (39). 

Tracer uptake was calculated in several predefined volumes-of-interest (VOI). 

VOIs were selected based on previous findings (11; 18; 24; 40–45), taking the size of the 

brain regions into consideration. Small brain regions were excluded to minimize partial 

volume effects (47). The investigated regions were the amygdala/piriform complex, 

brainstem, cerebellum, cingulate cortex, entorhinal cortex, frontal association cortex 

(FCA), hippocampus, hypothalamus, insular cortex, MPFC, motor/somatosensory cortex, 

OBFC, and striatum. 

 

Enzyme linked immunoassay (ELISA) for pro-inflammatory cytokines in the brain 

On day 25, rats were terminated under deep anesthesia by transcardial perfusion with 

phosphate-buffered saline pH 7.4. Brains were collected and rapidly frozen and stored 

at -80°C. Frontal cortex, hippocampus, cerebellum and parietal/temporal/occipital cortex 

were dissected and prepared as published (34). IL-6, IL-1β, and IL-10 (Thermo Scientific, 

Rockford, USA) concentrations were determined in these brain regions by ELISA 

according to the manufacturer’s instructions and the cytokine levels were corrected for 

the amount of proteins, as determined through a Bradford Assay. 

 

Statistical Analysis 

Statistical analyses were performed with IBM SPSS 23 software (IBM Corp, New York, 

USA). Continuous data are expressed as mean ± standard error of the mean (SEM). The 

Generalized Estimating Equations (GEE) model (48) was used for statistical analysis of 

body weight measurements, behavioral tests (OF and SPT), corticosterone levels, and 

PET data, in order to account for repeated measurements in the longitudinal design and 

missing data. The parameters “group”, “day of measurement” and the interaction “group 

× day of measurement” were included as independent variables for the statistical analysis 

of body weight gain, corticosterone levels, and the behavioral tests. For the statistical 

analysis of 11C-PBR28 and 18F-FDG uptake (SUV), the GEE model was applied 

independently for each brain region, using the variables “group”, “day of scan” and the 

interaction “group × day of scan” in the model. The data was further explored through 

pairwise comparison of “group × day of scan” in each brain region for all scan time points 

combined. The AR(1) working correlation matrix was selected according to the quasi-

likelihood under the independence model information criterion value. Wald’s statistics 

and associated p-values were considered statistically significant if p<0.05, after the 

sequentially rejective Bonferroni-Holm correction for multiple comparisons was applied 

to ensure that the Type I error resulting from multiple tests never exceeded the p set level 

of statistical significance at α= 0.05 (49; 50). Spearman correlations were performed to 

investigate the relationship between corticosterone levels, cytokines, behavior and tracer 

uptake levels between groups at different timepoints. Between-group differences in the 

PI (NOR) and brain cytokines levels were assessed through the Mann-Whitney U test and 

the results were reported as the median and the 0.25-0.75 interquartile range (IQR).  

 

Results 

 

RSD significantly decreases body weight gain  

No statistically significant difference in body weight between groups was found before 

the start of RSD (SN: 571±19 vs. SS: 581±12, p=0.66). The GEE analysis revealed a 

significant main effect for the factor “day of measurement” (p<0.001) and the interaction 

“day of measurement x group” (p<0.001), but not for “group”. Pairwise analysis of the 
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data revealed between-group differences on experimental days 1 to 3 only, indicating that 

RSD affected body weight significantly more in SS rats than in SN rats (day 3, SN: -

3.6±1.4g, vs. SS: -8.1±0.8g, p=0.007). From experimental day 4 onwards, no significant 

difference in body weight gain between groups was observed anymore (Fig. 2). 

 

 
 
Figure 2: Body weight gain (g) of stress-naïve (SN) and stress-sensitized (SS) rats during the 25 days of 
the study protocol. Significant differences between the groups were apparent from day 1 to 3, with SS rats 
gaining less weight than SN rats (p<0.05). From day 4 onwards, both groups gained weight at the same 
rate, without returning to baseline levels until the end of the study. The dips in body weight gain on day 6, 
11 and 25 are due to the PET procedures on these days. *p<0.05. 
 
 

RSD induces anxiety-like behavior and decreases locomotor activity both in SN and SS 

rats, whereas RSD-induced anhedonia is only observed in SS rats 

No significant differences in sucrose preference between groups were found at baseline. 

RSD provoked anhedonia in SS rats, as it reduced the sucrose preference from 93±2% on 

day -2 to 69±7% on day 5 (p=0.003). In contrast, no significant change in sucrose 

preference was observed after RSD in SN rats (90±4% to 84±5%, p=0.25). A trend 

towards significance was observed in the between-groups comparison on day 5 (p=0.060) 

(Fig. 3-A). 

The anxiety-like behavior and locomotor activity were assessed with the OF test 

at baseline and after the RSD protocol (day 5). At baseline, SN rats moved a total distance 

of 2.2±0.5 m and spent 64±20 s in the center of the arena, whereas after RSD the total 

distance moved was reduced to 1.3±0.3 m (p<0.001) and the time spent in the center to 

19±11s (p=0.016). A similar pattern was observed in SS rats, with a distance moved of 

2.4±0.2 m and a time spent in the center of 43±9 s at baseline. On day 5, these measures 

were significantly reduced to 1.4±0.1 m and 9±2 s (p<0.001), respectively. No significant 

differences in locomotion or the time spent in the center were observed between both 

groups, neither at baseline, nor on day 5 (Fig. 3-B, C).   

 

 
 
Figure 3: RSD-induced behavioral alterations in both SN and SS rats. A: Within-group comparison 
between baseline and day 5 showed anhedonic-like behavior through the sucrose preference test (SPT) in 
SS rats (p<0.01), but not in SN rats. ##p<0.01. B: Anxiety-like behavior was demonstrated in both SN and 
SS rats in the open field test (OF), with a decreased distance moved on day 5 as compared to baseline 
(p<0.001) and C: decreased total time spent in the center of the arena. SS rats had a more pronounced 
decrease in total time spent in the center p<0.001 on day 5 when compared to baseline, than SN rats 
(p<0.05). #p<0.05 and ###p<0.001. 

 

To evaluate effects on long-lasting memory impairment, the NOR test was 

performed on day 24. No significant differences in the PI were found between groups 

(SN: 48%, IQR 43-61 vs. SS: 56%, IQR 46-70, p=0.33).   

