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Chapter 2

Concepts of spintronics

Abstract

This chapter introduces the concepts required to understand the electrical spin injection,
transport, and detection in nonmagnetic materials. First, a brief introduction is given to
the basic properties of ferromagnetic and non-magnetic materials that are necessary to
understand the physics of electrical spin transport. This is followed by introducing the
two channel model of spin injection across a ferromagnet/nonmagnet interface followed
by derivation of an expression for the spin injection polarization. Thereafter a general
solution to the one dimensional Bloch diffusion equation is given using which the expres-
sions for spin valve and Hanle spin precession signals in the four-terminal nonlocal and
two-terminal geometries are given. A brief account on the various definitions of spin
polarizations used in literature is also given for a clear understanding. In the end, different
kinds of spin relaxation mechanisms are discussed.

2.1 Elementary concepts of spin transport

In standard spin transport formalism, one makes an assumption that up-spin and
down-spin electrons diffuse independently with a weak scattering interactions be-
tween both types of spins. The transport of two spin types can be treated separately
[1] with different diffusion constants D↑(↓), conductivities σ↑(↓), and density of states
(DoS) g↑(↓). For a conductor having an electrical current flow due to an electrostatic
potential, one can define the following characteristics:

1. Chemical potential: Spin accumulation or spin chemical potential (µs) is the
difference between the chemical potentials of the up-spin (µ↑) and the down-
spin (µ↓), and the net charge chemical potential (µ) is the average of spin
dependent electrochemical potentials. All these quantities are related as,

µ = (µ↑ + µ↓)/2,

µs = (µ↑ − µ↓)/2,
µ↑(↓) = µ+ (−)µs.

(2.1)

2. Magnetization: Magnetization (M ) is defined by the difference between the
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number of up-spin (n↑) and down-spin (n↓) electrons, given by

M = µB(n↑ − n↓), (2.2)

assuming each electron has a magnetic moment of one Bohr magneton, µB .

3. Conductivity: The conductivity of each spin channel, σ↑(↓), is related to the den-
sity of states g↑(↓) at the Fermi energy Ef, g↑(↓)(Ef), and the diffusion coefficient
D↑(↓) via the Einstein relation,

σ↑(↓) = g↑(↓)(Ef)e
2D↑(↓) (2.3)

The diffusivity of each spin channel, D↑(↓), is related to the spin dependent
Fermi velocity vF↑(↓) and the mean free path length lmfp↑(↓), given by D↑(↓) =

(vF↑(↓)lmfp↑(↓))/3 where the dimensionality of a three dimensional system is
given by the factor 1/3.

4. Current: The electrical current for two spins j↑(↓) is driven by the gradient of
the electric potential OV and the gradient of the carrier density Oδn↑(↓),

j↑(↓) = −σ↑(↓)OV + eD↑(↓)Oδn↑(↓) (2.4)

with a deviation in the carrier density from equilibrium δn↑(↓) = g↑(↓)δµ, where
δµ is a shift in the chemical potential of charge carriers from its equilibrium
value.

From the above equations, the individual spin current densities can be obtained
as

j↑(↓) =
σ↑(↓)

e
Oµ↑(↓) (2.5)

where µ↑(↓) = δµ− eV is the electrochemical potential of the up-spin, ↑(down-
spin, ↓) subbands.

According to Ohm’s law, a charge current flow is driven by an electric field, E
and is given by j = σE = −σOV .

5. Polarization: A charge current density (j) can be written as a sum of up-spin
current density (j↑) and down-spin current density (j↓), the spin current density
(js), and the current spin polarization Pj are defined as:

Pj =
js

j
=
j↑ − j↓
j↑ + j↓

=
σsOµ+ σOµs

σOµ+ σsOµs
(2.6)

where the charge conductance σ, spin conductance σs, and the conductance spin
polarization Pσ are given by,

Pσ =
σs

σ
=
σ↑ − σ↓
σ↑ + σ↓

(2.7)
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For different DoS at the Fermi level, one can define the total charge DoS (g),
spin DoS (gs), and the density-of-states spin polarization (Pg) as,

Pg =
gs

g
=
g↑ − g↓
g↑ + g↓

(2.8)

Spin transport is characterized by the spin currents due to up-spin (j↑) and
down-spin (j↓), and its spin polarization is commonly expressed in terms of
current spin polarization Pj , and conductivity spin polarization Pσ . Therefore,
the charge and spin current densities (Eq. 2.6) can be written in terms of spin
polarizations as,

j = Pσjs + σ(1− P 2
σ )Oµ,

js = Pσj + σ(1− P 2
σ )Oµs,

Pj = Pσ +
σ(1− P 2

σ )

j
Oµs

(2.9)

