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Cardiovascular disease (CVD) is the leading cause of death worldwide1. Major cardio-
vascular disorders include coronary artery disease (CAD), hypertension, cerebrovascular 
disease and peripheral arterial disease. In the past 50 years, considerable progress has 
been made in the definition, identification and modification of CVD risk factors and the 
development of appropriate medical and interventional treatments, such as percutane-
ous coronary interventions and use of β-blockers. All of these measures have resulted 
in a decline in cardiovascular mortality2. However, despite these efforts and subsequent 
progress, the mechanisms underlying the presentation and pathophysiology of CVD are 
still poorly understood. Identifying new biological and causal pathways may allow the 
development of new therapeutic strategies, risk stratification and increase our under-
standing of CVD pathophysiology. In this thesis, genomics (Part I) and metabolomics 
(Part II) were applied to gain biological and clinical insight into CVD traits. To this end, 
three overarching methodologies were used: a) Genome wide association studies 
to identify new genetic loci and genes to better understand the pathophysiology of 
CVD; b) Mendelian randomization approaches to identify potential causal pathways in 
disease; and c) interrogate the human metabolome to study the downstream products 
of gene transcription and identify new biomarkers.

Part I Genomics in CVD 

The first draft of the human genome (Human Genome Project3) was produced over 15 
years ago, which led to a deeper understanding of genetic contributions of common 
variants to CVD. Prior to this, genes had been associated with CVD via Mendelian asso-
ciation, although these are relatively rare and constitute only a small portion of clinical 
CVD. Examples include: familial hypercholesterolemia, dilated and hypertrophic cardio-
myopathy, long-QT syndrome, and aortic aneurysms4. The majority of CVD, however, are 
polygenic, with many heritable and environmental contributory factors5. Prior to the 
completion of the draft of the human genome, efforts to identify the genetic causes of 
polygenic CVD were largely unsuccessful.

The introduction of genome wide association studies, which test genetic variants 
across the genome for their association with a disease or trait, has allowed hundreds 
of loci for numerous CVD and traits to be identified. The aim of this thesis is to expand 
this field of research and provide new insights into the genomics of the cardiovascular 
system. We use genome wide association studies to identify new genetic variants and 
thereby further our knowledge of genes. Several bioinformatic methods were applied 
to the associated genetic variants to identify potential biological pathways and mecha-
nisms. We also perform Mendelian randomization analyses, which uses the genetic 
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variants identified by genome wide associations studies as instrumental variables to 
estimate the causal effects of risk factors on disease development and mortality6.

In the first part of this thesis, we study the genomics of heart rate (Chapter 2), telo-
mere length (TL) (Chapter 3) and CAD (Chapter 4). We focus on heart rate and telomere 
length, as these are predictors of important clinical outcomes, such as overall mortality 
and CVD. The cause or consequence of these associations is still unknown and remains a 
topic of ongoing debate. Chapter 4 examines one of the major CVD outcomes and the 
major cause of morbidity and mortality worldwide - coronary artery disease7.

In Chapter 2, we further our knowledge of genetic influence on resting heart rate 
by performing a genome-wide association study. Resting heart rate in humans is a 
well-established predictor of overall mortality in the general population8-13, as well as 
in patients with hypertension14, CAD15, and heart failure16. To date, the association of 
heart rate with life expectancy or risk does not provide sufficient evidence for a (shared) 
causal relationship. In some conditions (e.g. heart failure), reduction of heart rate has 
been shown to lead to event reduction17. This provides evidence that heart rate is not 
just a risk marker or reflection of comorbidities, but a modifiable, causal risk factor16. 
However, in patients with e.g. CAD and hypertension, β-adrenergic receptor-blocking 
agents were not associated with lower risk of cardiovascular events beyond their effect 
on blood pressure18,19. Moreover, in patients with atrial fibrillation (permanent), lenient 
and strict rate control are equally effective20, and heart rate reduction with ivabradine 
did not improve outcomes in patients with CAD21. A mechanistic explanation linking 
higher resting heart rate with increased mortality remains enigmatic. In Chapter 2 we 
further explore the relationship between resting heart rate with cardiovascular risk 
factors, comorbidities as well as fatal and non-fatal outcomes by using the identified 
genetic variants from our genome wide association study as instrumental variables in 
Mendelian randomization analysis. Similarly, in Chapter 3 of this thesis we focus on the 
potential causal pathways of TL. It is known that short TL has been associated with an 
increased risk of mortality22 and several CVD including CAD23, abdominal aneurysms24, 
atherosclerosis23,25, heart failure25 as well as cardiovascular risk factors such as smok-
ing25, increased body mass index26, hypertension25, and diabetes25. TL is also strongly 
related to both age and sex27 although the cause or consequence of these associations 
in these cross-sectional studies is a topic of ongoing debate. In this chapter, we study 
the causal relationship between genetically determined TL with CVD and cancer risk by 
using genetic variants associated with TL obtained from previously published studies as 
instrumental variables in a Mendelian randomization analysis. In addition to studying 
two important risk factors (resting heart rate and TL) that have a strong links with CVD 
such as CAD, we performed a similar study with CAD itself in Chapter 4. CAD is driven by 
a complex interplay of multiple genetic and environmental factors that jointly give rise 
to a plethora of molecular interactions, resulting in a complex and heterogeneous phe-
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notype. Genome wide association studies have identified about 57 loci associated with 
myocardial infarction and CAD28. These have identified targets of known and novel CAD 
medication such as LDLR and HMGCR (HMG-coA reducatase inhibitors, statins), PCSK9 
(PCSK9 inhibitors) and IL6R (Tocilizumab)29,30. The aim of Chapter 4 is to expand the 
genetic regions associated with CAD, facilitate the identification of additional therapeu-
tic targets and gain insights into the causal relationships between other cardiovascular 
phenotypes.

Part II Metabolomics in CVD

While genetic variants are key components of heritability, they are relatively ‘static’ 
components. For chronic diseases, including CVD, a closer examination of the disease 
process to identify biomarkers and understand mechanisms and pathophysiology of 
CVD may be valuable. ProBNP and troponin are important biomarkers of CVD and are 
used in the clinic for diagnosis and decision management. Metabolomics provides new 
opportunities to find novel biomarkers in CVD. Moreover, because metabolites represent 
downstream products of gene transcription, it also provides new opportunities to study 
biological pathways in disease. Metabolomics is a relatively novel field in ‘omics’ sciences, 
which uses high-throughput technologies, such as nuclear magnetic resonance (NMR) 
spectroscopy, to concurrently quantify a large number of small molecules in different 
tissues. Metabolic profiling has been successful in improving diagnosis and prediction of 
CV events31,32 and differentiate heart failure patients from healthy controls33. Metabolic 
profiling may thus help identify novel biomarkers in CVD. To this end, we created me-
tabolite profiles by measuring a large number of small molecules, including lipoprotein 
subfractions and lipid related measures, glycolysis related metabolites, amino-acids, ke-
tone bodies, fluid balance related metabolites and an inflammatory marker using NMR 
spectroscopy in the GIPS-III and PREVEND-IT studies. In Part II, we study the changes 
involved in metabolites in patients with an acute myocardial infarction (AMI) and the 
effects of statin therapy on metabolite profiles using NMR spectroscopy.

By using NMR spectroscopy in the GIPS-III study, we tested the extent to which 
metabolomics - looking at lipoprotein subfractions (Chapter 5) and metabolic profiles 
(Chapter 6) - can predict left ventricular ejection fraction and infarct size after an AMI, 
both key predictors of long-term prognosis34,35. Furthermore, we investigated the ef-
fect of statin treatment - a critical treatment initiated shortly after AMI - on metabolic 
profiles and cardiovascular risk reduction (Chapter 7) by using data from PREVEND-IT: a 
randomized, double-blind, placebo-controlled study.
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The genetic and metabolomic studies of Part I and II complement each other and may 
help us better understand the pathophysiology of cardiovascular disease, obtain new 
insights into risk prediction and provide new targets for therapy.
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Abstract

Resting heart rate is a heritable trait correlated with lifespan. Little is known about 
the genetic contribution of resting heart rate and its relationship with mortality. We 
performed a genome-wide association discovery and replication analysis starting with 
19.9 million genetic variants and studying up to 265,046 individuals to identify 64 loci 
associated with resting heart rate (P<5×10-8), 46 of these were novel. We then used the 
genetic variants identified to study the association between resting heart rate and all-
cause mortality. We observed that a genetically predicted resting heart rate of 5 beats 
per minute was associated with a 20% increased mortality risk (hazard ratio 1.20, 95% 
CI of 1.11-1.28, P=8.20×10-7) translating to a 2.9 years reduction in life expectancy for 
males and 2.6 years for females. Our findings provide novel evidence for shared genetic 
predictors of resting heart rate and all-cause mortality.
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Introduction

Among mammals, there exists an inverse semilogarithmic relation between resting 
heart rate and life expectancy with only the human species deviating from this line1,2. 
In humans, resting heart rate is a well-established predictor of overall mortality in the 
general population3-8, as well as in patients with hypertension9, coronary artery disease 
(CAD)10, and heart failure11. The association of heart rate with life expectancy or risk does 
not provide sufficient evidence for a shared or causal relationship. Heart rate is regulated 
by complex interactions of biological systems, including the autonomous nervous and 
hormonal systems12. In addition, resting heart rate is associated with many other car-
diovascular risk factors, including blood pressure, smoking, glucose metabolism, lipids, 
C-reactive protein, metabolic syndrome, body mass index, and diabetes mellitus13-16. 
In some conditions, including heart failure, reduction of heart rate has been directly 
demonstrated to lead to event reduction providing evidence that heart rate is indeed a 
modifiable causal risk factor and not just a risk marker or a reflection of comorbidities11. 
However, in patients with CAD and hypertension, β-adrenergic receptor-blocking agent 
(beta-blockers) were not associated with lower risk of cardiovascular events beyond its 
effect on blood pressure17,18; in patients with permanent atrial fibrillation, lenient rate 
control is as effective as strict rate control19, and heart rate reduction with ivabradine did 
not improve outcomes in patients with CAD20, though it does improve outcomes in pa-
tients with heart failure 21. No mechanistic explanation linking higher resting heart rate 
with increased mortality has emerged. To further our knowledge on genes influencing 
resting heart rate we performed a genome-wide association study (GWAS) on 134,251 
participants from UK Biobank22 and replicated our findings in 130,795 additional indi-
viduals. Using the identified genetic variants as instrumental variables we explored the 
relationship between resting heart rate with cardiovascular risk factors, comorbidities 
and fatal and non-fatal outcomes. Bioinformatic analyses of associated variants were 
also undertaken to identify potential biological pathways and mechanisms.

We studied 134,251 individuals participating in UK Biobank. The average age was 
56.6 years (interquartile range (IQR) 50 to 63), and 47.2% of the participants were male. 
Baseline characteristics are presented in Table 1 and Supplementary Table 1. The median 
duration of follow-up for mortality was 4.9 years (IQR 4.3 to 5.5 years) and there were 
2,364 mortality events in total. Incidence rate 3.6 events (95% confidence interval (CI) 
3.4 to 3.7 events) per 1000 person-years of follow-up.
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Results

In UK Biobank we identified genetic variants at 76 loci associated with resting heart rate 
at P<5×10-8 (Figure 1, Table 2, Supplementary Table 2, Supplementary Figures 1-3). 64 of 
these loci replicated in 130,795 individuals derived from 4 cohorts , and 46 loci have not 
been previously reported as associated with resting heart rate23. The genetic variants 
at the 64 loci were well imputed with an info >0.9, except one (rs11183443) which had 
an information measure of 0.30. At 11 loci we found evidence for multiple independent 
associations with resting heart rate in conditional analyses (Supplementary Table 3). As 

Table 1. Baseline characteristics of participants

All
(N=134,251)

SD or 
percentage 

(%)

Healthy 
Individuals
(N=11,405)

SD or 
percentage 

(%)

Age 56.6 8.0 53.7 7.6

Sex (Male) 63,349 47.2% 5,993 52.5%

Body-mass index 27.5 4.8 26.3 4.0

Resting heart rate 69.5 11.1 68.3 10.5

Blood pressure 

Systolic 138.0 18.6 135.5 17.7 

Diastolic 82.3 10.1 81.6 9.8 

Ethnicity

Asian 2,478 1.8% 248 2.2%

Black 1,734 1.3% 173 1.5%

Mixed 684 0.5% 52 0.5%

White 127,919 95.3% 10,797 94.7%

Other/ undefined 1,436 1.1% 135 1.2%

Smoking current 16,708 12.4% 1,390 8.3%

Medical History 

Hypertension 38,339 28.6% 0 0%

Diabetes 7,419 5.5% 0 0%

Myocardial Infarction 3,395 2.5% 0 0%

Heart failure 720 0.5% 0 0%

Atrial fibrillation / flutter 2,048 1.5% 0 0%

Supraventricular	 tachycardia 425 0.3% 0 0%

Device implantation 399 0.3% 0 0%

Medication 0 0%

Beta-blockers 9,526 7.8% 0 0%

Calcium-channel blockers 9,797 8.0% 0 0%

Abbreviations; SD, Standard Deviation.
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-Log(P)

Region         Snp                  MAF               Candidate Genes42        36       30        24        18        12         6          0
1p36.31 rs145358377 0.36 RNF207nc; ICMTn 
1p34.1 rs272564 0.28 RNF220n 
1p22.3 rs2152735 0.33 LMO4n 
1q32.2 rs41317993 0.10 CD46n; CD34d 
1q41 rs11454451 0.26 GPATCH2n 
2p23.3 rs1260326 0.39 GCKRnc 
2p16.1 rs12713404 0.38 BCL11An 
2q31.1 rs564190295 0.15 WIPF1n 
2q31.2 rs151041685 0.09 CCDC141ncd; TTNd 
2q32.1 rs62172372 0.19 CALCRLne 
2q35 rs907683 0.43 SPEGnd; DESn 
2q36.3 rs4608502 0.33 COL4A3n 
2q37.1 rs13002735 0.24 B3GNT7nc 
3p22.2 rs41312411 0.15 SCN5And 
3p21.31 rs3749237 0.32 IP6K1n; GMPPBn; FAM212Ad 

DAG1d; KLHDC8Bed; LAMB2d 
PRKAR2Ad; QRICH1ed 

3p21.1 rs2358740 0.32 CACNA1Dn 
3p14.1 rs1483890 0.30 FRMD4Bn 
3q21.1 rs11920570 0.26 CCDC58n 
3q26.33 rs7612445 0.19 GNB4n 
4p15.2 rs12501032 0.31 PPARGC1An 
4q31.23 rs6845865 0.16 ARHGAP10nd; EDNRAd 
5p13.3 rs13165531 0.42 CDH6n 
5q31.2 rs35284930 0.42 CDC23n 
5q35.1 rs4868243 0.16 NKX2-5n 
6p21.2 rs236349 0.34 PPIL1ne 
6q22.31 rs3951016 0.47 SCLC35F1n; PLNd 
6q22.31 rs1320761 0.11 GJA1n 
7p14.2 rs58437978 0.50 TBX20n 
7q21.3 rs180239 0.35 GNGT1n; GNG11n 
7q22.1 rs17881696 0.18 UFSP1nc; SRRTn; ACHEne; EPHB4d 

GIGYF1d; PCOLCEd 
7q31.2 rs41748 0.45 METn 
7q31.33 rs11563648 0.27 ZNF800n 
7q32.3 rs138186803 0.41 MKLN1n 
7q33 rs73158705 0.16 CHRM2n 
8q24.3 rs56233017 0.04 PLECn 
9q33.3 rs10739663 0.45 MAPKAP1ne 
11p11.2 rs12576326 0.34 TP53I11n 
11q12.2 rs11320420 0.34 MYRFn; FEN1e; FADS2e; TMEM258e 
11q24.3 rs75190942 0.09 KCNJ5nd; C11orf45n 
12p13.33 rs2283274 0.18 CACNA1Cn 
12p12.2 rs10841486 0.22 PDE3And 
12p12.1 rs4963772 0.15 SOX5n 
12p11.22 rs1050288 0.34 KLHL42n 
12p11.1 rs1994135 0.47 SYT10n 
12q11 rs11183443 0.13 ALG10n 
12q14.2 rs867400 0.43 RASSF3nd 
12q21.31 rs12579753 0.23 PPFIA2ne 
14q11.2 rs12889267 0.16 NDRG2n; ARHGEF40ncd; ZNF219d 
14q11.2 rs422068 0.36 MYH6nd; MYH7d 
14q24.2 rs17180489 0.14 RGS6n 
14q24.3 rs1549118 0.28 ADCK1n 
14q31.3 rs17201923 0.28 FLRT2n 
14q32.11 rs4900069 0.37 C14orf159n 
15q24.1 rs7173389 0.16 HCN4n; NEO1d 
16p13.11 rs3915499 0.32 MYH11nd 
16q21 rs7194801 0.43 CDH11n 
17p12 rs79121763 0.09 TEKT3n; PMP22d 
18q12.1 rs11083258 0.17 CDH2nd 
18q12.2 rs61735998 0.02 FHOD3ncd 
19q13.2 rs16974196 0.32 C19orf47nd; MAP3K10e 
19q13.32 rs12721051 0.18 APOEn; APOC1n; PVRL2d 
20q11.23 rs6123471 0.46 KIAA1755nc 
20q12 rs17265513 0.19 ZHX3nc; EMILIN3d 
22q13.1 rs2076028 0.29 SUN2n; CBY1e; FAM227Ae; JOSD1e 

TOMM22e; DDX17d; GTPBP1d 

Figure 1. Genomewide −log10(P) plot and effects for significant loci 
Genomewide −log10(P) plots are shown for heart rate. Blue indicates previously identified genetic variants 
within loci reaching genome-wide significance; red indicates novel genetic variants within loci reaching ge-
nome-wide significance (±1 Mb of lowest P value). The dashed line indicates the genomewide significance 
threshold (P=5×10-8). Candidate genes are listed along with strategies used to identify them: n, nearest; c, 
coding; nonsynonymous variant; e, eQTL; d, DEPICT tool.
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expected, the magnitudes of the associations were small and ranged from 0.2 to 1.1 
bpm per effect allele. Collectively, the total variance explained by the 64 loci for resting 
heart rate was 2.5%.

We studied the potential modifying effect of gender, beta-blockers and calcium-
channel blockers on the association of genetic variants on resting heart rate but did not 
observe any significant interactions (Supplementary Table 4).

We summed the number of resting heart rate increasing alleles weighted for the 
strength of the association in the replication dataset to create a weighted genetic risk 
score (GRS) for each individual, and evaluated associations with cardiovascular measures. 
Genetically determined higher resting heart rate was associated with higher body-mass 
index and systolic and diastolic blood pressure, higher odds of having hypertension, 
active smoking behavior, experiencing supraventricular tachycardias and lower odds of 
device implantation (all P<0.05; Table 3). Shared heritability estimates are presented in 
Supplementary Table 5 and indicate correlations of resting heart rate with body-mass 
index, blood pressure, hypertension, diabetes, active smoking behavior, and myocardial 
infarction.

In a random-effects meta-analysis of the genetic variant-specific β3 (the putative as-
sociation between resting heart rate and outcome mediated through that variant) of all 
hypothesis generating loci (P<1×10−5) we observed a significant association between 
genetic variants associated with resting heart rate and all-cause mortality, translating 
to a relative increase of 20% in all-cause mortality risk per 5 bpm increase of resting 
heart rate (estimated hazard ratio (HR)=1.20, CI=1.11-1.28, P=8.20×10−7) (Table 4 and 
Supplementary Figure 4). When the number of genetic variants was restricted stepwise 
from P<1×10−5 to P<5×10−8, the HR decreased but remained significant (Table 4). 

Next we calculated weighted and unweighted GRS and found similar associations 
with all-cause mortality (Table 4). Kaplan-Meier failure curves for all-cause mortality 
are shown in Supplementary Figure 5. There was no specific cause of death driving the 
association (Supplementary Table 6). We extrapolated a relative risk of 1.20 to life expec-
tancy using the National Life Tables of the United Kingdom (Methods) and estimated a 
reduction of 2.9 years for males and 2.6 years for females per 5 bpm increase in resting 
heart rate.

A conceptual figure of the potential explanations of the observed association between 
genetic variants of heart rate and outcome is provided as Supplementary Figure 6. We 
performed several analyses to test for pleiotropic effects, identify confounders and me-
diators. First, we ruled out the possibility that extreme associations drive the genetic as-
sociation with all-cause mortality by repeating the meta-analysis without the 12 genetic 
variants that each showed an association with mortality at P<0.05 (Table 4). Second, we 
adjusted for resting heart rate in the Cox regression model predicting all-cause mortality. 
The association of the genetic variants with all-cause mortality was abolished suggest-
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ing the genetic association is mediated via resting heart rate (Table 4). Next, we adjusted 
for covariates observed to be associated with identified genetic variants in UK Biobank 
(Table 4). Introducing baseline body-mass index, diastolic blood pressure, hypertension, 
diabetes, active smoking, history of heart failure, supraventricular tachycardias, myocar-
dial infarction, device implantation, beta-blockers and calcium channel-blockers did not 
affect the association between the genetic variants for heart rate and all-cause mortal-
ity (Table 4). Further, when we excluded all genetic variants that individually showed 
nominal significant association in UK Biobank (P<0.05) with any of the variables in Table 
3, the association between the genetic variants for heart rate and all-cause mortality 
remained significant. Next, we considered potential confounders of variables not avail-
able in the UK Biobank cohort and performed multivariable Mendelian randomization 
(MR) to adjust for blood lipid levels (low-density lipoprotein, high-density lipoprotein, 
total cholesterol, triglycerides) and red blood cell (red blood cell count, packed cell 
volume mean corpuscular volume and hemoglobin count) variables. The adjustments 
did not attenuate the association of the heart rate-associated genetic variants with all-
cause mortality (Table 4). The results of the MR-Egger method confirmed the absence of 

Table 3. Association between genetically determined heart rate and cardiovascular profile using a weight-
ed GRS 

Participants 
(N=134,251)

Percentage
(%)

Estimated 
Association* 95% CI P value

Body-mass index 134,251 100.0 0.14 0.08 to 0.20 2.24×10-6

Blood pressure

Systolic 134,217 99.0 -0.51 -0.30 to -0.72 2.55×10-6 

Diastolic 134,217 99.0 0.78 0.66 to 0.90 1.32×10-36 

Hypertension 39,996 29.8 1.04 1.01 to 1.07 4.41×10-3

Diabetes 7,857 5.9 1.04 0.99 to 1.09 0.16

Smoking current 16,708 12.4 1.07 1.03 to 1.11 2.98×10-4

Myocardial Infarction 3,848 2.9 0.99 0.92 to 1.07 0.80

Heart failure 1,131 0.8 1.14 0.99 to 1.31 0.06

Atrial fibrillation / flutter 2,780 2.1 1.01 0.93 to 1.10 0.79

Supraventricular tachycardia 546 0.4 1.28 1.05 to 1.56 0.02

Device implantation 482 0.4 0.80 0.66 to 0.96 0.02

Medication

Beta-blockers 9,526 7.8 1.04 0.99 to 1.09 0.10

Calcium-channel blockers 9,797 8.0 1.02 0.98 to 1.07 0.34

* The effect estimates with 95% Confidence Interval (CI) estimated using weighted GRS (per 5 bpm increase 
in resting heart rate) are shown as odds ratios for categorical variables (hypertension, diabetes, smoking 
current, myocardial infarction, heart failure, atrial fibrillation / flutter, supraventricular tachycardia, device 
implantation, beta-blockers and calcium-channel blockers) and β estimates for quantitative variables 
(body-mass index, systolic and diastolic blood pressure).
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evidence for directional (unbalanced) pleiotropy (Table 4). When we used the genetic 
variant coefficients derived from the associations with resting heart rate when restricted 
to healthy individuals (Table 1), the prediction of all-cause mortality remained similar 
(Table 4), further supporting the idea that underlying diseases or heart-rate-lowering 
medication did not confound our observation. The association with all-cause mortality 
also persisted when we used genetic variant coefficients estimated in the replication 
sample. When extrapolating the estimates from our sensitivity analyses, (ranging from 

Table 4. Association between genetically determined resting heart rate and all-cause mortality

Association with mortality
Number 

of GVs

Estimated 
Association 

HR* 95% CI P value

Standard MR with all

GVs (P<10-2) 1980 1.19 1.14 to 1.23 3.77×10-19

GVs (P<10-3) 1739 1.19 1.14 to 1.23 5.91×10-19

GVs (P<10-4) 848 1.19 1.13 to 1.24 1.13×10-11

GVs (P<10-5)	 272 1.20 1.11 to 1.28 8.20×10-7

GVs (P<10-6) 121 1.14 1.05 to 1.25 3.33×10-3

GVs (P<10-7) 82 1.13 1.02 to 1.25 1.46×10-2

GVs (P<5×10-8)	 76 1.11 1.00 to 1.22 5.01×10-2

GVs (P<10-5) excluding those associated (P<0.05) mortality 260 1.15 1.07 to 1.24 1.53×10-4

GVs (P<10-5) with adj. for resting heart rate 272 1.02 0.95 to 1.09 0.65

GVs (P<10-5) with adj. for covariates# 272 1.18 1.10 to 1.27 4.69×10-6

GVs (P<10-5) excluding those associated (P<0.05) with 
variable#

55 1.29 1.09 to 1.53 3.66×10-3

GVs (P<10-5) betas estimated on 11,405 healthy individuals 272 1.14 1.07 to 1.23 6.85×10-5

GVs (P<10-5) betas estimated on 130,795 individuals from 
replication

269 1.11 1.01 to 1.22 2.70×10-2

GRS weighted GVs (P<10-5) 272 1.18 1.10 to 1.26 3.22×10-6

GRS unweighted GVs (P<10-5) 272 1.05 1.03 to 1.08 4.37×10-5

Multivariable MR with adj. for covariates# 272 1.26 1.13 to 1.42 8.03×10-5

Multivariable MR with adj. for lipid covariates$ 209 1.18 1.09 to 1.27 1.99×10-5

Multivariable MR with adj. for red blood cell covariates@ 173 1.18 1.09 to 1.28 4.53×10-5

MR-Egger method (P<10-5) 272 1.21 1.05 to 1.40 8.00×10-3

*Hazard ratio (HR) with 95% Confidence Interval (CI) estimated with standard Mendelian Randomization 
(MR) and weighted Genetic Risk Score (GRS) per 5 bpm and for unweighted GRS per 5 summed risk alleles; 
Genetic Variants (GVs); Adjustment (adj.); #Baseline body-mass index, systolic and diastolic blood pressure, 
hypertension, diabetes, active smoking, and a history of myocardial infarction, heart failure, atrial fibril-
lation / flutter, supraventricular tachycardias, myocardial infarction, device implantation, beta-blockers 
and calcium channel-blockers; $Lipid covariates including; Low Density Lipoprotein (LDL), High Density 
Lipoproteins (HDL) Total Cholesterol and Triglycerides; @Red blood cell covariates including; Red Blood Cell 
Count (RBC), Packed Cell Volume (PCV), Mean Corpuscular Volume (MCV) and Hemoglobin count (Hb).
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1.11 to 1.29 (Table 4)), this would translate to a reduction in life expectancy for males 
between 1.9 up to 4.1 years and females 1.8 up to 3.7 years per 5 bpm increase in resting 
heart rate.

