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abStract

Tumors are prime examples of cell growth in unfavorable environments that elicit 
cellular stress. The high metabolic demand and insufficient vascularization of 
tumors cause a deficiency of oxygen and nutrients. Oncogenic mutations map to 
signaling events via mammalian target of rapamycin (mTOR), metabolic path-
ways, and mitochondrial function. These alterations have been linked with cellular 
stresses, in particular endoplasmic reticulum (ER) stress, hypoxia, and oxidative 
stress. Yet tumors survive these challenges and acquire highly energy-demanding 
traits, such as overgrowth and invasiveness. In this review we focus on stresses that 
occur in cancer cells and discuss them in the context of mTOR signaling. Of note, 
many tumor traits require mTOR complex 1 (mTORC1) activity, but mTORC1 
hyperactivation eventually sensitizes cells to apoptosis. Thus, mTORC1 activity 
needs to be balanced in cancer cells. We provide an overview of the mechanisms 
contributing to mTOR regulation by stress and suggest a model wherein stress 
granules function as guardians of mTORC1 signaling, allowing cancer cells to 
escape stress-induced cell death.

Keywords: apoptosis, balance, cancer, cell death, ER stress, hypoxia, hyperactiva-
tion, mammalian target of rapamycin, mTORC1, mTORC2, oxidative stress, 
RNA granules, stress granules, survival

abbreviations

4E-BP1 4E-binding protein 1
5′TOP 5′ terminal oligopyrimidine
AMPK AMP-activated protein kinase
ATF4 activating transcription factor 4
ATF6 activating transcription factor 6
ATG autophagy regulated protein
ATM ataxia telangiectasia mutated
CAD  carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, 

and dihydroorotase
CaMKKbeta calmodulin-dependent protein kinase kinase β
CMA chaperon-mediated autophagy
DYRK3 dual specificity tyrosine-phosphorylation-regulated kinase 3
eIF2α eukaryotic translation initiation factor 2α
eIF4B eukaryotic translation initiation factor 4B
eIF4E eukaryotic translation initiation factor 4E
ER endoplasmic reticulum
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FIP200 FAK family kinase-interacting protein of 200 kDa
FLCN folliculin
FMRP fragile X mental retardation protein
FoxO1/3A forkhead box O1/3A
G3BP Ras-GTPase activating protein SH-3 domain binding protein
GAP GTPase-activating protein
GCN2 general control nonderepressible 2
GLUT4 glucose transporter 4
Grb10 growth factor receptor-bound protein 10
GSK glycogen synthase kinase
HIF hypoxia inducible factor
hnRNP-A1 heterogeneous nuclear ribonucleoprotein A1
HRI hemin-regulated inhibitor
HSF1 heat shock factor protein 1
Hsp70 70 kDa heat shock protein
IR insulin receptor
Ire1 inositol-requiring protein 1
IRES internal ribosomal entry sites
IRS insulin receptor substrate
JNK c-Jun NH(2)-terminal kinase
LARP1 La-related protein 1
LDH lactate dehydrogenase
MAPK mitogen activated protein kinase
mSin1 mammalian stress-activated protein kinase interacting protein 1
mtDNA mitochondrial DNA
mTOR mammalian target of rapamycin
mTORC1 mTOR complex 1
mTORC2 mTOR complex 2
NFL negative feedback loop
NOX NADPH oxidase
Nrf2 nuclear factor erythroid 2-like 2
PABP1 polyadenylate-binding protein 1
PDK1 3-phosphoinositide-dependent kinase-1
PERK protein kinase RNA-like ER kinase
PI3K phosphatidylinositol 3-kinases
PIP2 phosphatidylinositol-3,4-biphosphate
PIP3 phosphatidylinositol-3,4,5-triphosphate
PKR double-stranded RNA activated protein kinase
PPP pentose phosphate pathway
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PTEN phosphatase and tensin homolog
R5P ribose-5-phosphate
raptor regulatory associated protein of mTOR
RACK1 signaling scaffold protein receptor of activated protein kinase C 1
REDD1 regulated in development and DNA damage responses 1
rheb ras-homolog-enriched-in-brain
rictor rapamycin-insensitive companion of mTOR
ROS reactive oxygen species
S6K S6 kinase
SREBP sterol regulatory element-binding protein
TCA cycle tricarboxylic acid cycle
TIA-1 T cell intracellular antigen 1
TIAR TIA-1-related protein
TNFα tumor necrosis factor alpha
TRAF2 TNF receptor-associated factor 2
TRB3 tribbles homolog 3
TSC1 hamartin (tuberous sclerosis 1 protein)
TSC2 tuberin (tuberous sclerosis 2 protein)
ULK1 unc-51-like kinase
uORF upstream open reading frame
UPR unfolded protein response
USP10 ubiquitin-specific protease 10
VEGF vascular endothelial growth factor
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why do cancer cellS profit from mtor activation?
The mTOR signaling network (Fig. 1) is hyperactivated in many tumors (re-
viewed by Yecies et al.1). mTOR kinase is present in 2 multiprotein complexes, 
mTORC1 and mTORC2.2 mTORC1 contains the essential specific scaffold 
protein regulatory associated protein of mTOR (raptor) and functions as a master 
regulator of cell growth and metabolism by favoring anabolic processes in the 
presence of nutrients and energy.3,4 mTORC2 contains the specific proteins rapa-
mycin-insensitive companion of mTOR (rictor) and mammalian stress-activated 
protein kinase interacting protein 1 (mSin1) (reviewed by Shimobayashi et al.2). 
mTORC2 senses nutrients and growth factors and modulates lipid and glucose 
metabolism5 and cytoskeleton reorganization (reviewed by Oh et al.6). The cancer 
drug rapamycin directly binds and inhibits mTORC1, but can also have indirect 
long-term effects on mTORC2.7,8 

