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Some Results on Exponential Synchronization of Nonlinear Systems
Vincent Andrieu , Bayu Jayawardhana , and Sophie Tarbouriech

Abstract—Based on recent works on transverse exponential sta-
bility, we establish some necessary and sufficient conditions for
the existence of a (locally) exponential synchronizing control law.
We show that the existence of a structured synchronizer is equiv-
alent to the existence of a stabilizer for the individual linearized
systems (on the synchronization manifold) by a linear state feed-
back. This, in turn, is also equivalent to the existence of a symmet-
ric covariant tensor field, which satisfies a control matrix function
inequality. Based on this result, we provide the construction of
such a synchronizer via backstepping approach. In some particu-
lar cases, we show how global exponential synchronization may be
obtained.

Index Terms—Lyapunov stability, multi-agent systems, synchro-
nization, lyapunov methods.

I. INTRODUCTION

Controlled synchronization, as a coordinated control problem of a
group of autonomous systems, has been regarded as one of the impor-
tant group behaviors. It has found its relevance in many engineering
applications, such as the distributed control of (mobile) robotic systems,
the control and reconfiguration of devices in the context of Internet-
of-Things, and the synchronization of autonomous vehicles (see, for
example, [16]).

For linear systems, the solvability of this problem and, as well as,
the design of controller have been thoroughly studied in literature. To
name a few, we refer to the classical work on the nonlinear Goodwin
oscillators [13], to the synchronization of linear systems in [23] and
[25], and to the recent works in nonlinear systems [9]–[11], [21], [22].
For linear systems, the solvability of synchronization problem reduces
to the solvability of stabilization of individual systems by either an
output or state feedback. It has recently been established in [25] that for
linear systems, the solvability of the output synchronization problem is
equivalent to the existence of an internal model, which is a well-known
concept in the output regulation theory.
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Toulouse 31077, France (e-mail: tarbour@laas.fr).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2017.2789244

The generalization of these results to the nonlinear setting has ap-
peared in the literature (see, for example, [8]–[11], [14], [15], [17],
[18], [21], and [22]). In these works, the synchronization of nonlinear
systems with a fixed network topology can be solved under various
different sufficient conditions.

For instance, the application of passivity theory plays a key role in
[8], [9], [14], [18], [21], and [22]. By using the input/output passivity
property, the synchronization control law in these works can simply be
given by the relative output measurement. Another approach for syn-
chronizing nonlinear systems is by using the output regulation theory
as pursued in [11], [15], and [17]. In these papers, the synchronization
problem is reformulated as an output regulation problem, where the
output of each system has to track an exogeneous signal driven by a
common exosystem, and the resulting synchronization control law is
again given by the relative output measurement. Finally, another syn-
chronization approach that has gained interest in recent years is via
incremental stability [6] or other related notions, such as convergent
systems [17]. If we restrict ourselves to the class of incremental input-
to-state stability (ISS), as discussed in [6], the synchronizer can again
be based on the relative output/state measurement.

Despite assuming a fixed network topology, necessary and sufficient
conditions for the solvability of synchronization problem of nonlin-
ear systems is not yet established. Therefore, one of our main con-
tributions of this paper is the characterization of controlled synchro-
nization for general nonlinear systems with a fixed network topol-
ogy. Using recent results on the transverse exponential contraction,
we establish some necessary and sufficient conditions for the solvabil-
ity of a (locally) exponential synchronization. It extends the work in
[2] where only two interconnected systems are discussed. We show
that a necessary condition for achieving synchronization is the exis-
tence of a symmetric covariant tensor field of order two whose Lie
derivative has to satisfy a control matrix function (CMF) inequality,
which is similar to the control Lyapunov function and detailed later in
Section III.

This paper extends our preliminary work presented in [4]. In par-
ticular, we improve some results by relaxing some conditions (see the
necessary condition section). Additionally, we present the backstep-
ping approach that allows us to construct a CMF-based synchronizer
as well as the extension of the local synchronization result to the global
one for a specific case. Note that all proofs are given in the long version
of this paper in [5].