6. Drift-Diffusion equation: The transport of spins is described by the spin drift-
diffusion equation [2],

Ds 52 µs −
µs

τ
+ ωL × µs =

dµs

dt
= 0 (2.10)

where µs = µsxx̂ + µsyŷ + µszẑ represents the spin accumulation in three di-
mensions, Ds is the spin diffusion constant, τs is the spin relaxation time, and
ωL =

gµBB
h̄ is the Larmor spin precession frequency caused by the magnetic

field B with, Bohr magneton µB , and the gyromagnetic factor g(=2 for elec-
trons). In the steady state (dµs

dt = 0) under no external influence on spins, the
solution to the above equation for one-dimensional spin transport, say along
the x-direction, is given by,

52µs =
µs

λ2
s

µsx(x) = Ae
− x
λs +Be

+ x
λs

(2.11)

where, λs =
√
Dsτs is the spin relaxation length. For a given set of boundary

conditions, the values of A and B can be evaluated. See Appendix A for special
case of a nonlocal spin transport geometry.

2.2 Standard model of spin injection: a F/N contact

2.2.1 Ferromagnetic materials

Ferromagnetism is a result of collective ordering of electron spins in a material.
Depending on the material, this phenomenon persists below a certain temperature,
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called Curie temperature. The specific ordering of different electrons’ magnetic
moments in a Ferromagnet (F) is regarded as a purely quantum mechanical effect
caused by an exchange interaction between the magnetic moments. An exchange
interaction arises due to Pauli exclusion principle and Coulomb interaction between
electrons.

According to the Stoner model, a combination of a strong Coulomb exchange
interaction and a large DoS at the Fermi level leads to a spontaneous ferromagnetism.
This criterion is met for the 3d transition metal ferromagnets, Fe, Ni, and Co. In these
ferromagnets, the strong exchange interaction leads to different DoS for electrons
with up-spin(↑) and down-spin(↓). As a result, up-spin and down-spin bands are split
spontaneously without needing any external magnetic field, creating a equilibrium
distribution of spins, which is commonly referred to as spin imbalance or spin splitting
of the DoS.

Electrical transport in a ferromagnetic metal is characterized by the conduction
electrons at the Fermi-level (Ef). Since the electrons with up-spin and down-spin have
different DoS at Ef, they both have different conductivities (Eq. 2.3). In the diffusive
regime, conductivities of two spin types in a ferromagnet σF

↑(↓) can be evaluated using
the Einstein relation (Eq. 2.3).

Another property of the ferromagnet pertaining to the unequal density of each spin
type conduction electrons at the Fermi level is the degree of spin polarization (P ). It is
usually given by the difference between the DoS of the majority spin and the minority
spin at the Fermi level, where the majority and minority refers to the spin of the larger
and smaller total electron density. For simplicity, the convention followed here is: the
up-spin is referred to the majority spin which determines the magnetization and the
down-spin is referred to the minority spin. The DoS polarization of a ferromagnet P F

g

can be written by Eq. 2.8.
Let us consider a ferromagnet in contact with a non-magnet (N) where an electric

current is driven from F to N [Fig. 2.1]. The transport of non-equilibrium spins
in F can be described by the diffusion equation 2.11 whose solution is given by:

µF
s (z) = µF

s (0)e
− z

λF
s , as µF

s (z →∞)→ 0. Therefore, the current spin polarization of F,
P F
j , can be written as (using Eq.2.9),

P F
j = P F

σ −
1

jF

µF
s (z)

RF (2.12)

where RF is the effective resistance of F.
Note that the individual values of P F

j and P F
σ of a ferromagnet cannot be mea-

sured directly. One need to calculate or estimate them from an indirect measure-
ment, for example, via tunneling conductance measurements for superconduc-
tor(SuC)/Insulator(I)/F vetical tunneling junctions [3].
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Figure 2.1: Electrical spin injection from a ferromagnet (F) into a nonmagnet (N) across an
isolated F/N junction using a current source I . The contact region of the F/N junction denoted
by ‘C’. Band diagrams represents the density of states (DoS) of F and N. Due to unequal DoS in
F, a non-equilibrium spin accumulation is injected into N near the F/N interface which will
decay into the bulk of N where the equilibrium spin accumulation is zero.

2.2.2 Nonmagnetic materials

In equilibrium, nonmagnetic materials (N) have an equal number of up-spin and
down-spin electrons, i.e., Pg = 0, Pσ = 0, and µs = 0.