Amino acids activate mTORC1 via the rag GTPases,9,10 which function in con-
junction with the guanine nucleotide exchange factor (GEF) ragulator complex11 
and the GTPase activating protein (GAP) folliculin (FLCN)12 to modulate the 
translocation of mTORC1 to the lysosomal membrane in a glutaminolysis-
dependent manner13 (reviewed by Bar-Peled et al.14). At the lysosome, mTORC1 
encounters the small GTPase ras-homolog-enriched-in-brain (rheb), which 
activates mTORC1 in response to growth factors (e.g., insulin).15 Amino acid 
deprivation leads to recruitment of the hamartin (TSC1)–tuberin (TSC2) hetero-
complex (TSC1–TSC2) to the lysosomal membrane in a rag GTPase-dependent 
manner.16 The tumor suppressor TSC1–TSC2 functions as a GAP for the GTPase 
rheb and thereby inhibits mTORC1.17

Acting through insulin receptor substrate (IRS), the insulin receptor (IR) activates 
class I phosphatidylinositol 3-kinases (PI3K), whose subunits are often mutated 
in tumors. PI3K phosphorylates phosphatidylinositol-3,4-biphosphate (PIP2) to 
generate phosphatidylinositol-3,4,5-triphosphate (PIP3). Binding of PIP3 to the 
oncogenic kinase Akt (also termed protein kinase B, PKB) and 3-phosphoinosit-
ide-dependent kinase-1 (PDK1) enables their translocation to the plasma mem-
brane, where PDK1 phosphorylates and activates Akt. Akt acts as an inhibitor of 
the TSC1–TSC2 complex by phosphorylating TSC2; phosphorylation of TSC2 
by Akt leads to dissociation of the TSC1–TSC2 complex from lysosomes18 and 
enables mTORC1 activation. The PI3K antagonist phosphatase and tensin ho-
molog (PTEN) is a tumor suppressor that counteracts growth factor-dependent 
mTORC1 activation by dephosphorylating PIP3 to generate PIP2 (reviewed by 
Laplante et al.19).
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figure 1. mTORC1 and stress. mTORC1 is regulated by amino acids, growth factors (i.e., insulin), 
and energy status (AMP:ATP). Amino acids are sensed by the ragulator complex and the rag GTPases, 
mediating re-localization of mTORC1 to lysosomes where it encounters rheb. Insulin activates the IR, 
which then activates the IRS. Active IRS induces PI3K, which converts PIP2 to PIP3. PIP3 accumu-
lation results in the recruitment of PDK1 and Akt to the plasma membrane where Akt is activated 
by PDK1. Akt phosphorylates and inhibits the TSC1–TSC2 complex, which inhibits rheb. Akt also 
inhibits the FoxO1/3A transcription factors, which positively regulate apoptosis. AMPK is activated 
by a high AMP:ATP ratio and inhibits mTORC1 by activating TSC1–TSC2 as well as by direct phos-
phorylation of the mTORC1 component raptor. Activation of mTORC1 inhibits IRS and Grb10 (not 
shown), resulting in negative feedback regulation of the PI3K–Akt branch. mTORC1 hyperactivation 
can lead to ER stress, which can activate or inhibit the TSC1–TSC2 complex. In addition, ER stress 
induces ATF4 translation, which can induce expression of the negative Akt regulator TRB3. Hypoxia 
also induces ATF4 translation, and activates AMPK. Induction of HIFs by hypoxia (via ATM) induces 
expression of REDD1, which activates the TSC1–TSC2 complex, inhibiting mTORC1. This results 
in a negative feedback loop, as mTORC1 controls REDD1 stability. Oxidative stress inhibits the 
tumor suppressors PTEN, and inhibits or activates TSC1–TSC2. Furthermore, oxidative stress can 
activate ATM and AMPK, both of which inhibit mTORC1. Tumor suppressors are framed in green. 
Stress inputs are shown in red.

mTORC1 responds to cellular energy status via the heterotrimeric AMP-activated 
protein kinase (AMPK). AMPK is activated by 2 mechanisms. On the one hand, 
kinases such as the tumor suppressor kinase LKB1 and calmodulin-dependent 
protein kinase kinase β (CaMKKβ) phosphorylate AMPK in its activation loop. 
Furthermore, when the cellular ATP:AMP ratio is low, AMP directly binds to 
AMPK and allosterically activates it (reviewed by Hardie et al20). AMPK inhibits 
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mTORC1 by phosphorylating raptor21 and by an activating phosphorylation on 
TSC2.22 Furthermore, the ATP-sensitive Tel2–Tti1–Tti2 (TTT)–RUVBL1/2 
complex activates mTORC1 by favoring mTORC1 assembly and its lysosomal 
localization in a rag GTPase-dependent manner.23