This paper is organized as follows. We present the problem for-
mulation of synchronization in Section II. In Section III, we present
our first main results on necessary conditions to the solvability of
the synchronization problem. Some sufficient conditions for local or
global synchronization are given in Section IV. A constructive syn-
chronizer design is presented in Section V, where a backstepping
procedure is given for designing a CMF-based synchronizing control
law.
Notation. The vector of all ones with a dimension N is denoted
by 11N . We denote the identity matrix of dimension n by In or I
when no confusion is possible. Given M1 , . . . , MN square matrices,
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diag{M1 , . . . , MN } is the matrix defined as

diag{M1 , . . . , MN } =

⎡
⎢⎣

M1

. . .
MN

⎤
⎥⎦ .

Given a vector field f on Rn and a covariant two tensor P : Rn →
Rm ×m , P is said to have a derivative along f denoted df P if the
following limit exists:

df P (z) = lim
h→0

P (Z(z, h)) − P (z)
h

(1)

where Z(z, ·) is the flow of the vector field f with an initial state z
in Rn . In that case and when m = n and f is C1 , Lf P is the Lie
derivative of the tensor along f , which is defined as

Lf P (z) = df P (z) + P (z)
∂f

∂z
(z) +

∂f

∂z
(z)�P (z) . (2)

II. PROBLEM DEFINITION

A. System Description and Communication Topology

In this note, we consider the problem of synchronizing N identical
nonlinear systems with N ≥ 2. For every i = 1, . . . , N , the ith system
Σi is described by

ẋi = f (xi ) + g(xi )ui , i = 1, . . . , N (3)

where xi ∈ Rn , ui ∈ Rp , and the functions f and g are assumed to
be C2 . In this setting, all the systems have the same drift vector field
f and the same control vector field g : Rn → Rn×p , but not the same
controls in Rp . For simplicity of notation, we denote the complete state

variables by x =
[
x�

1 . . . x�
N

]�
in RN n .

The synchronization manifold D, where the state variables of differ-
ent systems agree with each other, is defined by

D = {(x1 , . . . , xN ) ∈ RN n | x1 = x2 = · · · = xN }.
For every x in RN n , we denote the Euclidean distance to the set D
by |x|D.

The communication graph G, which is used for synchronizing the
state through distributed control ui , i = 1, . . . , N , is assumed to be
an undirected graph and is defined by G = (V, E), where V is the set
of N nodes (where the ith node is associated to the system Σi ) and
E ⊂ V × V is a set of M edges that define the pairs of communicating
systems. Moreover, we assume that the graph G is connected.

Let us, for every edge k in G connecting node i to node j, label one
end (e.g., the node i) by a positive sign and the other end (e.g., the node
j) by a negative sign. The incidence matrix D that corresponds to G is
an N × M matrix such that

di,k =

⎧
⎨
⎩

+1 if node i is the positive end of edge k
−1 if node i is the negative end of edge k
0 otherwise.

Using D, the Laplacian matrix L can be given by L = DD� whose
kernel, by the connectedness of G, is spanned by 11N .

B. Synchronization Problem Formulation

Using the description of the interconnected systems via G, the state
synchronization control problem is defined as follows.

Definition 1: The control laws ui = φi (x), i = 1 . . . , N solve the
local uniform exponential synchronization problem for (3) if the fol-
lowing conditions hold:

1) for all noncommunicating pair (i, j) (i.e., (i, j) /∈ E)

∂φi

∂xj

(x) =
∂φj

∂xi

(x) = 0 ∀x ∈ RN n

2) for all x ∈ D, φ(x) = 0 (i.e., φ is zero on D); and
3) the manifold D of the closed-loop system

ẋi = f (xi ) + g(xi )φi (x), i = 1, . . . , N (4)

is uniformly exponentially stable, i.e., there exist positive constants
r, k, and λ > 0 such that for all x in RN n satisfying |x|D < r

|X(x, t)|D ≤ k exp(−λt) |x|D (5)

where X(x, t) denotes the solution initialiged from x, holds for all
t in the time domain of existence of solution.

When r = ∞, it is called the global uniform exponential synchro-
nization problem. 