 

RSD provokes a generalized decrease in glucose metabolism  

No significant differences in brain glucose metabolism between SN and SS rats were 

found at baseline. On day 11, however, 18F-FDG PET revealed several brain regions with 

lower glucose metabolism in SS rats than in SN rats. The affected brain regions were the 

amygdala (-58%, p<0.001), brainstem (-62%, p<0.001), cerebellum (-39%, p=0.002), 

entorhinal cortex (-69%, p<0.001), hippocampus (-35%, p=0.012), hypothalamus (-44%, 

p=0.001), insular cortex (-51%, p<0.001), OBFC (-36%, p=0.008) and striatum (-48%, 

p<0.001). On day 6 and 25, no significant differences in 18F-FDG uptake between SS and 

SN rats were observed in any brain region anymore. 

 A within-group analysis was conducted to explore the effect of RSD on glucose 

metabolism over time, relative to baseline levels (Fig.4). SN rats did not show any 

significant effect of RSD on day 6 and 11, but had a general decrease in tracer uptake in 

the brain on day 25. The affected brain regions in SN rats were the amygdala (-13%, 

p=0.004), brainstem (-11% p=0.048), cerebellum (-11%, p=0.026), entorhinal cortex (-
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data revealed between-group differences on experimental days 1 to 3 only, indicating that 

RSD affected body weight significantly more in SS rats than in SN rats (day 3, SN: -

3.6±1.4g, vs. SS: -8.1±0.8g, p=0.007). From experimental day 4 onwards, no significant 

difference in body weight gain between groups was observed anymore (Fig. 2). 

 

 
 
Figure 2: Body weight gain (g) of stress-naïve (SN) and stress-sensitized (SS) rats during the 25 days of 
the study protocol. Significant differences between the groups were apparent from day 1 to 3, with SS rats 
gaining less weight than SN rats (p<0.05). From day 4 onwards, both groups gained weight at the same 
rate, without returning to baseline levels until the end of the study. The dips in body weight gain on day 6, 
11 and 25 are due to the PET procedures on these days. *p<0.05. 
 
 

RSD induces anxiety-like behavior and decreases locomotor activity both in SN and SS 

rats, whereas RSD-induced anhedonia is only observed in SS rats 

No significant differences in sucrose preference between groups were found at baseline. 

RSD provoked anhedonia in SS rats, as it reduced the sucrose preference from 93±2% on 

day -2 to 69±7% on day 5 (p=0.003). In contrast, no significant change in sucrose 

preference was observed after RSD in SN rats (90±4% to 84±5%, p=0.25). A trend 

towards significance was observed in the between-groups comparison on day 5 (p=0.060) 

(Fig. 3-A). 

The anxiety-like behavior and locomotor activity were assessed with the OF test 

at baseline and after the RSD protocol (day 5). At baseline, SN rats moved a total distance 

of 2.2±0.5 m and spent 64±20 s in the center of the arena, whereas after RSD the total 

distance moved was reduced to 1.3±0.3 m (p<0.001) and the time spent in the center to 

19±11s (p=0.016). A similar pattern was observed in SS rats, with a distance moved of 

2.4±0.2 m and a time spent in the center of 43±9 s at baseline. On day 5, these measures 

were significantly reduced to 1.4±0.1 m and 9±2 s (p<0.001), respectively. No significant 

differences in locomotion or the time spent in the center were observed between both 

groups, neither at baseline, nor on day 5 (Fig. 3-B, C).   

 

 
 
Figure 3: RSD-induced behavioral alterations in both SN and SS rats. A: Within-group comparison 
between baseline and day 5 showed anhedonic-like behavior through the sucrose preference test (SPT) in 
SS rats (p<0.01), but not in SN rats. ##p<0.01. B: Anxiety-like behavior was demonstrated in both SN and 
SS rats in the open field test (OF), with a decreased distance moved on day 5 as compared to baseline 
(p<0.001) and C: decreased total time spent in the center of the arena. SS rats had a more pronounced 
decrease in total time spent in the center p<0.001 on day 5 when compared to baseline, than SN rats 
(p<0.05). #p<0.05 and ###p<0.001. 

 

To evaluate effects on long-lasting memory impairment, the NOR test was 

performed on day 24. No significant differences in the PI were found between groups 

(SN: 48%, IQR 43-61 vs. SS: 56%, IQR 46-70, p=0.33).   

 

RSD provokes a generalized decrease in glucose metabolism  

No significant differences in brain glucose metabolism between SN and SS rats were 

found at baseline. On day 11, however, 18F-FDG PET revealed several brain regions with 

lower glucose metabolism in SS rats than in SN rats. The affected brain regions were the 

amygdala (-58%, p<0.001), brainstem (-62%, p<0.001), cerebellum (-39%, p=0.002), 

entorhinal cortex (-69%, p<0.001), hippocampus (-35%, p=0.012), hypothalamus (-44%, 

p=0.001), insular cortex (-51%, p<0.001), OBFC (-36%, p=0.008) and striatum (-48%, 

p<0.001). On day 6 and 25, no significant differences in 18F-FDG uptake between SS and 

SN rats were observed in any brain region anymore. 

 A within-group analysis was conducted to explore the effect of RSD on glucose 

metabolism over time, relative to baseline levels (Fig.4). SN rats did not show any 

significant effect of RSD on day 6 and 11, but had a general decrease in tracer uptake in 

the brain on day 25. The affected brain regions in SN rats were the amygdala (-13%, 

p=0.004), brainstem (-11% p=0.048), cerebellum (-11%, p=0.026), entorhinal cortex (-
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16%, p=0.001), FCA (-12%, p=0.021), hippocampus (-12%, p=0.017), hypothalamus (-

12%, p=0.02), insular cortex (-13%, p=0.014), motor / somatosensory cortex (-13%, 

p=0.009), and striatum (-10%, p=0.036). On the other hand, SS rats did not show any 

significant changes in 18F-FDG uptake on day 6 and 25, but presented a large generalized 

decrease in glucose metabolism only on day 11. The brain regions of SS rats with 

decreased uptake on day 11 compared to baseline were the amygdala (-60%, p<0.001), 

brainstem (-64%, p<0.001), cerebellum (-38%, p<0.001), entorhinal cortex (-70%, 

p<0.001), hippocampus (-37%, p<0.001), hypothalamus (-48%, p<0.001), insular cortex 

(-53%, p<0.001), MPFC (-22%, p<0.001), OBFC (-36%, p<0.001) and striatum (-52%, 

p<0.001) (Table 1).  