Cancer cell growth depends on ATP-demanding anabolic processes including 
protein, lipid, and nucleotide biosynthesis. mTORC1 controls ATP supply by 
inducing mitochondrial biogenesis, the tricarboxylic acid (TCA) cycle, and aero-
bic respiration.24-26 Furthermore, mTORC1 promotes the delivery of substrates to 
the TCA cycle by inducing glucose uptake27 and glutamine catabolism.28 A major 
anabolic function of mTORC1 in cancer is its stimulating role in translation29 
(reviewed by Ma et al.30). mTORC1 phosphorylates and inhibits eukaryotic trans-
lation initiation factor 4E-binding protein 1 (4E-BP1), an inhibitor of 5´cap-
dependent translation. Phosphorylation of 4E-BP1 decreases its binding to the 
eIF4F complex component eukaryotic translation initiation factor 4E (eIF4E), 
which upon release from 4E-BP1 assembles into the eIF4F complex. The eIF4F 
complex mediates the scanning process by which ribosomes reach the start codon. 
Furthermore, mTORC1 enhances the cellular protein biosynthesis capacity by 
activating ribosomal RNA (rRNA) transcription and processing31 (reviewed 
by Iadevaia et  al.32) and the biosynthesis of ribosomal proteins and elongation 
factors; these proteins are often encoded by transcripts that contain 5´ terminal 
oligopyrimidine (5´TOP) tracts,33 whose translation depends on 4E-BP1 inactiva-
tion.26,34 In addition, the raptor interacting protein La-related protein 1 (LARP1) 
binds to the mRNA 5´cap in an mTORC1-dependent manner, which seems to 
particularly affect translation of RNAs containing 5´TOP motifs.35 Furthermore, 
5´TOP regulation by mTOR has been reported to also occur in a 4E-BP1- and 
mTORC1-independent manner,36,37 in particular under hypoxic conditions.37 
S6 kinase (S6K), another mTORC1 substrate, phosphorylates S638 and the 
eIF4F component eukaryotic translation initiation factor 4B (eIF4B),39,40 which 
may contribute to translational control by mTORC1 but not by translational 
regulation of 5´TOP mRNAs.41 In addition, S6K promotes mRNA expression of 
ribosome biogenesis genes, thereby probably increasing overall translation capac-
ity.42 The PI3K–Akt–mTORC1 pathway upregulates the synthesis of lipids via 
the sterol regulatory element-binding protein (SREBP) transcription factors,5,43-46 
which regulate genes involved in lipid and sterol synthesis.47 mTORC1 stimulates 
nucleotide biosynthesis via direct phosphorylation of the trifunctional enzyme 
carbamoyl-phosphate synthetase 2-aspartate transcarbamylase-dihydroorotase 
(CAD), which catalyzes the first 3 steps of de novo pyrimidine synthesis.48,49 In 
addition, mTORC1 promotes the expression of genes encoding enzymes of the 
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oxidative branch of the pentose phosphate pathway (PPP),45 which generates 
ribose-5-phosphate (R5P) and NADPH for biosynthesis. R5P and ATP are needed 
for the synthesis of 5-phosphoribosyl-1-phosphate, which is required for the syn-
thesis of purines and pyrimidines. Hence, cancer cells likely profit from mTORC1 
activation, as this promotes building block biosynthesis and thereby contributes 
to abnormal proliferation. It should, however, be noted that mTORC1 inhibits 
the oncogene Akt via negative feedback loops (NFLs) dependent on IRS50–52 and 
growth factor receptor-bound protein 10 (Grb10)53,54. Akt inhibits apoptosis by 
inhibiting the transcription factor forkhead box O1/3A (FoxO1/3A).55 Further-
more, Mounir et al.56 have shown that Akt directly phosphorylates and inhibits the 
ER stress sensor protein kinase RNA-like ER kinase (PERK), thereby preventing 
its hyperactivation and subsequent cell death. Thus, chronic mTORC1 activation 
via NFLs results in Akt inhibition and thereby facilitates apoptosis (reviewed by 
Apenzeller-Herzog et al.57). Consequently, cancer cells need to balance mTORC1 
activity to keep biosynthetic processes and Akt active at the same time.

mtor regulation by Stresses in cancer cells

The capacity for uncontrolled cellular growth and proliferation brings about 
challenges, such as certain stresses, that a tumor cell has to cope with in order 
to survive. Nutrient and oxygen depletion in conjunction with a hyperactive 
metabolism, mitochondrial dysfunction, and oncogenic mTOR signaling are 
common conditions in cancer cells58–62 and often correlate with cellular stresses. 
We focus here on ER stress, hypoxia, and oxidative stress and their interaction 
with mTOR and cancer cell metabolism (Fig. 1).

mtorc1 under er stress

Numerous studies report an accelerated unfolded protein response (UPR) in can-
cer cells. ER stress results from imbalances between protein synthesis and protein 
folding capacity that lead to accumulation of unfolded proteins in the ER lumen 
(reviewed by Clarke et al.63 and Fels et al.64). Several factors can contribute to the 
phenomenon of ER stress (Fig. 2). When tumors outgrow the vascular system 
they eventually face a shortage in oxygen and nutrients.64,65 Decreased glucose 
supply restricts ATP synthesis, which is required for chaperone activity in the ER 
(reviewed by Braakman et al.66). Thus, decreased ATP levels can result in impaired 
protein folding and ER stress. Glucose is not only used for ATP synthesis but 
is also a major source of carbon molecules for the synthesis of cellular building 
blocks (lipids, nucleotides, and amino acids). Proliferating cells require lipids for 
membrane formation and ER expansion. A lipid shortage, and hence reduced 
membrane synthesis, can induce ER stress67–69 and apoptosis.70,71 These observa-
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tions suggest that glucose limitation is a trigger for ER stress. However, studies 
on cancer metabolism have reported the Warburg effect, namely aerobic glycolysis 
and accumulation of lactate.72,73 The Warburg effect is defined by an enhanced 
glycolytic rate under normoxic conditions. Cells that exhibit the Warburg effect 
consume glucose relatively rapidly and therefore require a sufficient supply of 
glucose.74 These 2 seemingly contradictory views on glucose levels in cancer cells 
may be relevant at different stages of tumor progression. In the initial stages, 
increased levels of glucose transporters75,76 allow the cell to take up as many nu-
trients as the environment allows. Enhanced glucose uptake, in conjunction with 
hyperactivation of the mTOR pathway, is prone to induce ER stress as increased 
protein synthesis can overwhelm the protein folding capacity of the ER.63,77 In 
contrast, at advanced tumor stages the outgrowth from the vascular system results 
in nutrient shortage, which also leads to ER stress as discussed earlier. 

The ER has its own sensors for the detection of unfolded proteins and to restore 
ER homeostasis via the UPR (reviewed by Hetz et al.78). The 3 sensors inositol-
requiring protein 1 (Ire1), activating transcription factor 6 (ATF6), and PERK are 
membrane embedded proteins that synergistically re-establish ER homeostasis. 
For example, they induce chaperone synthesis79,80 to increase protein folding 
capacity, and inhibit translation81,82 to relieve protein overload. In addition, 
autophagy (see below) has emerged as the major mechanism for the clearance of 
misfolded proteins in the ER,83,84 as ER stress suppresses proteasome-mediated 
degradation.85,86 If cells are unable to restore homeostasis persistent ER stress leads 
to apoptosis, which needs to be circumvented by cancer cells.