In this definition, the condition 1) implies that the solution ui is a
distributed control law that requires only a local state measurement
from its neighbors in the graph G.

An important feature of our study is that we focus on exponential
stabilization of the synchronizing manifold. This allows us to rely on
the study developed in [2] (or [3]), in which an infinitesimal charac-
terization of exponential stability of a transverse manifold is given. As
it will be shown in the following section, this allows us to formalize
some necessary and sufficient conditions in terms of matrix functions
ensuring the existence of a synchronizing control law.

III. NECESSARY CONDITIONS

A. Infinitesimal Stabilizability Conditions

In [2], a first attempt has been made to give necessary conditions
for the existence of an exponentially synchronizing control law for
only two agents. In [3], the same problem has been addressed for
N agents but without any communication constraints (all agents can
communicate with all others). In both cases, it is shown that assuming
some bounds on derivatives of the vector fields and assuming that the
synchronizing control law is invariant by permutation of agents, the
following two properties are necessary conditions.

IS Infinitesimal Stabilizability: The couple (f, g) is such that the n-
dimensional manifold {z̃ = 0} of the transversally linear system

˙̃z =
∂f

∂z
(z)z̃ + g(z)ũ (6a)

ż = f (z) (6b)

with z̃ in Rn and z in Rn is stabilizable by a state feedback that is
linear in z̃ (i.e., ũ = h(z)z̃ for some function h : Rn → Rp×n ).

CMF Control Matrix Function: For all positive definite matrices Q ∈
Rn×n , there exist a continuous function P : Rn → Rn×n , whose
values are symmetric positive definite matrices and strictly positive
real numbers p and p such that

p In ≤ P (z) ≤ p In (7)

holds for all z ∈ Rn , and the inequality (see (1) and (2))

v�Lf P (z)v ≤ −v�Qv (8)

holds for all (v, z) in Rn × Rn satisfying v�P (z)g(z) = 0.

An important feature of properties and CMF comes from the fact
that they are properties of each individual agent, independent of the
network topology. The first one is a local stabilizability property. The
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second one establishes that there exists a symmetric covariant ten-
sor field of order two denoted by P whose Lie derivative satisfies a
certain inequality in some specific directions. This type of condition
can be related to the notion of control Lyapunov function, which is
a characterization of stabilizability as studied by Artstein in [7] or
Sontag in [24]. This property can be regarded as an Artstein-like con-
dition. The dual of the CMF property has been thoroughly studied in
[19] when dealing with an observer design (see [19, eq. (8)]; see also
[1] or [2]).

B. Necessity of IS and CMF for Exponential Synchronization

We show that properties and CMF are still necessary conditions if one
considers a network of agents with a communication graph G as given
in Section II-A. Hence, as this is already the case for linear systems, we
recover the paradigm, which establishes that a necessary condition for
synchronization is a stabilizability property for each individual agent.

Theorem 1: Consider the interconnected systems in (3) with the
communication graph G and assume that there exists a control law

u = φ(x) where φ(x) =
[
φ�

1 (x) . . . φ�
N (x)

]�
in RN p that solves the

local uniform exponential synchronization for (3). Assume, moreover,
that g is bounded, f , g, and the φi s have bounded first and second
derivatives, and the closed-loop system is complete. Then, properties
and CMF hold.

Note that this theorem is a refinement of the result that is written in
[4] since we have removed an assumption related to the structure of the
control law.

The proof of this result can be found in [5].
In Section IV, we discuss the possibility to design an exponential

synchronizing control law based on these necessary conditions.

IV. SUFFICIENT CONDITION

A. Sufficient Conditions for Local Exponential Synchronization

The interest of the Property CMF, given in Section III-A, is to use
the symmetric covariant tensor P in the design of a local synchronizing
control law. Indeed, following one of the main results in [3], we get
the following sufficient condition for the solvability of (local) uniform
exponential synchronization problem. The first assumption is that, up to
a scaling factor, the control vector field g is a gradient field with P as a
Riemannian metric (see also [12] for similar integrability assumption).
The second one is related to the CMF property.

