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Extended abstract
Balanced truncation is a well-known model reduction method, originally intro-
duced for linear continuous-time invariant (LCTI) systems in the seminal work of
Moore [1], where realization theory, observability and controllability Gramians,
and Hankel singular values are the main ingredients. We refer the interested
reader to [2], [3] for an extensive insight into balanced truncation for LCTI
systems, and to [4] for an extension to the nonlinear case.
In the balancing approach, the reduction of the model is based on the elimina-
tion of almost non-controllable and almost non-observable states, that is, once
the system is balanced, the states corresponding to the small Hankel singular
values are truncated. Moreover, the reduced system preserves some properties
of the original one, such as asymptotic stability, observability and controllability.
Nonetheless, the structure of the system, e.g., port-Hamiltonian (PH) structure,
is not necessarily preserved after the order reduction. Another appealing fea-
ture of balanced truncation is that the error bound is well-known and is directly
related to the Hankel singular values [5], [6], [7].
An extension of balanced truncation is provided when the controllability and
observability Gramians are replaced by the so-called generalized Gramians [8],
[9], which are solutions to Lyapunov inequalities instead of the traditional equal-
ities. Hence, since the solution of the aforementioned inequalities is not unique,
the generalized Gramians provide some degrees of freedom during the balancing
process. Furthermore, the model reduction using this approach may lead to
a smaller error bound or structure preservation, see [10]. Moreover, a further
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extension to balancing is given by the so-called extended Gramians which are
characterized by solutions of specific linear matrix inequalities (LMIs). Indeed,
these LMIs have solution if and only if the Lyapunov inequalities related to
generalized balancing have solution. Accordingly, the extended balanced trun-
cation method provides additional degrees of freedom to impose a structure to
the reduced model. For further details on extended balancing and the related
LMIs, we refer the reader to [11], [12], [13].
This note is devoted to the model reduction of a particular class of linear sys-
tems, namely, LCTI PH systems1. This problem has been previously studied
for the nonlinear case in [14]. However, for the linear case, the conditions to
preserve the PH structure in the reduced model can be relaxed with the use of
extended Gramians to balance the system.

Problem formulation
The representation of a linear PH system is given by

Σ


ẋ = (J −R)Λx+Bu

y = B>Λu
H = 1

2x
>Λx

(1)

where x ∈ X ⊆ Rn is the state vector, for m ≤ n, u, y ∈ Rm are the input and
output vectors, respectively. The function H represents the Hamiltonian, with
Λ = Λ> > 0. The dissipation matrix is denoted by R = R> ≥ 0, J = −J>
is the interconnection matrix, and B determines the input port. To simplify
notation, in the sequel we define F : J −R.
To formulate the problem of structure preservation of linear PH systems, we
consider that the state can be split as x = [x>1 x>2 ]>. Where, x1 ∈ Rk is the
part of the state to be preserved after the reduction of the model and x2 ∈ Rk+1

is the part to be truncated. Hence, the dynamics and output of system (1) can
be rewritten as follows[

ẋ1
ẋ2

]
=

[
F11 F12
F21 F22

] [
Λ11 Λ12
Λ12 Λ22

] [
x1
x2

]
+
[
B1
B2

]
u

y =
[
B>1 B>2

] [Λ11 Λ12
Λ12 Λ22

] [
x1
x2

]
.

(2)

Therefore, the objective is to design an algorithm to balance the system and
at the same time ensure that Λ12 = 0. If the latter is achieved, the truncation
leads to the reduced order system

Σr


ẋ = F11Λ11x1 +B1u

yr = B>1 Λ11x1

Hr = 1
2x
>
1 Λ11x1,

(3)

which is clearly another linear PH system.
1For simplicity, henceforth we refer to these systems as linear PH systems.
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Balancing of linear PH systems
Assume that system (1) is asymptotically stable. Then, the observability and
controllability Lyapunov inequalities

QFΛ + ΛF>Q+ ΛBB>Λ ≤ 0, FΛP + PΛF> +BB> ≤ 0 (4)

have solutions Q = Q> > 0 and P = P> > 0. The matrices Q,P ∈ Rn×n are
the generalized observability and controllability Gramians, respectively. More-
over, since for a balanced system both Gramians are diagonal, a solution to
the problem of structure preservation takes place when one of the following
identities solves one of the inequalities given in (4)

Q = δΛ, Q−1 = δΛ, P = δΛ, P−1 = δΛ,

where δ is a positive scalar. Nevertheless, some straightforward computations
show that the solutions above are equivalent to satisfy the condition

2δR−BB> ≥ 0, or 2
δ
R−BB> ≥ 0. (5)

Note that the inequality (5) holds only if R ∈ Im{B}, see [14]. Since, R and
B are system parameters, this latter condition can be restrictive. On the other
hand, in [13] has been proved that the inequalities (4) hold true if and only if
the following LMIs have solution[

−QA−A>Q− ΛBB>Λ Q− αS −A>S
Q− αS> − S>A S + S>

]
≥ 0 (6) −P−1A−A>P−1 −P−1 + (A> + βI)T −2P−1B

−P−1 + T>(A+ βI) T + T> 2T>B
−2B>P−1 2B>T 4I

 ≥ 0 (7)

where S, T ∈ Rn×n, A := FΛ, and α, β > 0 are scalars. In this case, the
triad (Q,S, α) is the extended observability Gramian and the triad (P−1, T, β)
is the inverse of the extended controllability Gramian. Furthermore, the system
is balanced when S = diag{σ1, · · · , σn}, T = diag{σ−1

1 , · · · , σ−1
n }. Therefore,

using the extended Gramians, the reduced model preserves the PH structure if
(6) or (7) holds for one of the following expressions

S = δΛ, S−1 = δΛ, T = δΛ, T−1 = δΛ.

Note that, the matrices S, T are free design parameters and the condition (5) is
not required anymore. As a consequence of the latter, the extended Gramians
enlarge the family of linear PH systems for which the reduced model preserves
the desired structure. Moreover, for balancing with extended Gramians, the
error bound is given by

‖Σ− Σr‖∞ ≤ 2
n∑

i=k+1
σi.
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In the final presentation of this work, we will include the corresponding proofs,
and further details of the development of the theory, along with an illustrative
example.
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