However, it is possible to create a non-equilibrium spin accumulation in N by
injecting an already spin polarized current. This can be achieved by passing an
electrical current through F into N (Fig. 2.1). As a result a non-equilibrium spin
accumulation µN

s will be created at the F/N interface (C). The region of N far from the
interface is at equilibrium with µN

s = 0. This difference in spin chemical potential in
N, between the regions close to and far from the F/N contact, drives the spin current
in N.

The transport of non-equilibrium spins in N can be described by the diffusion

equation 2.11 whose solution is given by: µN
s (z) = µN

s (0)e
z

λN
s , as µN

s (z → −∞) → 0.
Therefore, the current spin polarization of N can be written as (using Eq. 2.9),

PN
j =

1

jN

µN
s (z)

RN (2.13)

where RN is the effective resistance of N.
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2.2.3 Spin current across an F/N interface

Charge and spin transport across an interface (C) between two dissimilar materials
can be described by considering a difference in the chemical potentials across interface.
The conductivity spin polarization PC

σ and the current spin polarization PC
j of a F/N

contact are related by,

PC
j = PC

σ +
1

jC

[µF
s (0)− µN

s (0)]

RC
(2.14)

where RC is the effective resistance of the F/N contact

2.2.4 Spin injection polarization: a F/N contact

Assuming the spin current and charge current conservation across the F/N contact,
i.e., the continuity of the charge current j and the spin current js, we can find the
current spin injection polarization PC

in of the F/N contact, defined as PC
j = PC

in = js
j ,

(using Eqs. 2.12, 2.13, and 2.14),

PC
j = PC

in =
P F
σR

F + PC
σR

C

RF +RC +RN (2.15)

This is an important factor for characterizing the spin injection efficiency of a contact.
More about this parameter will be discussed in the following section 2.5.

When the direction of the current is reversed (Fig. 2.1), the spins will flow from N
to F across the F/N contact. Now, the figure of merit for the efficiency of the spin flow
across the F/N junction is called spin extraction. For an isolated vertical F/N contact,
as shown in Fig. 2.1, spin injection and spin extraction processes are equivalent.

2.3 Spin transport in a nonmagnetic channel

Nonmagnetic diffusion channel: The transport of spins in N can be described by
considering two spin current channels for up-spin and down-spin [1], using the spin
drift-diffusion equation 2.10. Let us consider a nonlocal lateral spin valve geometry as
shown in Fig. 2.2 where a current I is injected into the nonmagnet N via ferromagnet
at x=0. This geometry consists of three building blocks, namely, ferromanget (F),
nonmagnetic channel (N), and F/N interface contacts (C). F1(F2) and C1(C2) denote
the ferromagnet and the F/N contact, respectively, at x=0(x=L). A charge current IN

in N flows left (along -x̂) to the injection point, say at x=0, while the injected spin
current IN

s flows in both directions (along -x̂ and +x̂) along the length of N. A voltage
Vnl is measured between the contact at x=L and the reference contact situated far and
the corresponding nonlocal resistance is Rnl =

Vnl
I .
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Figure 2.2: Four-terminal non-local spin transport measurement geometry. A current I is
driven across two injector contacts and the non-local voltage V is measured across two detector
contacts. Inner-injector F/N contact at x=0 is denoted by ‘C1’ and the inner-detector F/N
contact at x=L by ‘C2’.

The nonlocal detection voltage Vnl depends on the spin accumulation in N at x=L,
µN

s (x = L) that is being diffused from its injection point at x=0 (see Appendix A for
the derivation),

Vnl = −P
F2
σ R

F2 + PC2
σ RC2

RF2 +RC2 µN
s (x = L), (2.16)

To obtain µN
s (x = L) in Eq. 2.16, consider a general case where the spins also

precess in the presence of an external magnetic field applied normal to device plane,
i.e, B = Bz ẑ. Transport of spin accumulation in N satisfies the steady-state Bloch
diffusion equation Eq. 2.10, which describes the diffusion of spin accumulation
µN

s = µN
sxx̂+µN

syŷ+µN
szẑ in three-dimensions (3D). However, in the case of an atomically

thin N materials like graphene, spin diffusion in the direction normal to the surface
can be ignored, limiting the diffusion to 2D. Moreover, the spin injection is assumed
to be uniform across the F/N interface, reducing the description of the spin diffusion
further to 1D.