At 19 of our 64 loci the sentinel genetic variant or a genetic variant in linkage disequi-
librium (LD; r2 > 0.8) have reported GWAS associations. These include lipid, metabolic and 
blood pressure related traits (Supplementary Table 7). The 64 loci were highly enriched for 
deoxyribonuclease I (DNase I) hypersensitive sites, marking transcriptionally active regions 
of the genome in human fetal heart tissue (Figure 2a). Enrichment testing of expression in 
209 tissue and cell types identified cardiovascular tissues and the adrenal gland to be the 
most relevant for our association findings (Figure 2b, Supplementary Table 8). Across the 
64 loci, 1,668 annotated genes are located within 1 Mb of all the sentinel genetic variants. 
On the basis of proximity, the presence of non-synonymous genetic variants in high LD, 
cis-expression quantitative trait loci (eQTL) and Data-driven Expression-Prioritized Integra-
tion for Complex Traits (DEPICT)24 analyses we prioritized 102 potential candidate genes 
at our 64 loci (Supplementary Note and Supplementary Tables 9-11). A systematic search 
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Figure 2. Biological insights 
(a) The 64 genomewide associated variants were enriched within DHSs of fetal heart tissue (N=8) specifi-
cally, suggesting that functionality of regulatory DNA elements may underlie some of the associations. 
(b) DEPICT identified statistically significant enrichment for 9 tissue annotations of which cardiovascular 
tissues were the most relevant for the heart rate associated loci.
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of our 102 candidate genes in Online Mendelian Inheritance in Man (OMIM) identified 
several Mendelian diseases with cardiac phenotypes. These were related to cardiomyopa-
thies (TTN, DES, SCN5A, PLN, MYH6, MYH7 and SPEG), Brugada syndrome (SCN5A, CACNA1C 
and HCN4), long QT (SCN5A, KCNJ5 and ALG10), arrhythmias (SCN5A, HCN4, CACNA1D and 
MYH6) and congenital heart disease (NKX2-5, PLN, TBX20, MYH6 and MYH7). The DEPICT 
tool identified 622 significantly (false discover rate (FDR)<5%) enriched gene sets (Supple-
mentary Tables 12 and 13). We clustered them on the basis of the correlation between 
scores for all genes (Supplementary Note), which resulted in 74 gene sets relevant to 
cardiac biology (Supplementary Figure 7).

Discussion

This work highlights the unprecedented opportunities provided by large scale projects 
such as UK Biobank, the 100,000 genomes25, and the Precision Medicine Initiative26 to 
discover novel genetic associations and to study links with outcomes and mortality. In this 
GWAS and replication study, performed in 265,046 individuals, we found 46 novel genetic 
loci associated with resting heart rate increasing the total number of heart rate loci to 6723. 
Several epidemiologic studies have reported an association between higher resting heart 
rate and increased mortality from both cardiovascular and non-cardiovascular causes3-8. 
In all of these studies, this association is potentially confounded by differences in demo-
graphics and physiological characteristics such as body-mass index, smoking, alcohol 
consumption and blood pressure. Further, data from intervention trials do not provide 
a consistent link between heart rate reduction and improvement of clinical outcomes. 
Selective sinus-node inhibition with ivabradine has beneficial effects on outcomes in 
patients with chronic heart failure21 but did not improve outcomes in patients with CAD20.

In the present work we show that genetic variants associated with higher resting heart 
rate confer a risk for all-cause mortality. We studied the strength of these genetic vari-
ants with mortality and studied the role of heart rate in comparison of other, potentially 
confounding variables closely associated with heart rate. The genetic variants identified 
to be associated with heart rate were also associated with potential measured (body 
mass index, systolic and diastolic blood pressure, hypertension, smoking, supraventricu-
lar tachycardia and device implantation) and unmeasured confounders. However, also 
our analyses adjusting for covariates, allowing genetic variants to have pleiotropic ef-
fects, removing genetic variants associated with other traits, or using estimates derived 
from healthy participants and 130,795 independent participants consistently suggest 
that heart rate is linked to mortality and, by extension, to life expectancy. Indeed, only 
heart rate itself attenuated the association of the genetic variants with the outcome to 
the null. This leaves two likely possibilities: either the genetic variants exert their effect 



Chapter 2

34

on mortality directly via heart rate as a mediator, or the genetic variants share underly-
ing biology, resulting in increases in heart rate as well as mortality risk. Although direct 
specific intervention (sinus-node inhibition) on heart rate does not consistently result 
in reduction in mortality20,21,27 we hypothesize the association originates from a shared 
biology not targeted by sinus-node inhibition. This could involve basic cellular biology 
behind heart rate and, possibly, vulnerability to cardiac arrhythmias causing (sudden) 
death, which might contribute to all classifications of death and might eventually also 
be relevant for a plethora of non-cardiac diseases and conditions. This theory can be 
supported by the identification of predominant cardiac candidate genes at the identi-
fied loci and the colocalization of DNase hypersensitivity sites in cardiac tissue. However, 
alternative speculations involving basic metabolic rate, energetics, free radicals, could 
result in cumulative general damage and affect life span28.

In addition to an interpretation of causation, there are several other limitations of our 
study that are important to acknowledge. Although recent studies29,30 and empirical 
estimates on the UK10K31 and 1000 Genomes project32 support the use of a genome-
wide significant threshold at the level of P<5.0×10−8, the adequacy of this value for UK 
Biobank has not been fully investigated. In addition, among the loci identified, a number 
of candidate genes have a known function relevant for cardiac conditions; however, for 
none of the genes have we proven it is the mechanism for the association with heart rate 
or all-cause mortality. Our findings are based on statistical analyses of large datasets and 
do not include experimental validation of each locus to identify the underlying biologi-
cal mechanisms. As with all bioinformatics analyses, the results should be interpreted as 
hypothesis generating and requiring wet lab validation. In addition, the list of candidate 
genes provides only a first interpretation with arbitrarily defined guidelines used in the 
GWAS community to suggest genes for further evaluation. Heart rate is a complex trait, 
and the principal reason for genes to be associated does not necessarily imply a role via the 
cardiac pacemaker or sinus-node function. Owing to the relative short follow-up currently 
available and limited number of events, our analyses focused on all-cause mortality and a 
crude subdivision according to the tenth revision of the International Statistical Classifica-
tion of Diseases and Related Health Problems (ICD-10). On the basis of gene and pathway 
analyses, differences in death due to the ICD-10 category ‘circulatory system’ might be ex-
pected to account for the association with all-cause mortality, but this was not observed. 
The reason that no association was observed with ‘circulatory system’ remains unknown, 
but it might be due to heterogenic causes of death within each category; deaths in other 
categories might be influenced by the heart but not attributed to it. As more subjects are 
genotyped and long-term follow-up data become  available, future analyses may allow 
further differentiation within each ICD-10 category to study associations of resting heart 
rate with specific causes of deaths.
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In conclusion, in this GWAS we identified 46 novel loci associated with resting heart 
rate. The loci identified as influencing resting heart rate are also implicated in overall 
mortality (and, consequently, life expectancy) and therefore warrant further research 
into the underlying mechanisms. 

Data Availability Statement

The GWAS discovery data that support the findings of this study are available at, 
http://www.cardiomics.net.
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Methods

Populations

Discovery: To identify genetic variants associated with resting heart rate we analyzed 
134,251 participants from the UK Biobank. The UK Biobank recruited persons aged 
40 - 69 years who were registered with a general medical practitioner within the UK 
National Health Service (NHS). In total, the study recruited 503,325 individuals between 
2006 and 2010. The study has approval from the North West Multi-centre Research Eth-
ics Committee, and all participants provided informed consent. Detailed methods used 
by UK Biobank have been described elsewhere22. For sensitivity analyses we defined a 
subgroup of healthy individuals which were free of any (prevalent or incident) disease(s) 
and diagnosis and confirmed they were not using heart rate modifying medication 
(beta-blockers, and calcium-channel blockers drugs (N=11,405)).

Replication: Replication of genome wide significant lead SNPs was undertaken in the 
meta-analysed data of 130,795 individuals derived from 23andMe, deCODE, PREVEND 
and LifeLines sample collections (Supplementary Table 14).

Ascertainment of resting heart rate

As detailed in the Supplementary Note, resting heart rate in UK Biobank was assessed by 
two methods: an automated reading during blood pressure measurement (in 501,340 
participants) and during arterial stiffness measurement using the pulse waveform ob-
tained of the finger with an infrared sensor (in 170,790 participants). Multiple available 
measurements for one individual were averaged.

Ascertainment of cardiovascular events and mortality

The prevalence and incidence of cardiovascular risk factors (Supplementary Table 15), 
conditions and events in UK Biobank were captured through data collected at the 
Assessment Centre in-patient Health Episode Statistics (HES) as detailed in the Supple-
mentary Note. Information on the cause of death was obtained via the National Health 
Service (NHS) Information Centre for participants from England and Wales, and from 
the NHS Central Register, Scotland for participants from Scotland. All-cause mortality 
included all deaths occurring before February 17th 2014 (or December 31st 2012, for the 
participants enrolled in Scotland).

Genotyping and imputation

Genotype imputation data in UK Biobank was available for 152,249 (25%) individuals 
as of May 2015 [Interim Data Release]. In 49,923 individuals genotyping was performed 
as part of the UK Biobank Lung Exome Variant Evaluation (UK BiLEVE; 807,411 variants) 
project and in an additional 102,326 individuals genotyping was performed on the UK 
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Biobank Axiom array (Affymetrix; 820,967 variants). Imputed genotype data was provid-
ed by UK Biobank based on merged UK10K and 1000 Genomes Phase 3 panel produced 
by the Wellcome Trust Centre for Human, resulting in 72,355,667 single nucleotide poly-
morphisms, short indels and large structural variants. Quality control for genotyping 
has been performed prior to analysis and described in detail elsewhere33. We excluded 
variants with minor allele frequency of <0.001, and information measure <0.3 leaving 
19,941,912 variants for the current analyses. Samples were excluded from our analyses 
if they had at least one related sample (N=17,308) on the basis of genetic-relatedness 
factor data and high missingness or excess heterozygosity (N=480). A flow diagram of 
samples sizes after exclusion of participants is provided in Supplementary Figure 8.

Statistical analysis

A genome-wide association study (GWAS) was performed using SNPTEST with 
19,941,912 genotyped or imputed genetic variants and resting heart rate in 134,251 
individuals of UK Biobank using linear regression assuming an additive genetic model. 
Covariates included in the model were: age, age2, sex, the first 10 principal components, 
and genotyping array. Independent genetic loci were defined as 1Mb at either side of 
the genetic variant that showed the strongest association in a given locus and pair-wise 
LD r2<0.1. The strongest associated variant (lowest P-value) within a locus with at least 
one genetic variant at P<5×10-8 was designated the sentinel genetic variant. Replica-
tion of these variants was undertaken in the 23andMe, deCODE, Prevend and LifeLines 
cohorts using fixed-effects meta-analysis by inverse variance weighting (Supplementary 
Table 14). An association was considered replicated if (1) the direction of effect was 
concordant, (2) the replication-P<0.025 (one-way), and (3) meta-P<5×10-8. For detecting 
secondary associations not explained by the sentinel genetic variant at each locus, we 
repeated the GWAS while including all sentinel genetic variants (P<5×10−8) as covariates 
in a conditional analysis. Potential modifier effects of gender, β-adrenergic receptor-
blocking agent (beta-blockers), and calcium-channels blockers drugs on resting heart 
rate were assessed by an interaction test (Bonferroni adjusted for the number (n) of tests 
(P<0.05/n)).

We used genetic variants as instrumental variables to study the relationship of resting 
heart rate with outcomes (Mendelian Randomization). To this end we defined a larger 
set of independent loci at the previously specified hypothesis-generating threshold 
(P<1×10−5) to increase power34,35. For our main analysis we calculated the putative as-
sociation between resting heart rate (per 5 bpm) and outcome mediated through that 
variant (β3 values) from the direct measurements of the effect size of the association 
between the variant and resting heart rate (β1) and the effect size of the association 
between the variant and outcome (β2), as described previously37. The value of β3 can 
be interpreted as the hazard ratio for outcome per 5 bpm increase in genetically de-
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termined resting heart rate. Inverse-variance-weighted random-effects meta-analysis 
was used to combine individual β3 estimates providing additional power to assess the 
overall association between genetically determined resting heart rate and mortality. 
Cochran’s Q statistic was used to assess heterogeneity among β3 estimates. We also cre-
ated a weighted genetic risk score (GRS) by first multiplying for each individual the effect 
size of the association between the variant and resting heart rate (β1) with the number of 
alleles 0-2 of each genetic variant and then summing all products. An unweighted GRS 
was created by summing the number of resting heart rate-increasing alleles 0-2 of each 
associated genetic variant.

To examine the robustness of our findings as well as the possibility of pleiotropic or 
other confounding and mediation effects we included covariates and the phenotype 
resting heart rate into the Cox regression models. We excluded all genetic variants that 
were also individually nominally associated (P<0.05) with covariates, and performed 
multivariable Mendelian randomization37 to account for variables not available in UK 
Biobank, and used the MR-Egger regression method to test for evidence of pleiotropy38 
(details provided in Supplementary Note and Supplementary Figures 9 and 10). As an 
alternative strategy to exclude confounding due to prevalent disease or medication use, 
we estimated the associations of each genetic variant with resting heart rate (β1) in the 
subgroup of 11,405 healthy individuals (defined above) to calculate the hazard ratio for 
outcome. We estimated the impact on life expectancy using the National Life Tables of 
the United Kingdom provided by the Office of National Statistics (ONS; www.ons.gov.
uk) of 2011-2013 separately for males and females (Supplementary Note). Details of 
analyses performed to gain insights in the biological pathways and tissues underlying 
the genome-wide significant loci are provided in the Supplementary Note. 
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Supplementary Figure 1. Quantile-quantile plot of genetic variants after discovery-analysis
Data is shown for the discovery analysis of N:134,251 individuals excluding genetic variants with minor al-
lele frequency of <0.001, and information measure <0.3 leaving 19,941,912 genetic variants.
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Supplementary Figure 2. Regional association plots for of GWAS analysis on resting heart rate
Regional plots for the resting heart rate phenotype sentinel genetic variants. At each region pairwise LD 
with the sentinel genetic variant is indicated.
See separate pdf-document (Supplementary Figure 2.pdf) online
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Supplementary Figure 3. Scatterplot of lead genetic variants P-values from the Complete cohort versus 
White-British participants
Scatter plot of lead genetic variant association P-values with resting heart rate in the complete cohort 
N:134,251 (y-axis) against lead genetic variants association P-values with resting heart rate in the White-
British participants N:111,812 (x-axis).
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Supplementary Figure 4. Forest Plot showing the effect size of resting heart rate on the risk of all-cause 
mortality for heart rate-associated genetic variant
The odds ratios for each resting heart rate associated genetic variant for β3 values (i.e., the putative asso-
ciation between resting heart rate and all-cause mortality mediated through that variant) are shown. The 
β3 odds ratios are organized in ascending values. The overall β3 estimate (shown in red) is from a random-
effects meta-analysis of all genetic variants.
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Supplementary Figure 5. Kaplan-Meier failure curve death weighted GRS
Shown are cumulative all-cause mortality in (%) divided by individuals below and above the median of the 
weighted Genetic Risk Score (GRS).
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Supplementary Figure 6. Interpreting the association between genetically determined heart rate and all-
cause mortality
Conceptual diagram to interpret the Association between Genetically Determined Heart Rate and all-cause 
Mortality. The benefits a genetic approach have been explained before1 and essentially reduces the prob-
ability of known and unknown demographic, socioeconomic, behavioral or lifestyle confounders. These 
confounders have an independent effect on resting heart rate and the risk on all-cause mortality (solid 
black lines) and could give rise to a false association between the two factors. There is a possibility that the 
association between the studied genetic variants and resting heart rate and the association with mortality 
are through completely different mechanisms (dashed black lines). What seems to be a more possible situ-
ation on the basis of our outcomes is that resting heart rate variants affect biologic pathways, which on the 
one hand influence resting heart rate and on the other hand influence all-cause mortality (solid blue lines). 
Another possibility is that genetically predicted resting heart rate itself alters behavior or lifestyle, which 
then affects the risk of all-cause mortality (dashed blue line).
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 Supplementary figure 7. Biological insights
DEPICT pathway analysis identifi ed 623 signifi cantly enriched gene-sets relevant for heart rate. The 74 
meta-gene set clusters are shown.
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502,664 All individuals
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No genetic data 349,885 Exlcuded
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476 ExcludedExclusions recommended by UK Biobank
(Extreme heterozygosity and/or low call rate)
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17,234 ExcludedAt least one related sample
(Genetic relatedness factor > 0)
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Supplementary Figure 8. Sample selection strategy
Scatter plot of genetic associations with all-cause mortality (y-axis) against associations with resting heart 
rate (x-axis) for variants associated with resting heart rate at P<10-5 (lines represent 95% confidence inter-
vals).
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Supplementary Figure 9. Scatter plot of genetic associations with all-cause mortality
Scatter plot of genetic associations with all-cause mortality (y-axis) against associations with resting heart 
rate (x-axis) for variants associated with resting heart rate at P<10-5 (lines represent 95% confidence inter-
vals).
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Supplementary Figure 10. Funnel plot of instrument variable strength
Funnel plot of instrument variable strength (y-axis, larger values indicate stronger instruments) against 
instrumental variable estimates for each genetic variant separately in Mendelian randomization analysis 
of resting heart rate on all-cause mortality using genetic variant using genetic variants throughout the 
genome that have been associated with resting heart rate at P<10-5. Horizontal lines represent 95% confi-
dence interval for the instrumental variable estimates. Solid vertical line is at the nul.
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Supplementary Note

Ascertainment of resting heart rate

Resting heart rate was assessed by two methods: pulse rate - using an automated reading 
during blood pressure measurement field, Field-ID 102 and Field-ID 95 (in 501,340 par-
ticipants); pulse rate - during arterial stiffness measurement using the pulse waveform 
obtained of the finger with an infra-red sensor Field-ID 4194 (in 170,790 participants). 
When multiple heart rate measurements were available during the first visit for an indi-
vidual these measurements were averaged. In 99.7% of participants at least one single 
measurement was available. There were 490 participants with 1 measurement, 330,419 
with 2 measurements and 170,594 with 3 heart rate measurements. The coefficient of 
variation derived from multiple measurements was 4.9%. We excluded individuals with 
extreme (>4SD) values (N=818).

Estimate of heritability

To estimate the heritability of heart rate explained by genetic variants, we employed 
BOLT-REML2. From the imputed data set (to ensure 100% call rate) all directly genotyped 
variants that passed quality control were extracted and pruned on LD (R2<0.05) to obtain 
roughly 500k variants, as recommended2. Resting heart rate was adjusted for gender, 
age, age2, principle components and the genotyping chip. We determined the heritabil-
ity of heart rate explained by all the genetic variation which was robustly genotyped 
(n=514,523) to be h2

GWAS=21.2% (SE=0.2%).

Ascertainment of mortality

Participant follow-up started at inclusion in the UK Biobank study and follow-up 
ended on Feb 17, 2014, or death, for all participants. This was for every participant 
apart from those enrolled in Scotland, which had complete information up to Dec 31, 
2012. All-cause mortality included all deaths occurring before Feb 17, 2014. Or for the 
participants enrolled in Scotland Dec 31, 2012. From the National Health Service (NHS) 
Information Centre for participants the information about cause of death was obtained 
for participants from England and Wales, and from the NHS Central Register, Scotland for 
participants from Scotland. Detailed information about the linkage procedure is avail-
able online (http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=115559).

Definitions used UK Biobank

Prevalent and incident hypertension, diabetes, myocardial infarction, heart failure, atrial 
fibrillation and supraventricular tachycardia was derived from self-reported (touchscreen 
questionnaire and verbal interview) and/or the diagnosis was captured using the Hos-
pital Episode Statistics (HES) records (using the following ICD codes: I10, I11, I12, I13, 



Chapter 2

54

I14, I15 for hypertension; E10, E11, E12, E13, E14 for diabetes; I21, I22 for myocardial 
infarction; I42, I50 for heart failure ; I48 for atrial fibrillation; I471 for supraventricular 
tachycardia). The “Spell and Episode” category contains data relating to diagnoses made 
during hospital in-patient stay. It includes main and secondary diagnoses, coded accord-
ing to the International Classification of Diseases (ICD). The main diagnosis is taken to be 
the main reason for the hospital admission, while secondary diagnoses are more often 
contributory or underlying conditions. We used both the main and secondary diagnoses 
for recording prevalent and incident risk factors, conditions and events.

Information on smoking status was collected using the touchscreen questionnaire at 
baseline visit. Information regarding device implantation (pacemaker or implantable 
cardioverter defibrillator) was captured through data collected at the Assessment Cen-
tre (verbal interview) HES records which are coded according to the Office of Population 
Censuses and Surveys Classification of Interventions and Procedures, version 4 (OPCS-4). 
Device implantation according the OPCS-4 was defined K59, K60, K61 and U31. Medica-
tion usage was collected during the baseline visit during a verbal interview by a trained 
nurse on prescription medications (Field ID 20003) this data was used for the interaction 
analysis of beta-blockers and calcium channel blockers. Body mass index was calculated 
using BMI value constructed from height and weight measured during the initial As-
sessment Centre visit (Field ID 21001) and Body composition estimation by impedance 
measurement (Field ID 23104). Blood pressure was measured using the manual reading 
(Field ID 93, 94) and automated reading (Field ID 4079, 4080) measurements. When 
multiple measurements during firs visit were available the mean of all measurements 
were averaged and used in the analysis.

Biological pathway and enrichment analyses

The NHGRI-EBI catalog3 of published genome-wide association studies was queried to 
identify previous associations within 1Mb of and r2 >0.8 with loci identified by the cur-
rent GWAS (18 July 2015).

DEPICT systematically identifies the most gene underlying a given associated locus, 
tests gene sets for enrichment in associated genetic variants, and identifies tissues and 
cell types in which genes from associated loci are highly expressed (see Pers et al. for 
a detailed description)4. We ran DEPICT on 376 independently associated loci of 1000 
Genomes phase 3 genetic variants (association P values < 10-5; PLINK parameters, 
‘--clump-p1 1e-5 --clump-kb 500 --clump-r2 0.05’) resulting in 236 independent, auto-
somal DEPICT loci containing 614 genes (the major histocompatibility complex region 
are by default excluded).

To obtain meta-genesets presented in figure 4C, we applied the Affinity Propagation 
method to group similar reconstituted gene sets. Each cluster was named according to 
the name of the representative gene set that was automatically identified by the Affinity 
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Propagation method. Pearson correlations between each gene-set were then calculated 
using R3.1.1 and visualized using Gephi.

Enrichment analyses for deoxyribonuclease I (DNase I) hypersensitive sites, as mark-
ers for active gene transcription, at identified loci were performed to identify the bio-
logically relevant tissues using using FORGE5 by using the 64 sentinel genetic variants 
(1000G corresponding rsIDs) as input genetic variants. In short, the 64 sentinel genetic 
variants were overlapped with functional DNA elements (125 samples for ENCODE, 299 
for Roadmap). A matched background distribution of genetic variants (matched on GC 
content, minor allele frequency and distance to TSS) was also overlapped with the DNA 
elements to obtain a null distribution. Z-score statistics was used to express enrichment, 
enrichments above the 99.9th percentile of the normal distribution were considered 
statistically significant.

Prioritization of potential candidate genes

SNPsnap6 was used to annotate all genes that are located within 1Mb of the sentinel 
genetic variant. Across the 64 loci, 1,668 annotated genes are located within 1 Mb of 
all sentinel SNPs. Among these genes, we prioritized potential candidates using an es-
tablished complementary strategy7,8; we chose (i.) protein coding genes nearest to the 
sentinel SNP, and any other genes within 10kb; (ii.) Genes containing a non-synonymous 
SNP in high LD (r2>0.8) with the sentinel SNP; (iii.) Protein-coding genes with cis-eQTL 
associated with sentinel SNP; (iv) based on DEPICT analyses (see below).

For our candidate genes basic knowledge was retrieved and summarized based 
on querying Entrez Gene (http://www.ncbi.nlm.nih.gov), GeneCards (http://www.
genecards.org), the UniProt Knowledgebase (http://www.uniprot.org ) and the Online 
Mendelian Inheritance in Man catalog (http://www.omim.org/).

Associations between genetically determined heart rate and all-cause mortality

We applied multiple strategies and methods to examine the relationship between ge-
netically determined resting heart rate and mortality.

Primary analysis:
Standard Mendelian analysis: for each resting heart rate associated variant we calculated 
β3 values (the putative association between resting heart rate (per 5 beats per minute 
(bpm) and outcome mediated through that variant) from the direct measurements of 
β1 (the effect size of the association between the variant and resting heart rate) and 
β2 (the effect size of the association between the variant and outcome), as described 
previously1. The value of β3 can be interpreted as the hazard ratio for outcome per 5 
bpm increase in genetically determined resting heart rate. Inverse-variance-weighted 
random-effects meta-analysis was used to combine individual β3 estimates providing 
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additional power to assess the overall association between genetically determined 
resting heart rate and mortality. Cochran’s Q statistic was used to assess heterogeneity 
among genetic variant estimates (Supplementary Figure 4).

Sensitivity analyses:
Genetic Risk Score (GRS): 
We also created a weighted genetic risk score (GRS) by first multiplying for each indi-
vidual the effect size of the association between the variant and resting heart rate (β1) 
with the number of alleles 0-2 of each genetic variant and then summing all products. An 
unweighted GRS was created by summing the number of resting heart rate-increasing 
alleles 0-2 of each associated genetic variant. We assessed the association of the GRS 
with all cause-mortality using the Cox-regressions adjusted for age and sex.

Correct for risk-factors in Cox regression model: 
To test whether the effect of our resting heart rate genetic variants on all-cause mortal-
ity is driven by cardiovascular risk factors we performed multivariable Cox regression 
models adjusted for age and sex (Table 4).

Excluding variants that showed an association with risk-factors: 
We performed additional analyses to establish whether variants that are associated with 
any of the variables of Table 3 (see manuscript) might be driving the observed associa-
tion with all-cause mortality. For this, we excluded variants that showed an association 
(P<0.05) with these risk factors, leaving 55 genetic variants. We re-calculated the associa-
tion between resting heart rate and outcome mediated through these variants (Table 4).

Multivariable regression of beta-coefficients method: 
To entangle pleiotropy from mediation we used complementary multivariable regres-
sion of beta-coefficients9. This method is robust to violations of the instrumental vari-
able assumptions due to pleiotropic effects on measured variables, and can therefore 
entangle pleiotropy from mediation (Table 4). In addition, this method allowed us to 
assess whether lipids (LDL, TGL, HDL and TG) and red blood cell phenotypes (RBC, PCV, 
MCV and Hb) obtained through previously published GWAS lays on the causal path-
way between heart rate and all-cause mortality. For lipids we downloaded data from 
large-scale genome-wide association meta-analyses of lipid traits of ENGAGE (European 
Network for Genetic and Genomic Epidemiology)10. In order to perform this analysis we 
selected SNPs from our GWAS which were in high LD (r2

>0.8 in UK Biobank) with the 
reported SNPs from the previously published GWAS. We matched 173 of the genetic 
variants of the 272 resting heart rate genetic variants. For red blood cell phenotypes we 
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used data from van der Harst et al8 and matched 209 of the genetic variants of the 272 
resting heart rate genetic variants (Table 4).

MR-Egger test: 
To test for evidence of pleiotropy (the phenomenon that a genetic variant directly 
affects multiple phenotypic traits) we applied the MR-Egger regression test. This test 
has been developed to test and correct for directional (unbalanced) pleiotropy11. We 
assessed whether there was heterogeneity in the causal estimates calculated using each 
genetic variant separately via a scatter plot and funnel (Supplementary Figure 9 and 10).

Re-estimate betas using healthy individuals: 
To determine whether our GWAS on resting heart rate was driven by genetic variants 
of which the strength of association (Beta) was influenced by prevalent (subclinical) 
diseases or drug treatment, we re-analyzed estimates derived from individuals free of 
any disease (using questionnaire data and Hospital Episode Statistics) and heart rate 
modifying medication (beta-blockers, or calcium channel-blockers). We identified 
11,405 (8.5%) of subjects fulfilling these stringent criteria (Table 1). We adjusted all the 
Beta’s based on this healthy cohort and re-calculated the association between resting 
heart rate and outcome mediated through these variants.

Re-estimate betas using replication cohort: 
To avoid any weak instrument bias, winner’s curse bias and population stratification we 
estimated the hazard ratio on mortality by using betas estimated on 130,795 individuals 
from our replication meta-analysis.