The regulatory interaction between mTORC1 and ER stress can be understood 
as a bidirectional cross talk (reviewed by Appenzeller-Herzog et  al.57) (Fig. 1). 
Mutations or knock out of the TSC1 and TSC2 genes that lead to mTORC1 hy-
peractivation sensitize cells to ER stress and apoptosis. This depends on mTORC1 
as it can be reversed by raptor inhibition,77,87 further supporting the notion that 
TSC1–TSC2 and mTORC1 jointly modulate ER stress. Conversely, ER stress 
may also modulate the activity of mTORC1 via the TSC1–TSC2 complex. In 
neuronal cells, short-term periods of ER stress result in TSC1–TSC2 inactiva-
tion and subsequent mTORC1 activation, whereas prolonged stress activates the 
TSC1–TSC2 complex.88 Whether this also occurs in cells other than neurons 
remains to be explored. Akt is another important mediator of ER stress-dependent 
mTORC1 regulation. ER stress induces translation of activating transcription fac-
tor 4 (ATF4); this induces apoptosis by transcriptional activation of stress-related 
proteins, including tribbles homolog 3 (TRB3),89 which inhibits Akt. In addition, 
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ER stress inhibits mTORC2 and its substrate Akt in a glycogen synthase kinase 
(GSK) 3-β–dependent manner.90 Furthermore, activation of mTORC1 by ER 
stress inhibits Akt via the mTORC1-dependent NFLs, followed by activation of 
the Ire1–c-Jun NH(2)-terminal kinase (JNK) pathway, which in turn induces 
apoptosis.91 This suggests that cancer cells under chronic ER stress must cope with 
Akt inactivation by multiple mechanisms.89–91 As active mTORC188 contributes 
to Akt inhibition and apoptosis susceptibility,77,87,88,91 cancer cells need to prevent 
mTORC1 hyperactivation to maintain sufficient Akt activity and ensure their 
survival under ER stress.

mtorc1 under hypoxia

The outgrowth of the tumor from the vascular system entails a shortage not only 
in glucose supply but also in oxygen (Fig. 2). This phenomenon is termed “hy-
poxia” and induces a stress response that can be monitored by upregulation of the 
hypoxia inducible factors (HIFs).58 Oxygen shortage restricts the cellular capacity 
for ATP production because the respiratory chain requires aerobic conditions. 
Consequently, pyruvate is not entirely consumed by the TCA cycle but is, at least 
partially, converted into lactate to maintain the cellular redox balance.58

The hypoxia stress response adapts cells to low levels of oxidative respiration. 
Thus, hypoxia reduces energy consumption, activates glycolysis, and improves 
oxygen supply (reviewed by Majmundar et al.92). The HIF transcription factors 
are key to the hypoxia-induced stress response. HIF1α induces gene products 
such as the vascular endothelial growth factors (VEGFs),93 which activate growth 
of the vascular network (angiogenesis)94 to restore oxygen availability. In addition, 
HIFs induce glycolysis and autophagy (see below). Of note, in cancer cells HIF 
upregulation often occurs without hypoxic conditions and thereby contributes to 
the Warburg effect (see below). In this case, HIFs can be induced by oncogenic 
signaling via mTORC195,96 and promote cell growth, proliferation, and survival. 
In addition to the HIFs, histone modifications have been reported to contribute 
to HIF-independent transcriptional regulation under hypoxia,97 but the underly-
ing mechanisms and their potential interaction with mTOR signaling remain to 
be explored.
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figure 2. Stresses in tumors. Hyperactive metabolic signaling (e.g., induced by oncogenes) can result 
in increased synthesis of proteins, RNA, DNA, and membranes. Lipid synthesis is required for ER 
homeostasis, whereas hyperactive protein synthesis can induce ER stress. Tumors eventually outgrow 
the vascular system, leading to a shortage in glucose, oxygen, and building blocks (amino acids, nucleo-
tides, lipids). Glucose is required for ATP synthesis and is a carbon source for building block synthesis. 
Lack of ATP and building blocks inhibits lipid biosynthesis and chaperone activity. Therefore, ATP 
depletion enhances ER stress. Oxygen is required for ATP synthesis, and oxygen depletion results in 
hypoxia. ROS induce oxidative stress and originate from dysfunctions in mitochondria, for example 
triggered by oncogenic signaling and mtDNA damage, respiratory chain imbalances, and lipid and 
protein biosynthesis. ER stress, hypoxia, and oxidative stress induce stress responses to restore cellular 
homeostasis, and eventually trigger apoptosis. Cancer cells have protective mechanisms to prevent the 
induction of apoptosis by chronic stresses. Examples of such mechanisms are metabolic transforma-
tion (the Warburg effect), glucose uptake, chaperone and antioxidant protein synthesis, autophagy, 
angiogenesis, and stress granule formation.

Hypoxia inactivates mTORC1 by different mechanisms (Fig. 1). First, hypoxia 
increases the AMP:ATP ratio, which activates AMPK.98,99 Second, hypoxia ac-
tivates the DNA damage response protein ataxia telangiectasia mutated (ATM) 
in the cytosol in a DNA damage-independent manner.100 ATM phosphorylates 
HIF1α, resulting in induction of regulated in development and DNA damage 
responses 1 (REDD1).100 REDD1 and mTORC1 are connected via a NFL: 
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REDD1 inhibits mTORC1 via TSC1–TSC2 activation,101–103 whereas mTORC1 
is necessary to stabilize the REDD1 protein.104,105 Furthermore, mTORC1 activity 
is also required for HIF1α expression.95,106 Thus, hypoxic cells require mTORC1 
to re-establish homeostasis through the HIF1α- and REDD1-dependent stress 
response. On the other hand, mTORC1 needs to be restricted, because otherwise 
the mTORC1-dependent NFLs inhibit Akt, leading to apoptosis sensitization. 
This is particularly relevant under hypoxia as Akt may be further inhibited by 
ATF4 induction.107 Thus, hypoxia inhibitory and stimulatory inputs contribute 
to net mTORC1 activity.

mtorc1 under oxidative stress

A third challenge that is commonly encountered in cancer cells is oxidative stress 
(Fig. 2). Oxidative stress is induced by the accumulation of reactive oxygen spe-
cies (ROS). To comply with their high proliferation rate, cancer cells exhibit an 
accelerated metabolism which entails an increased activity of the respiratory chain 
and mitochondrial biogenesis.108 This not only increases ATP production but may 
also increase cellular ROS108 as a result of temporary imbalances between reduc-
tion and oxidation at the level of Complexes I and III of the respiratory chain.109 
Also, dysfunction of mitochondria in cancer cells110 may contribute to increased 
ROS levels. Mutations in cancer cells tend to accumulate in mitochondrial DNA 
(mtDNA)111,112 and are enriched in genes coding for subunits of Complexes 
I, III, and IV of the electron transport chain,113 which may eventually lead to 
ROS release. This also occurs during therapeutic intervention, as chemotherapies 
preferentially induce mutations in mtDNA, correlating with increased ROS 
formation.114,115 Of note, ROS formation in cancer cells has been often linked 
with an induction of oncogenic signaling,116 for example of the mitogen activated 
protein kinase (MAPK) and PTEN/Akt pathways.117–120 For example, H-Ras acti-
vates the ROS-producing NADPH oxidase (NOX)121 enzymes and suppresses the 
antioxidant molecule Sestrin 1.122 Akt increases the activity of several respiratory 
complexes in a 4E-BP1-dependent manner, 120 thus increasing the potential for 
ROS formation, but the underlying mechanism remains elusive. Hence, multiple 
processes contribute to ROS formation in cancer cells.