Consider the 1D spin diffusion in N, say, along x-direction. We can solve the

diffusion equation Eq. 2.10 for the steady state (dµ
N
s
dt =0) under the boundary conditions

µN
sx,sy,sz(x −→ ±∞) −→ 0, resulting in (see Appendix A for detailed derivation),

Rnl = ±1

2
PC1

in P
C2
d RN<

{
λNk2

4e−k2L

(1 + 2r1k2)(1 + 2r2k2)− e−2k2L

}[
R1R2

RN2

]
, (2.17)

Here, < denotes the real part, PC1
in is the current spin injection polarization, PC2

d is
the spin detection polarization, k2 = 1

λN
1

1+jωτ , the ri and Ri parameters with i=1 for
contact at x=0 and i=2 for contact at x=L are given by ri = WNσN(RFi + RCi), and
Ri = RFi +RCi +RN where RF, RC, and RN represent the effective resistances of F, C,
and N, respectively The signs ± indicate the relative magnetization orientation of the
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electrodes, ‘+’ for parallel(P, ↑↑) and ‘−’ for anti-parallel(AP, ↑↓). The magnitude of

spin signal is given by4Rs = |
R↑↑nl−R

↑↓
nl

2 |.
The expressions for PC1

in [Eq. A.1] and PC2
d [Eq. A.14] are given by,

PC1
in =

IN
s

I
=
P F1
σ R

F1 + PC1
σ RC1

RF1 +RC1 +RN ,

PC2
d =

V

µN
s (x = L)

=
P F2
σ R

F2 + PC2
σ RC2

RF2 +RC2 ≡ PC2
in
RF2 +RC2 +RN

RF2 +RC2 ,

(2.18)

2.3.1 Four-terminal nonlocal Hanle measurements

Hanle measurements are analyzed for determining the accurate spin transport pa-
rameters of transport channel N. For the Hanle measurements, a magnetic field Bz is
applied perpendicular to the injected spin direction as a result of which spins precess
while travelling through N channel. For tunnel contacts, RC � (RF, RN). This gives

r ∼ WNσNRC ≡ RC

RNλ
N, PC1

in P
C2
d ∼ PC1

σ PC2
σ (Eq. 2.18), and the nonlocal resistance

(Eq. 2.17) can be written as,

Rnl(B) = ±1

2
PC1

in P
C2
d RN<

{
e
− L

λN
√

1+iωτ

√
1 + iωτ

}
(2.19)

which has the same form as found by Johnson and Silsbee(Eq. (B20), Ref. [4]). Sosenko
et al. [5] have also derived the same expression and concluded that fitting the Hanle
measurement data with the above equation was found to give results equivalent to
fitting with the Greeen’s function solution [6] of the diffusion equation 2.10 over time:

Rnl(B) = ±H0

∫ ∞
0

e−
t
τ

√
4πDt

e−
L2

4Dt cos(ωt)dt (2.20)

An explicit integral of Eq. 2.20 using MathematicaTM program yields the same
analytical expression [7] as Eq. 2.19 with H0 = PC1

in P
C2
d RN D

λN .

2.3.2 Four-terminal nonlocal spin valve measurements

For a nonlocal spin valve measurement, Bz=0⇒ ω=0. Then k2 = 1

λN . The measured
spin valve non-local resistance (Eq. 2.17) can be written as,

Rnl = ±1

2
PC1

in P
C2
d RN


2r1
λN

2r2
λN e

− L

λN

(1 + 2r1
λN )(1 + 2r2

λN )− e−2 L

λN


[

R1

RF1 +RC1

R2

RF2 +RC2

]
(2.21)

which has a similar form as of Eq. (3) in Takahashi et al. [8] and Eq. (3) in Popinciuc et
al. [9].
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For tunnel contacts, the above equation can be further simplified into,

Rnl = ±1

2
PC1

in P
C2
d RNe

− L

λN (2.22)

which agrees with Eq. 6 in Takahashi et al. [8].
The four-terminal nonlocal geometry can be used for all-electric injection and

detection of spin transport in a non-local lateral spin valve, as demonstrated for
the first time in the nonmagnetic metals at low-temperature by Jonson and Silsbee
[10](single crystal Al bulk wire, below 77 K), and later at room-temperature by
Jedema et al. [11, 12](mesoscopic Cu strips); in non-magnetic semiconductors at
low-temperatures by Lou et al. [13](n-GaAs, below 70 K) and by van ’t Erve et al.
[14](n-Si, below 10 K), and later at room-temperature (RT) by Saito et al. [15](n-GaAs,
RT), by Suzuki et al. [16](n-Si, RT), and by Tombros et al. [17](graphene, RT).

One can also measure the spin accumulation in a three-terminal geometry which
is equivalent to the 4T non-local Hanle measurement geometry with L=0. See Ap-
pendix A for more details.

2.3.3 Two-terminal spin valve and Hanle measurements

In a two-terminal (2T) device, spin signals can be detected via the spin valve and
the Hanle spin precession measurements, similar to the 4T nonlocal measurement
geometry. However the difference is that in a 2T device, both contacts act as spin
injectors and spin detectors (Fig. 2.3). The contacts are biased in such a way that one
of them acts as spin injector and the other as spin extractor (see Section 2.2.4). When
the bias is reversed, both contacts exchange their roles. Since the charge and spin
current paths are same, the detected signal includes both the charge and the spin
contributions.