Calculating genetic correlation between resting heart rate and cardiovascular disease traits 
using BOLT-REML:
Bivariate REML analyses was performed using BOLT-REML2 to estimate the genetic cor-
relation between heart rate and other traits (Supplementary Table 6). From the imputed 
data set (to ensure 100% call rate) all directly genotyped variants that passed quality 
control were extracted and pruned on LD (R2<0.05) to obtain roughly 500k variants, as 
recommended2. Gender, age, principle components and genotyping chip we included 
as covariates in the analyses. Liability scale was estimated for dichotomous traits using 
linear transformation12.

Sort individuals with a mortality event by primary cause of death above or below the median 
value calculated GRS: 
We sorted individuals with a mortality event by primary cause of death subdivided into 
ICD-10 chapters and whether their genetically-predicted resting heart rate was above or 
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below the median value calculated using GRS including variants with P<10-5 as shown 
in Supplementary Table 7.

Estimation of life expectancy

We calculated life expectancy estimates based on the National Life Tables of the United 
Kingdom provided by the Office of National Statistics (ONS; www.ons.gov.uk) of 2011-13 
separately for males and females. We multiplied all the qx (is the mortality rate between 
age x and (x +1), that is the probability that a person aged x exact will die before reach-
ing age (x +1)) for each age with the hazard ratio derived from our mortality analysis. We 
recalculated dx (is the number dying between exact age x and (x +1) described similarly 
to lx, that is dx=lx-lx+1.) and then approximated life-expectancy ∑Mt=xtdt/∑Mt=xdt+0.5 
for each age from 0 to 90 and subtracted it from the same calculation using a hazard 
ratio of 1.0.

Supplemental tables (excel file) are available online.
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Telomeres are DNA repeat structures with protein complexes capping the ends of 
chromosomes important for chromosomal stability and cellular integrity (1). Telomeres 
shorten with each cell division and under environmental conditions such as oxidative 
stress. Therefore, telomere length (TL) has been proposed to reflect biological age (1). 
Many associations between shorter TL and various age-associated cardiovascular condi-
tions have been reported, including hypertension, coronary heart disease, and heart 
failure (1). Shorter and longer TL have also been linked to specific malignancies (2). 
These cross-sectional data do not provide evidence for causality. Here, we report a Men-
delian Randomization using seven sequence variants (SVs) previously associated with 
TL (3) and created a genetic risk score (GRS). We studied the association of genetically 
determined TL (gTL) with cardiovascular conditions, and mortality in 134,773 individuals 
of the UK Biobank population (4).

Genotypes based on UK Biobank arrays (BiLEVE and Axiom) imputed to the merged 
UK10K and 1000 Genomes Phase 3 panel were used. Participant follow-up started at 
inclusion and ended at death or on Feb 17, 2014 (participants enrolled in Scotland Dec 
31, 2012). We examined the association of both the individual SVs and GRS based on a 
summation of all seven SVs (weighted to their effect sizes, as reported in (3)) with hy-
pertension, diabetes, cardiovascular disease (CVD), cancer, and mortality, as previously 
described (5). We adjusted our analyses for age, sex, genotyping array and the first 10 
Principal Components (generated by flashPCA based on covariance) that were provided 
by UK Biobank. Two-sided P-values<0.05 were considered statistically significant.

During the 1.2 year follow-up period, 2,395 (1.8%) participants died, of which 756 
(0.6%) due to CVD and 1,499 (1.1%) due to cancer. The prevalence of overall CVD was 
34.9% (n=46,979). Although the effect size of individual SVs was small for CVD, the 
combined effect of all seven SVs was substantial. Shorter gTL was associated with 14% 
(95% Confidence interval [CI], 5-23%; P=0.004) lower risk of CVD per SD change in gTL 
(Figure 1A). The prevalence of hypertension was 31% (n=41,847). Two SVs, rs10936599 
(TERC) and rs9420907 (OBFC1), were individually associated (P-values<0.05) with hyper-
tension. The weighted linear combination of all seven SVs was associated with 16% (95% 
CI, 7-25%; P=0.002) decreased hypertension risk per SD shorter gTL. The prevalence of 
overall cancer was 16.7% (n=22,448). Four SVs were associated with overall cancer. The 
strongest association was observed for rs9420907 (OBFC1; Figure 1B). The weighted linear 
combination of the SVs showed 37% (95% CI, 29-45%; P<0.001) decreased overall cancer 
risk and a 45% (95% CI, 12-65%; P=0.01) decreased cancer mortality risk per SD shorter 
gTL. We did not observe an association between gTL and diabetes (n = 7,969 [5.9%]; 9%; 
95% CI: −12% to 26%; P=0.38) or all-cause mortality (19%; 95% CI, −17%-44%; P=0.26). 
Previous studies suggested associations between shorter TL with various CVD condi-
tions (1). Although the exact origin of these associations remains to be elucidated, a first 
indication for causality was derived from a sub-analysis of CARDIoGRAM. In this previous 
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work, a 21% (95% CI, 5-35%) increased risk of coronary heart disease was observed per 
SD shorter gTL (3). We now provide independent data further supporting this causal 
association between longer gTL and both overall CVD and hypertension. Similar to CAR-
DIoGRAM, rs7675998 (NAF1) had a contrasting effect for both CVD and hypertension 
risk. Our results on cancer also suggest causality for previously reported associations 
between shorter TL and decreased cancer risk, although contrasting findings have also 
been reported and the reason for this discrepancy remains to be resolved (2). In conclu-
sion, we applied a Mendelian Randomization approach and report evidence for a causal 
link between longer gTL with CVD, hypertension and cancer in 134,773 participants of 
the UK Biobank.
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Figure 1. gTL variants and risk of CVD (A) and cancer (B)
Forest plots display the effects of shorter gTL on CVD and cancer risk for each gTL sequence variant (SV). The 
overall effect is from fixed-effects meta-analysis of all sequence variants. Odds ratio (OR) shown with 95% 
confidence interval (CI) relates to a change in risk per-SD shortening in gTL.
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Abstract

Coronary artery disease (CAD) is the major cause of morbidity and mortality in the 
world. Identification of novel genetic determinants may provide new opportunities for 
developing innovative strategies to predict, prevent and treat CAD. Therefore, we meta-
analyzed independent genetic variants passing p<×10-5 in CARDIoGRAMplusC4D with 
novel data made available by UK Biobank. Of the 161 genetic variants studied, 71 reached 
genome wide significance (p<5×10-8) including 15 novel loci. These novel loci include 
multiple genes that are involved in angiogenesis (TGFB1, ITGB5, CDH13 and RHOA) and 
2 independent variants in the TGFB1 locus. We also identified SGEF as a candidate gene 
in one of the novel CAD loci. SGEF was previously suggested as a therapeutic target 
based on mouse studies. The genetic risk score of CAD predicted recurrent CAD events 
and cardiovascular mortality. We also identified significant genetic correlations between 
CAD and other cardiovascular conditions, including heart failure and atrial fibrillation. In 
conclusion, we substantially increased the number of loci convincingly associated with 
CAD and provide additional biological and clinical insights.
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Introduction

Coronary artery disease (CAD) is a major burden of morbidity and mortality to Western 
society1. CAD is driven by a complex interplay of multiple genetic and environmental 
factors that jointly give rise to a plethora of molecular interactions resulting in a 
complex and heterogeneous phenotype. The hallmark of CAD is the development and 
progression of atheromatous narrowing of the coronary artery with an increasing risk 
of plaque rupture, resulting in acute coronary occlusion. Current preventive therapy for 
individuals at risk is directed towards the management of their lipid profile, blood pres-
sure and promoting a healthy lifestyle. Genome-wide association studies (GWAS) have 
rapidly expanded our knowledge and provided novel leads to gain insights into human 
biology, optimize risk management and devise new therapeutic strategies2. To date, 57 
loci have been reported by genome-wide association studies for CAD, mainly driven by 
efforts of the CARDIoGRAM- and C4D-consortia3. These genetic associations have identi-
fied genes that are among the targets of known and possible novel CAD therapies such 
as LDLR and HMGCR (HMG-coA reducatase inhibitors, statins), PCSK9 (PCSK9 inhibitors) 
and IL6R (Tocilizumab)4,5. Genetic association analyses have also identified therapeutic 
targets for many other conditions as well (reviewed by Plenge et al.4).

To further build upon our biological knowledge of CAD, to facilitate the identification 
of additional therapeutic targets, and to gain novel insights in the causal relationships 
between other cardiovascular phenotypes, continuous efforts directed at expanding the 
number of genetic regions associated with CAD are of paramount importance. Therefore, 
we set 3 goals. 1) Validate and identify novel loci by follow-up of the top-signals identified 
in the previous GWAS by the CARDIoGRAM-C4D consortium 2) determine biological path-
ways and candidate genes underlying the genome wide associated loci and 3) evaluate 
the association of the variants with common risk factors of CAD and common cardiovas-
cular disorders to gain more insight into potential mediators of CAD per locus and trait.

Results

First, we identified UK Biobank individuals with and without CAD. The prevalence and 
incidence of CAD conditions and events was captured by data collected at the Assess-
ment Centre in-patient Health Episode Statistics (HES) and at any of the visits. A detailed 
definition of CAD can be found in the methods section and supplementary material.

Naturally, non-CAD individuals defined the control population but to improve statisti-
cal power we excluded individuals from the control population if their mother, father 
or sibling was reported to suffer from ‘heart disease’. We validated this approach by 
constructing a genetic risk score based on the 57 previously reported loci weighted 
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with the effect estimates of the CARDIoGRAMplusC4D 1000 Genomes analysis assuming 
an additive model. The genetic risk score was associated with a family history of heart 
disease (ncases = 71,263, ncontrols = 76,535, p = 3×10-128) in UK Biobank. Moreover, increased 
significance was observed for the association between the genetic risk score and CAD 
after excluding participants in the control group based on a family history (p = 5×10-183), 
compared to including these individuals (p = 2×10-147). Indicating that incorporating 
family history into the phenotype definition increases statistical power to detect as-
sociations between genetic variants and CAD.

This approach identified a total of 10,898 CAD cases and 76,535 non-CAD controls in 
UK Biobank that were imputed to the 1000 Genomes and UK10K reference panel6. The 
average age for CAD identified participants was 61.5 years and 55.8 for the controls. 
Detailed baseline characteristics are presented in Supplementary Table 1. To account 
for potential population stratification and genotyping differences, all associations in 
this manuscript were adjusted for the first 15 principle components, genotyping chip, 
gender and age.

Replication and identification of novel CAD loci

To date, 57 loci have been associated with CAD3. We performed logistic regressions be-
tween CAD status and these 57 previously reported CAD loci: 42 loci replicated at FDR < 
0.05 in UK Biobank (Supplementary Table 2). A schematic overview of the 2-stage design 
to identify new CAD loci is presented in Figure 1. We first clumped genetic variants on 
LD (r2<0.05, 1000 Genomes phase 1 v3 European panel) that reached a P value of < 
1×10-5 in the latest CARDIoGRAMplusC4D GWAS. This resulted in 161 independent sets 
of variants sharing 120 independent loci (defined as 1MB at either side of the sentinel 
genetic variant; Supplementary Table 3). Seventy-one genetic variants in 52 loci were 

CARDIoGRAMplusC4D 
1000 Genomes imputed 

GWAS

8,968,978 genetic variants

Clumped using 1000 Genomes
on LD R2<0.05 and P < 1X10-5

161 independent genetic 
variants in 120 loci 

(defined by 1MB at either side 
of the sentinel genetic variant)

Association testing of 161 
genetic variants in UK Biobank

 with CAD  and subsequent 
meta-analysis 

with CARDIoGRAMplusC4D.

71 genome wide significant 
genetic variants in 52 loci. 
16 of the 71 genetic variants

 are in 15 novel loci.
FDR<0.05 in UK Biobank & 

P < 5X10-8 in the meta-analysis 

Figure 1. Flowchart of the study design
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significantly associated (FDR < 0.05) with CAD in UK Biobank, were directionally concor-
dant with CARDIoGRAMplusC4D, and were genome wide significant (p < 5×10-8) in the 
joint (meta-) analysis of UK Biobank and CARDIoGRAMplusC4D. Of these 52 loci, 37 were 
previously reported as genome-wide significant loci for CAD leaving 15 novel genome 
wide significant loci (Table 1, Supplementary Figure 1). All of the 15 novel loci were com-
mon. The minor allele frequency was above 7.6% with relatively weak effect sizes.

Candidate genes and pathway analyses

We prioritized 104 candidate genes in the 52 loci: 70 genes were prioritized based on 
proximity (the nearest gene and any additional gene within 10kb), 13 genes by cod-
ing genetic variants in linkage disequilibrium (r2>0.8) with the sentinel genetic variant 
(Supplementary Table 4) and 51 genes based on expression quantitative trait loci (eQTL) 
analyses (Supplementary Table 5). Finally, 25 candidate genes were prioritized based on 
DEPICT analyses7 (Supplementary Table 6). The DEPICT framework also identified 458 re-
constituted gene sets that can be captured in 48 meta-genesets (Figure 2), the most signifi-
cant gene set was ‘abnormal vitelline vasculature morphology’ (Supplementary Table 7); 

Table 1. Fifteen novel genome wide associated loci for coronary artery disease. Data presented here is from 
the meta-analysis; full summary statistics are available in Supplementary Table 3

Region
Genetic
variant

EA /
NEA EAF OR (95% CI) P Value Gene

1q21.3 rs11810571 G/C 0.787 1.069(1.05-1.09) 1.72×10-10 TDRKHn,e

3p21.31 rs7623687 A/C 0.859 1.069(1.04-1.09) 3.28×10-08 RHOAn,AMTn,TCTAn,CDHR4c,KLHDC8Bd

3q21.2 rs142695226 G/T 0.136 1.078(1.05-1.10) 1.70×10-10 UMPSn,e,ITGB5n,d

3q25.2 rs433903 G/A 0.857 1.081(1.06-1.11) 6.06×10-10 SGEF(Arhgef26 )n,DHX36e

4q21.21 rs10857147 T/A 0.269 1.061(1.04-1.08) 4.29×10-10 PRDM8n,FGF5n

4q27 rs11723436 G/A 0.305 1.053(1.04-1.07) 7.01×10-09 MAD2L1n,PDE5Ae

4q31.21 rs35879803 C/A 0.702 1.051(1.03-1.07) 3.83×10-08 ZNF827n,e

6p22.3 rs35541991 C/CA 0.312 1.049(1.03-1.07) 2.57×10-08 HDGFL1n

11p15.2 rs1351525 T/A 0.674 1.049(1.03-1.07) 4.09×10-08 ARNTLn,c,e

12q13.13 rs11170820 G/C 0.076 1.098(1.06-1.13) 4.09×10-08 HOXC4n

12q24.31 rs2244608 G/A 0.349 1.056(1.04-1.07) 1.86×10-10 HNF1Anc,OASLd

14q24.3 rs3832966 I/D 0.458 1.054(1.04-1.07) 5.80×10-10 TMED10n,e,ZC2HC1Ce,RPS6KL1e,NEK9e,EIF2B2e,ACYP1e

16q23.1 rs33928862 D/I 0.506 1.049(1.03-1.07) 2.47×10-08 BCAR1n,e,d

16q23.3 rs7500448 A/G 0.772 1.069(1.05-1.09) 4.83×10-11 CDH13n,e,d

19q13.2 rs138120077 D/I 0.140 1.072(1.05-1.10) 9.44×10-09 HNRNPUL1n,e,TGFB1e,d,CCDC97e

19q13.2 rs8108632* T/A 0.484 1.052(1.03-1.07) 9.54×10-09 TGFB1n,d,B9D2n

Abbreviations: EA = effect allele, NEA = Non-effect allele,, EAF = effect allele frequency, OR = Odds Ratio, CI 
= confidence interval, I = Indel, D = Deletion. Candidate gene superscripts indicate the method of identification 
(n = nearest gene, c=coding gene, d = depict gene, e = eQTL gene). * denotes the secondary signal in locus 
of region 19q13.2.
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‘Arteries’ was the only significantly prioritized tissue-type (FDR < 0.01, Supplementary 
Table 8). Network analysis identified ‘regulation of cell motility’ as the meta-geneset that 
was most central among all meta-genesets, together with ‘negative regulation of cell 
motility’ and ‘blood vessel development’, suggesting these pathways play an important 
role in CAD. More specific processes identified by DEPICT included hemostasis, anemia 
and increased leukocyte cell number. The function of each novel candidate gene has 
been summarized in the Supplementary Note.

Table 2. Associations in UK Biobank (N=143,936) between the genetic risk score based on the 71 genome 
wide significant CAD variants and cardiovascular profile

Phenotype N individuals (%)

Beta (linear Regression) 
or odds ratio (logistic 
regression) (95% CI) P value

Body-mass index 143,442 (99.7%) -0.08(-0.14 to -0.02) 5.80×10-03

Height 143,595 (99.8%) -0.16(-0.24 to -0.09) 2.78×10-05

Resting heart rate 135,946 (94.4%) -0.45(-0.59 to -0.31) 2.03×10-10

Blood pressure 

Systolic 143,770 (99.9%) 0.61(0.40 to 0.82) 1.27×10-08

Diastolic 143,770 (99.9%) -0.02(-0.14 to 0.10) 7.60×10-01

Pulse pressure 143,770 (99.9%) 0.63(0.48 to 0.78) 1.65×10-16

Mean arterial pressure 143,770 (99.9%) 0.19(0.05 to 0.33) 7.14×10-03

Arterial stiffness index 54,184 (37.6%) -0.02(-0.08 to 0.04) 5.38×10-01

Smoking current 18,282 (14.5%) -0.05(0.91 to 0.98) 5.45×10-03

Medical Conditions 

Coronary Artery Disease 10,898 (8.2%) 2.21(2.11 to 2.32) 1.76×10-237

Hypertension 48,927 (51.5%) 1.18(1.15 to 1.22) 5.89×10-35

Diabetes 10,486 (7.9%) 1.10(1.05 to 1.16) 5.91×10-05

Myocardial Infarction 5,145 (3.7%) 2.35(2.20 to 2.51) 2.05×10-143

Heart failure 2,143 (1.5%) 1.43(1.29 to 1.58) 2.76×10-12

Cardiomyopathy 522 (0.4%) 1.02(0.84 to 1.25) 8.39×10-01

Atrial fibrillation / flutter 5,279 (3.8%) 1.10(1.03 to 1.18) 2.90×10-03

Cerebral Infarction and TIA 4,043 (2.9%) 1.16(1.08 to 1.25) 4.68×10-05

Device implantation 1,606 (1.1%) 1.51(1.35 to 1.69) 1.76×10-12

Medication

Beta-blockers 10,576 (7.9%) 1.42(1.36 to 1.49) 1.15×10-49

Calcium channel-blockers 10,993 (8.3%) 1.17(1.12 to 1.23) 3.19×10-11

Effect estimates with 95% Confidence Interval (CI) are shown as odds ratios for categorical variables (cur-
rent smoking, cardiovascular disease, atherosclerosis, hypercholesterolemia, hypertension, diabetes, myo-
cardial infarction, heart failure, atrial fibrillation / flutter, cerebral Infarction and TIA, device implantation, 
beta-blockers and calcium-channel blockers) and β estimates for quantitative variables (body-mass index, 
resting heart rate, systolic and diastolic blood pressure, pulse pressure, mean arterial pressure and arterial 
stiffness index). Abbreviation: N=Number, CI=Confidence Interval, TIA=Transient Ischemic Attack.
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Mediating effects of CAD variants

CAD is a complex multifactorial disease, sharing biology with other atherosclerotic 
manifestations and vascular diseases. Therefore, we examined the association between 
genetic risk for CAD and several common cardiovascular phenotypes. We constructed a 
weighted genetic risk score by summing the number of CAD increasing risk alleles after 
multiplying the alleles with the corresponding β (based on the CARDIoGRAMplusC4D 
GWAS3). The genetic risk score that was based on the 71 independent genetic variants 
was associated with multiple other cardiovascular phenotypes and risk factors in UK 
Biobank (Table 2). At baseline, the genetic risk score was significantly associated with 
BMI, height, systolic blood pressure, mean arterial pressure, pulse pressure and heart 
rate. The genetic risk score was also associated with the presence of heart failure, hyper-
tension, smoking, device implantation, cerebral infarction (including transient ischemic 
attack), atrial fibrillation and diabetes; whereas cardiomyopathy, diastolic blood pressure 
and arterial stiffness index were not significantly associated. We also tested whether the 
genetic risk score could predict cardiovascular mortality, death from coronary artery 
disease, death from myocardial infarction, and death from heart failure. The genetic 
risk score significantly predicted these outcomes in cox’s proportional hazards models 
(Table 3). In addition, the genetic risk score predicted recurrent CAD events (n = 3,733) 
in participants with a history of CAD (n = 6,440; HR=1.10, Confidence interval 1.03 – 1.19, 
p = 0.009). Results were the same for a genetic risk score based on 57 previously known 
loci (Supplementary Table 9).

BOLT-REML8 was used to assess the cumulative contribution of common genetic 
variants to CAD risk, and to estimate the degree of genetic correlation between CAD 
and other cardiovascular phenotypes in UK Biobank. We estimated the heritability of 
CAD by genome wide genetic variants, h2

g , to be 0.063 (SE = 0.0046), which is 0.22 on 
the liability scale (with a prevalence of 0.076, based on UK Biobank). CAD and almost 

Table 3. Cox survival model predicting hazard of death using the genetic risk score based on the 71 ge-
nome wide significant CAD variants

Phenotype N deaths (%) Hazard Ratio (95% CI) P value

Coronary Artery Disease 723 (0.5%) 1.75(1.48 to 2.08) 4.90×10-11

Myocardial Infarction 210 (0.1%) 1.93(1.41 to 2.63) 3.40×10-05

Heart failure 219 (0.2%) 1.39(1.02 to 1.88) 3.69×10-02

Cardiomyopathy 40 (0.0%) 1.18(0.58 to 2.40) 6.48×10-01

Cerebral Infarction and TIA 124 (0.1%) 1.32(0.87 to 1.98) 1.89×10-01

All cause mortality 4373 (3.0%) 1.02(0.95 to 1.09) 5.65×10-01

Cardiovascular mortality (as primary cause of death) 892 (0.6%) 1.46(1.26 to 1.70) 9.08×10-07

Abbreviations: N=Number, CI=Confidence Interval, TIA=Transient Ischemic Attack
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all other studied cardiovascular phenotypes were genetically correlated, which led to 
comparable conclusions as our genetic risk score analyses. Narrow sense heritability 
estimates of all studied cardiovascular phenotypes and estimates of shared genetic cor-
relations with CAD are available in Table 4.

To gain further insights into potential mediating mechanisms at the genetic variant 
level, we queried the GWAS-catalog for previously reported genome wide associations: 
for the novel loci, genetic variants in linkage disequilibrium (r2>0.5) with rs10857147 
(FGF5) was previously associated with blood pressure and serum urate levels; rs2244608 

Table 4. Heritability estimates for cardiovascular traits and the shared heritability between each trait and 
CAD in all UK Biobank Participants based on common genetic variation under the additive model (h2

g). For 
dichotomous traits, the heritability on the observed 0-1 scale was transformed to h2

g on the unobserved 
continuous liability scale by a linear transformation

Phenotype h2g(Se) P-h2g

Genetic correlation
with CAD (Se) P-correlation

Body-mass index 0.316 (0.005) 0 0.289 (0.026) 3.67×10-28

Height 0.614 (0.004) 0 -0.142 (0.019) 5.93×10-13

Resting heart rate 0.204 (0.005) 0 0.099 (0.033) 4.64×10-03

Blood pressure 0

Systolic 0.198 (0.005) 0 0.380 (0.034) 8.04×10-29

Diastolic 0.197 (0.005) 0 0.316 (0.034) 3.15×10-20

Pulse pressure 0.220 (0.005) 0 0.265 (0.030) 8.08×10-18

Mean arterial pressure 0.191 (0.005) 0 0.380 (0.035) 3.70×10-27

Arterial stiffness index 0.082 (0.012) 2.13×10-11 0.075 (0.118) 3.26×10-01

Smoking current 0.238 (0.012) 3.06×10-87 0.258 (0.043) 8.30×10-09

Medical Conditions 

Coronary Artery Disease 0.216 (0.016) 8.77×10-42 - -

Hypertension 0.310 (0.008) 0 0.577 (0.031) 1.39×10-75

Diabetes 0.345 (0.017) 2.90×10-95 0.412 (0.041) 2.88×10-23

Myocardial Infarction 0.190 (0.025) 4.21×10-14 1.000 (0.035) 2.40×10-174

Heart failure 0.098 (0.044) 3.49×10-02 0.679 (0.158) 4.04×10-05

Cardiomyopathy 0.071 (0.134) 3.47×10-01 0.462 (0.483) 2.53×10-01

Atrial fibrillation / flutter 0.238 (0.025) 1.92×10-21 0.323 (0.058) 8.29×10-08

Cerebral Infarction and TIA 0.090 (0.028) 2.62×10-03 0.635 (0.134) 4.93×10-06

Device implantation 0.074 (0.055) 1.61×10-01 0.678 (0.261) 1.36×10-02

Medication

Beta-blockers 0.156 (0.016) 1.94×10-22 0.818 (0.053) 6.26×10-53

Calcium channel-blockers 0.251 (0.016) 6.41×10-55 0.547 (0.049) 2.76×10-28

 Abbreviations: h2g= heritability based on genome wide variation, Se=Standard error, TIA=Transient Isch-
emic Attack. (h2g); standard error (SE); N.A.; not applicable.
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(HNF1A/OASL) with a wide range of biomarkers including lipids and urate levels; 
rs3832966 (TMED10/NEK9) with adult stature; rs1351525 with menarche; rs33928862 
with pulmonary function; and rs8108632 (B9D2/TGFB1/AXL) with migraine and colorec-
tal cancer risk (Supplementary Table 10). Furthermore, we performed association testing 
in the CAD controls of UK Biobank (N = 76,535) to reduce potential reverse causation of 
CAD for the following traits: systolic- and diastolic blood pressure, mean arterial pres-
sure, pulse pressure, arterial stiffness index, heart rate, smoking and diabetes. We also 
performed lookups in previously published datasets of large GWAS: lipids9, BMI10, Hip 
circumference11, waist-hip ratio11 (adjusted for BMI), results are presented in Supplemen-
tary Table 11. Of the 71 genetic variants, 63 were nominally associated (p < 0.05) with one 
or more phenotypes. These lookups confirmed our findings of the GWAS-catalog query; 
rs2244608 is highly associated with total cholesterol and LDL (p = 9×10-21), rs10857147 
(FGF5) is associated with blood pressure (p = 2×10-13) but also identified novel associa-
tions for the novel loci such as rs7500448 (pulse pressure, p = 4×10-11), rs1351525 (Sys-
tolic blood pressure p = 7×10-7) and rs33928862 (Systolic blood pressure p = 5×10-4). It 
also highlighted 21 of 71 variants without any association (P>0.05) with blood pressure 
or lipid traits (Supplementary Table 11).

Discussion

Using a 2-stage design, adding 10,898 new cases and 76,535 controls to the 60,801/130,681 
controls/cases previously studied by the CARDIoGRAMplusC4D consortium, we identi-
fied 15 novel loci reaching genome wide significance3. The variants of these 15 loci were 
common, with generally low effect sizes. In keeping with previous observations, our 
strategy did not reveal CAD variants of low frequency (MAF < 1-0.05%), suggesting that 
even other reference sets, techniques or larger sample sizes are required3. We added a 
relatively modest increase in cases (17.9%) compared to CARDIoGRAMplusC4D data but 
the number of additional controls was substantially higher (58.6%) and by filtering on 
a family history of ‘heart disease’ we might have decreased the number of misclassifica-
tions. These aspects of our strategy may have contributed to the relative large number 
of novel CAD loci compared to the latest CARDIoGRAMplusC4D that identified 10 new 
loci. Within UK Biobank we observed that the genetic risk score significantly predicts 
- and has a shared heritability with - a range of cardiovascular phenotypes, illustrating 
for example that genetically predicted CAD also increases risk for heart failure and atrial 
fibrillation, in line with observations from clinical practice.