Theorem 2 (Local Sufficient Condition): Assume that g is bounded
and that f and g have bounded first and second derivatives. Also assume
that there exists a C2 function P : Rn → Rn×n whose values are
symmetric positive definite matrices and with a bounded derivative
that satisfies the following two conditions:
1) there exist a C2 function U : Rn → R that has bounded first

and second derivatives, and a C1 function α : Rn → Rp that has
bounded first and second derivatives such that

∂U

∂z
(z)� = P (z)g(z)α(z) (9)

holds for all z in Rn ; and
2) there exist a symmetric positive definite matrix Q and positive

constants p, p, and ρ > 0 such that (7) holds and

Lf P (z) − ρ
∂U

∂z
(z)�

∂U

∂z
(z) ≤ −Q (10)

holds for all z in Rn .
Then, given a connected graph G with associated Laplacian matrix

L = (Lij ), there exists a constant � such that the control law u = φ(x)

with φ =
[
φ�

1 . . . φ�
N

]�
given by

φi (x) = −�α(xi )
N∑

j=1

Lij U (xj ) (11)

with � ≥ � solves the local uniform exponential synchronization of (3).
Remark 1: Assumption (10) is stronger than the necessary condi-

tion CMF. Note, however, that employing some variation on Finsler
Lemma (see [3] for instance), it can be shown that these assumptions
are equivalent when x remains in a compact set.

Remark 2: Note that for all x = 11N ⊗ z = (z, . . . , z) in D and for
all (i, j) with i �= j

∂φi

∂xj

(x) = −�α(z)Lij
∂U

∂z
(z). (12)

Hence, for all x = 11N ⊗ z in D, we get

∂φ

∂x
(x) = −�L ⊗ α(z)

∂U

∂z
(z) . (13)

B. Sufficient Conditions for Global Exponential Synchronization

Note that in [3] with an extra assumption related to the metric (the
level sets of U are totally geodesic sets with respect to the Riemannian
metric obtained from P ), it is shown that global synchronization may
be achieved when considering only two agents that are connected. It
is still an open question to know if global synchronization may be
achieved in the general nonlinear context with more than two agents.
However, in the particular case, in which the matrix P (z) and the vector
field g are constant, global synchronization may be achieved as this is
shown in the following theorem.

Theorem 3 (Global Sufficient Condition): Assume that g(z) = G
and there exist a symmetric positive definite matrix P in Rn×n , a
symmetric positive definite matrix Q and ρ > 0 such that

P
∂f

∂z
(z) +

∂f

∂z
(z)�P − ρPGG�P ≤ −Q . (14)

Assume, moreover, that the graph is connected with Laplacian matrix
L. Then, there exist constants � and positive real numbers c1 , . . . , cN

such that the control law u = φ(x) with φ =
[
φ�

1 . . . φ�
N

]�
given by

φi (x) = −� ci

N∑
j=1

Lij G
�Pxj (15)

with � ≥ � solves the global uniform exponential synchronization
for (3).

Proof: Let cj = 1 for j = 2, . . . , N . Hence, only c1 is different
from 1 and remains to be selected. Let us denote e = (e2 , . . . , eN )
with ei = x1 − xi and z = x1 . Note that for i = 2, . . . , N , we have
the solution to the system (3) along with u defined in (15)

ėi = f (z) − � c1

N∑
j=1

L1j GG�Pxj

− f (z + ei ) + �

N∑
j=1

Lij GG�Pxj .

Note that L being a Laplacian, we have, for all i in [1, N ],
the equality

∑N
j=1 Lij = 0. Consequently, we can add the term

�c1
∑N

j=1 L1j GG�Px1 and substract the term �
∑N

j=1 Lij GG�Px1
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in the preceeding equation above so that for i = 2, . . . , N

ėi = f (z) − � c1

N∑
j=1

L1j GG�P (xj − x1 )

− f (z + ei ) + �
N∑

j=1

Lij GG�P (xj − x1 )

= f (z) − f (z + ei ) − �
N∑

j=2

(Lij − c1L1j ) GG�Pej .