 

 
 
Figure 4: Representative 18F-FDG PET images from SN and SS rats on day -1, 6, 11 and 25.  
 
 

 When investigating the correlation between regional 18F-FDG uptake and 

behavioral alterations, no significant correlations were found at all. 
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16%, p=0.001), FCA (-12%, p=0.021), hippocampus (-12%, p=0.017), hypothalamus (-

12%, p=0.02), insular cortex (-13%, p=0.014), motor / somatosensory cortex (-13%, 

p=0.009), and striatum (-10%, p=0.036). On the other hand, SS rats did not show any 

significant changes in 18F-FDG uptake on day 6 and 25, but presented a large generalized 

decrease in glucose metabolism only on day 11. The brain regions of SS rats with 

decreased uptake on day 11 compared to baseline were the amygdala (-60%, p<0.001), 

brainstem (-64%, p<0.001), cerebellum (-38%, p<0.001), entorhinal cortex (-70%, 

p<0.001), hippocampus (-37%, p<0.001), hypothalamus (-48%, p<0.001), insular cortex 

(-53%, p<0.001), MPFC (-22%, p<0.001), OBFC (-36%, p<0.001) and striatum (-52%, 

p<0.001) (Table 1).  

 

 
 
Figure 4: Representative 18F-FDG PET images from SN and SS rats on day -1, 6, 11 and 25.  
 
 

 When investigating the correlation between regional 18F-FDG uptake and 

behavioral alterations, no significant correlations were found at all. 
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| Chapter 5

RSD induces a different glial activation pattern in SS rats than in SN rats 

A between-group comparison of the 11C-PBR28 PET data revealed significant differences 

in tracer uptake between groups at baseline (day -1) in several brain regions. Increased 
11C-PBR28 uptake was found in the cerebellum (+30%, p<0.001), cingulate cortex 

(+30%, p=0.003), FCA (+30%, p=0.003), MPFC (+46%, p<0.001) and OBFC (+44%, 

p<0.001) of SS rats, as compared to SN rats. 11C-PBR28 uptake at baseline was 

significantly lower in the entorhinal cortex (-14%, p=0.001) and hypothalamus (-26%, 

p<0.001) of SS rats than in SN rats. Smaller differences were found on day 6 and 25. On 

day 6, SS rats had a significantly increased uptake only in the cerebellum (+27%, 

p=0.023), whereas on day 25 SS rats even had significantly lower tracer uptake than SN 

rats in the cingulate cortex (-23%, p=0.024), hypothalamus (-25%, p=0.045) and motor / 

somatosensory cortex (-25%, p=0.012). 

A within-group comparison (Table 2) demonstrated that SN rats presented an 

increase in 11C-PBR28 uptake over time, which became significant 7 days after RSD (day 

11) and persistent until the end of the experiment (day 25) in the cingulate cortex (+22%, 

p=0.022; and +45%, p<0.001, respectively), MPFC (+26, p<0.001; and +44%, p<0.001) 

and OBFC (+18%, p<0.001; and 40%, p=0.001), when compared to baseline. Three 

weeks after RSD (day 25), tracer uptake was also significantly increased in the FCA 

(25%, p=0.012).  Conversely, a significant decrease in 11C-PBR28 uptake was observed 

on day 6 in the brainstem (-25%, p=0.006), hippocampus (-29%, p<0.001), hypothalamus 

(-40%, p<0.001), insular cortex (-18%, p=0.008), motor/somatosensory cortex (-14%, 

p=0.039) and striatum (-27%, p<0.001), followed by normalization to baseline levels up 

to day 25. The entorhinal cortex also presented a decrease in uptake on day 6, but without 

recovery until the end of the experiment (-33%, p<0.001).  

Taken together, these results suggest a migration of activated glia to RSD affected 

regions, followed by recovery in almost all glial depleted regions.  
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Glial, metabolic and behavioral response to recurrent psychosocial stress |
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RSD induces a different glial activation pattern in SS rats than in SN rats 

A between-group comparison of the 11C-PBR28 PET data revealed significant differences 

in tracer uptake between groups at baseline (day -1) in several brain regions. Increased 
11C-PBR28 uptake was found in the cerebellum (+30%, p<0.001), cingulate cortex 

(+30%, p=0.003), FCA (+30%, p=0.003), MPFC (+46%, p<0.001) and OBFC (+44%, 

p<0.001) of SS rats, as compared to SN rats. 11C-PBR28 uptake at baseline was 

significantly lower in the entorhinal cortex (-14%, p=0.001) and hypothalamus (-26%, 

p<0.001) of SS rats than in SN rats. Smaller differences were found on day 6 and 25. On 

day 6, SS rats had a significantly increased uptake only in the cerebellum (+27%, 

p=0.023), whereas on day 25 SS rats even had significantly lower tracer uptake than SN 

rats in the cingulate cortex (-23%, p=0.024), hypothalamus (-25%, p=0.045) and motor / 

somatosensory cortex (-25%, p=0.012). 

A within-group comparison (Table 2) demonstrated that SN rats presented an 

increase in 11C-PBR28 uptake over time, which became significant 7 days after RSD (day 

11) and persistent until the end of the experiment (day 25) in the cingulate cortex (+22%, 

p=0.022; and +45%, p<0.001, respectively), MPFC (+26, p<0.001; and +44%, p<0.001) 

and OBFC (+18%, p<0.001; and 40%, p=0.001), when compared to baseline. Three 

weeks after RSD (day 25), tracer uptake was also significantly increased in the FCA 

(25%, p=0.012).  Conversely, a significant decrease in 11C-PBR28 uptake was observed 

on day 6 in the brainstem (-25%, p=0.006), hippocampus (-29%, p<0.001), hypothalamus 

(-40%, p<0.001), insular cortex (-18%, p=0.008), motor/somatosensory cortex (-14%, 

p=0.039) and striatum (-27%, p<0.001), followed by normalization to baseline levels up 

to day 25. The entorhinal cortex also presented a decrease in uptake on day 6, but without 

recovery until the end of the experiment (-33%, p<0.001).  