How do cancer cells cope with these increased ROS levels? The response to oxida-
tive stress is partially induced by the ROS themselves. ROS can oxidize cysteines, 
leading to disulfide bond formation in proteins and thereby altering their activity 
(reviewed by Groitl et al.123). Through this mechanism, ROS activate chaperones 
to refold damaged proteins. One prominent example is the 2-Cys peroxiredoxin 
PrxII, whose chaperone activity is induced by cysteine oxidation under oxidative 
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stress.124 In addition, oxidative stress induces the key stress transcription factor 
nuclear factor erythroid 2-like 2 (Nrf2), which controls the expression of several 
hundred genes including chaperones, antioxidant enzymes, or proteins involved 
in the inflammatory and immune response (reviewed by Sosa et al.108). For ex-
ample, cancer cells show upregulation of the antioxidative proteins glutathione, 
superoxide dismutase, catalase, and thioredoxin (reviewed by Watson et  al.125), 
at least in part as a result of Nrf2-induced oncogenic signaling (reviewed by 
DeNicola et al.126).

Early evidence for the regulation of mTORC1 complex by ROS came from 
UV irradiation experiments. UV radiation activates mTORC1 during the first 
7  hours, with a subsequent decrease over time,127–129 and mTORC1 activation 
can be prevented by hydrogen peroxide scavengers.129 Additionally, chemical 
treatments with hydrogen peroxide or sodium arsenite130 affect mTORC1 in a 
dosage- and time-dependent manner. Generally speaking, short treatments and 
low concentrations seem to induce mTORC1, whereas prolonged treatments 
and high concentrations diminish or abolish mTORC1 activity.131–134 It should 
be noted, however, that the dosage- and time-dependent effects of ROS on 
mTORC1 are highly context- and cell type-dependent. The tumor suppressor 
PTEN135–137 is redox sensitive and directly inactivated by cysteine oxidation; in 
addition, TSC1–TSC2 has been suggested to be directly oxidized by ROS138 (Fig. 
1). Thus, in cancer cells ROS possibly contribute to chronic TSC1–TSC2 and 
PTEN inactivation and mTORC1-dependent metabolic induction. In contrast, 
Zhang et al.132 reported recently that mTORC1 can also be inactivated by ROS, 
and that this depends on peroxisomal localization of TSC2. Furthermore, ROS 
activates cytoplasmic ATM139,140 and AMPK, which both inhibit mTORC1 (re-
viewed by Hardie et al.99). Thus, ROS have activating and inhibitory effects on 
mTORC1, whose net regulation (i.e., activation or inhibition) depends on the 
cellular context, persistence, and strength of the ROS stress.

regulation of mtorc2 by stresses

Relatively little is known about the response of mTORC2 to stress, therefore 
in this review we focus mostly on mTORC1. It should be noted, however, that 
increasing evidence additionally suggests mTORC2 as an important component 
of stress signaling. There are activating and inhibiting inputs on the mTORC2 
network during different stresses. Examples are the inhibition of mTORC2 by 
ER stress90 and oxidative stress,141,142 and the activation of mTORC2 during hy-
poxia.143 ER stress results in GSK3β-dependent phosphorylation of rictor, which 
decreases the affinity of mTORC2 for its substrates,90 whereas oxidative stress 
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leads to mTORC2 disruption and inactivation.141,142 The mechanism by which 
mTORC2 is activated during hypoxia is not understood. mTORC2 activation 
during hypoxia is needed for the hypoxia stress response as mTORC2 induces 
transcription of HIF1α and HIF2α,106 and positively modulates hypoxia-induced 
proliferation.143

interconnection of er stress, hypoxia, and oxidative stress

Oxidative stress, hypoxia, and ER stress are closely intertwined and cannot be 
viewed separately. For example, lack of oxygen inhibits ATP production by the 
respiratory chain,73 which at least in the short term mitigates chaperone-mediated 
protein folding and thus induces ER stress. In addition, oxygen is the preferred ter-
minal electron acceptor for disulphide bond formation (oxidative protein folding) 
within the ER.144,145 Thus, hypoxia is able to induce ER stress.146,147 Conversely, 
severe ER stress induces oxidative protein folding148 that leads to ROS forma-
tion, which in a vicious cycle can lead to protein damage and reinforce the ER 
stress.149 Furthermore, glucose starvation150,151 and hypoxia152,153 can induce ROS 
formation in tumor cells, but the underlying mechanisms are poorly understood. 
In conclusion, cancer cell traits are prone to induce stress at different levels; as 
oxidative stress, hypoxia, and ER stress can induce each other they often occur in 
conjunction, and cancer cells thus have to cope with chronic stress conditions that 
are prone to induce apoptosis.154–159 However, cancer cells acquire properties that 
enable them to escape programmed cell death131,160,161 (see below).