One can check that these equations can be written compactly as

ė =
[∫ 1

0
Δ(z, e, s)ds + � (A(c1 ) ⊗ GG�P )

]
e

with A(c1 ) being a matrix in R(N −1)×(N −1) , which depends on the
parameter c1 and is obtained from the Laplacian as

A(c1 ) = − [L2:N ,2:N − c1L1 ,2:N 11N −1 ]

where

L =
[

L11 L1 ,2:N

L�
1 ,2:N L2:N ,2:N

]

and Δ is the (N − 1)n × n matrix valued function defined as

Δ(z, e, s) = Diag

{
∂f

∂z
(z − se2 ), . . . ,

∂f

∂z
(z − seN )

}
.

The following Lemma shows that by selecting c1 sufficiently small,
the matrix A satisfies the following property. Its proof is given in the
appendix.

Lemma 1: If the communication graph is connected, then there
exist sufficiently small c1 and μ > 0 such that

A(c1 ) + A(c1 )� ≤ −μI.

With this lemma in hand, we consider now the candidate Lyapunov
function V (e) = e�PN e , where PN = (IN −1 ⊗ P ). Note that along
the solution, the time derivative of this function satisfies

�̇

V (e) = 2e�PN

[∫ 1

0
Δ(z, e, s)ds + � (A(c1 ) ⊗ GG�P )

]
e.

Note that we have

PN Δ(z, e, s)

= diag

{
P

∂f

∂z
(z − se2 ), . . . , P

∂f

∂z
(z − seN )

}

and

2e�(IN −1 ⊗ P )(A(c1 ) ⊗ GG�P )e

= e�([A(c1 ) + A(c1 )�] ⊗ PGG�P )e

≤ −e�(μIN −1 ⊗ PGG�P )e .

Hence, we get
�̇

V (e) ≤ ∫ s

0 e�M (e, z, s)e ds, where M is the (N −
1)n × (N − 1)n matrix defined as

M (e, z, s) = diag {M2 (e, z, s), . . . , MN (e, z, s)}
with, for i = 2, . . . , N

Mi (e, z, s) = P
∂f

∂z
(z − sei ) +

∂f

∂z
(z − sei )�P

− 2�μPGG�P.

Note that by taking � sufficiently large, with (14), this

yields Mi (e, z, s) ≤ −Q. This immediately implies that
�̇
V (e) ≤

−e� (IN −1 ⊗ Q) e. This ensures exponential convergence of e
to zero on the time of existence of the solution. Let x̄ =
argminz∈Rn

∑N
i=1 |z − xi |2 . Note that we have

|e|2 ≤ 2
N∑

i=2

|xi − x̄|2 + 2(N − 1)|x̄ − x1 |2

≤ 2(N − 1)|x|2D (16)

|x|2D = min
z∈Rn

N∑
i=1

|z − xi |2

≤
N∑

i=1

|x1 − xi |2 = |e|2 . (17)

This yields global exponential synchronization of the closed-loop sys-
tem. �

In Section V, we show that the property CMF required to design a
distributed synchronizing control law can be obtained for a large class
of nonlinear systems. This is done via backstepping design.

V. CONSTRUCTION OF AN ADMISSIBLE TENSOR VIA BACKSTEPPING

A. Adding Derivative (or Backstepping)

As proposed in Theorem 2, a distributed synchronizing control law
can be designed using a symmetric covariant tensor field of order 2,
which satisfies (8). Given a general nonlinear system, the construction
of such a matrix function P may be a hard task. In [20], a construction
of the function P for observer based on the integration of a Riccati
equation is introduced. Similar approach could be used in our synchro-
nization problem. Note, however, that in our context, an integrability
condition [i.e., (9)] has to be satisfied by the function P . This con-
straint may be difficult to address when considering a Riccati equation
approach.

In the following, we present a constructive design of such a matrix P
that resembles the backstepping method. This approach can be related
to [26] and [27], in which a metric is also constructed iteratively. We
note that one of the difficulty we have here is that we need to propagate
the integrability property given in (9).