Of the novel prioritized candidate genes, some have been previously reported for their 
involvement in blood vessel development. For example, RHOA, part of the Ras protein 
family, is involved in a multitude of cellular processes via the Rho-kinase pathway which 
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has a primary role in the regulation of contraction in vascular smooth muscle cells and 
promoting development of vascular remodeling12. CDH13 which encodes T-cadherin, is 
a regulator of vascular wall remodeling, angiogenesis and is essential for adiponectin’s 
vascular actions13. TGFB1, one of the most widely studied genes, is crucial in embryonic 
development and tissue homeostasis. The role of TGFB1 in angiogenesis is a fact and 
long thought to play a role in CAD development, but the exact molecular pathways are 
hard to tackle due to the complex and multifactorial nature14. Rs2241718 near TGBF1 has 
been prioritized previously as a functional regulatory variant15 but is in low linkage dis-
equilibrium (r2 <0.05) with the two signals identified here. Identifying two independent 
variants in this locus provides new opportunities to study the role of TGFB1 in CAD. The 
product of ITGB5, integrin β5 has been studied in some detail for its role in cell adhesion 
and integrin-mediated signaling. It is believed that ITGB5 is able to exert pro-angiogenic 
effects by enhancing the binding capacity of circulating angiogenic cells to endothelial 
cells16. Our pathway analyses also suggest that factors related to angiogenesis (‘blood 
vessel development’ and ‘regulation of cell motility’) are indeed central among the CAD 
loci, supplementing previously performed pathway analyses17.

We also identified a novel CAD locus (rs433903) harboring SGEF. SGEF has been 
described to contribute to the formation of ICAM-1-induced endothelial docking 
structures that facilitate transendothelial migration and adhesion of leukocytes18. This 
process has an unfavorable role in atherosclerosis: SGEF-/- mice demonstrate a signifi-
cant reduction in the formation of atherosclerotic plaque and was suggested as a novel 
therapeutic target, also since there appeared to be no other negative phenotypes 18,19. 
Here, we demonstrate that rs433903 near SGEF is associated with CAD in humans and is 
not convincingly associated with other phenotypes such as blood pressure and lipids. 
Future studies are necessary to determine the exact molecular mechanisms underlying 
rs433903 and whether this variant is causally implicated in CAD through mechanisms of 
SGEF to further establish SGEF as a new candidate target for therapy.

The majority of preventive CAD medication is currently directed towards lowering LDL 
cholesterol and blood pressure, both of which are also closely associated with CAD on 
a genetic level, and considered to be causally related20–22. Genetic variants lacking any 
association with blood pressure or lipids might be of increased interest to be considered 
as novel (first in class) therapeutic targets that act independently from blood pressure or 
lipid lowering medication. However, our analyses are limited by the associative nature. 
To establish further evidence of the true causal genes and mechanisms underlying each 
association, further functional experiments are essential.

We are the first to have observed a significant genetic correlation between CAD and 
heart failure. The degree of shared heritability between CAD and heart failure was es-
timated to be as high as 0.68. We also observed that genetic risk for CAD was strongly 
associated with the occurrence of heart failure due to CAD, and predicts death of heart 
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failure with similar effects. It is well known that CAD plays a major role in heart failure, 
prevention of CAD is essential to maintaining functional myocyte reserve and preventing 
left ventricular systolic dysfunction23. Furthermore, a significant correlation and shared 
heritability was observed between the genetic risk score of CAD and increased risk of 
atrial fibrillation, perhaps due to atrial infarction but shared mechanisms of inflamma-
tion may also be responsible24.

We could not only explain death due to CAD using our genetic risk score, in line with 
other studies25, but could even predict progression of CAD as indicated by the signifi-
cant association with recurrent CAD. A genetic risk score may be helpful to discriminate 
individuals at high risk of CAD and to direct more intensive preventive therapies. Future 
studies should be focused at replicating the newly identified loci and at further elucidat-
ing the molecular and pathophysiological mechanisms underlying CAD.

In summary, we report 15 novel loci, representing a 20% expansion of loci that are 
genome wide associated with CAD, including 2 independent variants near TGFB1. We 
also highlight widespread sharing of genetic variation between CAD and numerous 
other common cardiovascular diseases including atrial fibrillation and heart failure.

Materials and methods 

UK biobank individuals 

UK Biobank recruited participants with an age range of 40-69 years that registered with 
a general practitioner of the UK National Health Service (NHS). Between 2006–2010, 
in total 503,325 individuals were included. All study participants provided informed 
consent and the study was approved by the North West Multi-centre Research Ethics 
Committee. Detailed methods used by UK Biobank have been described elsewhere.

Ascertainment of resting coronary artery disease and controls

The prevalence and incidence of coronary artery disease conditions and events were 
captured by data collected at the Assessment Centre in-patient Health Episode Statistics 
(HES). CAD was defined using the following ICD 10 codes: I21-I25 covering ischaemic 
heart diseases and the following Office of Population Censuses and Surveys Classifica-
tion of Interventions and Procedures, version 4 (OPCS-4) codes: K40-K46, K49, K50 and 
K75 which includes replacement, transluminal balloon angioplasty, and other therapeu-
tic transluminal operations on coronary artery and percutaneous transluminal balloon 
angioplasty and insertion of stent into coronary artery. The exact phenotype definitions 
of UK Biobank are described in the Supplementary Note under section “Definitions 
used for UK Biobank analyses”. Individuals from the control group were excluded if their 
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mother, father or sibling were reported to suffer from ‘heart disease’ to increase the true 
CAD/non-CAD ratio for our analysis.

Genotyping and imputation 

Of the 500 thousand individuals with phenotype data in UK Biobank, 152,249 (25%) are 
currently genotyped. Genotyping, quality control and imputation was performed by UK 
Biobank and described in detail elsewhere6,26. Briefly, genotyping of 102,326 individuals 
was performed using the UK Biobank Axiom array (Affymetrix), and an additional 49,923 
individuals were genotyped as part of the UK Biobank Lung Exome Variant Evaluation 
(UK BiLEVE) project. The Welcome Trust Centre for Human Genetics performed quality 
control before imputation and imputed the dataset using a merged reference panel 
of 1000 Genomes Phase 3 and UK10K6. The imputed dataset consisted of 72,355,667 
genetic variants. For this work, genetic variants were included only if the imputation 
quality was greater than 0.3 and MAF>0.005 in line with the CARDIoGRAMplusC4D 
analysis, leaving 12,248,858 genetic variants. Participants were excluded based on 
gender mismatch, high missingness and high heterozygosity (n=662). We also removed 
8,874 individuals based on relatedness (3rd degree or closer6), one of each related pair 
was excluded based on the highest missingness.

Statistical analysis

We selected genetic variants for replication from the CARDIoGRAMplusC4D3 GWAS 
(downloaded from: http://www.cardiogramplusc4d.org/downloads) by filtering on p 
< 1×10−5 and linkage disequilibrium using the PLINK clumping procedure (‘--clump-kb 
5000 --clump-r2 0.05’, 1000 Genomes phase 1), after which we determined the number 
of 2-Megabase-loci, by assigning 1 Megabase regions at either side of the highest as-
sociated variant per locus (designated the sentinel genetic variant). Logistic regression 
analyses between genetic variants and the 10,898 CAD cases and 76,535 controls in UK 
Biobank were performed after adjustments for age, sex, the first 15 Principal Compo-
nents to control for population stratification, and the genotyping array used. To account 
for multiple testing and declare novel loci we applied a replication p of FDR < 0.05 in UK 
Biobank and a genome wide significance threshold of p < 5×10−8 in the inverse-variance 
meta-analysis between the summary statistics of UK Biobank and CARDIoGRAMplusC4D.

Pathway analyses

The DEPICT Framework was used to identify enriched pathways, prioritize candidate 
genes at each loci and selects relevant tissues/cell types from co-expression networks 
of genes underlying the associated loci7 (see Pers et al.7 for a detailed description). We 
applied DEPICT on CARDIoGRAMplusC4D results at p < 1×10-5 which identified 194 
independent loci using default settings (PLINK parameters, ‘--clump-p1 1e-5 --clump-kb 
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500 --clump-r2 0.01’), containing 489 genes. The gene prioritization, gene set enrich-
ment and tissue/cell type enrichment analyses were run using the default settings in 
DEPICT (1000G dataset). We applied the affinity propagation method27 to identify corre-
lated genesets and for each correlated group the exemplar-geneset, which was named 
‘meta-geneset’, and used Gephi (www.gephi.org)28 to visualize the pearson correlation 
between pathways and calculate the centrality measures of each node (Figure 2).

Genetic risk score analyses & (shared) heritability of CAD 

To study the relationship of CAD with other cardiovascular phenotypes, we created 
a weighted genetic risk score by summing the number of CAD risk-increasing alleles 
weighted (multiplied) for its β (estimated using the 1000 genomes meta-analysis3) of 
each associated genetic variant; assuming an additive effect. We performed a linear or 
logistic regression adjusted for age, gender, principle components and genotyping chip 
between the genetic risk score and cardiovascular phenotype. Cox regression analysis 
adjusted for age, gender, principle components and the genotyping chip was used 
to evaluate the predictive power of the genetic risk score on mortality and recurrent 
CAD events. Bivariate REML analyses were performed using BOLT-REML8 to estimate 
the heritability of CAD and the genetic correlation of CAD with other cardiovascular 
traits. All directly genotyped variants that passed quality control were extracted from 
the imputed dataset (to ensure 100% call rate) and pruned on linkage disequilibrium (r2 
< 0.05) to obtain roughly 500k variants, as recommended8. Liability scale was estimated 
for dichotomous traits using linear transformation29. Gender, age, principle components 
and genotyping chip we included as covariates in all analyses.

Identification of candidate genes 

We prioritized candidate genes for each of the 71-genome wide significant variants that 
were shared in 52 loci, based on the following criteria: 
(1)	 The nearest gene or any gene located within 10kb of the sentinel genetic variant 
(2)	 Any gene containing protein coding variants in linkage disequilibrium (r 2 > 0.8, UK 

Biobank) with the sentinel genetic variant (Supplementary Table 4).
(3)	 Expression QTL (eQTL) analyses in cis; we search for eQTLs (sentinel genetic variants 

or genetic variants in linkage disequilibrium, r 2 > 0.8, UK Biobank) in an eQTL dataset 
that was compiled from multiple tissues, including those of GTEX v630, STARNET31 and 
large eQTL datasets of blood32–34 (see Supplementary Table 5). We only considered 
eQTLs for which the top-eQTL was in linkage disequilibrium (r 2 > 0.8, UK Biobank) 
with the sentinel genetic variant and for which the eQTL p < 1×10−6.

(4)	 DEPICT-genes (see section “pathway analyses” for more details and Supplementary 
Table 6-8).
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Supplementary Note

Summary of the candidate genes in the novel associated loci

Locus 1q21.3, rs11810571 (TDRKH): The function of TDRKH is unknown in the literature, 
whereas the functions of the isoforms encoded by RORC, RORγ and RORγt are complex 
and widely studied 1.

Locus 3p21.31, rs7623687 (RHOA, AMT, TCTA, CDHR4 and KLHDC8B): RHOA (Ras ho-
molog gene family, member A) is a small GTPase protein from the Rho family. The effects 
of RHOA are not all known it is primarily associated with cytoskeleton regulation, mostly 
actin stress fibers formation and actomyosin contractility. The RhoA/Rho-associated 
coiled-coil-forming kinase (ROCK) pathway participates in acute myocardial infarction 
and inhibiting of this pathway with atorvastatin improves the post-infarct microenviron-
ment2

. The AMT gene provides instructions for making an enzyme called aminometh-
yltransferase. This is one of four subunits that make up glycine cleavage enzyme. This 
complex is active in mitochondria. Mutations in this gene are responsible for ~15% of 
the glycine encephalopathy3. Only a few studies have been studying the role of TCTA 
(T-cell leukemia translocation-altered), it has been reported to play a role in human tu-
morigenesis and osteoclastogenesis4 and inhibit proliferation of fibroblast-like synovio-
cytes5. CDHR4 (cadherin-related family member 4) cadherins are calcium-dependent 
cell adhesion proteins. They preferentially interact with themselves in a homophilic 
manner in connecting cells; cadherins may contribute to the sorting of heterogeneous 
cell types. KLHDC8B encodes a protein which forms a distinct beta-propeller protein 
structure of kelch domains (allowing for protein-protein interactions). Mutations have 
been associated with Hodgkin lymphoma.

Locus 3q21.2, rs142695226 (ITGB5 and UMPS): The product of ITGB5, integrin β5 is 
widely studied for it’s role in cell adhesion and integrin-mediated signaling. It plays a 
role in angiogenesis, overexpression promotes new blood vessel formation in vivo by 
enhancing the binding capacity of circulating angiogenic cells to endothelial cells, 
among other molecular effects 6. UMPS encodes a uridine 5’-monophosphate synthase, 
it catalyzes the reaction of orotic acid and ribose-5-phosphate to uridine monophos-
phate (UMP), an energy-carrying molecule.

Locus 3q25.2, rs433903 (ARHGEF26(SGEF) and DHX36): ARHGEF26 (Rho Guanine 
Nucleotide Exchange Factor 26) encodes a member of the Rho-guanine nucleotide 
exchange factor (Rho-GEF) family. These proteins regulate Rho GTPases by catalyzing 
the exchange of GDP for GTP; ARGHEF26 is also named SGEF, reported to play a crucial 
role in atherosclerosis and is suggested to be a potential therapeutic target7. DHX36 is a 
gene which is a member of the DEAH-box family of RNA-dependent NTPases. It may be 
involved in regulation of telomere length, function in sex development and spermato-
genesis and may play a role in ossification [genecards].
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Locus 4q21.21, rs10857147 (PRDM8 and FGF5): PRDM8 encodes a protein that belongs 
to a conserved family of histone methyltransferases that acts predominantly as negative 
regulators of transcription [genecards]. FGF5 is a member of the fibroblast growth factor 
family that play an important role in cell proliferation and differentiation; FGF5’s major 
role is in regulation of hair length8.

Locus 4q27, rs11723436 (MAD2L1 and PDE5A): MAD2L1 is a component of the mitotic 
spindle assembly checkpoint it prevents the anaphase, until all chromosomes at the 
metaphase are aligned. PDE5A (Phosphodiesterase 5A) is a Protein Coding gene. It is 
involved in the regulation of intracellular concentrations of cyclic nucleotides and is 
important for smooth muscle relaxation in the cardiovascular system. PDE5 expression 
is increased in patients with advanced cardiomyopathy9.

Locus 4q31.22, rs35879803 (ZNF827): ZNF827 is a largely unknown zinc finger pro-
tein. It has been reported to recruit the NuRD (Nucleosome Remodeling Deacetylase) 
complex that has chromatin remodeling and histone deacetylase activities. The NuRD-
ZNF827 complex promotes telomere-telomere recombination, it integrates and controls 
multiple mechanistic elements of ‘alternative lengthening of telomeres’ (ALT) activity 10.

Locus 6p22.3, rs35541991 (HDGFL1): HDGFL1 encodes hepatoma-derived growth 
factor-like 1. Variants near HDGFL1 have been genome wide associated with Total iron 
binding capacity11 but its function remains to be determined.

Locus 11p15.2, rs1351525 (ARNTL): ARNTL (Aryl Hydrocarbon Receptor Nuclear Trans-
locator Like), a transcriptional activator, and its product BMAL1, form the core compo-
nents of the circadian clock and mainly known for interactions with CLOCK genes.

Locus 12q13.13, rs11170820 (HOXC4): There is not much known about HOXC4. HOXC4, 
is one of several HOXC genes located in a cluster on chromosome 12; three genes, HOXC5, 
HOXC4 and HOXC6, share a 5’ non-coding exon. The homeobox genes encode a highly 
conserved family of transcription factors that play an important role in morphogenesis 
in all multicellular organisms. [genecards]. HOXC4 has been studied in relationship to 
differentiation of hematopoietic stem cells12 and adipose tissue13.

Locus 12q24.31, rs2244608 (HNF1A, OASL): HNF1A is a frequent cause of monogenic 
diabetes (MODY-HNF1A) and highly expressed in liver, pancreas and the proximal tu-
bule of the kidney. It has been shown to be highly associated with lipid levels14, and 
suggested to be involved in CRP, GGT, and other atherosclerotic and metabolic risk 
factors15. It plays a major role in the expression of various hepatic, renal, and pancreatic 
genes/proteins including megalin (Low density lipoprotein-related protein 2), cubilin 16, 
PCSK917. Altogether, HNF1A is a pleiotropic gene that is widely studied with many func-
tions. OASL encods oligoadenylate synthetase enzymes, which are cytoplasmic dsRNA 
sensors belonging to the antiviral innate immune system.

Locus 14q24.3, rs3832966 (TMED10, NEK9, ZC2HC1C, RPS6KL1, EIF2B2 and ACYP1): 
Little is known about TMED10’s function. TMED10 is thought to be a type I membrane 
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protein that is localized to the plasma membrane and golgi cisternae, involved in vesicu-
lar protein trafficking. NEK9 recently reported to be a cause for a lethal skeletal dysplasia. 
Loss of function results in defects of fibroblasts including a reduced proliferation capa-
bility and delayed cell cycle progression through the G1/S boundary and S-phase and 
could also be involved in ciliopathy18. EIF2B2 (Eukaryotic Translation Initiation Factor 2B 
Subunit Beta) is a Protein Coding gene. Diseases associated with EIF2B2 include Leuko-
encephalopathy With Vanishing White Matter and Late Infantile Cach Syndrome. Among 
its related pathways are Gene Expression and Translation Insulin regulation of translation 
[genecards]. ACYP1 is a member of the acylphosphatase family. The encoded protein is 
a small cytosolic enzyme that catalyzes the hydrolysis of the carboxyl-phosphate bond 
of acylphosphates. Two isoenzymes have been isolated and described based on their 
tissue localization: erythrocyte (common) type acylphosphatase encoded by this gene, 
and muscle type acylphosphatase [genecards]. nothing is known about the function of 
ZC2HC1C (Zinc Finger C2HC-Type Containing 1C) and RPS6KL1 (Ribosomal Protein S6 
Kinase Like 1).

Locus 16q23.1, rs33928862 (BCAR1): Breast cancer anti-estrogen resistance protein 1 
is a protein that in humans is encoded by the BCAR1 gene and involved in various cel-
lular events, basic signaling of developmental/physiological processes and involved in 
regulation homeostasis of various tissues, BCAR1’s functions and role has been reviewed 
previously19. A variant in LD (r2=0.65), rs4888378, has been associated with Carotid 
Intima-Media Thickness and coronary artery disease risk20 .

Locus 16q23.3 rs7500448 (CDH13): CDH13 is a widely studied member of de cadherin 
family, it is an adhesion glycoprotein known as T-cadherin and is recognized as an LDL 
receptor, although different to other LDL recepters, it activates Erk 1/2 tyrosine kinase 
and the nuclear translocation of NF-kappaB2122. GVs near this gene have previously been 
genome wide associated with blood pressure23 and adiponectin levels24 (P=6.8×10−165), 
among others. The locus has also been identified in one of the first genome wide asso-
ciation studies of coronary artery disease25, although not at genome wide significance. 
None of the reported SNPs were in LD (r2>0.001) with the current finding, rs7500448. 
We identified rs7500448 to be highly associated (P=8×10−13) with pulse pressure in UK 
Biobank.

Locus 19q13.2, rs138120077 and rs8108632 (B9D2, TGFB1, HNRNPUL1 and CCDC97): 
not much is known about B9D2’s function, the encoded protein localizes to basal bod-
ies and cilia, mutations cause Meckel syndrome 26. TGFB1, transforming growth factor 
beta1, is one of the most widely studied genes. It is a multifunctional peptide which 
regulates proliferation, differentiation, adhesion, migration, among other functions and 
studied for its role in angiogenesis, cardiovascular syndromes and vascular biology 27–29. 
rs2241718 near TGBF1 has been prioritized as a functional regulatory variant30 but is in 
low LD with the 2 signals identified in our study. The heterogeneous nuclear ribonucleo-
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protein U-like 1 (HNRPUL1) gene encoding for a hetero-geneous ribonuclear protein 
believed to be involved in mRNA processing and transport 31,32, candidate studies found 
significant associations between variants and CAD in high risk people with familial 
hypercholesteromelia 33. Nothing is known for CCDC97 (Coiled-Coil Domain Containing 
97), but it has been recently studied as a candidate for regulatory mechanisms of CAD, 
together with TGFB130. This study showed that while the 3’-untranslated region variant 
at CCDC97/TGFB1, rs2241718, was predicted to affect binding, this variant might not 
alter endogenous CCDC97 levels, but rather serve as an enhancer for neighboring TGFB1 
in human coronary artery smooth muscle cells.

Definitions used for UK Biobank analyses

Prevalent and incident coronary artery disease (CAD), hypercholesterolemia, hyperten-
sion, diabetes, myocardial infarction (MI), heart failure, atrial fibrillation / flutter, cere-
bral infarction was derived from self-reported (touchscreen questionnaire and verbal 
interview) and/or the diagnosis was captured using the Hospital Episode Statistics (HES) 
records (using the following ICD codes: I21 - I25 for CAD; E78 for hypercholesterolemia; 
I10 - I15 for hypertension; E10 - E14 for diabetes; I21 - I22 for MI; I42, I150 for heart failure; 
I48 for atrial fibrillation and flutter; I63 - I64 for cerebral infraction and transient ischemic 
attack; all codes beginning with I as primary diagnosis were used to define cardiovas-
cular mortality. In addition information for CAD and device implantation (pacemaker 
or implantable cardioverter defibrillator) was captured through HES records which are 
coded according to the Office of Population Censuses and Surveys Classification of 
Interventions and Procedures, version 4 (OPCS-4) (using the following OPCS-4 codes: 
K40 - K46, K49, K50, K75 for CAD and; K59 - K61 and U31 for device implantation. The 
“Spell and Episode” category contains data relating to diagnoses made during hospital 
in-patient stay. It includes main and secondary diagnoses, coded according to the 
International Classification of Diseases (ICD). The main diagnosis corresponds to be 
the main reason for the hospital admission, while secondary diagnoses are more often 
contributory or underlying conditions. We used both the main and secondary diagnoses 
for recording prevalent and incident risk factors, conditions and events. For defining the 
control group we excluded participants who reported that their mother, father or sibling 
suffered form ‘heart disease’ (Field ID 20107, 20110 and 20111). Information on smoking 
status was collected using the touchscreen questionnaire at baseline visit. Medication 
usage was collected at the baseline visit during a verbal interview by a trained nurse 
on prescription medications (Field ID 20003). Data on beta block-blocker and calcium 
channel-blocker therapy was defined with corresponding medication codes (beta-
blockers and calcium channel blockers, please see below for the exact codes that were 
used). Body mass index was calculated using BMI value constructed from height and 
weight measured during the initial Assessment Centre visit (Field ID 21001) and Body 
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composition estimation by impedance measurement (Field ID 23104). Blood pressure 
was measured using the manual reading (Field ID 93, 94) and automated reading (Field 
ID 4079, 4080) measurements. Pulse pressure was calculated by subtracting the diastolic 
from the systolic blood pressure value. Mean arterial pressure (MAP) was calculated by 
MAP = [ (2 x diastolic blood pressure) + systolic blood pressure] divided by 3. When 
multiple measurements during firs visit were available the mean of all measurements 
were averaged and used in the analysis. In the UK Biobank cohort PWV for ASI assess-
ment was measured using the PulseTrace PCA2 (CareFusion, San Diego, USA) (Field-ID 
21021). The PulseTrace PCA2 uses finger photoplethysmography to obtain the pulse 
waveform during a 10-15 seconds measurement using an infrared sensor clipped to the 
end of the index finger34. When multiple measurements were available the mean of all 
measurements were averaged and used in the analysis.

Beta-blocker medication codes: 1140866724, 1140866738, 1140860192, 1140860292, 
1140860404, 1140860308, 1140860312, 1141194804, 1140860316, 1140860320, 
1140860322, 1140860332, 1140860336, 1140860340, 1141194808, 1140860342, 
1140860418, 1140860422, 1140860426, 1140864950, 1140909368, 1141164276, 
1141162898, 1141169516, 1141184722, 1140879758, 1140879760, 1140879762, 
1140879818, 1140879822, 1140879824, 1140879830, 1140879834, 1140879842, 
1140879854, 1140879866, 1141180778, 1141146124, 1141146126, 1141194810, 
1141146128, 1140866692, 1140916342, 1140866704, 1140866764, 1140866766, 
1140851556, 1140866778, 1140866782, 1140866784, 1140866798, 1140866802, 
1140866800, 1140866804, 1140916730, 1140916868, 1140917076, 1141152076, 
1140866712, 1141156754, 1141156808, 1141172742, 1140866726, 1140866756, 
1140860172, 1140864410, 1140922930, 1140860232, 1140860244, 1140860250, 
1140860266, 1140860274, 1140860278, 1140860180, 1140860194, 1140860212, 
1140851576, 1140851480, 1140860220, 1140860222, 1140851484, 1140860230, 
1140910614, 1140860294, 1140851492, 1140860304, 1140860362, 1140860380, 
1140860382, 1140860386, 1140860390, 1140860394, 1140860396, 1140860398, 
1140860400, 1140860402, 1140860406, 1140860410, 1140860314, 1140860318, 
1140851508, 1140860324, 1140860328, 1140860330, 1140860334, 1140860338, 
1140916628, 1140860348, 1141146184, 1140860352, 1140860356, 1140860358, 
1140860434, 1140860492, 1141171152, 1141184324, 1141182904, 1141187780, 
1140851522, 1140863724, 1140860498, 1141168498, 1141164280, 1141187048

Calcium-channel-blocker medication codes: 1141165470, 1141150926, 1141153328, 
1140926778, 1140851784, 1140861088, 1140861114, 1140911088, 1141150538, 
1141157140, 1141169730, 1140861190, 1140879802, 1140888646, 1140861276, 
1140928226, 1141153394, 1140872568, 1140879806, 1140879810, 1140888510, 
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1141153026, 1140861128, 1140851730, 1140861130, 1140861136, 1140861138, 
1140861166, 1140926780, 1141157136, 1140911698, 1141151474, 1140917428, 
1140917452, 1141153454, 1140923618, 1140861176, 1140861090, 1140923572, 
1140851794, 1140926188, 1140926966, 1140861110, 1140927934, 1140927940, 
1140861120, 1141145870, 1141150500, 1140916930, 1141152600, 1141166752, 
1141162546, 1140851798, 1140851800, 1140861194, 1140861202, 1141200400, 
1140928212, 1141187094, 1141188152, 1141188576, 1141188836, 1141188920, 
1141190160, 1141199858, 1141200782, 1141201814, 1140861282, 1140928234, 
1141153032, 1141153400, 1141167832, 1141175224, 1141171804, 1141174684, 
1141180238, 1141173766, 1141187962, 1141188936, 1141190548

Supplemental tables (excel file) are available online.
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Supplementary Figure 1 | Regional plots of the 15 novel genome wide associated loci with CAD.  LD (R2) was 
based on the Europeans of 1000 Genomes Phase 1 v3. P-values were based on the CARDIoGRAMplusC4D 
GWAS data to provide an accurate overview of the P-value distribution among variants at each locus. 

Supplementary Figure 1. Regional plots of the 15 novel genome wide associated loci with CAD
LD (R2) was based on the Europeans of 1000 Genomes Phase 1 v3. P-values were based on the CARDIo-
GRAMplusC4D GWAS data to provide an accurate overview of the P-value distribution among variants at 
each locus.
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Abstract

Objective: Metformin affects low density lipoprotein (LDL) and high density (HDL) 
subfractions in the context of impaired glucose tolerance, but its effects in the setting 
of acute myocardial infarction (MI) are unknown. We determined whether metformin 
administration affects lipoprotein subfractions 4 months after ST-segment elevation MI 
(STEMI). Second, we assessed associations of lipoprotein subfractions with left ventricu-
lar ejection fraction (LVEF) and infarct size 4 months after STEMI.
Methods: 371 participants without known diabetes participating in the GIPS-III trial, 
a placebo controlled, double-blind randomized trial studying the effect of metformin 
(500 mg bid) during 4 months after primary percutaneous coronary intervention for 
STEMI were included of whom 317 completed follow-up (clinicaltrial.gov Identifier: 
NCT01217307). Lipoprotein subfractions were measured using nuclear magnetic reso-
nance spectroscopy at presentation, 24 hours and 4 months after STEMI. (Apo)lipopro-
tein measures were obtained during acute STEMI and 4 months post-STEMI. LVEF and 
infarct size were measured by cardiac magnetic resonance imaging.
Results: Metformin treatment slightly decreased LDL cholesterol levels (adjusted 
P=0.01), whereas apoB remained unchanged. Large LDL particles and LDL size were 
also decreased after metformin treatment (adjusted P<0.001). After adjustment for 
covariates, increased small HDL particles at 24 hours after STEMI predicted higher LVEF 
(P=0.005). In addition, increased medium-sized VLDL particles at the same time point 
predicted a smaller infarct size (P<0.001).
Conclusion: LDL cholesterol and large LDL particles were decreased during 4 months 
treatment with metformin started early after MI. Higher small HDL and medium VLDL 
particle concentrations are associated with favorable LVEF and infarct size.