For a current I passing through the circuit (Fig. 2.3), the voltage measured is given
by,

V2t(B) = V C1(B)− V C2(B) + IRN(B) (2.23)

where V C1 and V C2 are the voltages that could be detected across the contacts C1 and
C2, and RN is the resistance of the N channel between the contacts. PC1

in denotes the
injection polarization of contact C1.

The above equation V2t can be written for parallel ↑↑ and anti-parallel ↑↓ configu-
ration of the magnetization of contacts C1 and C2.

For the two terminal Hanle measurements, the total measured spin signal4R2t(B) =
V ↑↓2t (B)−V ↑↑2t (B)

I is given by,

4R2t(B) =
[
PC1

in P
C2
d + PC1

d PC2
in
]
RN<

{
e
− L

λN
√

1+jωτ

√
1 + jωτ

}
(2.24)
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Figure 2.3: Two-terminal spin transport measurement geometry. Both the electrical spin
injection and detection carried out using the same two contacts.

For two terminal spin valve measurements, Bz = 0, and the spin signal is mea-
sured while sweeping the magnetic field along the magnetization direction of the
contacts. The resulting two-terminal spin valve signal4R2t is given by,

4R2t =
[
PC1

in P
C2
d + PC1

d PC2
in
]
RNe

− L

λN (2.25)

2.4 Spin conductivity mismatch

2.4.1 Transparent contacts

Let us consider the scenario where there is a small interface resistance of a contact (C),

in other words, ohmic or transparent contact, i.e., RC � (RF, RN), then, PC
in =

PF
σ

1+RN
RF

(from Eq. 2.18). When the resistances of F and N are comparable, i.e., RN ≈ RF, the
spin polarization of the current penetrating into the N reduces moderately to half

of the conductivity polarization of F, PC
in ≈

PF
σ

2 . However, when the resistance of N
is higher than that of F, i.e., RN � RF, the injected current polarization reduces dra-

matically, PC
in ≈ RF

RNP
F
σ ≡ λF

λN
σN

σF
PF
σ

1−PF
σ

2 . Generally, for semiconducting N and metallic

F, λF � λN and σN � σF. As a result, PC
in becomes small. This phenomenon has

been observed experimentally in early attempts of spin injection into semiconductors
through a direct contact of F [18–20]. The issue of a reduced efficiency of the spin
polarization of the injected electrons from F to N is formulated as the conductivity mis-
match problem [20]. The importance of the conductivity mismatch was first raised by
Filip et al. [20] who explained that for an equal or higher conductivity of F compared
to that of N, a very small spin polarization can be injected into N. This results in a



2

2.5. Spin polarization 23

very small spin signal which can be difficult to detect. Moreover they suggested an
alternate solution of using a semi-magnetic or ferromagnetic SC (also called Heusler
compounds) as spin injection sources. However, these contacts are limited to low
temperatures due to their Curie temperature and required high magnetic fields of the
order of 1.5 T to polarize the contacts which would limit any practical applications,
incorporating these materials.

2.4.2 Tunneling contacts

Later, a solution to the conductivity mismatch problem was proposed by Rashba [21],
and Fert and Jaffres [22]. In order to overcome the conductivity mismatch condition,
i.e., σN � σF (or RN � RF), or to enhance the current spin injection polarization PC

in,
one needs even higher contact resistance of F/N interface, i.e., RC � (RF, RN) [20–23].
This can be achieved by introducing a thin insulating (I) tunnel barrier at the F/N
interface [24–26], i.e., by making a F/I/N tunnel junction one can limit the back flow
of spins from N into F and restore the spin polarization to a significant level. In this
case, the current spin injection polarization PC

in (Eq. 2.18) is dominated by the spin
dependent conductivity or the resistance of the barrier RC, resulting in PC

in ≈ PC
σ . In

literature, PC
σ is often refered to as spin asymmetry coefficient of the barrier γ [22], or

tunneling spin polarization or simply, spin polarization in TMR experiments [27, 28].
Moreover, the conductivity mismatch problem can also be overcome by tuning a
Schottky barrier at F/N interface [13, 29], or by forming a Zener-Esaki tunnel diode
at F/N interface [30–33].

In case of spin injection into graphene, insertion of a tunnel barrier has been shown
to increase the spin injection polarization [34]. The quality of the tunnel barrier and
its interface morphology with graphene also play an important role in determining
the spin injection efficiency [35] and the long distance spin transport [36]. More about
this is discussed in Chapter 6.