Taken together, these results suggest a migration of activated glia to RSD affected 

regions, followed by recovery in almost all glial depleted regions.  
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Figure 5: A - Graphical representation of the opposite behavior between SN and SS rats regarding 11C-
PBR28 uptake in the cingulate cortex, frontal cortex association (FCA), medial prefrontal cortex (MPFC) 
and orbitofrontal cortex (OBFC) on day -1, 6, 11 and 25. *p<0.05, **p<0.01 and ***p<0.001. B: 
Representative 11C-PBR28 PET images from SN and SS rats on day -1, 6, 11 and 25. 

 

Conversely, within-group comparisons in SS rats only showed diminished 11C-

PBR28 tracer uptake in multiple brain regions. Immediately after RSD (day 6), a 

significant decrease was found in the brainstem (-21%, p=0.001), cerebellum (-11%, 

p=0.039), entorhinal cortex (-16%, p=0.02), FCA (-12%, p=0.01), hippocampus (-18%, 

p<0.001), hypothalamus (-14%, p=0.018), insular cortex (-17%, p=0.003), MPFC (-15%, 

p=0.003), OBFC (-17%, p<0.001) and striatum (-18%, p<0.001). On day 11, a similar 

decreased uptake pattern as on day 6 was observed. On day 25, lower 11C-PBR28 uptake 

than at baseline was still observed in the hippocampus (-7%, p=0.042), hypothalamus (-

12%, p=0.018), insular cortex (-11%, p<0.001), MPFC (-11%, p<0.001), motor / 

somatosensory cortex (-17%, p=0.039), OBFC (-11%, p<0.001) and striatum (-10%, 

p<0.001). RSD did not cause a significant increase in 11C-PBR28 uptake in any brain 

region of SS rat. The opposite pattern of 11C-PBR28 uptake over time in the cingulate 

cortex, FCA, MPFC and OBFC between SN and SS rats is depicted in Fig. 5. When 

investigating whether the 11C-PBR28 uptake was related to the observed behavioral 

outcomes, no correlations were found at all.  

 

RSD induces increased levels of IL-1β and IL-10 in the brain of SN rats  

On day 25, significantly higher levels of IL-1β were observed in the cerebellum (SN: 618 

pg/mg, IQR 352-959 vs. SS: 382 pg/mg, IQR 287-458, p=0.036), frontal cortex (SN: 601 

pg/mg, IQR 316-796 vs. SS: 269 pg/mg, IQR 243–318, p=0.003), hippocampus (SN: 614 

pg/mg, IQR 478-955 vs. SS: 295 pg/mg, IQR 259-387, p=0.004) (Fig.6-A) and in the 

parietal/temporal/occipital (P/T/O) cortex (SN: 576 pg/mg, IQR 467-947 vs. SS: 268 

pg/mg, IQR 257-315, p=0.007) (Fig. 6-C) of SN rats than in SS rats. Also, IL-1β levels 

strongly correlated in a positive manner with 11C-PBR28 uptake in the cingulate cortex 

of SN rats (rs=0.94, p=0.005) (Fig. 6-D). No significant between-group differences in IL-

6 levels were observed in any of the investigated brain regions. However, a trend towards 

significance was observed when comparing the levels of IL-6 in the cerebellum between 

SN and SS rats (SN: 2730 pg/mg, IQR 1878-4205 vs. SS: 1791 pg/mg, IQR 1134-2196, 

p=0.068). Moreover, IL-6 levels in the cerebellum of SN rats positively correlated with 
11C-PBR28 uptake (rs=0.86, p=0.014) (Fig. 6-E). Due to technical issues, IL-10 levels 

were only measured in the P/T/O cortex. SN rats presented significantly higher levels of 

IL-10 in the P/T/O cortex (SN: 867 pg/mg, IQR 784-1547 vs. SS: 473 pg/mg, IQR 351-

579, p=0.002) than SS rats. 
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Figure 5: A - Graphical representation of the opposite behavior between SN and SS rats regarding 11C-
PBR28 uptake in the cingulate cortex, frontal cortex association (FCA), medial prefrontal cortex (MPFC) 
and orbitofrontal cortex (OBFC) on day -1, 6, 11 and 25. *p<0.05, **p<0.01 and ***p<0.001. B: 
Representative 11C-PBR28 PET images from SN and SS rats on day -1, 6, 11 and 25. 

 

Conversely, within-group comparisons in SS rats only showed diminished 11C-

PBR28 tracer uptake in multiple brain regions. Immediately after RSD (day 6), a 

significant decrease was found in the brainstem (-21%, p=0.001), cerebellum (-11%, 

p=0.039), entorhinal cortex (-16%, p=0.02), FCA (-12%, p=0.01), hippocampus (-18%, 

p<0.001), hypothalamus (-14%, p=0.018), insular cortex (-17%, p=0.003), MPFC (-15%, 

p=0.003), OBFC (-17%, p<0.001) and striatum (-18%, p<0.001). On day 11, a similar 

decreased uptake pattern as on day 6 was observed. On day 25, lower 11C-PBR28 uptake 

than at baseline was still observed in the hippocampus (-7%, p=0.042), hypothalamus (-

12%, p=0.018), insular cortex (-11%, p<0.001), MPFC (-11%, p<0.001), motor / 

somatosensory cortex (-17%, p=0.039), OBFC (-11%, p<0.001) and striatum (-10%, 

p<0.001). RSD did not cause a significant increase in 11C-PBR28 uptake in any brain 

region of SS rat. The opposite pattern of 11C-PBR28 uptake over time in the cingulate 

cortex, FCA, MPFC and OBFC between SN and SS rats is depicted in Fig. 5. When 

investigating whether the 11C-PBR28 uptake was related to the observed behavioral 

outcomes, no correlations were found at all.  