99

Introduction

The clinical relevance of plasma lipids and lipoprotein levels in predicting (recurrent) 
coronary heart disease is well appreciated [1]. Indeed, pharmacological treatment aimed 
at lowering low density lipoprotein (LDL) cholesterol is an essential part of the routine 
care of patients with a history of myocardial infarction (MI) [2]. Importantly, lipoprotein 
particles are highly heterogeneous in size, structure and function with probable con-
sequences for cardiovascular risk prediction [3–10]. In the non-acute setting, LDL and 
high density lipoprotein (HDL) particle characteristics have been proposed to be more 
closely associated with (incident) coronary heart disease compared to LDL cholesterol 
and HDL cholesterol concentrations [3–5,7–9,11–21]. When determined at presentation 
of MI, LDL cholesterol, HDL cholesterol and triglycerides have been variably shown to 
predict recurrent adverse cardiac events [10]. However, little is currently known about 
the prognostic value of lipoprotein subfraction characteristics obtained in the setting of 
an acute MI.

In subjects with impaired glucose tolerance, metformin administration modestly 
reduces the LDL particle concentration, and concomitantly decreases small dense LDL 
particles and increases small HDL particles, as determined by nuclear magnetic reso-
nance (NMR) spectrometry [22]. Furthermore, metformin improves insulin resistance 
[23,24], which has been recently identified as a marker of adverse cardiac outcome 
[24,25]. Taken together these findings provide a rationale to determine whether met-
formin affects lipoprotein subfraction characteristics in patients with an acute coronary 
event.

The Glycometabolic Intervention in Adjunct to Primary Percutaneous Coronary In-
tervention in ST-Segment Elevation Myocardial Infarction (GIPS-III) trial was designed 
to evaluate the effect of 4 months metformin treatment on left ventricular function in 
non-diabetic patients with ST-segment elevation MI (STEMI) [26,27]. The rationale of 
this study is based on experimental findings showing that metformin may beneficially 
affect left ventricular function through activation of a number of intracellular pathways 
and alters mitochondrial function as outlined extensively elsewhere [26]. Among other 
potentially beneficial effects, metformin may also affect lipid and lipoprotein levels 
[26], which was a predetermined tertiary efficacy endpoint of the GIPS-III trial [27]. This 
randomized trial provides a framework to determine effects of metformin on lipoprotein 
metabolism, and to evaluate associations of lipoprotein subfractions, obtained in the 
setting of an acute MI, with left ventricular ejection fraction (LVEF) and infarct size as-
sessed at 4 months.

The present anciliary analyses were initiated to test the extent to which metformin 
treatment affects lipoprotein subfraction characteristics in GIPS-III participants. Second, 
we determined the association of lipoprotein subfractions with LVEF and infarct size.
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METHODS

Study population

The GIPS-III trial is has been registered as clinical trial with identifier: NCT01217307. The 
design and primary results of the GIPS-III trial has been reported in detail elsewhere 
[26,27]. The inclusion and exclusion criteria of the GIPS-III stuy are reported in Table 1. In 
brief, 380 non-diabetic patients undergoing primary percutaneous coronary interven-
tion (PCI) for STEMI were randomized to receive a 4-month regimen with either metfor-
min 500 mg twice daily or matching placebo twice daily. During the PCI procedure, all 
patients except one provided verbal informed consent followed by written informed 
consent. This subject was excluded, as well as were subjects in whom lipoprotein sub-
fractions measurements were not available. As a result, 185 subjects receiving metfor-
min and in 186 subjects receiving placebo were available for the current analyses. From 
these participants we determined lipoprotein subfractions in 371 subjects at baseline, 
338 subjects 24 hours post-MI and 317 subjects 4 months post-MI. A total of 271 sub-
jects completed 4 months follow-up evaluation by cardiac magnetic resonance imaging 
(MRI). From these subjects in 268 lipoprotein subfractions were determined at baseline, 
250 subjects 24 hours post-MI and 257 4 subjects months post-MI.

Blood samples were obtained shortly after admission at the catheterization laboratory, 
after 24 hours post-MI and 4 months after randomization. Very low density lipoproteins 
(VLDL), LDL and HDL particle profiles were determined at these 3 time points. Samples 
for glucose, glycated hemoglobin (HbA1c), plasma total cholesterol, LDL cholesterol, 
HDL cholesterol, triglycerides, apolipoprotein (apo)B and apoA-I were obtained at the 
catheterization laboratory and 4 months after randomization.

Table 1. In- and exclusion criteria for the GIPS-III trial

Inclusion criteria Exclusion criteria

•	� The diagnosis acute MI defined by chest pain 
suggestive for myocardial ischemia for at least 30 min, 
the time from onset of the symptoms less than 12 h 
before hospital admission, and an ECG recording with 
ST- segment elevation of more than 0.1 mV in 2 or 
more leads

•	� Prior MI

•	� Diabetes

•	� Creatinin >177 μ mol/L measured pre-PCI

•	� Need for coronary artery bypass grafting

•	� Verbal followed by written informed consent •	� Rescue PCI after thrombolytic therapy

•	� At least one stent sized ≥ 3.0 mm •	� When subjects develop a condition which, in the 
investigator’s judgment, precludes study therapy

•	� Eligible for cardiac MRI-scan:
-	� Contra-indication to metformin
-	� Body Mass Index <40 kg/m2 an estimated life-

expectancy of less than 6 months
-	� no ferromagnetic metal objects in the body
-	� no claustrophobia

•	� Inability to provide informed consent

•	� Younger than 18 years

•	� Contra-indication to metformin

•	� an estimated life-expectancy of less than 6 months



101

Laboratory measurements 

Serum and EDTA-anticoagulated plasma samples were stored at − 80 °C until analyzed. 
Plasma total cholesterol, LDL cholesterol and HDL cholesterol were measured by a direct 
quantitative assay using cholesterol (PEG-) esterase and (PEG-) cholesterol oxidase on 
a Roche Modular P autoanalyzer (Roche Diagnostics, Indianapolis, IN, USA). Non-HDL 
cholesterol was calculated as the difference between total cholesterol and HDL choles-
terol. Triglycerides (TG) were quantified using the LipoProfile-3 algorithm (LipoProfile-3 
algorithm; LipoScience Inc. (now Labcorp Inc.), Raleigh, North Carolina, USA) [16]. Quan-
tification of TG was accomplished by converting NMR particle numbers to lipid mass 
concentration units, assuming that the lipoprotein particles have normal lipid content. 
NMR-derived values correlate well with chemically measured values. Apolipoprotein 
(apo) B and apoA-I were computationally estimated by the use of the high-throughput 
1H nuclear magnetic resonance (NMR) metabolomics platform of Computational Medi-
cine (Oulu, Finland) [28].

VLDL, LDL and HDL particle profiles were measured by NMR spectroscopy with the 
LipoProfile-3 algorithm (LabCorp, Raleigh, North Carolina, USA), as described [16]. VLDL, 
LDL and HDL subclasses were quantified from the amplitudes of their spectroscopically 
distinct lipid methyl group NMR signals, and were expressed in concentration units, i.e. 
μmol/L or nmol/L. The lipoprotein subfraction particle concentrations are considered to 
represent an estimate of the respective lipoprotein particle numbers. Diameter range 
estimates were for VLDL: large VLDL (including chylomicrons if present; > 60 nm), me-
dium VLDL (35 to 60 nm) and small VLDL (27 to 35 nm), for LDL: IDL (23 to 27 nm), large 
LDL (21.2 to 23 nm) and small LDL (18 to 21.2 nm), and for HDL: large HDL particles: 9.4 
to 14 nm; medium HDL particles: 8.2 to 9.4 nm; small HDL particles: 7.3–8.2 nm. The 
VLDL, LDL and HDL particle concentrations were calculated as the sum of the respective 
lipoprotein subclasses. Weighted-average VLDL, LDL and HDL sizes were derived from 
the sum of the diameter of each subclass multiplied by its relative mass percentage 
based on the amplitude of its methyl NMR signal [16].

NT-proBNP was routinely measured with a sandwich immunoassay on a Roche Modu-
lar E platform (Mannheim, Germany).

Cardiac Magnetic Resonance Imaging (MRI)

LVEF and infarct size were measured by cardiac magnetic imaging [29]. These outcome 
measures were assessed by MRI four months after infarction. Details of the imaging 
analysis has been reported elsewhere [26,27]. An independent core laboratory (Image 
Analysis Center, Free University Medical Center, Amsterdam, The Netherlands) evaluated 
the MRI scans and assessed the primary efficacy measure, blinded for treatment alloca-
tion and clinical patient data.
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Myocardial Blush Grade (MBG)

MBG was categorized as previously described [30]. A physician blinded to data analyzed 
coronary angiograms.

Statistical analysis 

R (version 3.02 or higher, http://www.r-project.org/) was used for statistical analyses. 
Values for continuous variables that are normally distributed are presented as mean ± 
SD. Continuous variables not normally distributed are presented as median and inter-
quartile ranges (IQRs).

Because not all lipoprotein subfractions were normally distributed (Shapiro-Wilk 
Normality test, P < 0.05), they were normalized using rank-based inverse normal trans-
formation across all time points.

Pearson correlation coefficients were calculated from lipoprotein subfractions at 4 
months after acute MI, and plotted using the corrplot function of the corrplot package 
of R. The correlation matrix is presented in Suppl. Fig. 1.

The extent to which clinical parameters, laboratory values and lipoprotein subfraction 
measurements between treatment (metformin and placebo) groups were significantly 
different at the various time-points (baseline, i.e. at admission for MI, 24 hours post-MI and 
4 months post-MI) was determined after data normalization using unpaired T tests. Differ-
ence in medication use was assessed using a multinomial chi-squared test. None of the 
baseline lipoprotein variables were significantly different between the treatment groups.

For this reason the statistical comparisons of in the main results were given as the P-
values of the unpaired T tests after 4 months of treatment in primary analysis. In addition, 
regression models were used to examine the changes in lipoprotein subfractions between 
the two treatment groups (placebo and metformin). In this analysis, the respective lipopro-
tein variable at 24 hours and after 4 months was the dependent variable with the following 
independent covariates: treatment assignment, age at randomization, sex, body mass 
index (BMI), statin use at 4 months and the baseline lipoprotein subfraction of interest.

For routine laboratory values the significance level was set at P ≤ 0.01. In view of multiple 
testing of lipoprotein subfraction data, a principal components (PCs) analysis was carried 
out using the prcomp-function of R. The first 8 components explained 96% of the variation, 
of which the first 5 components explained 84% of the variation in the data set (Supple-
mentary Data). On the basis of the PCs, the multiple testing corrected significance level of 
lipoprotein subfractions was set to P ≤ 0.05/8 components, equivalent to P ≤ 0.0063.

To examine the relationship between baseline laboratory values or lipoprotein 
subfraction levels at different time points (baseline and 24 hours post-MI) with LVEF 
or infarct size (4 months post-MI), linear regression models were used. In the primary 
analysis, LVEF or infarct size was the dependent variable with baseline laboratory val-
ues or lipoprotein subfractions as the independent variable. A secondary analysis was 
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performed adjusting for baseline laboratory values or lipoprotein subfractions, age at 
randomization, sex, baseline NT-proBNP concentration, treatment allocation, MBG and 
statin use at 4 months which we considered to be relevant covariates.

Results

Clinical paramaters, MRI parameters and laboratory values

Table 2 summarizes clinical parameters, MRI parameters and laboratory measurements 
at baseline and at 4 months after intervention. There were no significant differences in 
clinical and laboratory characteristics between the two treatment groups at baseline. 
After 4 months of intervention there was a significantly lower LDL cholesterol in the 
metformin group (2.1 [1.8-2.4] mmol/L) group compared to the placebo group (2.2 
[1.8-2.4 2.7] mmol/L); P = 0.01 after adjustment for baseline LDL cholesterol, age at 
randomization, sex, BMI, and statin use at 4 months). In a sensitivity analysis we per-
formed a logistic regression with reduction of LDL cholesterol as dependent variable 
and metformin as independent variable; this also resulted in a trend towards lower LDL 
cholesterol (β = -0.25; SE: 0.12; P = 0.04).

Plasma triglycerides were much lower in both groups at baseline compared to the 
values after 4 months of follow-up (P < 0.001 for all comparisons), whereas total choles-
terol, non-HDL cholesterol, LDL cholesterol and apoB were higher at baseline than after 
follow-up of 4 months (P < 0.001 for all comparisons).

Effect of metformin treatment on lipoprotein subfractions 

Table 3 and Suppl. figure 2 show the median values of lipoprotein subfraction levels 
and lipoprotein sizes at baseline, 24 hours post-MI and 4 months post-MI. There were 
no significant differences between the two treatment groups at baseline and 24 hours 
post-MI. After 4 months of treatment, large LDL particles (270.5 [190.0-365.8] vs 170.0 
[93.0-278] nmol/L and LDL size (20.3 [20.0-20.6] vs 20.5 [20.1-20.9] nm) were decreased in 
the metformin group compared to the placebo group (P ≤ 0.001 for each). After correcting 
for their baseline values, age at randomization, sex, BMI and statin use at 4 months, these 
differences remained significant P ≤ 0.001 for each). Figure 1 illustrates the changes in 
the various lipoprotein subfractions on lipoprotein particle size after 4 months of therapy 
with metformin compared to placebo. Remarkably, all VLDL subfractions and VLDL size 
were much lower in both groups at baseline compared to 24 hours and after 4 months of 
follow-up (P < 0.001 for all comparisons). Conversely, the LDL particle concentration, as 
well as the IDL and large LDL subfractions were higher at baseline than at after 4 months 
of follow-up (P < 0.001 for all comparisons). However, the HDL particle concentration and 
HDL subfractions were unaffected by metformin administration.
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Relationship baseline laboratory values with left ventricular ejection fraction 
and infarct size 

Table 4 shows the relationships of baseline laboratory values with LVEF and infarct 
size at 4 months post-MI. As reported previously [manuscript submitted] NT-proBNP at 
baseline was negatively associated with LVEF 4 months post-MI (P = 0.008). Glucose level 
at baseline was positively associated with infarct size (P = 0.001). After adjustment for 
age, sex, baseline NT-proBNP level, treatment allocation and myocardial blush grade this 
relationship remained signifi cant (P = 0.003).

figure 1. Lipoprotein subfraction concentrations and size using NMR after 4 months according to treat-
ment group (VLDL-P; LDL-P; HDL-P; Lipoprotein size)
Data are presented as median (interquartile range). P-values from unpaired – tests. P-value ≤ 0.0063 pla-
cebo vs. Metformin group.
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Relationship of lipoprotein subfraction levels at baseline and 24 hours post-MI 
with left ventricular ejection fraction and infarct size

Table 5 shows the relationships of lipoprotein subfraction levels at baseline and 24 hours 
with LVEF and infarct size at 4 months after MI. None of the lipoprotein subfractions 
at baseline were associated with LVEF or infarct size. The concentration of small HDL 
particles 24 hours post-MI was positively associated with LVEF (P = 0.003) and negatively 
with infarct size (P = 0.006). Furthermore, the total VLDL particle concentration (P = 
0.003) and the medium VLDL particle concentration (P = 0.001) 24 hours post-MI were 
both negatively associated with infarct size. After adjustment for age, sex, baseline NT-
proBNP level, treatment allocation, myocardial blush grade and statin use, the relation-
ship between small HDL particles and LVEF (P = 0.005), and between the medium VLDL 
particle concentration with infarct size (P = 0.001) remained significant. The association 
of the total VLDL particle concentration and of small HDL particles with infarct size was 
not significant after adjustment for these covariates.

Discussion

We show here that 4 months metformin administration initiated directly after the acute 
phase of MI is associated with slight reductions reduced LDL cholesterol without affect-
ing apoB levels in a large group of patients without previously established diabetes. 

Table 4. Relationship LVEF and infarct size with baseline laboratory values

LVEF β (95% CI) P P* Infarct Size β (95% CI) P P*

Glucose -1.024 (-2.051, 0.002) 0.050 0.073 1.577 (0.640, 2.514) 0.001 0.003

HbA1c 0.551 (-0.513, 1.615) 0.309 0.172 -0.230 (-1.219, 0.760) 0.648 0.417

Total Cholesterol -0.308 (-1.329, 0.712) 0.552 0.367 0.279 (-0.685, 1.243) 0.570 0.337

LDL Cholesterol -0.288 (-1.306, 0.730) 0.578 0.278 0.198 (-0.762, 1.158) 0.685 0.379

non-HDL Cholesterol -0.147 (-1.163, 0.869) 0.776 0.468 0.001 (-0.951, 0.953) 0.998 0.577

HDL Cholesterol -0.385 (-1.424, 0.653) 0.466 0.840 0.806 (-0.170, 1.782) 0.105 0.272

Triglycerides 0.520 (-0.626, 1.667) 0.372 0.544 -0.509 (-1.589, 0.571) 0.354 0.730

ApoB -0.381 (-1.417, 0.656) 0.470 0.475 -0.069 (-1.072, 0.935) 0.893 0.846

ApoA-I -0.448 (-1.416, 0.521) 0.364 0.494 0.255 (-0.670, 1.180) 0.588 0.701

NT-proBNP -1.383 (-2.405, -0.362) 0.008 0.745 (-0.217, 1.707) 0.128

Linear regression model of LVEF or infarct size with baseline laboratory values. Unadjusted coefficients 
are shown. Abbreviations: Apo: apolipoprotein; HbA1c: glycosylated hemoglobin; HDL: high density lipo-
proteins; LDL: low density lipoproteins; LVEF: left ventricular ejection fraction; non-HDL: non-high density 
lipoproteins; NT-proBNP: N-terminal pro brain natriuretic peptide. P-value*: adjusted for age at randomiza-
tion, sex, baseline NT-proBNP concentration, treatment allocation, myocardial blush grade and statin use 
at 4 months. Bold is P-value
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Metformin decreased large LDL particles by approximately 35% without a significant 
effect on small LDL particles. Consequently, LDL size was also decreased. Metformin 
did not significantly affect plasma triglycerides, VLDL characteristics, HDL cholesterol, 
apoA-I and HDL subfractions. In addition, we observed that small-sized HDL particles 
and medium-sized VLDL obtained after 24 hours were associated with higher LVEF and 
a smaller infarct size.

The present findings on plasma (apo)lipoproteins and lipoprotein subfraction char-
acteristics should be interpreted in the context of lipoprotein changes that occur in the 
setting of an acute coronary syndrome [10,31]. Thus, LDL cholesterol spontaneously de-
creases shortly after MI and rises again after several weeks [10,31]. In the current study, 
the LDL particle concentration was lower at 24 hours post-MI in both treatment groups, 
which could to at least in part be attributed by the initiation of statin therapy in the 
vast majority of study participants. In addition, initiation of statin treatment largely ex-
plained lower levels of total cholesterol, LDL cholesterol, non-HDL cholesterol, apoB and 
LDL subfractions after 4 months. These lipoprotein changes were present irrespective of 
metformin treatment. Plasma triglycerides may acutely decrease after an MI, followed 
by an increase above baseline after several days [10]. All participants received heparin 
before percutaneous coronary intervention mostly before arrival at the hospital as part 
of routine medical care [32]. It is well known that heparin stimulates lipoprotein lipase, 
thereby increasing lipolysis [33]. Even a low dose of heparin lowers plasma triglycerides 
acutely [34]. This explains our observation that plasma triglycerides were about 50% 
lower at presentation compared to 4 months follow-up. The VLDL particle concentra-
tion was even 5-fold lower at baseline vs, the levels obtained after 24 hours and after 4 
months. On the other hand, HDL cholesterol concentration has been reported to remain 
fairly constant during the acute phase of MI [10,31]. Accordingly, we did not observe 
much change in the HDL particle concentration and in HDL subfraction levels 24 hours 
after manifestation of MI.

The effects of metformin when initiated during the acute phase of MI to reduce LDL 
cholesterol and large LDL particles has not been described in previously. In comparison, 
one year treatment with metformin dosed 850 mg administered twice daily decreases 
the LDL particle concentration, small-sized LDL particles and slightly increases LDL size 
along with improvement in insulin sensitivity in subjects with impaired glucose toler-
ance [22]. While metformin increases small HDL particles in the non-acute setting [22], 
we did not found a change in small HDL particles in the present study. It has also been 
shown that 18 months treatment with metformin at a dose of 850 mg twice daily does 
not significantly affect plasma total cholesterol, LDL cholesterol, HDL cholesterol and 
triglycerides despite improvement in insulin sensitivity in statin-using non-diabetic 
subjects with stable coronary heart disease [23]. These variable results emphasize the 
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relevance of participant selection, the circumstances of initiation of metformin treat-
ment and possibly also of its dose and exposure time.

In the general population, an inverse relationship of HDL cholesterol with incident 
coronary heart disease has been consistently reported [35,36]. Moreover, the relevance 
of HDL subfractions for cardiovascular risk prediction has received considerable atten-
tion [6,9,12,17,28]. As yet, the importance of larger-sized compared to smaller-sized HDL 
particles for coronary risk has not been unequivocally established, neither in the setting 
of population-based cohort studies [9,12,17,28], nor in specific high risk populations 
[3,4,37]. Of further interest, low HDL cholesterol as determined during an acute coro-
nary syndrome may predict recurrent cardiovascular events [38]. More recently, it was 
reported that HDL-associated cholesterol esterification is impaired in the acute setting 
of a coronary syndrome despite a lack of decrease in HDL cholesterol [39], whereas HDL 
anti-inflammatory function rather than HDL cholesterol may predict recurrent events 
[40]. In non-acute patients, impaired ability of HDL to remove cholesterol from macro-
phage model cells associates more closely with incident coronary heart disease than 
lower HDL cholesterol [41]. These findings emphasize the importance of HDL functional 
properties for atheroprotection [10,42]. In the context of the GIPS-III trial it is also relevant 
that a low HDL cholesterol concentration may represent a determinant of heart failure 
[43]. Experimental induction of apoA-I, HDL’s most abundant apolipoprotein, improves 
cardiac remodeling after MI in mice [44], although HDL mimetic therapy was unsuccess-
ful in improving cardiac outcome in humans [45]. In coronary artery disease patients, 
it has been cross-sectionally determined that HDL cholesterol and smaller-sized HDL 
may confer higher LVEF [3,46]. In the current report, we considered the metformin- and 
placebo-receiving participants together since metformin did not affect LVEF [27]. After 
adjustment for treatment allocation and other relevant covariates we demonstrated 
that increased concentrations of smaller-sized HDL particles prospectively predict 
higher LVEF. These novel results agreement with the concept that specific HDL subfrac-
tions could be pathophysiologically implicated in better cardiac performance. The 
mechanisms responsible for this association remain to be more precisely delineated. 
Among other possibilities, it could reflect the ability of certain HDL subfractions to exert 
anti-oxidative properties or to stimulate endothelial function [10,26,42]. In addition, 
higher concentrations of medium VLDL were associated with smaller infarct size. As yet 
the clinical implication of this association is unknown.

Several other methodological aspects of our study need to be considered. First, this 
randomized study was carried out in a considerable number of participants, making lack 
of power to demonstrate effects of metformin on VLDL and HDL subfraction characteris-
tics as determined by NMR spectroscopy unlikely. Moreover, neither plasma triglycerides 
nor HDL cholesterol and apoA-I levels after 4 months of follow-up changed in response 
to metformin administration. Second, inherent to the design of this study to randomize 
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subjects shortly after arrival at the hospital, plasma lipid measurements were not carried 
out in the fasting state. For logistic reasons, non-fasting samples were also obtained dur-
ing follow-up. However, given the placebo-controlled design of GIPS-III, it is unlikely that 
this approach materially affected our results. Third, only 2% of participants experienced 
recurrent major adverse cardiac events, and none of participants died during 4 months 
follow-up [27]. For this reason, associations of lipoprotein subfractions with hard clinical 
end-points could not be assessed. Instead, LVEF at 4 months follow-up was chosen as 
the pre-specified primary endpoint of the GIPS-III trial, reasoning that left ventricular 
dysfunction is a prevalent complication of STEMI which prospectively predicts poor 
cardiac outcome [26,27]. Fourth, only subjects without known diabetes participated in 
the GIPS-III trial [18,19]. The positive correlation between glucose at admission and MI 
size after 4 months, therefore, suggests that MI size may relate to stress hyperglycemia 
encountered during the acute phase of MI [47].

In conclusion, the present study suggests that metformin treatment initiated directly 
after the acute phase of MI elicits a small decrease in LDL cholesterol together with a 
decrease in LDL size. Furthermore, higher medium VLDL and higher small HDL particle 
concentrations may confer beneficial associations with increased LVEF and decreased 
infarct size, respectively.
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Supplementary Figure 2 | Panel showing changes in median of metabolite levels over 

the three time points Myocardial Infarction (MI), 24 hours post-MI (24h) and 4 months 

post-MI (4M) on the X- axis.
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Supplementary Table 1 | Overview of Principal Components (PC) analysis of the 

lipoprotein subfractions showing the importance of the components.
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Supplementary Figure 1. Correlation matrix using Pearson correlation coefficients from the metabolite 
concentrations of the lipoprotein subfractions 4 months post-MI (n = 317)
Data is shown for the discovery analysis of N:134,251 individuals excluding genetic variants with minor al-
lele frequency of <0.001, and information measure <0.3 leaving 19,941,912 genetic variants.
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Abstract

Background: Left ventricular ejection fraction (LVEF) and infarct size (ISZ) are key pre-
dictors of long-term survival after myocardial infarction (MI). However, little is known 
about the biochemical pathways driving left ventricular dysfunction after MI. To identify 
novel biomarkers predicting post-MI LVEF and ISZ, we performed metabolic profiling 
in the GIPS-III randomized clinical trial. We also investigated the metabolic footprint of 
metformin, a drug associated with improved post-MI left ventricular function in experi-
mental studies.
Methods and results: Participants were ST-elevated MI (STEMI) patients who were 
randomly assigned to receive metformin or placebo for 4 months. Blood samples were 
obtained on admission, 24 h and 4 months post-MI. 233 metabolite measures were 
quantified using nuclear magnetic resonance (NMR) spectrometry. LVEF and ISZ were 
assessed 4 months post-MI. 24 h post-MI measurements of HDL triglycerides (HDL-TG) 
predicted LVEF (β=1.90 [95% CI: 0.82, 2.98]; p=6.4x10-4) and ISZ (β=-0.41; 95% CI: -0.60, 
-0.21]; p=3.2x10-5). Additionally, 24 h post-MI measurements of medium HDL-TG (β=-
0.40 [95% CI: -0.60, -0.20]; p=6.4x2x10-5), small HDL-TG (β=-0.34 [95% CI: -0.53, -0.14]; 
p=7.3x10-4) and the triglyceride content of very large HDL (β=-0.38 [95% CI: -0.58, -0.18]; 
p=2.7x10-4) were associated with ISZ. After the 4-month treatment, the phospholipid 
content of very large HDL was lower in metformin vs. placebo treated patients (28.89% 
vs. 38.79%; p=7.5x10-5); alanine levels were higher in the metformin group (0.46 mmol/L 
vs. 0.44 mmol/L; p=2.4x10-4).
Conclusions: HDL triglyceride concentrations predict post-MI LVEF and ISZ. Metformin 
increases alanine levels and reduces the phospholipid content in very large HDL par-
ticles.
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Introduction

Myocardial infarction (MI) is one of the leading causes of global morbidity and mortal-
ity. While the survival after MI has improved due to ameliorated treatment strategies, 
including primary percutaneous interventions, the long-term outcome of MI in general 
remains poor with a 1-year risk for recurrent cardiovascular (CV) disease of over 10%.1 
Left ventricular ejection fraction (LVEF) and infarct size (ISZ) are key predictors of long-
term prognosis after MI.2,3. However, treatment options for left ventricular dysfunction 
are limited and the biochemical mechanisms driving functional decline of the myocar-
dium after MI are largely unknown.