2.5 Spin polarization

There are different methods developed for determining the spin polarization in
various device systems: i)spin polarized tunneling or Meservey-Tedrow technique
[37] for contact spin polarization in F/I/N tunnel junctions, ii)point contact Andrew
reflection technique for measuring transport spin polarization of the F system [38–
40], iii)spin wave Doppler technique [41] for measuring current polarization of a
F, iv)spin-resolved photoelectron spectroscopy for DoS spin polarization (Pg) [42],
v)time-resolved Faraday rotation experiments for measuring spin polarization of a
semiconductor interfaced with a ferromagnet [43], and vi)spin valve and Hanle spin
precession measurements in a lateral spin valve geometry [44] for measuring current
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the spin polarization.
In the early works of spin polarized tunneling experiments [3, 37], it was explicitly

assumed that the tunneling spin polarization is completely determined by the spin
polarization of F electrodes. It was even predicted that the tunneling spin polarization
is subjected to change by changing the tunnel barrier [45].

Various definitions of spin polarization of a material are given in the section 2.1.
Generally, the current spin polarization of a material is defined as a ratio of the
spin current Is to the total charge current I flow, Pj = Is

I . Often in literature [40],

the current spin polarization of contact is defined as σC
↑ −σ

C
↓

σC
↑ +σC

↓
, which is actually the

conductivity spin polarization of the contact, PC
σ (Eq. 2.14), and the current spin

polarization of a F is defined as g↑(EF)−g↓(EF)

g↑(EF)+g↓(EF) , which is actually the density spin

polarization of a F, P F
g (Eq. 2.8). The definitions of Pσ and Pg are synonymously

used for defining the current spin polarization Pj . From the definitions given by
Eqs. 2.8, 2.7, 2.6, it is clear that Pg , Pσ , and Pj are inherently different. However, there
is no direct way of measuring these spin polarizations.

In case of F, due to an exchange splitting between the up-spin and down-spin
subbands, the spin DoS at the Fermi level are unequal, resulting in P F

σ 6= 0. The current
carried by the electrons in the bulk of F is spin polarized and the spin polarization of
the current P F

j is defined by Eq. 2.12.
In case of N, in equilibrium, the DoS at Ef of both spin subbands are equal and the

current carried by the spins are equal. Thus the equilibrium current spin polarization
and the equilibrium conductivity spin polarization in the bulk of N are zero, i.e.,
PN
σ = 0, and PN

j = 0. However, a small non-equilibrium spin accumulation can be
created by injecting a spin polarized current in N which gives rise to a spin current
flow and current spin polarization PN

j , defined by Eq. 2.13.
For an F/N contact in a vertical F/N junction, shown in Fig. 2.1, the same for-

malism as above applies where PC
σ and PC

j are related by Eq. 2.15. Note that here,
PC
σ 6= PC

j . Moreover, for an isolated vertical F/N contact the current spin injection
polarization PC

in and the spin extraction polarization are equivalent [46]. On the other
hand, in a lateral non-local four-terminal geometry such as shown in Fig. 2.2, we can
define two types of polarizations for a F/N contact; current spin injection polarization
PC

in and spin detection polarization PC
d (Eq. 2.18). Note that, in contrast to the F/N

contact in the vertical geometry[Fig. 2.1], the mechanism of spin injection and detec-
tion polarizations of a F/N contact in the nonlocal geometry[Fig. 2.2] are different due
to separate paths for charge and spin currents. In other words, PC

in can be written as a
ratio of the spin current to the charge current across injector F/N contact, whereas,
PC

d can be defined as the ratio between the voltage detection to the spin accumulation
underneath the detector F/N contact. Due to similar spin injection phenomenon in
both vertical and nonlocal geometries, the current spin injection polarizations are
same in these two geometries (Eqs. 2.15 and 2.18).
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In the case of electrical spin injection experiments with high resistive tunnel barrier
at a F/N interface i.e, RC � (RF, RN), the current spin injection polarization becomes
equal to the conductivity spin polarization of the contact, i.e., PC

in ∼ PC
σ (from Eq. 2.18).