 

RSD induces increased levels of IL-1β and IL-10 in the brain of SN rats  

On day 25, significantly higher levels of IL-1β were observed in the cerebellum (SN: 618 

pg/mg, IQR 352-959 vs. SS: 382 pg/mg, IQR 287-458, p=0.036), frontal cortex (SN: 601 

pg/mg, IQR 316-796 vs. SS: 269 pg/mg, IQR 243–318, p=0.003), hippocampus (SN: 614 

pg/mg, IQR 478-955 vs. SS: 295 pg/mg, IQR 259-387, p=0.004) (Fig.6-A) and in the 

parietal/temporal/occipital (P/T/O) cortex (SN: 576 pg/mg, IQR 467-947 vs. SS: 268 

pg/mg, IQR 257-315, p=0.007) (Fig. 6-C) of SN rats than in SS rats. Also, IL-1β levels 

strongly correlated in a positive manner with 11C-PBR28 uptake in the cingulate cortex 

of SN rats (rs=0.94, p=0.005) (Fig. 6-D). No significant between-group differences in IL-

6 levels were observed in any of the investigated brain regions. However, a trend towards 

significance was observed when comparing the levels of IL-6 in the cerebellum between 

SN and SS rats (SN: 2730 pg/mg, IQR 1878-4205 vs. SS: 1791 pg/mg, IQR 1134-2196, 

p=0.068). Moreover, IL-6 levels in the cerebellum of SN rats positively correlated with 
11C-PBR28 uptake (rs=0.86, p=0.014) (Fig. 6-E). Due to technical issues, IL-10 levels 

were only measured in the P/T/O cortex. SN rats presented significantly higher levels of 

IL-10 in the P/T/O cortex (SN: 867 pg/mg, IQR 784-1547 vs. SS: 473 pg/mg, IQR 351-

579, p=0.002) than SS rats. 
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Figure 6 – A: Pro-inflammatory cytokines IL-1β and B: IL-6 levels in the frontal cortex, hippocampus, 
cerebellum and parietal/temporal/occipital cortex (P/T/O ctx.) of SN and SS rats. C: Anti-inflammatory 
cytokine IL-10 levels in the P/T/O ctx. between SN and SS rats. *p<0.05, **p<0.01. D: Spearman (rs) 
correlation between 11C-PBR28 uptake and IL-1β frontal cortex levels quantified through ELISA in the 
brain of SN and SS rats on day 25. E: Spearman (rs) correlation between 11C-PBR28 uptake and IL-6 
cerebellar levels quantified through ELISA in brain of SN and SS rats on day 25. 
 

RSD significantly increases corticosterone levels in SN rats, while a recurrence of RSD 

in SS rats blunts the corticosterone response  

In order to investigate the effect of RSD on corticosterone release, blood samples were 

taken on day -1, 6, 11 and 25. A significant difference in corticosterone levels between 

groups was already found at baseline (SN: 240±38 nmol/L vs. SS: 383±56 nmol/L, 

p=0.036). The within-group analysis of corticosterone levels revealed a significant 

increase in the corticosterone levels in SN rats on day 11 (+61%, p=0.015) and 25 (+67%, 

p=0.040), whereas corticosterone levels were significantly decreased in SS rats on day 11 

(-28%, p=0.036) and 25 (-51%, p<0.001), when compared to baseline levels. 

Consequently, significant between-group differences were found on day 11 (SN: 386±68 

nmol/L vs. SS: 275±51 nmol/L, p=0.001) and day 25 (SN: 399±75 nmol/L vs. SS: 187±32 

nmol/L, p<0.001) (Fig. 7-A). 

 

 

 

Corticosterone levels are correlated with increased 11C-PBR28 uptake in frontal cortical 

areas of SN rats 

Positive correlations between corticosterone levels and 11C-PBR28 uptake (SUV) on day 

11 were found in the MPFC (rs= 0.74, p=0.037) and in the OBFC (rs= 0.88, p=0.004) of 

SN rats (Fig. 7-B and C, respectively). No significant correlations between corticosterone 

levels and tracer uptake in any other brain region were found at any time point. Also, no 

significant correlations between corticosterone levels and 11C-PBR28 uptake were found 

in any brain region of SS rats at any time point. However, a very strong and positive 

correlation (rs=1.0, p=0.01) between corticosterone levels and the anti-inflammatory 

cytokine IL-10 was found in the P/T/O cortex of SS rats. When investigating the 

relationship between 18F-FDG and corticosterone levels, no significant correlations were 

found in any brain region of either SN or SS rats. 

 

 
 
Figure 7 – A: Corticosterone levels were altered in a different manner in SN as compared to SS rats. A 
between-group difference was already apparent at baseline, with SS rats displaying higher corticosterone 
levels than SN rats (p<0.05). Corticosterone levels increased over time in SN rats, being significantly higher 
than SS rats on day 11 (p<0.01) and 25 (p<0.001). *p<0.05, **p<0.01 and ***p<0.001. B: Spearman 
correlation (rs) between 11C-PBR28 uptake (SUV) in the medial prefrontal cortex (MPFC) and 
corticosterone levels (nmol/L) on day 11 for SN and SS rats. C: Spearman correlation (rs) between 11C-
PBR28 uptake (SUV) in the orbitofrontal cortex (OBFC) and corticosterone levels (nmol/L) on day 11 for 
SN and SS rats.  
 

Discussion 

Chronic stress may have long-lasting effects even after the stressor has been eliminated. 

So far, the cognitive and behavioral effects of RSD, as a model for psychosocial stress, 

have only been evaluated shortly after the stressful paradigm. In the present study, we 

demonstrated that a previous exposure to RSD during adolescence moderates glial 

activation, brain cytokine and corticosterone responses after a second exposure to the 

stressful paradigm in aged rats. Moreover, previous exposure to RSD provoked stress-

induced depressive-like behavior in SS rats. In contrast, SN rats exposed to RSD had 
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Figure 6 – A: Pro-inflammatory cytokines IL-1β and B: IL-6 levels in the frontal cortex, hippocampus, 
cerebellum and parietal/temporal/occipital cortex (P/T/O ctx.) of SN and SS rats. C: Anti-inflammatory 
cytokine IL-10 levels in the P/T/O ctx. between SN and SS rats. *p<0.05, **p<0.01. D: Spearman (rs) 
correlation between 11C-PBR28 uptake and IL-1β frontal cortex levels quantified through ELISA in the 
brain of SN and SS rats on day 25. E: Spearman (rs) correlation between 11C-PBR28 uptake and IL-6 
cerebellar levels quantified through ELISA in brain of SN and SS rats on day 25. 
 