For outlining the backstepping steps for designing P , we consider
the case in which the vector fields (f, g) can be decomposed as follows:

f (z) =
[

fa (za ) + ga (za )zb

fb (za , zb )

]

and

g(z) =
[

0
gb (z)

]
, 0 < g

b
≤ gb (z) ≤ gb

with z =
[
z�

a zb

]�
, za in Rn a , and zb in R. In other words

ża = fa (za ) + ga (za )zb , żb = fb (z) + gb (z)u. (18)

Let Ca be a compact subset of Rn a . As in the standard backstepping
approach, we make the following assumptions on the za -subsystem,
where zb is treated as a control input to this subsystem.

Assumption 1 (za -Synchronizability): Assume that there exists a
C∞ function Pa : Rn a → Rn a ×n a that satisfies the following con-
ditions.
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1) There exist a C∞ function Ua : Rn a → R and a C∞ function
αa : Rn a → R such that

∂Ua

∂za

(za )� = αa (za )Pa (za )ga (za ) (19)

holds for all za in Ca .
2) There exist a symmetric positive definite matrix Qa and positive

constants p
a

, pa , and ρa > 0 such that

p
a

In a ≤ Pa (za ) ≤ pa In a ∀za ∈ Rn a (20)

holds and

Lfa Pa (za ) − ρa
∂Ua

∂za

(za )�
∂Ua

∂za

(za ) ≤ −Qa (21)

holds for all za in Ca .
As a comparison to the standard backstepping method for stabilizing

nonlinear systems in the strict-feedback form, the za -synchronizability
conditions mentioned above are akin to the stabilizability condition of
the upper subsystem via a control Lyapunov function. However, for the
synchronizer design, as in the present context, we need an additional
assumption to allow the recursive backstepping computation of the
tensor P . Roughly speaking, we need the existence of a mapping qa

such that the metric Pa becomes invariant along the vector field ga
qa

. In
other words, ga

qa
is a Killing vector field.

Assumption 2: There exists a nonvanishing smooth function qa :
Rn a → R such that the metric obtained from Pa on Ca is invariant
along ga (za )

qa (za ) . In other words, for all za in Ca

L g a ( z a )
q a ( z a )

Pa (za ) = 0 . (22)

Similar assumption can be found in [12] in the characterization of
differential passivity.

Based on the Assumptions 1 and 2, we have the following theorem
on the backstepping method for constructing a symmetric covariant
tensor field Pb of the complete system (18).

Theorem 4: Assume that the za -subsystem satisfies Assumption
1 and Assumption 2 in the compact set Ca with a na × na sym-
metric covariant tensor field Pa of order two and a nonvanishing
smooth mapping qa : Rn a → R. Then, for all positive real number
Mb , the system (18) with the state variables z = (za , zb ) ∈ Rn a +1 sat-
isfies the Assumption 1 in the compact set Ca × [−Mb, Mb ] ⊂ Rn a +1

with the symmetric covariant tensor field Pb be given by

Pb (z) =
[

Pa (za ) + Sa (z)Sa (z)� Sa (z)qa (za )
Sa (z)�qa (za ) qa (za )2

]

where Sa (z) = ∂ qa
∂ za

(za )�zb + ηαa (za )Pa (za )ga (za ) and η is a pos-
itive real number. Moreover, there exists a nonvanishing mapping
qb : Rn a +1 → R such that Pb is invariant along g

q b
. In other words,

Assumptions 1 and 2 hold for the complete system (18).
Remark 3: Note that with this theorem, since we propagate the

required property, we are able to obtain a synchronizing control law
for any triangular nonlinear system.