Metformin, which is commonly used in the treatment of diabetes and more recently 
in insulin resistant conditions, has been found to preserve LVEF and to reduce ISZ in 
non-diabetic animal models of MI.4 The GIPS-III clinical trial was designed to study the 
effects of metformin therapy on LVEF in non-diabetic ST segment Elevation MI (STEMI) 
patients undergoing PCI. However, in contrast to preclinical findings, metformin did not 
improve LVEF compared with placebo 4 months post-MI.5 

This result may be explained by interindividual differences in metformin response, 
raising the possibility that metformin is effective in a subgroup of CV patients. Metabolic 
profiling has emerged as a powerful tool to explore drug effects and factors influencing 
drug response.6-8 Metabolomics is a relatively novel field in ‘omics’ sciences, which uses 
high-throughput technologies, such as nuclear magnetic resonance (NMR) spectroscopy, 
to concurrently quantify a large number of small molecules in different tissues. While 
recent studies reported changes in lipid and amino acid concentrations after metformin 
treatment9-11, no study has yet used large-scale metabolic platforms to investigate the 
effects of metformin on a wide range of metabolite measures at a time. Furthermore, 
metabolic profiling has been performed to improve diagnosis and prediction of CV 
events.12,13 A recent study identified metabolic profiles which discriminate heart failure 
patients from healthy controls.14 Metabolic profiling may thus help identify novel bio-
markers of left ventricular function and ISZ to improve risk stratification in MI patients.

Metabolite concentrations can vary greatly over time and are highly sensitive to 
environmental influences. Lipid profiles have been shown to change shortly after MI 
and only gradually return to baseline after several weeks.15 The predictive value of a 
biomarker may thus vary over time. We therefore studied metabolic markers of LVEF, ISZ 
and metformin response in the GIPS-III cohort at three different time points: baseline (on 
admission), 24 h post-MI and 4 months post-MI.

The objective of this ancillary study of the GIPS-III trial was to evaluate the effect of metfor-
min on metabolic profiles in non-diabetic STEMI patients and to identify prognostic markers, 
which predict LVEF and ISZ 4 months post-MI. Furthermore we tested whether metformin 
improved LVEF and ISZ in subgroups of patients, as identified by metabolic profiling.
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Methods

Study population

The GIPS-III study is a randomized trial that included 380 non-diabetic patients undergo-
ing primary PCI for ST segment elevation myocardial infarction. Participants received a 
4-month regimen with either metformin 500mg 2dd1 or matching placebo 2dd1. The 
design of the study has been previously described in more detail.4,5 All patients provided 
written informed consent. The study complied with the Declaration of Helsinki and was 
approved by the ethics committee of the University Medical Center Groningen (the 
Netherlands) and national authorities (NCT01217307). The primary outcome measure 
was LVEF, the secondary outcome measure was ISZ.

Laboratory measurements

Non-fasting blood samples were obtained on admission (N=339), 24 h post-MI (N=329) 
and 4 months post-MI (N=316). Serum and EDTA-anticoagulated plasma samples 
were stored at − 80 °C until analyzed. Metabolic profiling was performed using a 
high-throughput 1H NMR metabolomics platform.16 We obtained a total of 233 serum 
metabolite concentrations and ratios, including 168 lipoprotein subclass measures, 45 
lipid related measures, 5 glycolysis related metabolites, 9 amino acids, 3 ketone bod-
ies, 2 fluid balance related metabolites and 1 inflammatory marker. An overview of all 
metabolite measures is given in Supplemental Table 1.

Cardiac Magnetic Resonance imaging (CMR)

LVEF and ISZ were measured by cardiac magnetic resonance imaging (MRI) 4 months 
after MI as previously described in detail.4,5. Independent cardiologists analyzed all MRI 
data and assessed LVEF and ISZ, blinded for treatment assignment.

Statistical analysis

Missing metabolite measures were imputed using random forest imputation as imple-
mented in the R package missForest.17 Since most metabolite measures showed skewed 
distributions, they were normalized using rank-based inverse normal transformation 
within each time point separately. Spearman’s correlation coefficients were calculated 
from the metabolite concentrations for each time point (baseline, 24 h post-MI and 4 
months post-MI) and plotted using the corrplot function of the corrplot package of R. 
The correlation plots are presented in Supplemental Figure 1.

Since many metabolites were highly correlated, principal component analysis (PCA) 
was applied to estimate the number of independent tests for multiple testing correction, 
using the prcomp-function in R. To additionally account for multiple testing at different 
time points, principal components (PCs) were calculated across all three time points. 
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The first 68 PCs explained over 95% of the variation in the metabolite data, yielding an 
adjusted significance level of p<0.05/68 = 0.00074.

Unpaired t-tests were performed to assess the effect of metformin treatment on 
metabolite measures. To identify biomarkers predictive of LVEF and ISZ, we analyzed all 
metabolite measures at each time point separately, using linear regression adjusted for 
known predictors of ventricular function and medication use: age, sex, baseline N-termi-
nal prohormone of brain natriuretic peptide (NTproBNP) levels, baseline creatine kinase 
(CK)-MB levels, myocardial blush grade, metformin treatment and statin treatment (4 
months post-MI). To meet the assumption of normality of residuals, we tested different 
transformations. Since square-root transformation provided the best results, ISZ was 
square-root transformed. In addition we performed stratified analyses for LVEF and ISZ. 
According to current guidelines18, LVEF 52%-72% was categorized as normal ventricular 
function; LVEF 41-51% was defined as mildly abnormal and LVEF<41% as abnormal for 
men. Categories were LVEF 54%-74% for normal ventricular function, LVEF 41-53% as 
mildly abnormal and LVEF<41% for abnormal for women. ISZ was stratified by tertiles 
to obtain the same number of strata as with LVEF. Associations of metabolite measures 
with LVEF categories and ISZ tertiles were assessed using multinomial logistic regres-
sion, which provides pairwise comparisons between each level of the outcome variable 
and a reference level. Finally we added the interaction term of metformin treatment and 
metabolite measure to the linear regression models to identify subgroups of patients in 
whom metformin was effective. R (version 3.02 or higher, http://www.r-project.org/) was 
used for all statistical analyses.

Results

Patient characteristics and metabolite measures

A total of 380 patients received either metformin placebo treatment. Of these, 109 did 
not undergo MRI 4 months post-MI or did not provide utilizable scans due to insufficient 
quality. Details on metformin/placebo treatment, clinical parameters and conventional 
lipid and (apo)lipoprotein measures have been published elsewhere.5,11 Briefly, met-
formin treatment resulted in a modest decrease in low-density lipoprotein cholesterol 
(LDL-C) without significant effects on total cholesterol, high-density lipoprotein (HDL) 
cholesterol, triglycerides, apolipoprotein B (apoB) and apolipoprotein A-I (apoA1) when 
the values after 4 months and after 24 h were compared (data not shown).14 Metabolic 
profiles were quantified in a total of 376 patients. Baseline, 24 h post-MI and 4-month 
post-MI measurements were available from 339, 326 and 316 patients, respectively. Pre-
mature dropout was neither related to metformin treatment, nor to mortality as none of 
the participants died before MRI.5 A summary of all metabolite measures can be found 
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in Supplemental Table 1. The correlation matrices revealed substantial correlation within 
lipoprotein subclasses, between amino acids and between fatty acids (Supplemental 
Figure 1).

Association of metabolites with LVEF and ISZ

Results for all metabolite measures tested are shown in Supplemental Tables 2-7. None 
of the metabolite measures was significantly associated with LVEF 4 months post-MI. 
No baseline metabolite measure predicted LVEF. Patients with higher HDL-TG levels 24 
h post-MI showed significantly better LVEF (β=1.90 [95% CI: 0.82, 2.97]; p=6.4x10-4) after 
adjustment for metformin treatment, age, sex, baseline NTproBNP levels, baseline CK-
MB levels, myocardial blush grade and statin use (Table 1). When LVEF was entered as 
categorical variable (normal, mildly abnormal, abnormal ventricular function), 24 h post-
MI measurements of HDL-TG (OR=0.36 [95% CI: 0.21, 0.61]; p=1.8x10-4), medium (M-) 
HDL-TG (OR=0.37 [95% CI: 0.22, 0.63]; p=2.3x10-4) and small (S-) HDL-TG (OR=0.35 [95% 
CI: 0.20, 0.61]; p=2.1x10-4) significantly predicted normal vs. abnormal LVEF 4 months 

Table 1. Association of selected metabolite measures with LVEF and ISZ 24 h post-MI

Metabolite

Unadjusted model Adjusted model

β [95% CI] p β [95% CI] p

LVEF (N=245)

HDL-TG 1.84 [0.78, 2.89] 7.4x10-4 1.90 [0.82, 2.97] 6.4x10-4*

M-HDL-TG 1.70 [0.65, 2.75] 0.002 1.65 [0.55, 2.74] 0.004

XL-HDL-TG% 1.67 [0.56, 2.77] 0.003 1.82 [0.68, 2.96] 0.002

S-HDL-TG  1.51 [0.45, 2.57] 0.006  1.68 [0.58, 2.78] 0.003

Albumin 1.09 [0.04, 2.16] 0.044 1.25 [0.10, 2.40] 0.034

Phenylalanine  -0.90 [-2.01, 0.21] 0.113 -0.55 [-1.68, 0.58] 0.344

ISZ (N=231)

HDL-TG  -0.42 [-0.60, -0.24] 1.2x10-5*  -0.41 [-0.60, -0.22] 3.2x10-5*

M-HDL-TG  -0.42 [-0.60, -0.23] 1.4x10-5*  -0.40 [-0.60, -0.21] 6.4x10-5*

XL-HDL-TG%  -0.37 [-0.56, -0.18] 1.9x10-4*  -0.38 [-0.58, -0.18] 2.7x10-4*

S-HDL-TG  -0.33 [-0.52, -0.14] 6.8x10-4*  -0.34 [-0.54, -0.15] 7.3x10-4*

Albumin  -0.33 [-0.52, -0.15] 5.2x10-4*  -0.33 [-0.54, -0.13] 0.002

Phenylalanine 0.38 [0.18, 0.58] 1.9x10-4*  0.34 [0.14, 0.55] 0.001

Results are shown for the unadjusted model and the adjusted model including age, sex, treatment, statin 
use, CKMB, NTproBNP and MBG as covariates. *Effects significant after correction for multiple testing 
(p<7.4x10-4). CI: confidence interval; LVEF: left ventricular ejection fraction; ISZ: infarct size; HDL-TG: triglyc-
erides in HDL particles; M-HDL-TG: triglycerides in medium HDL particles; XL-HDL-TG%: triglycerides to total 
lipids ratio in very large HDL particles; S-HDL-TG: triglycerides in small HDL particles.
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post-MI (Figure 1A, Table 2). Notably, all HDL-TG related measures showed a positive 
association with LVEF, suggesting a beneficial effect of increased triglyceride content 
in HDL. We found no association of 24-h post-MI measurements with mildly abnormal 
LVEF relative to normal LVEF. In addition, 24 h post-MI measurements of triglycerides 
(OR=0.39 [95% CI: 0.23, 0.66]; p=5.2x10-4) and the cholesterol (OR=2.52 [95% CI: 1.48, 
4.30]; p=6.6x10-4) in very small (XS-) very low-density lipoprotein (VLDL) particles was 
associated with abnormal LVEF compared to normal left ventricular function. Finally, 
baseline measurements of the TG to total lipids ratio in large (L) LDL predicted abnormal 
LVEF (OR=0.37 [95% CI: 0.21, 0.65]; p=6.2x10-4). Addition of a treatment x metabolite 
interaction term did not reveal any patient subgroup in whom metformin improved 
LVEF (Table 3).

Table 2. Associations of selected NMR measures with LVEF and ISZ categories

Metabolite OR [95% CI] p OR [95% CI] p

LVEF normal vs. mildly abnormal normal vs. abnormal

Baseline

L-LDL-TG% 1.05 [0.76, 1.45] 0.774 0.37 [0.21, 0.65] 6.2x10-4*

24 h post-MI

HDL-TG 0.70 [0.51, 0.96] 0.028 0.36 [0.21, 0.61] 1.8x10-4*

M-HDL-TG 0.72 [0.52, 1.00] 0.050 0.37 [0.22, 0.63] 2.3x10-4*

S-HDL-TG 0.74 [0.53, 1.02] 0.062 0.35 [0.20, 0.61] 2.1x10-4*

XS-VLDL-TG% 0.83 [0.61, 1.14] 0.247 0.39 [0.23, 0.66] 5.2x10-4*

XS-VLDL-C% 1.10 [0.82, 1.49] 0.523  2.52 [1.48, 4.30] 6.6x10-4*

ISZ 1st tertile vs. 2nd tertile 1st tertile vs. 3rd tertile

24 h post-MI

HDL-TG 0.78 [0.55, 1.11] 0.169 0.48 [0.33, 0.69] 9.2x10-5*

M-HDL-TG 0.88 [0.62, 1.25] 0.472 0.46 [0.31, 0.67] 6.2x10-5*

S-HDL-TG 0.92 [0.64, 1.30] 0.620 0.51 [0.35, 0.74] 3.9x10-4*

XL-HDL-TG% 0.75 [0.52, 1.07] 0.116 0.49 [0.33, 0.72] 3.2x10-4*

Associations of metabolite measures 24 h post-MI with LVEF categories (normal, mildly abnormal, abnor-
mal) and ISZ (tertiles) categories, adjusted for age, sex, treatment, statin use, CKMB, NTproBNP and MBG. 
Results for pairwise comparisons are given. Metabolites with at one significant pairwise between-group 
comparison are shown. Effects significant after correction for multiple testing (p<7.4x10-4) are highlighted 
in bold. CI: confidence interval; LVEF: left ventricular ejection fraction; ISZ: infarct size; L-LDL-TG%: triglycer-
ide to total lipids ratio in large LDL particles; HDL-TG: triglycerides in HDL particles; M-HDL-TG: triglycerides 
in medium HDL particles; S-HDL-TG: triglycerides in small HDL particles; XL-HDL-TG%: triglycerides to total 
lipids ratio in very large HDL particles; XS-VLDL-TG%: triglycerides to total lipids ratio in very small VLDL 
particles; XS-VLDL-C%: cholesterol to total lipids ratio in very small VLDL particles.



Chapter 6

128

LVEF 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

HDL TG M HDL TG S HDL TG XL HDL TG%

0

5

10

15

20

25

normal 
 
mildly abnormal 
 
abnormal 

10

15

20

Pe
rc

en
ta

ge
 

0.1

0.1

0.2

0.2

0.3

C
on

ce
nt

ra
tio

n 
in

 m
m

ol
/L

 

*

* *

A 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

HDL TG M HDL TG S HDL TG XL HDL TG%

0

5

10

15

20

25

no detectable final infarct 
 
small final infarct
 
large final infarct 

10

15

20

Pe
rc

en
ta

ge
 

0.1

0.1

0.2

0.2

0.3

C
on

ce
nt

ra
tio

n 
in

 m
m

ol
/L

 

*

* 

* 

* 

B ISZ 

Figure 1. Categorical analysis for LVEF and ISZ
Box plots comparing selected NMR measures (24 h post-MI) between distinct LVEF (A) and ISZ (B) cat-
egories. For all plots, the lower and the upper margins represent the first and third quartile, respectively. 
Vertical lines indicate median values; squares indicate mean values. The whiskers represent the lowest and 
the highest value within 1.5 interquartile ranges. Outliers are not shown. Differences between categories 
were assessed using multinomial logistic regression adjusted for treatment, age, sex, NTproBNP levels, 
CK-MB levels, myocardial blush grade, statin use. *Effects significant after correction for multiple testing 
(p<7.4x10-4). Abbreviations are as in Table 2.
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We did not find any association between metabolite measures and ISZ at baseline 
and 4 months post-MI. In the adjusted model, HDL-TG (β=-0.41 [95% CI: -0.60, -0.22]; 
p=3.2x10-5), M-HDL-TG (β=-0.40 [95% CI: -0.60, -0.21]; p=6.42x10-5), XL-HDL-TG% (β=-
0.38 [95% CI: -0.58, -0.18]; p=2.7x10-4) and S-HDL-TG (β=-0.34 [95% CI: -0.54, -0.15]; 
p=7.3x10-4) were significantly associated with ISZ 24 h post-MI (Table 1). In addition, 
phenylalanine (β=0.38 [95% CI: 0.18, 0.58]; p=1.9x10-4) and albumin (β=-0.33 [95% CI: 
-0.52, -0.15]; p=5.2x10-4) reached significance in the unadjusted model, but not in the 
adjusted model. Similarly, 24 h post-MI measurements of HDL-TG (OR=0.48 [95% CI: 
0.33, 0.69]; p=9.2x10-5), M-HDL-TG (OR=0.46 [95% CI: 0.31, 0.67]; p=6.2x10-5), S-HDL-TG 
(OR=0.51 [95% CI: 0.35, 0.74]; p=3.9x10-4) and XL-HDL-TG% (OR=0.49 [95% CI: 0.33, 
0.72]; p=3.2x10-4) predicted ISZ, when the first tertile was compared to the third tertile 
(Figure 1B, Table 2). Again, our findings suggest a beneficial effect of higher HDL-TG 
levels. We found no significant treatment x metabolite interactions (Table 3). As shown 
in Supplemental Table 8, HDL-TG, M-HDL-TG, S-HDL-TG and XL-HDL-TG% increased 

Table 3. Association of treatment x metabolite interaction for selected metabolites

Metabolite

Unadjusted model Adjusted model

β [95% CI] p β [95% CI] p

LVEF (N=245)

Treatment X

HDL-TG 1.15 [-0.96, 3.26] 0.285 0.94 [-1.18, 3.06] 0.387

M-HDL-TG 1.09 [-1.01, 3.19] 0.311 0.82 [-1.30, 2.94] 0.449

XL-HDL-TG% 0.71 [-1.50, 2.92] 0.529 0.60 [-1.61, 2.82] 0.593

S-HDL-TG 0.73 [-1.42, 2.87] 0.506 0.68 [-1.46, 2.82] 0.534

Albumin 0.36 [-1.77, 2.49] 0.740 0.38 [-1.74, 2.51] 0.725

Phenylalanine -1.02 [-3.25, 1.22] 0.373 -1.24 [-3.51, 1.03] 0.286

ISZ (N=231)

Treatment X

HDL-TG -0.07 [-0.44, -0.30] 0.701 -0.04 [-0.41, 0.34] 0.856

M-HDL-TG -0.19 [-0.56, 0.18] 0.316 -0.14 [-0.52, 0.24] 0.465

XL-HDL-TG% 0.04 [-0.35, 0.42] 0.849 0.04 [-0.35, 0.44] 0.827

S-HDL-TG -0.04 [-0.42, 0.35] 0.857 -0.03 [-0.41, 0.36] 0.891

Albumin -0.06 [-0.43, 0.32] 0.762 -0.05 [-0.43, 0.33] 0.804

Phenylalanine 0.01 [-0.39, 0.40] 0.977 0.04 [-0.36, 0.45] 0.834

Results are shown for the unadjusted model (main effects and interaction term) and adjusted model in-
cluding age, sex, statin use, CKMB, NTproBNP and MBG as covariates. CI: confidence interval; LVEF: left ven-
tricular ejection fraction; ISZ: infarct size; HDL-TG: triglycerides in HDL particles; M-HDL-TG: triglycerides in 
medium HDL particles; XL-HDL-TG%: triglycerides to total lipids ratio in very large HDL particles; S-HDL-TG: 
triglycerides in small HDL particles.
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between baseline and 24 h post-MI and remained relatively stable between 24 h and 4 
months post-MI, except for XL-HDL-TG% which showed a moderate gain. Similar to HDL-
TG, serum triglyceride levels increased between baseline and 24 h post-MI, but were 
decreased 4 months after MI.

Effects of metformin of metabolic profiles

Results for all metabolite measures are shown in Supplemental Table 9. To assess base-
line differences in metabolic profiles, we compared metabolite measures between the 
treatment group and controls at baseline. We did not find any difference between the 
two groups at baseline. Table 4 summarizes metabolic measurements for 24 h post-MI 
and 4 months post-MI. 24 h post-MI, after the first doses of the treatment had been 
administered, both alanine (median: 0.49 mmol/L vs. 0.46 mmol/L; p=9.0x10-4) and 
pyruvate (median: 0.16 mmol/L vs. 0.14 mmol/L; p=0.001) displayed trends towards 
increased concentrations in the metformin group. After the 4-month treatment period, 
alanine levels were significantly elevated in metformin-treated patients (median: 0.46 
mmol/L vs. 0.44 mmol/L; p=2.4x10-4). In addition, the phospholipids to total lipids ratio 
in very large high density lipoprotein (XL-HDL) particles (XL-HDL-PL%) was significantly 
reduced in the metformin group (median: 28.89% vs. 38.79%; p=7.5x10-5).

Discussion

We used 1H NMR spectrometry-based metabolite measures to evaluate the effects of 
metformin on metabolic profiles of non-diabetic MI patients and to study prognostic 
metabolites predicting LVEF and ISZ 4 months post-MI. Moreover we investigated 

Table 4. Treatment effects of metformin

Metabolite

Placebo Metformin

pMedian (IQR) Median (IQR)

24 h post-MI N=170 N=159

Alanine in mmol/l 0.46 (0.09) 0.49 (0.09) 9.0x10-4

Pyridine in mmol/l 0.14 (0.05) 0.16 (0.07) 0.001

XL-HDL-PL% 36.11 (17.52) 33.98 (16.65) 0.908

4 months post-MI N=159 N=157

Alanine in mmol/l 0.44 (0.08) 0.46 (0.09) 2.4x10-4*

Pyridine in mmol/l 0.1 (0.04) 0.11 (0.04) 0.006

XL-HDL-PL% 38.79 (19.5) 29.89 (23.9) 7.5x10-5*

Effects of treatment on selected metabolite measures 24 h post-Myocardial Infarction (MI) and 4 months 
post-MI. *Significant effects (p<7.4x10-4). IQR: inter-quartile range; XL-HDL-PL%: phospholipids to total lip-
ids ratio in very large HDL particles.
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whether metabolic profiling could be used to identify subgroups of patients in whom 
metformin was effective. After the 4-month treatment period, we found higher alanine 
levels and lower XL-HDL-PL% in metformin-treated patients as compared to controls. 
Remarkably, higher triglyceride levels in HDL and several HDL subfractions measured 
24 h post-MI were associated with favorable outcome as inferred from higher LVEF 
and smaller ISZ 4 months post-MI. Moreover, categorical analysis of LVEF revealed that 
besides HDL-TG, the composition of XS-VLDL (24 h post-MI) and L-LDL (baseline) was as-
sociated with abnormal left ventricular function 4 months post-MI. We could not identify 
metabolic profiles associated with treatment benefits from metformin.

Similar to our results, the CAMERA study, a clinical trial investigating the effects of met-
formin on different amino acids, found substantially increased alanine levels 18 months 
after treatment onset.13 Alanine plays a crucial role in the alanine-glucose cycle, in which 
alanine released by muscle tissue is transported to the liver before it is converted into 
pyruvate for gluconeogenesis. Findings from animal studies suggest that metformin 
reduces gluconeogenesis by inhibiting hepatic alanine uptake19 and by hampering fat-
induced changes in the glycolysis metabolic pathway20. As a result of reduced uptake 
into the liver, blood alanine levels may rise in metformin-treated patients. Interestingly, 
we observed a trend towards increased alanine levels in the metformin group 24 h post-
MI,,suggesting rapid effects of metformin on gluconeogenesis.

Numerous randomized controlled trials have studied the effects of metformin treat-
ment on lipid levels in patients with type 2 diabetes. A recent study in diabetic patients 
found that metformin lowered total cholesterol and LDL-C.21 Another study in patients 
at risk for diabetes reported changes in lipoprotein subclasses after one year of metfor-
min treatment, with reduced particle concentrations of small LDL and elevated large 
LDL, small HDL and large HDL.9 In our recent report, we observed modest decreases in 
LDL cholesterol, no change in apolipoprotein B, and as a result a small decrease in LDL 
particle size.11 In the present study which used a different NMR-based method, only the 
phospholipid content of large HDL particles was decreased in response to metformin.

We also tested whether lipoprotein characteristics and metabolite measures at base-
line, 24 h post-MI and 4 months post-MI were associated with 4 months post-MI LVEF 
and ISZ. We found that increased HDL-TG levels measured 24 h post-MI were associated 
with a greater LVEF. In addition, decreased HDL-TG, M-HDL-TG, XL-HDL-TG% and S-HDL-
TG measured 24 h post-MI predicted higher ISZ. Categorical analysis of LVEF and ISZ 
provided similar results with more favorable outcomes for patients with higher HDL-TG 
levels. No metabolite measure showed a significant interaction with metformin treat-
ment, suggesting that there was no metabolic subgroup of patients in whom metformin 
was effective.

Our findings suggest beneficial effects of higher triglyceride levels in HDL and in HDL 
subfractions measured 24 h post-MI on ISZ and LVEF. Clinical studies identified low 
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admission triglyceride levels as a risk factor for recurrent CV events and mortality in 
STEMI patients.22,23 Likewise, low triglyceride levels are associated with a poor progno-
sis in stroke patients.24 This contrasts with findings from large-scale case-control and 
prospective cohort studies indicating that hypertriglycemia is a strong predictor of CV 
events, even independent of cholesterol levels.25,26 These epidemiological findings, how-
ever, apply to individuals who were not studied during the course of an acute coronary 
event. Similarly paradoxical findings have been obtained for plasma cholesterol levels. 
While hypercholesterolemia is an established CV risk factor in the general population, 
admission LDL-C levels < 70 mg/dl are associated with higher mortality and incidence 
of heart failure in statin-naïve STEMI patients.27 The pathogenic mechanisms underlying 
recurrent CV events shortly after an acute event are still poorly understood. It is possible 
that in the acute setting HDL-TG plays a distinct role on CV outcome .

VLDL is the most important triglyceride carrier in plasma. The triglyceride content of 
VLDL showed substantial correlation with HDL-TG 24 h post-MI (Supplemental Figure 1 
B). However, only the triglyceride content of very small VLDL particles was associated 
with LVEF categories. In addition, the TG content of large LDL particles at baseline pre-
dicted abnormal LVEF 4 months post-MI. Inhibition of fatty acid uptake by relocation of 
FAT/CD36 may reduce intracellular fatty acid concentrations28, resulting in increased ex-
tracellular fatty acid levels and diminished lipolysis of lipid-bound triglycerides. This may 
initially lead to triglyceride enrichment of VLDL and LDL particles, which subsequently 
transfer excess triglycerides to HDL particles in exchange for cholesteryl esters by the 
action of cholesteryl ester transfer protein (CETP), thereby increasing the triglyceride 
content in HDL.29 In line with this, blood samples of MI patients collected immediately 
after diagnosis show strong triglyceride enrichment of HDL2 particles.30 Higher plasma 
HDL-TG levels could thus be consequent to inhibition of fatty acid uptake, and coincide 
with diminished fatty acid oxidation and prevention of further myocardial damage.31 
Larger triglyceride-rich particles are converted to small VLDL subfractions as a result of 
lipase-mediated delipidation32, suggesting that triglyceride enrichment may be second-
ary to initial triglyceride uptake of large VLDL. Larger VLDL particles may be delipidated 
rapidly, which may explain why the association of triglycerides with LVEF was limited 
to very small VLDL 24 h post-MI. Similarly, a major proportion of LDL-TG is derived from 
large VLDL32, which may partly result from CETP-mediated delipidation of large VLDL. 
Taken together, early metabolic changes after MI could reflect adaptive mechanisms 
that promote functional recovery.