RSD significantly increases corticosterone levels in SN rats, while a recurrence of RSD 

in SS rats blunts the corticosterone response  

In order to investigate the effect of RSD on corticosterone release, blood samples were 

taken on day -1, 6, 11 and 25. A significant difference in corticosterone levels between 

groups was already found at baseline (SN: 240±38 nmol/L vs. SS: 383±56 nmol/L, 

p=0.036). The within-group analysis of corticosterone levels revealed a significant 

increase in the corticosterone levels in SN rats on day 11 (+61%, p=0.015) and 25 (+67%, 

p=0.040), whereas corticosterone levels were significantly decreased in SS rats on day 11 

(-28%, p=0.036) and 25 (-51%, p<0.001), when compared to baseline levels. 

Consequently, significant between-group differences were found on day 11 (SN: 386±68 

nmol/L vs. SS: 275±51 nmol/L, p=0.001) and day 25 (SN: 399±75 nmol/L vs. SS: 187±32 

nmol/L, p<0.001) (Fig. 7-A). 

 

 

 

Corticosterone levels are correlated with increased 11C-PBR28 uptake in frontal cortical 

areas of SN rats 

Positive correlations between corticosterone levels and 11C-PBR28 uptake (SUV) on day 

11 were found in the MPFC (rs= 0.74, p=0.037) and in the OBFC (rs= 0.88, p=0.004) of 

SN rats (Fig. 7-B and C, respectively). No significant correlations between corticosterone 

levels and tracer uptake in any other brain region were found at any time point. Also, no 

significant correlations between corticosterone levels and 11C-PBR28 uptake were found 

in any brain region of SS rats at any time point. However, a very strong and positive 

correlation (rs=1.0, p=0.01) between corticosterone levels and the anti-inflammatory 

cytokine IL-10 was found in the P/T/O cortex of SS rats. When investigating the 

relationship between 18F-FDG and corticosterone levels, no significant correlations were 

found in any brain region of either SN or SS rats. 

 

 
 
Figure 7 – A: Corticosterone levels were altered in a different manner in SN as compared to SS rats. A 
between-group difference was already apparent at baseline, with SS rats displaying higher corticosterone 
levels than SN rats (p<0.05). Corticosterone levels increased over time in SN rats, being significantly higher 
than SS rats on day 11 (p<0.01) and 25 (p<0.001). *p<0.05, **p<0.01 and ***p<0.001. B: Spearman 
correlation (rs) between 11C-PBR28 uptake (SUV) in the medial prefrontal cortex (MPFC) and 
corticosterone levels (nmol/L) on day 11 for SN and SS rats. C: Spearman correlation (rs) between 11C-
PBR28 uptake (SUV) in the orbitofrontal cortex (OBFC) and corticosterone levels (nmol/L) on day 11 for 
SN and SS rats.  
 

Discussion 

Chronic stress may have long-lasting effects even after the stressor has been eliminated. 

So far, the cognitive and behavioral effects of RSD, as a model for psychosocial stress, 

have only been evaluated shortly after the stressful paradigm. In the present study, we 

demonstrated that a previous exposure to RSD during adolescence moderates glial 

activation, brain cytokine and corticosterone responses after a second exposure to the 

stressful paradigm in aged rats. Moreover, previous exposure to RSD provoked stress-

induced depressive-like behavior in SS rats. In contrast, SN rats exposed to RSD had 
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increased levels of glial activation, production of pro-inflammatory cytokines and higher 

levels of corticosterone. RSD at old age induced a decrease in brain metabolism and 

anxiety-like behavior, irrespective of previous exposure to the psychosocial stressor.  

The effects of a previous exposure to a stressful condition were already apparent 

in the body weight measurements during the exposure of the aged rats to RSD. SS rats 

lost significantly more weight during the 5-day RSD protocol than SN rats. However, 

from experimental day 4 onwards, both groups changed body weight at the same rate. 

Behaviourally, SS rats had a more exacerbated reaction to the recurrence of the stressful 

exposure. While both groups demonstrated anxiety-like behaviour and decreased 

locomotor activity in the OF test, only SS rats presented anhedonic-like behaviour. The 

absence of anhedonic behaviour in SN rats adds to the hypothesis that the adult brain is 

more resilient to stress-induced behavioural alterations than the adolescent brain (26). 

The previous exposure of SS rats to RSD during adolescence mainly affected areas linked 

with reward, such as the PFC and OBFC (7). Priming may have made these regions more 

vulnerable and therefore the secondary stressful stimuli might have provoked a more 

exacerbated depressive-like response. These results seem to be in agreement with the 

clinical observation that a history of stress exposures during adolescence can be a 

precursor to depression in adulthood (51). Previous exposure to RSD did not affect 

cognition in the NOR test, in accordance with other studies that evaluated long-term 

memory impairment in a rodent stress model (22; 52).  

RSD significantly reduced brain glucose metabolism (18F-FDG uptake) in both 

groups, although with different temporal patterns. SS rats showed a large global decrease 

in glucose metabolism on day 11, whereas SN rats presented a subtle decrease in glucose 

metabolism on day 25. Consequently, SS rats displayed lower global 18F-FDG uptake on 

day 11 than SN rats. The reduction in brain glucose metabolism can be considered as a 

surrogate marker of brain activity and thus seems to reflect the reduction in general 

activity (depressive-like behaviour) observed after RSD. In general, these findings are in 

accordance with the reduced brain glucose metabolism observed in patients with MDD 

(11–14) 

Our most interesting finding was the opposite glial response to stress between 

groups, as demonstrated by 11C-PBR28 PET and brain cytokines levels. Baseline 

measurements showed higher 11C-PBR28 uptake (indicative of glial activation) in the 

cerebellum, cingulate cortex, FCA, MPFC, and OBFC of SS rats than in SN rats. This 

suggests that exposure to RSD during adolescence primed glial cells (53; 54), inducing 

an increased pro-inflammatory profile during ageing. Increasing glial activation during 

healthy ageing has already been demonstrated both in rodents (55) and humans (56), but 

priming of microglia by RSD appears to exacerbate the neuroinflammatory profile during 

ageing. After exposure of aged SN rats to RSD, an increase in tracer uptake was found in 

the cingulate cortex, MPFC, and OBFC, which persisted until the end of the study. This 

data is in accordance with glial activation following RSD demonstrated in adolescent rats 