Proof: Let Mb be a positive real number and let Cb = Ca ×
[−Mb, Mb ]. Let Ub : Rn a +1 → R be the function defined by

Ub (za , zb ) = ηUa (za ) + qa (za )zb

where η is a positive real number that will be selected later on. It follows
from (19) that for all (za , zb ) ∈ Cb , we have

∂Ub

∂z
(z)� =

[
η ∂ U a

∂ za
(za )� + ∂ qa

∂ za
(za )zb

qa (za )

]

=
1

qa (za )
Pb (z)

[
0
1

]

= αb (z)Pb (z)g(z)

with αb (z) = 1
qa (za )g b (z ) . Hence, the first condition in Assumption 1

is satisfied.
Consider z in Cb and let v =

[
v�

a vb

]�
in Rn a +1 be such that

v�Pb (z)g(z) = 0. (23)

Note that this implies that

vb = −v�
a

Sa (z)
qa (za )

. (24)

In the following, we compute the expression

v�Lf Pb (z)v = v�df Pb (z)v + 2v�Pb (z)
∂f

∂z
(z)v .

For the first term, we have

v�df Pb (z)v = v�
a dfa Pa (za )va + zb v

�
a dga Pa (za )va

+ v�
a df Sa (z)Sa (z)�va + 2v�

a df Sa (z)qa (za )vb

+ dfa + ga z b
qa (za )2v2

b .

With (24), it yields

v�
a df Sa (z)Sa (z)�va + 2v�

a df Sa (z)qa (za )vb

+ dfa + ga z b
qa (za )2v2

b = 0.

Hence

v�df Pb (z)v = v�
a dfa Pa (za )va + zb v

�
a dga Pa (za )va .

On the other hand, for the second term, we have

Pb (z) =
[

Pa (za ) 0
0 0

]
+

Pb (z)g(z)g(z)�Pb (z)
(qa (za )gb (z))2 .

Hence, with (23), it yields

v�Pb (z)
∂f

∂z
(z)v =

[
v�

a −v�
a

Sa (z )
qa (za )

]
P (z)

×
[

∂ fa
∂ za

(za ) + ∂ ga
∂ za

(za )zb ga (za )
∂ fb
∂ za

(za , zb )
∂ fb
∂ z b

(za , zb )

] [
va

− Sa (z )�
qa (za ) va

]

= v�
a Pa (za )

∂fa

∂za

(za )va + zb v
�
a Pa (za )

∂ga

∂za

(za )va

− η

αa (za )qa (za )

∣∣∣∣
∂Ua

∂za

(za )va

∣∣∣∣
2

− zb

qa (za )
v�

a Pa (za )g(za )
∂qa

∂za

(za ).
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Hence, we get

v�Lf Pb (z)v = v�
a Lfa Pa (za )va

− 2η

αa (za )qa (za )

∣∣∣∣
∂Ua

∂za

(za )va

∣∣∣∣
2

+ zb v
�
a

[
dga Pa (za ) + Pa (za )

∂ga

∂za

(za )

−2zb v
�
a Pa (za )

g(za )
qa (za )

∂qa

∂za

(za )
]

va .

Let η be a positive real number such that

ρa ≤ 2η

αa (za )qa (za )
∀za ∈ Ca .

Using (21) in Assumption 1 and (22) in Assumption 2, it follows that
for all z in Cb and all v in Rn a +1

v�Pb (za )g(z) = 0

⇒ v�df Pb (z)v + 2v�Pb (z)
∂f

∂x
(z)v ≤ −v�Qa v.

Employing Finsler theorem and the fact that Cb is a compact set, it
is possible to show that this implies the existence of a positive real
number ρb such that for all z in Cb

Lf P (z) − ρb
∂Ub

∂z
(z)�

∂Ub

∂z
(z) ≤ −Qb (25)

where Qb is a symmetric positive definite matrix.
To finish the proof, it remains to show that the metric is invari-

ant along g with an appropriate control law. Note that if qb (z) =
qa (za )gb (z), then it follows that this function is also nonvanishing.
Moreover, we have

L g
q b

Pb (z) = d g
q b

Pb (z) − P (z)
qa (za )2

[
0 0

∂ qa
∂ za

(za ) 0

]

−
[

0 ∂ qa
∂ za

(za )�

0 0

]
P (z)

qa (za )2 .