regulation of glucoSe and protein homeoStaSiS by mtorc1 
during StreSS
Hyperactive biosynthesis in proliferating cells creates a high demand for ATP and 
building blocks, but oxidative phosphorylation is also a source of cellular ROS, as 
discussed earlier. How do cancer cells cope with this challenge? During glycolysis 
one glucose molecule is converted into 2 ATP molecules and pyruvate. Under 
normoxic conditions, pyruvate is introduced into the TCA cycle, which theoreti-
cally generates 36 ATP molecules via aerobic respiration. However, under hypoxic 
conditions pyruvate is converted by lactate dehydrogenase (LDH) to lactate in the 
cytosol, without further generation of ATP. Cancer cells “ferment” glucose into 
lactate even under normoxic conditions (aerobic glycolysis).72 Although the ATP 
yield is low, aerobic conversion of glucose to lactate is fast, generates less ROS, 
and delivers carbon backbones for building block synthesis (reviewed by Hsu 
et al.162). This metabolic transformation, which was discovered by Otto Warburg 
nearly 100 years ago, is named the “Warburg effect.”72 Another shift of glucose 
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metabolism in cancer cells is induction of the PPP (reviewed by Sosa et al.108). 
Diverting carbon from glycolysis into the PPP supplies increases levels of (1) R5P 
for nucleotide synthesis, which is needed for DNA replication and transcription 
(reviewed by DeBerardinis et al.163); and (2) NADPH, which supplies electrons 
for biosynthesis and eliminates ROS, thereby providing protection from oxidative 
stress. Diversion of glucose into the PPP and thus into lactate is modulated by 
several mTOR network components that positively regulate glucose uptake and 
glycolysis: Akt promotes glucose uptake, for example, by stimulating translocation 
of glucose transporter 4 (GLUT4)164,165 to the plasma membrane. Furthermore, 
AMPK inactivation is tumorigenic as AMPK inhibits the Warburg effect in a 
HIF1α-dependent manner.166 This may in fact be mediated by mTORC1, which 
is activated upon AMPK inhibition. mTORC1 increases HIF1α levels,95,96 which 
in turn can activate the expression of almost all glycolytic enzymes.167

mTORC1 and stresses also impinge on autophagy, a cell autonomous process 
that maintains protein homeostasis (Fig. 3). During autophagy, proteins and cell 
organelles are targeted to the lysosomes for degradation. In cancer cells, autophagy 
has an ambiguous function. On the one hand, autophagy has been suggested to 
prevent tumorigenesis, but on the other hand autophagy seems to promote stress 
survival in established tumors (reviewed by Yang et al.168). There are 3 different 
types of autophagy (reviewed in Boya et  al.169 and Marino et  al.170): macroau-
tophagy, microautophagy, and chaperon-mediated autophagy (CMA). Macroau-
tophagy, hereafter called autophagy, is divided into tightly regulated steps. First, 
a phagophore emulates and elongates to surround a cytoplasmic fraction. The 
resulting autophagosome docks and fuses with hydrolase-containing lysosomes, 
enabling digestion of proteins and organelles. The resulting autolysosome consists 
of the inner membrane of the previous autophagosome and enables digestion of 
the proteins and organelles within the surrounded cytoplasmic fraction. The build-
ing blocks that are released by this process can be reused by the cell. Autophagy 
initiation (emulation and elongation of the phagophore) is positively controlled 
by the unc-51–like kinase 1 (ULK1) complex, comprising the proteins ULK1, 
autophagy regulated proteins 13 and 110 (ATG13, ATG110), and FAK family 
kinase-interacting protein of 200  kDa (FIP200).171,172 mTORC1 and AMPK 
phosphorylate ULK1 on different sites and thereby respectively inhibit or activate 
autophagy.173 mTORC1 phosphorylates ULK1173 and ATG13,172 reducing ULK1 
complex stability and ULK1 kinase activity.174,175 In contrast, AMPK binds to 
the mTORC1-bound ULK1 complex and phosphorylates raptor176 and ULK1173 
to activate autophagy. Another modulator of autophagy initiation is the Bcl-2/
Beclin 1 complex, which inhibits phagophore maturation.177 ER stress, hypoxia, 
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and oxidative stress affect autophagy via mTORC1, AMPK, and Bcl-2/Beclin 
1. The ER stress-induced UPR results in Ire1 and JNK activation. JNK phos-
phorylates Bcl-2,178,179 disrupting its binding to Beclin 1 and inducing autophagy. 
ER stress also induces autophagy when inhibiting the PI3K–Akt pathway180 and 
mTORC1.181 Both ER stress and hypoxia induce ATF4, which directly upregulates 
ULK1 transcription and ULK1 complex activity.182,183 In addition, ATF4 induces 
TRB3 expression89,184 resulting in inhibition of Akt, which may potentially induce 
autophagy via mTORC1 inhibition. Furthermore, hypoxia induces autophagy by 
activating AMPK185 and BNIP3/BNIP3L,186–188 negative modulators of the Bcl-2/
Beclin 1 complex. Little is known about autophagy regulation by oxidative stress. 
Oxidative stress induces AMPK, correlating with induction of autophagy.189 In 
addition, oxidative stress also activates CMA,190 a process in which proteins are 
unfolded and directly trans-localized through the lysosomal membrane. 

In cancer cells, autophagy is necessary to maintain the building block supply, es-
pecially under starvation conditions. In addition, autophagy is able to counteract 
stresses like ER stress and oxidative stress by degrading damaged proteins and 
cell organelles. In keeping with this, inactivation of the negative AMPK regu-
lator FLCN leads to stress resistance via autophagy induction.191 Furthermore, 
autophagy inhibition correlates with induction of apoptosis during cancer-related 
hypoxia and thus seems to have an important function in tumor cell survival un-
der endogenous stress.192 In addition, autophagy induction often correlates with 
cancer resistance to chemotherapeutics.193,194 In contrast, prolonged autophagy 
induction has been suggested to result in cell death (reviewed by Loos et  al.195 
and Marino et al.170). Given that mTORC1 is a potent inhibitor of autophagy, 
it seems paradoxical that both mTORC1 and autophagy are required for cancer 
cell survival. This suggests that cancer cells need to maintain a delicate balance 
between mTORC1 activity and autophagy in order to benefit from both.
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figure 3. Autophagy regulation by stress. The ULK1 complex (ULK1, ATG13, ATG101, and 
FIP200) and the Bcl-2–Beclin 1 complex are major autophagy regulators. Autophagy can be divided 
into 3 different steps: (1) phagophore formation and enlargement (autophagosome); (2) lysosomal 
docking and fusion with the autophagosome (autolysosome); (3) degradation of proteins and organ-
elles in the autolysosome. The ULK1 complex is needed for autophagy initiation, whereas assemble 
of the Bcl-2–Beclin 1 complex prevents Beclin 1 from triggering autophagy. The ULK1 complex is 
inhibited by mTORC1 and activated by AMPK. AMPK also directly inhibits mTORC1. ER stress 
induces ATF4, which controls transcription of stress factors such as TRB3, which is a negative effector 
upstream of mTORC1 (Akt inhibition). In addition, ATF4 has a positive effect on the ULK1 com-
plex. ER stress activates Ire1 kinase, which induces JNK1, leading to disassembly of the Bcl-2–Beclin 
1 complex. Hypoxia also induces ATF4 expression and activates AMPK. In addition, hypoxia induces 
autophagy by BNIP3/BNIP3L-dependent disassembly of the Bcl-2–Beclin 1 complex. Oxidative stress 
induces autophagy in an AMPK-dependent manner.