(22). These results are also in line with recent clinical findings that indicate increased 

TSPO expression in the prefrontal cortex and cingulate cortex of MDD patients (24; 57). 
11C-PBR28 uptake in the cingulate cortex of SN rats correlated with IL-1β levels, 

suggesting an important role of the cingulate cortex in the induction of depressive-

behaviour after exposure to stressful events (58). Interestingly, SS rats demonstrated 

persistently decreased 11C-PBR28 uptake in response to the recurrence of RSD in several 

brain regions such as the entorhinal cortex, FCA, hippocampus, hypothalamus, insular 

cortex, MPFC, OBFC, and striatum. This reversed glial response to a recurrence of 

stressful stimuli might be considered as either an adaptive or maladaptive response to 

recurrent stress, highlighting the need for further research to unveil such phenomena. As 

an adaptive approach, blunting of glial response might be considered as a protective 

mechanism against hyperactivity of the immune system (59). Decreased microglial 

activation upon repeated stimuli has recently been described as a hypo-active tolerant 

phenotype, characterized by a decreased cytokine response to proinflammatory stimuli 

(60). In agreement with the described phenotype, our cytokine measurements displayed 

significantly lower levels of the pro-inflammatory cytokine IL-1β in the cerebellum, 

frontal cortex, hippocampus and P/T/O cortex of SS rats, as compared to SN rats. The 

anti-inflammatory cytokine IL-10 was also significantly decreased in SS rats. On the 

other hand, a maladaptive response refers to the cumulative effects generated after 

repeated stress exposure (i.e. allostatic overload), leading to an inefficient 

(neuro)immunological and neuroendocrine response to recurrent RSD (61; 62). Further 

studies are required to establish the dynamic role of glial cells in these neurobiological 

responses. 

In order to measure the stress reactivity of the HPA axis in SN and SS rats, 

corticosterone was measured at several time points after RSD. Our measurements 

demonstrated a differential corticosterone secretion pattern between groups. SN rats 

showed a significant increase in corticosterone after RSD exposure, which is in agreement 

with previous studies in adolescent rats that evaluated corticosterone response shortly 
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increased levels of glial activation, production of pro-inflammatory cytokines and higher 

levels of corticosterone. RSD at old age induced a decrease in brain metabolism and 

anxiety-like behavior, irrespective of previous exposure to the psychosocial stressor.  

The effects of a previous exposure to a stressful condition were already apparent 

in the body weight measurements during the exposure of the aged rats to RSD. SS rats 

lost significantly more weight during the 5-day RSD protocol than SN rats. However, 

from experimental day 4 onwards, both groups changed body weight at the same rate. 

Behaviourally, SS rats had a more exacerbated reaction to the recurrence of the stressful 

exposure. While both groups demonstrated anxiety-like behaviour and decreased 

locomotor activity in the OF test, only SS rats presented anhedonic-like behaviour. The 

absence of anhedonic behaviour in SN rats adds to the hypothesis that the adult brain is 

more resilient to stress-induced behavioural alterations than the adolescent brain (26). 

The previous exposure of SS rats to RSD during adolescence mainly affected areas linked 

with reward, such as the PFC and OBFC (7). Priming may have made these regions more 

vulnerable and therefore the secondary stressful stimuli might have provoked a more 

exacerbated depressive-like response. These results seem to be in agreement with the 

clinical observation that a history of stress exposures during adolescence can be a 

precursor to depression in adulthood (51). Previous exposure to RSD did not affect 

cognition in the NOR test, in accordance with other studies that evaluated long-term 

memory impairment in a rodent stress model (22; 52).  

RSD significantly reduced brain glucose metabolism (18F-FDG uptake) in both 

groups, although with different temporal patterns. SS rats showed a large global decrease 

in glucose metabolism on day 11, whereas SN rats presented a subtle decrease in glucose 

metabolism on day 25. Consequently, SS rats displayed lower global 18F-FDG uptake on 

day 11 than SN rats. The reduction in brain glucose metabolism can be considered as a 

surrogate marker of brain activity and thus seems to reflect the reduction in general 

activity (depressive-like behaviour) observed after RSD. In general, these findings are in 

accordance with the reduced brain glucose metabolism observed in patients with MDD 

(11–14) 

Our most interesting finding was the opposite glial response to stress between 

groups, as demonstrated by 11C-PBR28 PET and brain cytokines levels. Baseline 

measurements showed higher 11C-PBR28 uptake (indicative of glial activation) in the 

cerebellum, cingulate cortex, FCA, MPFC, and OBFC of SS rats than in SN rats. This 

suggests that exposure to RSD during adolescence primed glial cells (53; 54), inducing 

an increased pro-inflammatory profile during ageing. Increasing glial activation during 

healthy ageing has already been demonstrated both in rodents (55) and humans (56), but 

priming of microglia by RSD appears to exacerbate the neuroinflammatory profile during 

ageing. After exposure of aged SN rats to RSD, an increase in tracer uptake was found in 

the cingulate cortex, MPFC, and OBFC, which persisted until the end of the study. This 

data is in accordance with glial activation following RSD demonstrated in adolescent rats 

(22). These results are also in line with recent clinical findings that indicate increased 

TSPO expression in the prefrontal cortex and cingulate cortex of MDD patients (24; 57). 
11C-PBR28 uptake in the cingulate cortex of SN rats correlated with IL-1β levels, 

suggesting an important role of the cingulate cortex in the induction of depressive-

behaviour after exposure to stressful events (58). Interestingly, SS rats demonstrated 

persistently decreased 11C-PBR28 uptake in response to the recurrence of RSD in several 

brain regions such as the entorhinal cortex, FCA, hippocampus, hypothalamus, insular 

cortex, MPFC, OBFC, and striatum. This reversed glial response to a recurrence of 

stressful stimuli might be considered as either an adaptive or maladaptive response to 

recurrent stress, highlighting the need for further research to unveil such phenomena. As 

an adaptive approach, blunting of glial response might be considered as a protective 

mechanism against hyperactivity of the immune system (59). Decreased microglial 

activation upon repeated stimuli has recently been described as a hypo-active tolerant 

phenotype, characterized by a decreased cytokine response to proinflammatory stimuli 

(60). In agreement with the described phenotype, our cytokine measurements displayed 

significantly lower levels of the pro-inflammatory cytokine IL-1β in the cerebellum, 

frontal cortex, hippocampus and P/T/O cortex of SS rats, as compared to SN rats. The 

anti-inflammatory cytokine IL-10 was also significantly decreased in SS rats. On the 

other hand, a maladaptive response refers to the cumulative effects generated after 

repeated stress exposure (i.e. allostatic overload), leading to an inefficient 

(neuro)immunological and neuroendocrine response to recurrent RSD (61; 62). Further 

studies are required to establish the dynamic role of glial cells in these neurobiological 

responses. 