In literature, for the nonlocal spin transport experiments, these two polarizations are
synonymously used, simply termed as spin injection polarization. Similarly, for the
detector F/N contacts with a high resistive tunnel barrier, one can deduce PC

d ∼ PC
σ ,

termed as spin detection polarization.
Moreover, due to a similar geometry of the F/N interface for the injector and the

detector contacts in a nonlocal spin transport geometry, the detection polarization
is assumed equal to the injection polarization [17], i.e., PC

in ≡ PC
d . However, the pro-

cesses of electrical spin injection and detection are inherently different, and the both
values PC

in and PC
d need to be considered separately for the nonlocal spin transport

measurements

2.5.1 Bias dependence of spin polarization

As discussed in the previous section, insertion of a high resistive insulating (I) tunnel
barrier at the F/N interface would overcome the conductivity mismatch problem.
In such F/I/N contacts, the electrons will tunnel across the barrier whose spin
conductivities (σC

↑(↓)) depend on the bias, say voltage (V), applied across the F/I/N
tunnel junction. In a F/I/N tunnel junction with an high resistive tunnel barrier,
RC � (RF, RN), the majority of the voltage drop occurs across the barrier-channel
interface. Therefore, the bias dependence of the spin conductivities σC

↑(↓)(V ) comes
from the spin dependent conductivities of the ferromagnet and tunnel barrier, and
possibly due to a magnetically proximity coupled N underneath the ferromagnetic
contact [47–49].

One can experimentally observe the bias dependence of the spin injection and
detection polarizations PC

in and PC
d in a nonlocal measurement geometry(see Chap-

ter 6). The bias induced spin polarization has been reported in different tunneling
F/I/N junctions, including (CoFe or NiFe)/Al2O3/Al/SiO2 [50], Co/(1-3 layer)CVD-
hBN/graphene/SiO2 [51], Co/bilayer-hBN/graphene/hBN [52], and Co/two-layer-
CVD-hBN/graphene/hBN [53].

2.5.2 Equivalent circuit for spin injection and detection

An equivalent circuit of the nonlocal measurement geometry of Fig. 2.2 is given in
Figs. 2.4(a,b). Resistors in the unbiased(I = 0) circuit represented by the symbol

and the resistors in the biased(I 6= 0) contacts are by . In case of an
unbiased measurements [Fig. 2.4(a)], the spin is injected with an AC current i and a
voltage v is detected with the lock-in technique. In case of biased measurement, a DC
current Iin is applied across the injector contacts along with a fixed magnitude of i
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(a)

RN
↓

RC
↓

RF
↓

RN
↑

RC
↑

RF
↑

i v (b)

RN
↓

RC
↓

RF
↓

RN
↑

RC
↑

RF
↑

i

Iin

v

(c)

RN
↓

RC
↓

RF
↓

RN
↑

RC
↑

RF
↑

i

i

(d)

µN
↓

RC
↓

µN
µF

µN
↑

RC
↑

µF = Pd(
µN
↑ −µ

N
↓

2 ) + (
µN
↑ +µN

↓
2 )

Figure 2.4: Equivalent resistor circuit of the nonlocal spin valve measurement geometry with
(a) unbiased spin injection and detection contacts, (b) biased spin injection and unbiased spin
detection contacts. Resistor model for (c) an injection contact and (d) detection contact. Each
resistive element of the device is divided into up-spin and down-spin channels. For unbiased
state, spin resistances of the contacts are constant. Whereas when a bias, for example, DC
injection current Iin is applied, the spin resistances of the contacts change and thus result in
change of the corresponding spin polarization. Here, the equivalent up(down)-spin resistances
of F, C, and N of a F/N junction, near the interface region of length λF + λN , are given by
RF↑(↓) = λF

σF↑(↓)
, RC↑(↓) = 1

σC↑(↓)
, and RN↑(↓) = 2λN

σN
, respectively. The size of resistor box indicates

the relative magnitude of up and down spin resistors.

and the measured v represents the differential change in the spin accumulation in N
underneath the detector contact corresponding to the particular value of the injection
bias Iin. One can also use a DC voltmeter across the detector contacts to measure the
spin accumulation in N underneath the detectors corresponding to the spin injection
by Iin, for a known detection polarization.

For the unbiased state[Fig. 2.4(a)], the spin resistances of a contact are nearly
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constant. Whereas, for the biased state[Fig. 2.4(b)], the spin dependent resistances
of a contact change whose spin dependent conductivities σC

↑(↓)(V ) (or resistances
RC
↑(↓)(V )) can be calculated from the Landauer-Büttiker formalism [54, 55]. Note that

in case of a high resistive tunnel barrier contact, biasing across the F/N contact will
also induce a gating effect for N underneath the contact [48].

Figure 2.4(c) shows the resistor circuit model of an injection contact. A general
equation for the spin injection polarization Pin can be calculated from this circuit
which is same as that of Eq. 2.15. The differential spin injection polarization pin(Iin)

of a contact at a particular injection bias Iin can be calculated by considering the
differential resistances or conductivities of F, C, and N in Eq. 2.15[Fig. 2.4(a)].