balancing mtorc1 under StreSS: StreSS granuleS aS guardianS 
of cancer cellS?
mTORC1 activity contributes to many aspects of cancer cell survival. However, 
chronic mTORC1 hyperactivation eventually inhibits autophagy and induces cell 
death, and therefore needs to be counterbalanced. Several inputs into the mTOR 
network, mainly those impinging on TSC1–TSC2, Akt, and AMPK, restrict 
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mTORC1 activity under stress and thereby not only limit cellular growth, but 
also potentially enable autophagy and suppress cell death. Stress granules (SGs) 
represent an additional buffer system in stressed cells. SGs form under a variety 
of stresses including hypoxia, ER, oxidative, heat, nutrient, osmotic, and cold 
stress.196–198 Protein synthesis is inhibited during stress, and polysome disassembly 
can be induced by many different stress sensors. The most prominent examples are 
eukaryotic translation initiation factor 2α (eIF2α) kinases (reviewed by Donnelly 
et  al.199), which phosphorylate eIF2α at serine 51. eIF2α is a subunit of eIF2, 
which together with t-RNAfMet and GTP forms a ternary complex that is required 
for formation of the 48S translation preinitiation complex. Phosphorylation of 
eIF2α prevents ternary complex formation, leading to polysome disassembly 
and producing a non-canonical 48S* complex that is unable to recruit the 60S 
ribosomal subunit. In mammals, 4 eIF2α kinases have been described: hemin-
regulated inhibitor (HRI), double-stranded RNA activated protein kinase (PKR), 
general control nonderepressible 2 (GCN2), and PERK. These kinases allow the 
cell to respond to a broad spectrum of stresses including oxidative stress,200 ER 
stress,201 and amino acid starvation.202 Polysome disassembly changes the fate of 
many proteins involved in mRNA processing, leading to accumulation of mRNAs 
that disassemble from polysomes. The morphological consequence of this process 
is the formation of cytoplasmic SGs, which are protein–RNA assemblies.203 SGs 
have an antiapoptotic function under stress,131,204 and their formation after che-
motherapy or radiotherapy in cancer correlates with therapy resistance.205,206 Thus, 
SGs could help the tumor to balance stress signaling and prevent apoptosis under 
stresses elicited by the tumor environment or therapeutic interventions.

The first phases in SG aggregation or nucleation depend on SG nucleating proteins, 
which bind to the disrupted 48S*-mRNA complex. Overexpression of nucleators 
is often sufficient to induce SGs in vitro.207,208 Thus, overexpression of nucleators 
in vivo has the potential to promote SG formation in cancer cells. Examples of 
nucleators are Ras-GTPase activating protein SH-3 domain binding protein 1 and 
2 (G3BP),207,209 T cell intracellular antigen (TIA-1) and TIA-1–related protein 
(TIAR),210,211 polyadenylate-binding protein 1 (PABP1),208 and fragile X mental 
retardation protein (FMRP).212 Protein levels of SG nucleation factors are induced 
in several tumor entities.213–215 For example, French et  al.213 analyzed 22 breast 
cancer samples, all of which showed elevated G3BP1. After the nucleation and 
aggregation phases, further proteins that have intrinsic mRNA binding capac-
ity or that bind to SG proteins by piggy back recruitment, are assembled into 
SGs.216 Upon stress relief, SGs dissolve and SG proteins relocate to their previous 
compartments.197,208,217 SGs are thought of as sites of RNA storage and triage 
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during stress.218 In addition, there is increasing evidence that SGs interfere with 
stress signaling pathways (reviewed by Kedersha et  al.216). Proteins involved in 
apoptosis can be recruited to SGs, which thereby promote survival. For example, 
SG recruitment of signaling scaffold protein receptor of activated protein kinase C 
1 (RACK1) prevents induction of apoptosis by the genotoxic stress-activated p38 
and JNK–MAPK pathways204, and ubiquitin-specific protease 10 (USP10) has 
been reported to exert an antioxidant apoptosis-preventing activity that depends 
on recruitment of USP10 to SGs.219 Recruitment of TNF receptor-associated 
factor 2 (TRAF2) to SGs inhibits proinflammatory tumor necrosis factor α 
(TNFα)–NF-κB signaling.220