In order to measure the stress reactivity of the HPA axis in SN and SS rats, 

corticosterone was measured at several time points after RSD. Our measurements 

demonstrated a differential corticosterone secretion pattern between groups. SN rats 

showed a significant increase in corticosterone after RSD exposure, which is in agreement 

with previous studies in adolescent rats that evaluated corticosterone response shortly 
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after RSD (19; 22; 29). SS rats, on the other hand, had increased corticosterone levels at 

baseline, which decreased significantly over time. A similar blunted corticosterone 

response was recently observed in a rat model of chronic unpredictable stress (63).  In 

adult patients with a history of early life stress, blunted cortisol response was also 

observed after exposure to acute stressors or dexamethasone suppression (64), supporting 

the hypothesis that previous trauma is able to modulate the neuroendocrine response to 

subsequent events.  

Interestingly, a significant positive correlation was only found between 

corticosterone levels and 11C-PBR28 uptake in the MPFC and OBFC of SN rats. No such 

correlations were found in SS rats. No correlations between corticosterone levels and 18F-

FDG uptake were observed at all. These results suggest that activation of the HPA axis 

and thus increased corticosterone levels might be involved in glial activation in response 

to a novel stress exposure (as in SN rats). The lack of correlation in SS rats might suggest 

that other pathways than HPA axis activation (not investigated in the present article) are 

involved in the decreased glial response to a recurrence of a stressful stimuli and the 

associated anhedonic- and anxiety-like behaviour displayed by SS rats. 

The present study has some limitations, mainly due to its longitudinal design. 

First, PET findings were not confirmed by immunohistochemistry of microglia and/or 

astrocytes alterations. Instead, quantification of pro- and anti-inflammatory levels of 

cytokines were used as a proxy for glial activation. Second, tracer uptake was measured 

as SUV, a simple semi-quantitative measure that allows individual monitoring over time 

(65). In order to obtain a fully quantitative measure of tracer binding to its receptor (e.g. 

TSPO), the optimal procedure would be to perform kinetic modelling of 11C-PBR28 

kinetics, but this would require a terminal procedure with arterial blood sampling, since 

no reference region devoid of TSPO is available within the brain. Due to the longitudinal 

nature of the study, such methodology was not feasible. However, SUV measurements of 
11C-PBR28 uptake were strongly correlated with the volume of distribution (VT) in 

previous studies (25; 66), suggesting that the SUV can be used to quantify 11C-PBR28 

uptake in order to simplify the imaging procedure while retaining reliable quantitative 

information. 

In conclusion, we have demonstrated for the first time a dampened glial activation 

after a recurrence of psychosocial stress in aged rats, in conjunction with more severe 

depressive- and anxiety-like behavior. The immune response in stress-sensitized rats was 

not correlated with corticosterone levels, pointing towards an uninvestigated pathway that 

might either play a protective role that preserves the brain from further detrimental 

stimuli, or a maladaptive response to the recurrence of stressful stimuli.  
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after RSD (19; 22; 29). SS rats, on the other hand, had increased corticosterone levels at 

baseline, which decreased significantly over time. A similar blunted corticosterone 

response was recently observed in a rat model of chronic unpredictable stress (63).  In 

adult patients with a history of early life stress, blunted cortisol response was also 

observed after exposure to acute stressors or dexamethasone suppression (64), supporting 

the hypothesis that previous trauma is able to modulate the neuroendocrine response to 

subsequent events.  

Interestingly, a significant positive correlation was only found between 

corticosterone levels and 11C-PBR28 uptake in the MPFC and OBFC of SN rats. No such 

correlations were found in SS rats. No correlations between corticosterone levels and 18F-

FDG uptake were observed at all. These results suggest that activation of the HPA axis 

and thus increased corticosterone levels might be involved in glial activation in response 

to a novel stress exposure (as in SN rats). The lack of correlation in SS rats might suggest 

that other pathways than HPA axis activation (not investigated in the present article) are 

involved in the decreased glial response to a recurrence of a stressful stimuli and the 

associated anhedonic- and anxiety-like behaviour displayed by SS rats. 

The present study has some limitations, mainly due to its longitudinal design. 

First, PET findings were not confirmed by immunohistochemistry of microglia and/or 

astrocytes alterations. Instead, quantification of pro- and anti-inflammatory levels of 

cytokines were used as a proxy for glial activation. Second, tracer uptake was measured 

as SUV, a simple semi-quantitative measure that allows individual monitoring over time 

(65). In order to obtain a fully quantitative measure of tracer binding to its receptor (e.g. 

TSPO), the optimal procedure would be to perform kinetic modelling of 11C-PBR28 

kinetics, but this would require a terminal procedure with arterial blood sampling, since 

no reference region devoid of TSPO is available within the brain. Due to the longitudinal 

nature of the study, such methodology was not feasible. However, SUV measurements of 
11C-PBR28 uptake were strongly correlated with the volume of distribution (VT) in 

previous studies (25; 66), suggesting that the SUV can be used to quantify 11C-PBR28 

uptake in order to simplify the imaging procedure while retaining reliable quantitative 

information. 

In conclusion, we have demonstrated for the first time a dampened glial activation 

after a recurrence of psychosocial stress in aged rats, in conjunction with more severe 

depressive- and anxiety-like behavior. The immune response in stress-sensitized rats was 

not correlated with corticosterone levels, pointing towards an uninvestigated pathway that 

might either play a protective role that preserves the brain from further detrimental 

stimuli, or a maladaptive response to the recurrence of stressful stimuli.  
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