However, since we have

dg Pb (z) =

[
∂ qa
∂ za

(za )� Sa (z )
qa (za ) + Sa (z )�

qa (za )
∂ qa
∂ za

(za ) ∂ qa
∂ za

(za )�
∂ qa
∂ za

(za ) 0

]

and

Pb (z)
qa (za )2

[
0 0

∂ qa
∂ za

(za ) 0

]
+

[
0 ∂ qa

∂ za
(za )�

0 0

]
Pb (z)

qa (za )2

=

[
∂ qa
∂ za

(za )� Sa (z )
qa (za ) + Sa (z )�

qa (za )
∂ qa
∂ za

(za ) ∂ qa
∂ za

(za )�
∂ qa
∂ za

(za ) 0

]
.

Then, the claim holds. �

B. Illustrative Example

As an illustrative example, consider the case in which the vector
fields f and g are given by

f (z) =

⎡
⎣
−za1 + sin(za2 ) cos(za1 ) + za2

2 + sin(za1 )]zb

0

⎤
⎦ , g(z) =

⎡
⎣

0
0
1

⎤
⎦ .

This system may be rewritten with za = (za1 , za2 ) as

ża = fa (za ) + ga (za )zb , żb = u

with

fa (za ) =
[−za1 + sin(za2 ) cos(za1 ) + za2

0

]

ga (za ) =
[

0
2 + sin(za1 )

]
.

Consider the matrix Pa =
(

2 1
1 2

)
. Note that if we consider Ua (za ) =

za1 + 2za2 , then (19) is satisfied with αa = 1
2+sin(za 1 ) . Moreover, note

that we have v� ∂ U a
∂ za

(za ) = 0 ⇔ v1 + 2v2 = 0. Moreover, we have

[−2 1] Pa
∂fa

∂za

(za )
[−2

1

]
= −3

[
−2

∂fa1

∂za1
+

∂fa1

∂za2

]

= −3

[−2(−1 + sin (za2 ) sin (za1 )) − cos (za1 ) cos (za2 ) + 1]

= −3.

[3 − sin (za2 ) sin (za1 ) − cos (za1 − za2 )]

≤ −3.

The function ∂ fa
∂ za

(za ) being periodic in za1 and za2 , we can as-
sume that za1 and za2 are in a compact subset denoted Ca . This
implies employing Finsler Lemma that there exist ρa and Qa such
that inequality (21) holds. Consequently, the za subsystem satis-
fies Assumption 1. Finally, note that Assumption 2 is also trivially
satisfied by taking qa (za ) = 2 + sin(za1 ). From Theorem 4, it im-
plies that there exist positive real numbers ρb and η such that with
U (z) = η(za1 + 2za2 ) + z b

2+ sin(za 1 ) with α(z) = 2 + sin(za1 ), (9)
and (10) are satisfied. Hence, from Theorem 2, the control law given
in (15) solves the local exponential synchronization problem for the N
identical systems that exchange information via any undirected com-
munication graph G, which is connected.

VI. CONCLUSION

In this paper, based on recent results in [3], we have presented nec-
essary and sufficient conditions for the solvability of local exponential
synchronization of N identical affine nonlinear systems through a dis-
tributed control law. In particular, we have shown that the necessary
condition is linked to the infinitesimal stabilizability of the individual
system and is independent of the network topology. The existence of
a symmetric covariant tensor of order two, as a result of the infinitesi-
mal stabilizability, has allowed us to design a distributed synchronizing
control law. When the tensor and the controlled vector field g are both
constant, it is shown that global exponential synchronization may be
achieved. Finally, a recursive computation of the tensor has been also
discussed.

APPENDIX

PROOF OF LEMMA 1

The matrix L, being a balanced Laplacian matrix, is positive semidef-
inite and its eigenvalues are real and satisfy 0 = λ1 ≤ λ2 ≤ · · · ≤ λN .
Consequently, the principal submatrix L2:N ,2:N of L is also symmetric
positive semidefinite (by the Cauchy’s interlacing theorem). Moreover,
by Kirchhoff’s theorem, the matrix L2:N ,2:N , which is a minor of the
Laplacian, has a determinant strictly larger than 0 since the graph is
connected. Hence, L2:N ,2:N is positive definite. Consequently, there
exists c1 sufficiently small such that A(c1 ) is negative definite.
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