SG assembly in both yeast and human cells can inhibit TORC1/mTORC1 sig-
naling (Fig. 4) by sequestering mTOR complex components or the mTORC1 
upstream modulator dual specificity tyrosine-phosphorylation-regulated kinase 
3 (DYRK3).131,208,217 In cancer cells, DYRK3 integrates mTORC1 activity with 
SG formation via a dual mechanism.217 During prolonged stress, DYRK3 is 
sequestered into SGs where it prevents SG dissolution and mTORC1 release. 
After stress release, DYRK3 phosphorylates and inhibits the mTORC1-inhibitor 
PRAS40,221–227 thus contributing to mTORC1 reactivation. Furthermore, the 
adaptor protein astrin disassembles mTORC1 by sequestering raptor into SGs.131 
Through this recruitment SGs restrict mTORC1 assembly and prevent its hy-
peractivation and mTORC1-dependent oxidative stress-induced apoptosis. Thus, 
inhibition of astrin induces mTORC1-triggered apoptosis in cancer cells.131 Like 
other SG proteins, astrin is frequently overexpressed in tumors, and has been cor-
related with an unfavorable prognosis in human breast cancers and non-small cell 
lung (NSCL) cancers.228, 229 This suggests that high astrin levels render cancer cells 
apoptosis resistant by counteracting mTORC1 hyperactivation. Also in yeast, SG 
induction by heat shock or PABP1 overexpression leads to TOR inhibition by 
sequestration into SGs, and TORC1 reactivation after stress correlates with its 
release from SGs.208 Thus, SG formation has a conserved inhibitory effect on 
TORC1/mTORC1 in eukaryotic cells. However, mTORC1 activity is also needed 
for SG formation in mammalian cells;206 for example, formation of 5´cap–eIF4F 
complexes requires phosphorylation of 4EBP1 by mTORC1.230 Thus, SGs and 
mTORC1 are connected via a NFL in which mTORC1 positively regulates SGs, 
whereas SGs inhibit mTORC1 (Fig. 4). 
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figure 4. Stress granules and mTORC1. Under non-stressed conditions DYRK3 phosphorylates and 
inactivates the mTORC1 inhibitor PRAS40. Active mTORC1 inhibits 4E-BP1, allowing for eIF4F–
5´cap–mRNA complex formation, ribosomal binding, and translation initiation. Stressed conditions 
induce translational arrest, polysome disassembly, and SG formation. mTORC1 is disassembled, and 
the mTORC1 components mTOR and raptor are recruited to SGs. Kinase-inactive DYRK3 local-
izes through its N-terminus to SGs, where it promotes SG stability and prevents mTOR release. 
Astrin binds to raptor and recruits it to SGs, thereby mediating SG-dependent mTORC1 disassembly. 
mTORC1 inactivation results in induction of autophagy, which is required for SG clearance after 
stress release and for SG formation. However, inhibition of 4E-BP1 by mTORC1 is required for SG 
formation, as 5´cap–eIF4F complexes and binding of the 40S ribosomal subunit are required for SG 
formation. Thus, SGs restrict mTORC1 activity, but some mTORC1 activity is needed for SG as-
sembly (indicated by dashed arrows). Black arrows represent active connections, gray arrows represent 
inactive connections in stressed versus non-stressed cells.

mTORC1 and SGs have both been linked to the regulation of translation and 
autophagy and it is interesting to consider how they may interact to control 
protein synthesis and autophagy under stress. During stress, 5´cap-dependent 
translation is reduced, and this is linked to mTORC1 inhibition. For example, 
the SG components TIA-1 and TIAR inhibit translation of 5´TOP mRNAs by 
promoting their assembly into SGs when mTORC1 is inhibited.231 However, in a 
background of mTORC1 inhibition and reduced overall translation levels, stress 
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response proteins still need to be expressed232 although active translation requires 
mTORC1 activity. Thus, there is a seemingly contradictory requirement for 
mTORC1 activation/inhibition during stress. SGs have emerged as excellent can-
didates for balancing mTORC1 activity and the dependent translational events. 
Both mTORC1 and SGs control translation of stress related factors,29,34,233–235 and 
SGs have been suggested as sites of stress-specific translation initiation.236 Transla-
tion under stress depends on upstream open reading frames (uORFs) and internal 
ribosomal entry sites (IRES).218,237–239 mTORC1 induces both IRES-mediated240,241 
and uORF-dependent translation via eIF4GI,242 a member of the eIF4F complex. 
For example, the stress-related proteins heat shock factor protein 1 (HSF1), het-
erogeneous nuclear ribonucleoprotein A1 (hnRNP-A1), and 70 kDa heat shock 
protein (Hsp70) require mTORC1 for their expression under oxidative stress.131 
hnRNP-A1 is required for IRES-mediated translation under stress in tumor 
cells,243,244 whereas HSF1 mediates transcriptional events under stress, including 
Hsp70 expression.233 Additionally, ATF4 protein expression under stress is regu-
lated by mTORC1.131 The ATF4 mRNA contains 2 uORFs, leading to increased 
ATF4 translation in response to stress-related eIF2α phosphorylation.239 ATF4 
induces autophagy under ER stress and hypoxia (see above). Of note, autophagy 
is required for SG clearance in yeast and mammalian cells,245,246 and inhibition of 
autophagy results in mistargeting of proteins to SGs.246 Thus, it seems that, while 
mTORC1 must be active to enable expression of stress factors, mTORC1 activity 
needs to be restricted to enable autophagy. mTORC1 and autophagy-mediated 
SG turnover may therefore represent a mechanism of feedback regulation that 
balances mTORC1 activity under stress.

therapeutic implicationS: mtorc1 in StreSS aS a target in 
cancer?
mTORC1 signaling is mostly perceived as a prosurvival and antiapoptotic pro-
cess. However, there is ample evidence that dysregulated hyperactive signaling via 
mTORC1, for example in response to TSC1–TSC2 inactivation, is prone to elicit 
cell death. How do cancer cells survive the inactivation of major negative regulators 
(i.e., tumor suppressors) of mTORC1 signaling in conjunction with a hyperactive 
metabolism and high stress levels? Persistent stresses eventually trigger apoptosis 
in healthy cells. However, short-term stresses and their consequences need to be 
buffered to prevent the induction of cell death by transient imbalances in cellular 
signaling, metabolism, and redox homeostasis. Therefore, signaling, transcription, 
translation, and metabolic networks are stabilized by multiple feedback loops 
and buffer systems. SGs represent one such buffer system. It is likely that cancer 
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cells hijack this system by overexpressing SG components. This may render the 
tumor cells resistant to hyperactive signaling induced by oncogenic mutations, 
hyperactive metabolism, and stresses, as well as therapeutic interventions such as 
chemotherapy (genotoxic stress) or irradiation. Signaling and metabolic networks 
that are hyperactive in cancer, such as mTORC1 signaling or glycolysis, often 
represent vital cellular functions that cannot be therapeutically targeted without 
major side effects on healthy tissues. SGs, in contrast, are likely to be more es-
sential for cancer cells than for healthy tissues to overcome a stressed cellular 
environment. Thus, SG modulation represents a promising orthogonal approach 
to complement existing therapies involving targeted drugs or chemotherapeutics.
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