While we observed associations of LVEF categories with 24 h post-MI measurements of 
XS-VLDL-TG% and XS-VLDL-C%, these metabolite measures did not significantly predict 
LVEF when LVEF was analyzed as a continuous variable. However, the regression model 
with continuous outcome assumes linearity between metabolite measures and LVEF, 
whereas categorical analysis of LVEF in combination with multinomial logistic regression 
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renders the model sensitive to non-linear associations. As shown in Figure 2 A, HDL-TG, 
M-HDL-TG and S-HDL-TG follow a linear trend across the three LVEF categories, whereas 
XS-VLDL-TG% and XS-VLDL-C% display non-linear trends.

Limitations

The GIPS-III trial was originally designed to assess differences in LVEF between metformin 
treated patients controls. We conducted 68 independent tests, raising the possibility that 
our study was not powered to detect smaller changes. However, we were able to detect 
a significant effect for alanine levels, which were only slightly increased in the metformin 
group (median difference: 0.03 mmol/L), demonstrating sufficient power to perform a 
metabolic profiling analysis. In addition, all patients received intravenous heparin before 
PCI when baseline blood samples were drawn. Heparin stimulates lipolysis and hence 
acutely reduces plasma triglyceride levels33, which is in line with the marked increase 
in triglyceride levels between baseline and the other time points (Supplemental Table 
8). STEMI patients routinely receive heparin before PCI, rendering the results for base-
line measurements relevant to clinical settings. These findings measurements should 
nevertheless be interpreted with caution. Moreover, we performed metabolic profiling 
in non-fasting blood samples, warranting further research to substantiate our findings 
under fasting conditions. However, the NMR platform used in our study mainly quanti-
fies lipid measures, which change only slightly after food consumption and show similar 
associations with cardiovascular risk in fasting and non-fasting individuals.34 

Conclusions

In summary, our study suggests that metformin treatment started directly after pre-
sentation with STEMI produces changes in alanine and XL-HDL-PL% as assessed after 4 
months. Higher triglyceride levels in HDL and in HDL subfractions measured 24 h post-
MI were predictive of better LVEF and smaller ISZ 4 months post-MI. HDL-TG may thus 
serve as an early biomarker of left ventricular dysfunction in STEMI patients. However, 
further studies are required to substantiate the clinical significance of HDL-TG in CV 
risk prediction and to investigate the biological mechanism underlying associations 
of metabolic biomarkers with recurrent CV events. Our findings emphasize the utility 
of high-throughput metabolic profiling as a tool to study drug effects and to identify 
prognostic biomarkers of LVEF and ISZ.

Clinical perspective

Although in-hospital survival after myocardial infarction has improved because of ame-
liorated treatment strategies, longterm outcome of myocardial infarction is threatened 
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by the development of heart failure and its associated poor prognosis. Left ventricular 
ejection fraction and infarct size are key predictors of heart failure development and 
long-term outcome. However, treatment options for left ventricular dysfunction are 
limited and the biochemical mechanisms driving functional decline after myocardial in-
farction are largely unknown. To identify biomarkers predicting post-MI left ventricular 
ejection fraction and infarct size and to evaluate the metabolic footprint of metformin, 
we performed metabolic profiling in the GIPS-III cohort (Glycometabolic Intervention 
as Adjunct to Primary Percutaneous Intervention in ST Elevation Myocardial Infarction), 
including 233 metabolite measures obtained on admission, 24 hours post-MI and 4 
months post-MI. Our results suggest that triglycerides in high-density lipoprotein and 
high-density lipoprotein subfractions measured 24 hours post-MI predict left ventricular 
ejection fraction and infarct size. High-density lipoprotein triglyceride may thus serve 
as an early marker of left ventricular dysfunction after ST-segment–elevated MI. In ad-
dition, metformin increased alanine levels and reduced the phospholipid content in 
very large high-density lipoprotein particles. Our findings emphasize the utility of high-
throughput metabolic profiling as a tool to study drug effects and to identify prognostic 
biomarkers of left ventricular ejection fraction and infarct size.

Supplemental materials are available online.
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Abstract

Background: Statins lower cholesterol by inhibiting HMG-CoA reductase, the rate- limit-
ing enzyme of the metabolic pathway that produces cholesterol and other isoprenoids. 
Surprisingly little is known about their effects on metabolite and lipoprotein subclass 
profiles. We therefore investigated the molecular changes associated with pravastatin 
treatment compared to placebo administration, using a nuclear magnetic resonance 
(NMR)-based metabolomics platform.
Methods and results: We performed metabolic profiling of 231 lipoprotein and me-
tabolite measures in the PREVEND IT study, a placebo-controlled randomized clinical 
trial designed to test the effects of pravastatin (40 mg once daily) on cardiovascular risk. 
Metabolic profiles were assessed at baseline and after 3 months of treatment. Pravas-
tatin lowered low-density lipoprotein cholesterol (LDL-C; change in SD units [95% CI]: 
-1.01 [-1.14, -0.88]), remnant cholesterol (change in SD units [95% CI]: -1.03 [95% CI : 
-1.17, -0.89]) and apolipoprotein B (apoB, change in SD units [95% CI]: -0.98 [95% CI : 
-1.11, -0.86]) with similar effect magnitudes. In addition, pravastatin globally lowered 
levels of lipoprotein subclasses, with the exception of high-density lipoprotein (HDL) 
subclasses, which displayed a more heterogeneous response pattern. The lipid lower-
ing effect of pravastatin was accompanied by selective changes in lipid composition, 
particularly in the cholesterol content of very low-density lipoprotein (VLDL) particles. 
In addition, pravastatin reduced levels of several fatty acids, but had limited effects on 
fatty acid ratios.
Conclusions: These randomized clinical trial data demonstrate the widespread effects 
of pravastatin treatment on lipoprotein subclass profiles and fatty acids.
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Introduction

Statins hamper cholesterol production in the liver through inhibition of HMG-CoA 
reductase, which, in turn, stimulates hepatic synthesis of low-density lipoprotein (LDL) 
receptors as a compensatory mechanism. These receptors bind to apoB-rich lipopro-
teins and facilitate their absorption by hepatocytes, leading to a further reduction in 
plasma cholesterol levels.1 The cardiovascular risk reduction achieved through statins is 
believed to primarily result from their LDL cholesterol (LDL-C) lowering properties.2 Low-
ering of LDL-C has therefore been identified as the primary treatment target of statin 
therapy.3 However, statins act early in the mevalonate pathway and have the potential 
to extensively modify the metabolic profile in addition to their effect on cholesterol 
metabolism. This has led to the hypothesis that statins may provide cardioprotective 
benefits beyond LDL-C reduction. While there is mounting evidence underpinning 
the therapeutic capacities of such pleiotropic statin effects,4-6 little is known about the 
underlying molecular pathways.

Nuclear magnetic resonance (NMR)-based metabolic profiling has evolved into a 
versatile high-throughput tool for biomarker discovery that allows simultaneous quan-
tifications of numerous molecules, ranging from amino acids to a variety of lipoprotein 
subclass measures. Metabolic profiling has been widely used both in epidemiology and 
in drug research.7-9 Better characterization of the metabolic footprint of statins may 
provide novel insights into their mechanisms of action and help guide drug discovery. 
A recent study of four observational population-based cohorts investigated the longitu-
dinal effects of statins on metabolic profiles by comparing users to non-users, followed 
by confirmatory Mendelian randomization analysis.9 Besides cholesterol lowering, 
statins influenced fatty acid levels, whereas amino acids and other metabolites were 
not substantially altered. While this study revealed extensive changes in routine lipid 
measures, little is known about the effect of statins on lipoprotein subclass profiles, 
even though mounting evidence suggests distinct roles for lipoprotein subclasses in the 
pathophysiology of cardiovascular disease.10-12 In addition, no study has yet comprehen-
sively investigated the metabolic effects of statin therapy in a placebo-controlled ran-
domized setting. Here we present the first data on pravastatin treatment derived from 
the Prevention of Renal and Vascular End-stage Disease Intervention Trial (PREVEND IT) 
study, a randomized placebo-controlled clinical trial. In addition to previously quantified 
parameters, including lipids, fatty acids, amino acids and glycolysis metabolites, we re-
port results for over 160 measures of lipoprotein subclasses. An overview of lipoprotein 
subclasses is given in Table 1.



Chapter 7

142

Materials and methods

Subjects

Details on the PREVEND IT study have been published elsewhere.13 Briefly, PREVEND IT is 
a double-blind, placebo-controlled clinical trial, in which participants were randomized 
to 20 mg fosinopril or matching placebo and 40 mg pravastatin or matching placebo. 
PREVEND IT participants were recruited from the PREVEND program, which investigated 
the influence of microalbuminuria on cardiovascular and renal risk. The main inclusion 
criteria for PREVEND IT were a urine albumin concentration of >10 mg/L in one morning 
spot sample and at least once a concentration of 15 to 300 mg/24 h in two successive 24-
hour urine samples, a blood pressure of <160/100 mm Hg, no hypertensive treatment 
and a total serum cholesterol concentration < 8.0 mmol/L (or <5.0 mmol/L in case of prior 
myocardial infarction) and no lipid-lowering treatment. 864 subjects were randomized 
to receive study medication (see above) after giving informed consent. Blood samples 
for metabolic profiling were limited by sample availability and could be obtained in 394 
participants at baseline and after 3 months of treatment. The study was approved by 
the Institutional Review Board and was conducted in according to the guidelines of the 
declaration of Helsinki.

Table 1. Average particle size of lipoprotein subclasses

Lipoprotein Subclass Average particle diameter (in nm)*

VLDL

XXL >75

XL 64.0

L 53.6

M 44.5

S 36.8

XS 31.3

IDL   28.6

LDL

L 25.5

M 23.0

S 18.7

HDL

XL 14.3

L 12.1

M 10.9

S 8.7

Average particle size (diameter in nm) for different lipoprotein subclasses. *Average particle diameters 
adapted from [8]. Cut points for size ranges can be approximated by the midpoint between the average 
diameters of two consecutive lipoprotein subclasses, e.g. the lower bound of XS-VLDL is approximately 
30 nm. HDL: high-density lipoprotein; IDL: intermediate-density lipoprotein; LDL: low-density lipoprotein; 
VLDL: very low-density lipoprotein; XXL: extremely large; XL: very large; L: large; M: medium; S: small; XS: 
very small.
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Laboratory measurements

Fasting blood samples were drawn before treatment onset (baseline) and at the 3-month 
medical review (N=394). Metabolic profiling was performed in EDTA anticoagulated 
plasma samples using high-throughput 1H NMR metabolomics (Brainshake Ltd, Helsinki, 
Finland), as previously described7. This method provides accurate quantification of 231 
lipoprotein and metabolite measures, including routine lipids, lipoprotein profiles with 
14 lipoprotein subfractions, glycolysis related metabolites, amino acids, ketone bodies, 
fluid balance related metabolites and one inflammatory marker (Supplemental Table 
1). Recent studies have demonstrated that NMR measurements quantified with this 
platform are in good agreement with routine clinical chemistry assays.8 Representative 
coefficients of variation (CVs) for this platform have been reported elsewhere.14

Statistical analysis

Correlations between different lipoprotein and metabolite measures were calculated 
using Spearman’s correlation coefficients. The effect of statin treatment on each NMR 
measure was assessed by linear regression on the change during the treatment period, 
as previously described.9 The effect estimate (regression coefficient) of this regression 
model can be interpreted as the longitudinal change of a NMR measure attributable 
to pravastatin treatment. To facilitate comparison between different lipoprotein and 
metabolite measures, differences between pre- and post-treatment values were scaled 
to baseline SD units. Consequently, statin effects on NMR measures are expressed in 
baseline SD units. We additionally performed a sensitivity analysis adjusted for sex as 
the pravastatin group showed a higher percentage of male patients. Since many NMR 
measures were highly correlated (see Supplemental Table 1), we accounted for multiple 
testing by correcting the nominal level of significance for the number of independent 
tests, which was estimated by the method of Li and Ji,15 using the matrix spectral de-
composition (matSpD) tool (http://gump.qimr.edu.au/general/ daleN/matSpD/). The 
number of independent tests was estimated to be 85, yielding a corrected significance 
threshold of 0.05/85=0.00059.

Results

Baseline characteristics and NMR measures

Baseline characteristics of all patients included in this study are listed in Table 2. Of 394 
participants, 195 received pravastatin and 199 placebo during the 3-month treatment 
period. A summary of all 231 lipoprotein and metabolite measures can be found in 
Supplemental Table 1. NMR and available clinical chemistry measures showed strong 
correlations for baseline and post-treatment measurements (Supplemental Table 2), 
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indicating consistency between different analytical methods. Heat maps of correlations 
between NMR measures are displayed in Supplemental Figure 1, revealing substantial 
correlation within lipoprotein subclasses, between amino acids and between fatty acids.

Statin effects

We compared longitudinal changes of NMR measures between the pravastatin group 
and controls, using linear regression. To facilitate comparison between different 
measures, differences between pre- and post-treatment values were scaled to base-
line SD units. After the 3-month treatment period, a total of 150 NMR measures were 
significantly altered (p<0.00059) between the pravastatin group and the control group. 
Absolute concentration changes are given for all lipoprotein and metabolite measures 
in Supplemental Table 3. Additional sensitivity analysis adjusted for sex provided similar 
findings, suggesting that our results were not confounded by the imbalance in sex ratio 
between the pravastatin group and the control group (Supplemental Table 4).

Table 2. Baseline characteristics

Variable
Placebo
(n=199)

Pravastatin 
(n=195)

Age (years) 50.6±11.1 51.5±11.5

Male 121 (60.8) 141 (72.3)

BMI (kg/m2) 26.5±4.5 26.3±4.1

Current smoker 79 (39.7) 82 (42.1)

SBP (mm Hg) 130.6±17.3 131.6±18.3

DBP (mm Hg) 75.8±9.9 76.6±9.4

Cholesterol (mmol/l) 5.9±1.0 5.9±1.1

HDL (mmol/l) 1.0±0.3 1.0±0.3

LDL (mmol/l) 4.1±0.9 4.2±1.0

Triglycerides (mmol/l) 1.3 (0.9-1.9) 1.4 (0.9-1.9)

Glucose (mmol/l) 4.9 (4.5-5.3) 4.9 (4.5-5.3)

Creatinine (μmol/l) 84.0±15.1 86.4±13.2

Medication use

Beta-blockers 4 (2.0) 0 (0.0)

Nitrate 2 (1.0) 0 (0.0)

Diuretics 4 (2.0) 0 (0.0)

Calcium channel blockers 0 (0.0) 1 (0.5)

Digoxin 1 (0.5) 2 (1.0)

Discrete variables are expressed as absolute count (%) and continuous variables as mean±SD or median 
(interquartile range). Lipids, glucose and creatinine as measured by clinical chemistry. SD: standard devia-
tion; BMI: body mass index; SBP: systolic blood pressure; DBP: diastolic blood pressure; HDL: high-density 
lipoprotein; LDL: low-density lipoprotein; SD: standard deviation.
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As compared with placebo, pravastatin reduced levels of conventional lipid measures 
(Figure 1), including total serum cholesterol (change associated with pravastatin in SD 
units [95% CI]: -1.01 [-1.14, -0.88]; p=7.3x10-41), LDL-C (change in SD units [95% CI]: -1.01 
[-1.13, -0.88]; p=6.7x10-42) and total serum triglycerides (change in SD units [95% CI]: 
-0.46 [-0.60, -0.33]; p=1.8x10-11), whereas HDL-C levels were not affected by statin treat-
ment (change in SD units [95% CI]: -0.01 [-0.11, 0.09]; p=0.829). However, pravastatin 
significantly increased cholesterol in large lipid-rich HDL2 particles (change in SD units 
[95% CI]: 0.18 [0.08, 0.27]; p=0.00048) and decreased cholesterol in small less dense 
HDL3 particles (change in SD units [95% CI]: -0.69 [-0.87, -0.51]; p= 3.1x10-13).

Figure 1. Lipids and lipid-related NMR measures
Concentration changes in lipids and lipid-related measures associated with pravastatin treatment (n=195) 
compared with placebo treatment (n=199). Effect estimates indicate changes over the treatment period (3 
months) associated with pravastatin treatment in baseline SD-units. Error bars represent 95% confidence inter-
vals. The dotted line shows the effect estimate for LDL-C. Red marks indicate significant changes (p<0.00059). 
HDL: high-density lipoprotein; LDL: lowdensity lipoprotein; VLDL: very low-density lipoprotein; D: diameter; C: 
cholesterol; TG: triglycerides; DAG: diacylglycerol; PG: phosphoglycerides; PC: phosphatidylcholine; SM: sphin-
gomyelins; Total Chol: total cholines; apoA1: apolipoprotein A1; apoB: apolipoprotein B.
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Moreover, pravastatin treatment markedly lowered remnant cholesterol levels 
(change in SD units [95% CI]: -1.03 [-1.17, -0.89]; p=2.0x10-38), which reflects the total 
cholesterol content in very large-density lipoprotein (VLDL; change in SD units [95% 
CI]: -0.88 [-1.02, -0.74]; p=2.1x10-29) and intermediate-density lipoprotein (IDL; change 
in SD units [95% CI]: 1.03 [-1.16, -0.89]; p=1.3x10-39). The effect of pravastatin on apo-
lipoprotein B (apoB; change in SD units [95% CI]: -0.98 [-1.11, -0.86]; p=1.1x10-44) was 
comparable to the change in LDL-C. Pravastatin globally lowered levels of VLDL, LDL and 
IDL subclasses (Figure 2), whereas changes in HDL subclasses were less consistent, with 
significant increases across large HDL subclasses measures and a reduction in small and 
very large HDL-C.

Particle concentrations of all VLDL, IDL and LDL subclasses decreased in response to 
statin treatment. IDL was the subclass with the greatest change in particle concentration 
(change in SD units [95% CI]: -1.04 [95% CI: -1.17 to -0.91]; p=7.6x10-45). In addition, we 
analyzed the lipid composition of different lipoprotein subclasses, expressed as the ratio 
of individual lipid concentrations to the total lipid concentration (Figure 3). Pravastatin 
treatment markedly lowered the cholesterol and cholesteryl ester to total lipids ratio 
in IDL and across all LDL subclasses, concomitant with an elevated relative content of 
free cholesterol and phospholipids in LDL. Furthermore, pravastatin selectively reduced 
cholesterol ratios in small and medium VLDL particles. In parallel with cholesterol and 
triglycerides, pravastatin lowered fatty acid concentrations (Figure 4), particularly ω-6 
fatty acids (change in SD units [95% CI]: -0.85 [95% CI : -1.00, -0.71]; p=3.5x10-26), total 
polyunsaturated fatty acids (PUFA, change in SD units [95% CI]: -0.84 [95% CI : -0.98, 
-0.69]; p= 3.4x10-26). By contrast, pravastatin treatment only altered the saturated fatty 
acid to total fatty acid ratio (SFA/FA; change in SD units [95% CI]: 0.51 [95% CI : 0.29, 
0.74]; p= 9.4x10-6) and the lineolic acid to total fatty acid ratio (LA/FA; change in SD units 
[95% CI]: -0.35 [95% CI : 0.48, 0.21]; p= 7.2x10-7), but produced no changes in other fatty 
acid ratios. Glycolysis-related metabolites, amino acids and other metabolites remained 
unchanged.

We next evaluated the effect of pravastatin on correlations between different NMR mea-
sures. Results are illustrated in a correlation difference map that provides a post-treatment 
comparison between the pravastatin group and controls (Supplemental Figure 2). Pravas-
tatin induced negative associations between the relative cholesterol content of medium 
HDL and cholesterol levels in small VLDL, IDL and LDL. We observed similar, but weaker 
effects for absolute cholesterol concentrations in medium HDL. Conversely, pravastatin 
strengthened or induced positive correlations between the phospholipid-to-total lipids 
ratio in medium HDL and lipid concentrations in other lipoproteins. Furthermore, correla-
tions between absolute lipid concentrations and the relative lipid content were altered 
across VLDL subclasses. Finally, lactate and pyruvate showed weaker associations with 
lipid concentrations in VLDL following pravastatin treatment.
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Figure 2. Lipid concentrations in different lipoprotein subclasses
Changes in lipid concentrations across lipoprotein subclasses associated with pravastatin treatment 
(n=195) compared with placebo treatment (n=199). Effect estimates indicate changes over the treatment 
period (3 months) associated with pravastatin treatment in SD-units. Error bars represent 95% confidence 
intervals. The dotted line shows the effect estimate for LDL-C. Red marks indicate significant changes 
(p<0.00059). XXL: extremely large; XL: very large; L: large; M: medium; S: small; XS: very small; HDL: high-
density lipoprotein; IDL: intermediate-density lipoprotein; LDL: low-density lipoprotein; VLDL: very low-
density lipoprotein; P: particle concentration; L: total lipids; PL: phospholipids; C: cholesterol; CE: cholesteryl 
esters; FC: free cholesterol; TG: triglycerides.
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Discussion

This is the first placebo-controlled NMR study to assess metabolic changes associated 
with statin treatment, using data from the PREVEND IT trial. Our study adds to previ-
ous findings from observational NMR studies and additionally explored statin-induced 
changes in over 160 novel measures of lipid concentrations and lipid composition for 14 
lipoprotein subclasses. Besides the well-known effects on LDL-C, statins altered a wide 
range of lipids and concentrations of fatty acids. These findings are supported by ob-
servational studies comparing statin users to non-users,9,16 and fit with previous clinical 

Figure 3. Lipid composition of lipoprotein subclasses
Changes in lipid composition of lipoprotein subclasses associated with pravastatin treatment (n=195) 
compared with placebo treatment (n=199). Effect estimates indicate changes over the treatment period (3 
months) associated with pravastatin treatment in baseline SD-units. Error bars represent 95% confidence 
intervals. The dotted line shows the effect estimate for LDL-C. Red marks indicate significant changes 
(p<0.00059). %: lipid concentration relative to total lipid concentration; XXL: extremely large; XL: very large; 
L: large; M: medium; S: small; XS: very small; HDL: high-density lipoprotein; IDL: intermediate-density lipo-
protein; LDL: low-density lipoprotein; VLDL: very low-density lipoprotein; P: particle concentration; L: total 
lipids; PL: phospholipids; C: cholesterol; CE: cholesteryl esters; FC: free cholesterol; TG: triglycerides.
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Figure 4. Fatty acids, amino acids and other metabolites
Concentration changes in fatty acids, amino acids and other metabolites associated with pravastatin treat-
ment (n=195) compared with placebo treatment (n=199). Effect estimates indicate changes over the treat-
ment period (3 months) associated with pravastatin treatment in baseline SD-units. Error bars represent 
95% confidence intervals. The dotted line shows the effect estimate for LDL-C. Red marks indicate signifi-
cant changes (p<0.00059). FA: fatty acids; Unsat Deg: degree of unsaturation; DHA: docosahexaenoic acid; 
LA: linoleic acid; CLA: conjugated linoleic acid; ω-3 FA: omega-3 fatty acids; ω-6 FA: omega-6 fatty acids; 
PUFA: polyunsaturated fatty acids; MUFA: monounsaturated fatty acids; SFA: saturated fatty acids; bOHbut: 
3-hydroxybutyrate; Gp: glycoprotein acetyls.
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trial data on fatty acids.17 By contrast, pravastatin treatment only altered LA/FA and SFA/
FA, but had no effect on other fatty acid ratios. In addition, pravastatin globally lowered 
levels of lipoprotein subclasses, except for HDL concentrations, which displayed a more 
intricate response pattern. Detailed lipid profiling revealed that the substantial lowering 
of VLDL-C, IDL-C and LDL-C was paralleled by more selective changes in lipid composi-
tion of different lipoprotein particles. Finally amino acids and other metabolites were 
not affected by statin treatment.

Statins not only act on LDL, but also on other apoB-rich lipoproteins. In our study, 
pravastatin reduced apoB and LDL-C with similar effect magnitudes. ApoB has been 
proposed as a more robust cardiovascular risk marker than LDL-C, supporting the use of 
apoB as an alternative treatment target for statin therapy.18,19 

Consistent with previous findings,9,20 statin treatment substantially lowered cholester-
ol in apoB-containing, triglyceride-rich remnant particles, including IDL and VLDL. Since 
VLDL is the main carrier of triglycerides, remnant cholesterol is strongly associated with 
triglyceride levels. Although triglycerides are well-established markers of cardiovascular 
risk, their relationship with atherogenesis is not straightforward.21 By contrast, remnant 
cholesterol is likely to play a causal role in cardiovascular disease risk.22,23 In line with 
this, remnant cholesterol is associated with both ischemic heart disease and low-grade 
inflammation.24 Compared with VLDL-C and IDL-C, HDL-C showed a more complex re-
sponse to statin treatment, with cholesterol depletion of small HDL3 particles and slight 
cholesterol enrichment of larger HDL2 particles. Prospective cohort studies have con-
sistently reported inverse associations between HDL-C levels and risk of cardiovascular 
disease,25 whereas findings from recent Mendelian randomization studies26,27 and the 
failure of HDL-raising drugs to improve cardiovascular outcomes28 may argue against a 
causal role for HDL-C in cardiovascular disease per se. Findings from experimental stud-
ies suggest that HDL3 and HDL2 differ in their cardioprotective capacities.29 However, 
the relationship between different HDL subclasses and cardiovascular risk remains a 
matter of debate as results from observational studies are inconclusive.30

It has been suggested that small dense LDL particles are more atherogenic than larger 
LDL species as they are readily taken up by the arterial wall, are cleared from circulation 
at reduced rates due to their low affinity for LDL receptors and are more susceptible 
to oxidation, promoting the formation of atherosclerotic plaques.11,13 This is supported 
by large cohort studies, demonstrating that concentrations of small rather than large 
LDL particles are associated with future cardiovascular risk after adjustment for non-
lipid risk factors.31-33 However, effect estimates for small LDL particles are not superior 
to total LDL concentrations and do not improve risk prediction beyond routine lipid 
measures.31 Moreover, a systematic review of NMR studies found no association of LDL 
subclasses with cardiovascular disease after adjustment for other lipid measurements.34 
Experimental findings suggest that, similar to LDL particles, the atherogenic capacity 
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of VLDL may depend on particle size as large VLDL subpopulations are unable to enter 
the arterial wall and are thus less likely to contribute to the formation of atherosclerotic 
plaques.35 However, there is little evidence from clinical studies that smaller and larger 
VLDL particles differ in their atherogenic potential. While different lipoprotein subclasses 
may play distinct roles in the pathophysiology of cardiovascular disease, pravastatin 
treatment lowered lipoprotein particle concentrations and lipid concentrations across 
VLDL, IDL and LDL subclasses, which may be an indirect consequence of enhanced 
clearance and/or reduced synthesis of these lipoproteins.

While the cholesterol-to-total-lipids ratio was decreased in IDL and all LDL subpopula-
tion, pravastatin selectively reduced the cholesterol content of small and medium VLDL, 
raising the possibility that statins specifically target potentially atherogenic VLDL sub-
populations.35 At the same time, pravastatin lowered the triglyceride to total lipids ratio 
across all HDL subpopulations, but increased the triglyceride content of several VLDL 
and LDL subclasses as well as IDL. These changes in lipid composition may be attribut-
able to statin effects on the reverse cholesterol transport pathway, in which cholesteryl 
ester transfer protein (CETP) transfers cholesteryl esters from HDL to triglyceride-rich, 
apoB-containing lipoproteins ( LDL, IDL and VLDL) in exchange for triglycerides.36 The 
statin-induced decrease in lipoprotein concentrations is associated with reduced CETP 
activity, resulting in cholesterol enrichment of HDL and cholesterol depletion of apoB 
containing lipoproteins.37-39 Consistent with reduced CETP activity, pravastatin induced 
negative correlations between the cholesterol content of medium HDL and cholesterol 
levels in non-HDL particles. Correlation coefficients for other HDL subpopulations, how-
ever, were only moderately altered after pravastatin treatment.