Figure 2.4(d) represents the detection of spin accumulation in N using an F/N
interface. In this detector contact, µF adjusts itself so that the total current in the
detector is zero(Eq. 2.6), and is given by µF = µN +Pdµ

N
s , i.e., the chemical potential in

F, µF, changes with respect to that of in N, µN, by a quantity proportional to the spin
accumulation in N, µN

s . The proportionality constant is the spin detection polarization
Pd. The detectable voltage Vd at this contact is the difference between the chemical
potentials of F and N, i.e., Vd = µF − µN. Therefore, the spin detection polarization
of a contact can be defined as the ratio of the voltage that is being detected to the
spin accumulation in N underneath the detector, Pd= Vd

µN
s

. If the measured voltage v

probes the differential change in µN
s , that is being created by the AC current i at a

particular injection bias Iin, then the polarization is termed as differential spin detection
polarization pd(Iin).

2.6 Spin relaxation

Spin relaxation is a process in which the non-equilibrium spin accumulation depolar-
izes to reach at the equilibrium state. Therefore, materials in which the spin transport
is less affected by the spin relaxation processes are attractive for spintronics applica-
tions. One of the key physical quantities for characterizing the spin transport in the
solid state materials is the spin relaxation time which describes the non-equilibrium
spin decay. How long a spin memory or spin information in a material can survive is
determined by a time constant T1 and thus various spintronic device operations are
limited to perform within this time scale.

In the original Bloch equations [56–58] used for describing the nuclear magnetic
resonance, T1 is called thermal or longitudinal relaxation time, and T2 is called
transversal relaxation time. The same equations can be used to describe the dynamics
of the spin accumulation µs with τs being used in place of T1 (in Eq. A.18b) and T2

[in Eq. A.18a of Appendix A]. Here, T1 is called longitudinal spin relaxation time,
and T2 is called transverse spin relaxation time or spin dephasing or decoherence
time. The spins aligned along the direction of the external magnetic field are split
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in the Zeeman energy which is exchanged with the lattice environment until the
spins reach the equilibrium energy state. T1 describes the decay of such spins to the
equilibrium state. In the absence of an external magnetic field, T1 describes the decay
of non-equilibrium spin accumulation. Whereas, T2 describes the decay of coherent
oscillations of spins, which initially precess in-phase, perpendicular to the magnetic
field.

The spin relaxation time can be determined by optical [59, 60] and all-electric
[17, 61] measurements. The longitudinal spin relaxation time T1 can be extracted in
all-electric experiments by measuring the nonlocal spin valve signal4Rs as a function
of the distance L between the spin injector and detector contacts, using Eq. 2.22 with
λN =

√
DT1 provided, spin polarizations of the involved contacts are same. T2 can

be obtained by fitting the experimentally measured nonlocal Hanle signal 4Rs(B)

using Eq. 2.19 with λN =
√
DT2.

In graphene, the values of T1 and T2 are equal [17] in the absence of any external
influence. Therefore, we use τs to denote the general spin relaxation time in accordance
with literature. The following are the important spin relaxation mechanisms identified
in metals and semiconductors [46, 59].

Elliott-Yafet mechanism: When the charge carriers scatter with impurities or
phonons, the momentum scattering causes the spin flip. The spin flip events during
the scattering result in a spin relaxation [62, 63]. The smaller the average time between
the scatterings, faster the momentum scattering and more the chances of a spin flip,
which leads to a smaller spin relaxation time, i.e., τs ∝ τp where τp is the momentum
relaxation time.

D’yakonov-Perel’ mechanism: Spin orbit coupling in a material results in a mo-
mentum dependent effective magnetic field which causes spin relaxation [64]. When
the charge carriers scatter with impurities or phonons, they change their momentum
or velocity. As a result they feel different spin orbit coupled magnetic field which is
similar to the effect of an external magnetic field on a spin polarized current. Therefore
the spin relaxation occurs in between the scattering events. The smaller the average
time between the scatterings, smaller the spin precession, which means, larger the
spin relaxation time, i.e., τs ∝ τ−1

p . Since the strength of the SOC is proportional to the
fourth power of atomic number, Z4, it is not a dominant spin relaxation mechanism
for pure carbon based materials.

Hyperfine interactions: When the electrons are confined to a region with large
number of nuclear spins, the hyperfine interactions of the nuclear spins with electrons
lead to electron spin flip and electron spin dephasing. Morever, when the electrons are
itinerant in the region of a nuclear spin, their random spin orientation gets nullified on
an average [65]. Naturally available graphene is made of two stable isotopes, 12C up to
99% and remaining 1% with 13C. Only 13C has nuclear magnetic moment. Therefore,
the spin relaxation due to hyperfine interactions in graphene is also negligible.
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