The relative reduction in LDL cholesterol was associated with no or only minor changes 
in the triglyceride content of LDL particles. By contrast, there was triglyceride enrichment 
of IDL as well as medium and large VLDL particles. Statin-induced lowering CETP activ-
ity may also hamper TG transfer from VLDL and IDL to LDL,40 which would explain the 
increased relative triglyceride content of IDL and VLDL. Besides lowering the cholesterol 
content of IDL and LDL, pravastatin treatment led to a relative increase in phospholipids 
and free cholesterol, which may result from reduced enzymatic cholesterol esterification 
due to blocked cholesterol synthesis.41 Taken together, detailed analysis of lipoprotein 
subclasses revealed selective changes in lipid composition, whereas lipid concentrations 
were reduced across all VLDL, IDL and LDL subclasses, following pravastatin treatment.

Several studies have shown that besides lipid lowering, statins alter fatty acid 
levels.9,16,17 Since the vast majority of circulating fatty acids are bound in triglycerides, 
cholesteryl esters and phospholipids,17 the reduction in fatty acid levels associated 
may result from the statin-induced decrease in lipoproteins providing the main source 
of circulating lipids. Alternatively, statins may interfere with fatty acid metabolism 
through different molecular pathways. Simvastatin treatment increases metabolic 
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indices indicating elevated activity of elongases and desaturases,17 two enzymes that 
catalyze the formation of highly unsaturated long-chain fatty acids. Moreover, statin 
treatment may stimulate hepatic uptake and beta-oxidation of fatty acids by enhanc-
ing expression of peroxisome proliferator-activated receptors (PPARs).42 We observed 
elevated SFA/FA and reduced LA/FA, but no effects on other fatty acid ratios, which more 
appropriately reflect fatty acid metabolism than fatty acid concentrations given the 
lipoprotein-lowering effect of statins. By contrast, a recent observational study reported 
stronger effects on docosahexaenoic acid (DHA)/FA, whereas SFA/FA was unchanged 
after statin treatment.9 In this study, however, information on statin type and dosage 
was not available. Consistent with our findings, data from a clinical trial suggest that 
simvastatin does not enhance DHA/FA.17 Interestingly, studies comparing different 
statins reported that pravastatin, in contrast to other statins, did not influence selected 
fatty acid ratios, indicating that changes in fatty acid metabolisms depend on the statin 
type.43,44 While the decrease in LA/FA is supported by other studies,9,17 the underlying 
metabolic processes remain unclear. Statins increase lecithin:cholesterol acyltransferase 
(LCAT) activity, which synthesizes cholesteryl esters from cholesterol and fatty acids.45 
Since LA is the preferential substrate of LCAT, elevated LCAT activity would be consistent 
with higher LA/FA. Collectively, changes in absolute fatty acid levels are mainly driven 
by statin-induced lipid lowering, whereas statin effects on fatty acid metabolism remain 
uncertain and may differ between statins.

Pyruvate and lactate showed weaker correlations with VLDL-related measures after 
pravastatin treatment, whereas absolute concentrations of these two metabolites re-
mained unchanged. In addition to producing lactate, pyruvate is involved in glucose 
and fatty acid metabolism by forming acetyl-coenzyme A, which is involved in fatty 
acid synthesis.46 Fatty acids, in turn, are joined with glycerol to form triglycerides, the 
main component of VLDL. Pyruvate and lactate as a metabolic product of pyruvate are 
thus associated with enhanced hepatic VLDL synthesis and consequently should show 
a positive correlation with serum VLDL levels. This is in line with the correlation pat-
terns of pyruvate and lactate in the placebo group (Supplemental Figure 2B). Statins, 
however, facilitate hepatic uptake of non-HDL particles, including VLDL, by increasing 
LDL receptor activity.1 The resulting decrease in VLDL levels coupled with unchanged 
pyruvate and lactate levels is consistent with weaker correlations in the pravastatin 
group (Supplemental Figure 2A).

Our study was powered to detect a large number of significant changes in lipopro-
tein and metabolite measures after pravastatin treatment, underscoring the strengths 
of a placebo controlled randomized setting with pre/post treatment comparisons, 
which limits potential sources of confounding to a minimum. We report associations 
for 231 NMR measures, including over 160 novel measures of lipid concentrations and 
lipid composition for different lipoprotein subclasses. No other study has assessed the 
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effect of statins on lipoprotein subclasses in such detail. However, further research is 
warranted to confirm our findings on lipoprotein subclasses as we did not replicate our 
results in an independent study. In comparison with a recent observational study that 
used the same NMR metabolomics platform,9 we observed more moderate effects of 
statin treatment on several lipid measures, including LDL-C, apoB and apoA1. Würtz et 
al. compared statin users, who commenced statin treatment, to non-users. While infor-
mation on statin type and dosage was not available for this study, all statin users had 
an indication for statin therapy, such as hypercholesterolemia, suggesting that many 
of them underwent aggressive treatment. In our study, however, participants were 
randomly assigned to a moderate dose of a relatively week statin,47 which may account 
for the lower effect estimates.

In conclusion, metabolic profiling in a randomized clinical trial revealed causal associa-
tions of statin treatment with globally reduced lipid levels across lipoprotein subclasses, 
accompanied by more selective changes in the lipid composition of lipoproteins. Addi-
tionally, pravastatin treatment lowered fatty acid concentrations, but had limited effects 
on fatty acid ratios. In line with previous findings9, statin treatment did not alter concen-
trations of non-lipid measures, such as amino acids and glycolysis-related metabolites, 
suggesting that these metabolites do not reflect pleiotropic statin effects. Our findings 
demonstrate that high-throughput metabolic profiling is emerging as a powerful tool to 
dissect a drug’s metabolic footprint, providing important information that may be used 
to improve current treatments.

Supplemental materials are available online.
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Part I Genomics in CVD

In the first part of this thesis (Chapter 2) we explored the genomics of resting heart rate 
and mortality. Previous studies showed an association between heart rate and life ex-
pectancy or risk, but do not provide sufficient evidence for a (shared) causal relationship. 
We found evidence that genetic variants associated with higher resting heart rate also 
confer a risk for death. Additionally, we found that these variants are associated with 
potential measured (body mass index, systolic and diastolic blood pressure, etc.) and 
unmeasured confounders. We aimed to adjust for this, by allowing genetic variants to 
have pleiotropic effects, removing genetic variants associated with other traits, or using 
estimates derived from healthy participants and 130,795 independent participants. All 
of our analyses consistently suggest that heart rate is linked to mortality, and therefore 
life-expectancy. There are two different possibilities: either the genetic variants exert 
their effect on mortality directly via heart rate as a mediator or, alternatively, the genetic 
variants share underlying biology, resulting in both increased heart rate and increased 
mortality risk. Basic cellular biology underlying heart rate may be involved, as may 
vulnerability to cardiac arrhythmias causing (sudden) death, which could contribute to 
all classifications of death and eventually prove relevant to a plethora of non-cardiac 
diseases and conditions. The fact that predominantly cardiac candidate genes were 
identified at the identified loci and the colocalization of DNase hypersensitivity sites in 
cardiac tissue further supports this theory. However, alternative mechanisms involving 
basic metabolic rate, energetics, and free radicals could result in cumulative general 
damage and affect lifespan. In addition to an interpretation of causation, a number of 
candidate genes have a known function relevant for cardiac conditions. However, we 
have not proven that this mechanism explains the association with heart rate for any 
of these genes. Further experimental validation of each locus is needed to identify the 
underlying biological mechanisms. Additionally, we did not identify differences in a spe-
cific cause of death (e.g. cardiovascular system), which might be expected. Associations 
between resting heart rate and specific causes of death should be investigated further 
as more long-term follow-up data becomes available. In Chapter 3, we studied geneti-
cally determined telomere length (TL) and its link with cardiovascular disease (CVD) and 
cancer. Phenotypic associations between short TL and various CVD (e.g. atherosclerosis, 
myocardial infarction, and heart failure) have been reported in previous studies1,2. We 
provide evidence for a causal link between genetically determined TL and the develop-
ment of hypertension, CVD and cancer using a Mendelian randomization approach. 
However, the exact molecular mechanisms underlying these associations remain to be 
elucidated. For example, in hypertension it may be that TL in vascular endothelial cells 
is associated with ageing processes, such as thickening of the arterial wall, increased 
deposition of collagen and loss of elastin. These changes lead to increased arterial 
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stiffness and consequent hypertension. The results on cancer also suggest causal links 
with TL. Further studies are required to analyze the separate CVD conditions, such as 
specific forms of atherosclerosis or heart failure and specific cancer types. In Chapter 
4, we explore the genomics of coronary artery disease (CAD). In order to improve our 
biological understanding of CAD and facilitate the identification of therapeutic targets, 
and gain an insight into the causal relationships between other cardiovascular pheno-
types, we used a two stage approach, adding new cases and controls to the data from 
the CARDIoGRAMplusC4D consortium. We identified 15 novel genome-wide significant 
loci, adding a substantial number to the 57 previously known loci3. We observed that 
the genetic risk score of CAD predicts a range of cardiovascular phenotypes (e.g. heart 
failure and atrial fibrillation), consistent with clinical practice. Further functional experi-
ments are warranted in order to establish further evidence for the true causal genes and 
mechanisms underlying each association.

Part II Metabolomics in CVD

In the second part of this thesis we investigated the effect of metabolites on left ven-
tricular ejection fraction and infarct size, as well as the effect of metformin treatment on 
metabolites in patients after a myocardial infarction using data from the GIPS-III study4. 
In Chapter 5, we investigated lipoprotein subfractions in the GIPS-III study by applying 
nuclear magnetic resonance (NMR) spectroscopy using the LipoScience platform. In 
subjects with impaired glucose tolerance, metformin administration modestly reduces 
the low density lipoprotein (LDL) particle concentration and concomitantly decreases 
small dense LDL particles and increases small and large high density lipoprotein (HDL) 
particles5. Our study showed that metformin treatment initiated directly after the acute 
phase of MI modestly decreases LDL cholesterol and LDL size. It is known that in CAD pa-
tients, HDL cholesterol and smaller-sized HDL may confer higher left ventricular ejection 
fraction (LVEF)6,7. In the GIPS-III study, metformin did not affect LVEF4 and we therefore 
considered the metformin- and placebo-receiving participants together. We show that 
elevated medium very low density lipoprotein and small HDL particle concentrations 
24 hours post-MI may confer beneficial associations with increased LVEF and decreased 
infarct size. In Chapter 6, we studied the same cohort using a different NMR spectros-
copy platform (Computational Medicine), which includes amino acids. In addition, we 
tried to identify subgroups of patients in whom metformin was effective using meta-
bolic profiling. We found that after 4 months of metformin treatment, alanine levels and 
phospholipids/total lipids ratio in very large HDL differed significantly. Furthermore, we 
found that higher triglyceride levels in HDL measured 24 hours post-MI were associated 
with favorable outcome as inferred from higher LVEF and smaller infarct size 4 months 
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post-MI. We could not identify metabolic profiles associated with treatment benefits of 
metformin. Data from ongoing follow-up will be available in the near future, which will 
allow us to study the effects of metformin treatment and drug metabolite interactions 
on long-term outcome. We should take into account some aspects of the GIPS-III study 
design to place the results of both Chapter 5 and 6 in perspective8. Due to the study 
design, subjects were included shortly after arrival at the hospital, plasma lipid mea-
surements were not carried out in the fasting state and, for logistic reasons, non-fasting 
samples were also obtained during follow-up. It should be stressed that all patients 
received intravenous heparin before undergoing percutaneous coronary interventions. 
Heparin stimulates lipolysis9 and hence acutely reduces plasma triglyceride levels10. 
Association of metabolites with hard clinical end-points could not be assessed because 
only 2% of the participants experienced recurrent major adverse cardiac events, and 
none of the participants died during the 4 months follow-up4. In Chapter 7, we studied 
the effect of statin treatment on metabolomics by using data from the PREVEND-IT 
study. It is well-known that statins reduce low-density lipoprotein cholesterol (LDL-C)11 
but also alter a wide range of lipids and fatty acids (FA)-related metabolites12,13. We found 
that pravastatin treatment for 3 months at a dose of 40 mg once daily lowered LDL-C, 
remnant cholesterol and apolipoprotein B with similar effect magnitudes. Furthermore, 
we observed globally lowered levels of lipid subfractions, with the exception of HDLs 
subfractions, which displayed a more complex response pattern. Metabolic profiling 
is emerging as a powerful tool to dissect a drug’s efficacy profile, providing important 
information that may be used to improve current treatments.

Future perspectives

Goals of the cardiovascular genomics field are to understand biological mechanisms 
and use this knowledge to personalize medicine. Gathering knowledge of molecular 
pathways can lead to improved therapeutics, which can be targeted based on individual 
genotype independently of the phenotype. Numerous CVD loci have been discovered 
in recent years, to which this thesis has contributed for CAD and resting heart rate 
phenotypes. The number of loci will expand rapidly in the future as genome-wide DNA 
sequencing becomes more cost-efficient. This may allow us to detect rare frequency 
variants, for example, which we did not find for CAD and resting heart rate. In the fu-
ture, functional studies will be required to map molecular and cellular pathways with 
greater accuracy, which will provide opportunities for the development of appropriately 
targeted therapies for CVD. Performing functional follow-up of candidate genes using 
technologies as CRIPSPR in model organisms or relevant human cell lines may provide 
us with a way to further unravel the mechanisms of how resting heart rate is regulated. 
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In the future, further studies are needed to study the relationship of resting heart rate 
with mortality in greater depth by identifying the main driver of this association. This 
could be done by using new follow-up data from the UK Biobank and independent 
cohorts, which may be better powered to determine specific causes of death driving 
the association with mortality. Furthermore, this may also help us establish additional 
relationships between genetically determined TL and more specific CVDs.

In parallel to the evolution of genomics, metabolomics is also rapidly emerging as a 
powerful technological platform for understanding mechanisms underlying common 
chronic diseases such as CVD. Metabolomics measure the product upstream genetic, 
transcriptomic, and proteomic variation. In the future, metabolomics and genomics 
should be integrated more closely in order to generate hypotheses by using metabo-
lites underlying a specific genetic variant or gene. The integration of different ‘omics’ 
(genomics, transcriptomics, metabolomics, proteomics, etc.) should be pursued in order 
to more accurately characterise causal relationships, contribute to less biased hypoth-
esis-generating studies to identify pathways of disease, and improve risk prediction by 
identifying disease markers and potential new targets for medication.
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Nederlandse samenvatting

Inleiding

Hart- en vaatziekten vormen samen de belangrijkste doodsoorzaak wereldwijd. 
Veelvoorkomende hart- en vaatziekten zijn coronaire hartziekte, hypertensie, cerebro-
vasculaire ziekten en perifeer vaatlijden. In de afgelopen 50 jaar is er aanzienlijke voor-
uitgang geboekt in de definitie en identificatie van de risicofactoren en behandeling 
van hart- en vaatziekten, waaronder de ontwikkeling van van passende medische en 
interventiebehandelingen, zoals percutane coronaire interventies en het gebruik van 
β-blokkers. Al deze maatregelen hebben geleid tot een daling van de cardiovasculaire 
sterfte. Ondanks deze inspanningen zijn de mechanismen die aan de pathofysiologie 
van hart- en vaatziekten ten grondslag liggen, nog steeds gedeeltelijk begrepen.

Het verkrijgen van nieuwe inzichten in biologische en causale verbanden vergroot 
ons begrip van de pathofysiologie van hart- en vaatziekten en maakt de ontwikkeling 
van nieuwe therapeutische strategieën en risicostratificatie mogelijk. In dit proefschrift 
werden genomics (Deel I) en metabolomics (Deel II) toegepast om biologisch en kli-
nisch inzicht te krijgen in de eigenschappen van hart- en vaatziekten. Hiervoor werden 
drie overkoepelende methodologieën gebruikt: a) Genoombrede associatiestudies 
(‘genome-wide association studies’, GWAS) om nieuwe genetische regio’s en genen 
te identificeren om de pathofysiologie van hart- en vaatziekten beter te begrijpen; b) 
Mendeliaanse randomisatie om potentiële oorzaken van een ziekte te identificeren; 
en c) Metabolomics om de producten van gentranscriptie te bestuderen en nieuwe 
biomarkers te identificeren.

Deel I Genomics van hart- en vaatziekten

Het eerste ontwerp van het menselijke genoom (Human Genome Project) werd vijftien 
jaar geleden geproduceerd, wat leidde tot een beter begrip van de genetische bijdrage 
van gemeenschappelijke varianten aan hart- en vaatziekten. Bij het Human Genome 
Project waren genen geassocieerd met hart- en vaatziekten via Mendeliaanse associatie 
(ook wel monogentische overervering), welke relatief zeldzaam zijn en slechts een klein 
deel van de klinische hart- en vaatziekten vormen. Voorbeelden zijn: familiaire hyper-
cholesterolemie, dilaterende en hypertrofische cardiomyopathie, lange-QT syndroom 
en aorta aneurysma’s. Het merendeel van de hart- en vaatziekten is echter polygeen, 
met veel erfelijke en omgevingsfactoren. Voorafgaand aan de voltooiing van het ont-
werp van het menselijk genoom waren inspanningen om de genetische oorzaken van 
polygene hart- en vaatziekten te identificeren grotendeels mislukt. Door genoom-brede 
associatiestudies, die genetische varianten van het genoom testen voor hun associatie 
met een ziekte of eigenschap, werden honderden loci voor talrijke hart- en vaatziekten 
en eigenschappen ontdekt/geïdentificeerd.
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Het doel van dit proefschrift is het uitbreiden van dit onderzoeksgebied en het creëren 
van nieuwe inzichten in de genomics van het cardiovasculaire systeem. We gebruiken 
GWAS om nieuwe genetische varianten te identificeren en daardoor onze kennis verder 
te ontwikkelen. Verschillende bioinformatische methoden werden toegepast op de 
gevonden genetische varianten om nieuwe biologische mechanismen te vinden die 
een rol spelen in hart- en vaat ziekten. Tevens passen we Mendeliaanse randomisatie 
analyses toe, waarbij gebruik wordt gemaakt van de genetische varianten die zijn ge-
ïdentificeerd door GWAS om het causale effect van risicofactoren op ziekteontwikkeling 
en sterfte te schatten.

In hoofdstuk 2 verdiepten we ons in de genetica van hartslag in rust en de relatie 
met mortaliteit. Eerdere studies hebben een verband laten zien tussen hartslag en le-
vensverwachting, maar bieden onvoldoende bewijs voor een (gedeelde) causale relatie. 
In dit hoofdstuk hebben we bewijzen gevonden dat genetische varianten, die verband 
houden met een hogere rusthartslag, zorgen voor een hoger risico op overlijden. Ver-
der vonden we dat onze geïdentificeerde varianten geassocieerd zijn met potentiele 
gemeten (Body Mass Index, systolische en diastolische bloeddruk, enz.) en ongemeten 
parameters. In deze studie hebben we ernaar gestreefd om hiervoor te corrigeren. 
De resultaten wijzen erop dat de rusthartslag is gekoppeld aan de levensverwachting 
van de mens. In hoofdstuk 3 bestudeerden we de associatie van genetisch bepaalde 
telomeerlengte met cardiovasculaire aandoeningen en kanker. Fenotypische associ-
aties tussen korte telomeerlengte en verschillende cardiovasculaire aandoeningen 
(bijvoorbeeld atherosclerose, een hartinfarct en hartfalen) zijn gerapporteerd in eerdere 
studies. We leveren bewijs voor een oorzakelijk verband tussen genetisch bepaalde 
telomeerlengte en de ontwikkeling van hypertensie, hart- en vaatziekten en kanker met 
behulp van een Mendeliaanse randomisatiebenadering. In hoofdstuk 4 onderzochten 
we de genetica van coronaire hartziekte. Om ons biologisch begrip van coronaire 
hartziekte te vergroten, identificatie van therapeutische doelen te vergemakkelijken en 
inzicht te krijgen in de causale relaties tussen andere cardiovasculaire fenotypes, heb-
ben we nieuwe gevallen en controles toegevoegd aan de gegevens van een bestaand 
consortium (CARDIoGRAMplusC4D). We identificeerden vijftien nieuwe genoomwijde 
significante loci, die een aanzienlijk aantal bij de 57 voorheen bekende loci toevoegden. 
Tevens constateerden we dat de genetische risicoscore van coronaire hartziekte een 
reeks van andere cardiovasculaire fenotypen zoals hartfalen en atriumfibrilleren voor-
spelt, consistent met de klinische praktijk.

Deel II Metabolomics van hart- en vaatziekten

Terwijl genetische varianten essentiële onderdelen van erfelijkheid vormen, zijn ze 
relatief ‘statische’ componenten. Voor chronische ziekten, zoals hart- en vaatziekten, 
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kan een nauwkeuriger onderzoek van het ziekteproces waardevol zijn om biomarkers 
te identificeren en mechanismen en pathofysiologie van hart- en vaatziekten begrijpen. 
Metabolomics, het bestuderen van de producten van gentranscriptie, biedt nieuwe mo-
gelijkheden om nog onbekende biomarkers te vinden. Het biedt ook nieuwe mogelijk-
heden om de biologische mechanismen van ziekte te bestuderen, omdat metabolieten 
de producten van gentranscriptie vertegenwoordigen. Metabolomics is een relatief 
nieuw vakgebied in ‘omics’ wetenschappen, die gebruik maakt van high-throughput 
technologieën, zoals nucleaire magnetische resonantie (NMR) spectroscopie, om tege-
lijkertijd een groot aantal kleine moleculen in verschillende weefsels te kwantificeren. 
Metabolische profilering is succesvol geweest bij het verbeteren van de diagnose en 
voorspelling van cardiovasculaire events en bij het differentiëren van hartfalenpatiën-
ten met gezonde controles. Metabolische profilering kan ons dus potentieel helpen bij 
het identificeren van nieuwe biomarkers.

In deel twee van dit proefschrift bestuderen we de veranderingen die betrokken 
zijn bij metabolieten bij patiënten met een acuut myocardinfarct en de effecten van 
statinetherapie op metaboliet profielen met behulp van NMR spectroscopie. In hoofd-
stuk 5 onderzochten we lipoproteïne subfracties in de GIPS-III studie door toepassing 
van NMR spectroscopie met behulp van het LipoScience platform. Uit onze studie 
bleek dat behandeling met metformine direct na de acute fase van een hartinfarct het 
lage dichtheids lipoproteïne (LDL)-cholesterol en de LDL-grootte verminderde. Het is 
bekend dat bij patiënten met coronaire hartziekte het hoge dichtheids lipoproteïne 
(HDL)-cholesterol en de kleinere HDL deeltjes geassocieerd zijn met een hogere linker 
ventrikel ejectiefractie. In de GIPS-III studie had metformine geen invloed op linker ven-
trikel ejectiefractie en daarom hebben we de deelnemers met metformine en placebo 
samengevoegd in onze analyse. We tonen aan dat verhoogde concentraties van kleinere 
HDL-deeltjes 24 uur na een acuut myocardinfarct een hogere hogere linker ventrikel 
ejectiefractie voorspellen. Verder laten we zien dat verhoogde concentratrie van me-
dium zeer lage dichtheidslipoproteïne deeltjes een gunstige associatie hebben met een 
kleinere infarctgrootte. In hoofdstuk 6 bestudeerden we hetzelfde cohort met behulp 
van een ander NMR spectroscopieplatform (Computational Medicine), waarin ook ami-
nozuren werden gemeten. We vonden dat na vier maanden metforminebehandeling, 
alanine niveaus en de verhouding van fosfolipiden tot totale lipiden in zeer grote HDL 
deeltjes significant verschilden. Verder vonden we dat de HDL triglyceride concentratie 
na een infarct de linker ventrikel ejectiefractie en infarctgrootte voorspelde. Met behulp 
van metabolische profilering konden we geen subgroepen van patiënten te identifice-
ren bij wie metformine een positief effect had op de linker ventrikel ejectiefractie. In 
hoofdstuk 7 hebben we het effect van statinebehandeling op het metabolische profiel 
bestudeerd door gebruik te maken van gegevens uit de PREVEND-IT studie. Het is al-
gemeen bekend dat statines LDL-cholesterol verminderen, maar ook een groot aantal 
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lipiden en vetzuren gerelateerde metabolieten veranderen. We vonden dat behande-
ling met pravastatine, gedurende drie maanden, LDL cholesterol, restant cholesterol 
en apolipoproteïne B met vergelijkbare effectgroottes verlaagden. Verder hebben we 
globaal verlaagde niveaus van lipide subfracties waargenomen, met uitzondering van 
HDL subfracties, die een complexer responspatroon vertoonden.
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Dankwoord

Inleiding

Het dankwoord is een veel gelezen en goed bestudeerd onderdeel van een proefschrift. 
Naarmate de promotie langer duurt, wordt de kans groter dat er mensen worden 
vergeten, wat in de praktijk voor vervelende situaties kan zorgen. Om de kans hiertoe 
aanzienlijk te verkleinen, wordt er in dit proefschrift gebruik gemaakt van een interactief 
dankwoord.

Methode en resultaten

Het interactieve dankwoord is afgebeeld in een flow-diagram (Figuur 1). De lezer dient 
te beginnen met de vraag “Ben je een (co)promotor?” en dient via het volgen van de 
pijlen uit te komen bij de volgende vraag (witte box) of een antwoord (grijze box). Het 
kan voorkomen dat de lezer in meerdere grijze boxen terecht komt en meerdere woor-
den van dank zal ontvangen. Gezien het feit dat een vergelijkbaar flow-diagram tot op 
heden nog maar een keer is afgebeeld1 zijn er nog niet genoeg validatiestudies gedaan 
waardoor er extra tekst noodzakelijk is naast het flow-diagram.

Als allereerste wil ik mijn (co)promotoren Pim, Wiek en Niek bedanken. Pim, hartelijk 
dank voor je vertrouwen, tijd en energie die je in mijn promotie hebt gestoken. Je 
doorzettingsvermogen en inzet tijdens je eigen vakantie (in Friesland op de camping 
met the kids) voor het heart rate stuk kan ik mij nog goed herinneren en waardeer ik 
enorm. Wiek, bedankt voor je kritische blik en vragen tijdens o.a. de presentaties bij de 
experimentele cardiologie. Je was altijd rustig en helder, maar niet minder scherp in je 
observaties. Niek, bedankt voor je tijd, geduld, het delen van je kennis en heldere uitleg. 
Je bent een meester in “even een stukje code bouwen”; jij weet dit in een mum van tijd 
klaar te spelen, terwijl menig ander hier tijden mee bezig is. Je hebt je eigen stelling: 
“Use a computer as a saw; let it do the work” altijd hoog weten te houden.

Beste leden van de beoordelingscommissie, prof. dr. P.I.W. de Bakker, prof. dr. B.H.Ch. 
Stricker en prof. dr. M.P. van den Berg hartelijk dank voor het beoordelen van van mijn 
proefschrift.

Beste collega’s en coauteurs, hartelijk dank voor de inhoudelijke discussies en voor 
het helpen tot stand komen van dit proefschrift. Zonder jullie was dit proefschrift nooit 
geworden wat het nu is. Een speciale dank voor mijn oud-collega Yanick, die samen met 
mij tijdens de analyses midden in de nacht met behulp van alle computers de kamer tot 
meer dan dertig graden op wist te stoken.

Paranimfen, Minke en zusje Hanna, bedankt voor jullie inzet en tijd. Het is een fijne 
gedachte dat, als ik het niet red, jullie mijn verdediging willen overnemen.
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Lieve Hille en Sjoukje, familie en vrienden, dank voor jullie interesse, steun en luiste-
rend oor. Ook als ik er even geen zin meer in had, wisten jullie mij toch te motiveren om 
door te gaan en met name ook de nodige afleiding te creëren.

Lieve Rixte, bedankt voor je onvoorwaardelijke liefde en steun, ik heb zin in de toe-
komst samen.

Conclusie

Zonder de collega’s, coauteurs, vrienden en familie was dit proefschrift nooit tot stand 
gekomen. Iedereen die op welke manier dan ook heeft bijgedragen aan mijn proefschrift 
wil ik via deze weg bedanken.
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