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CHAPTER 5 
 

 

Epigenetic mapping of the Arabidopsis metabolome reveals 

mediators of the epigenotype-phenotype map 

 

 

Rik Kooke, Lionel Morgado, Frank Becker, Henriëtte van Eekelen, Qunfeng F Zhang, Ric CH de 

Vos, Frank Johannes,  Joost JB Keurentjes 

 

Abstract 

Identifying the sources of natural variation underlying metabolic differences between plants 

will enable a better understanding of plant metabolism and provide insights into the 

regulatory networks that govern plant growth and morphology. So far, the contribution of 

epigenetic variation to metabolic diversity has been largely ignored. In the present study, we 

utilized a panel of Arabidopsis thaliana epigenetic recombinant inbred lines (epiRILs) to 

assess the impact of epigenetic variation on the metabolic composition. Thirty epigenetic 

QTL (QTLepi) were detected, which partly overlap with QTLepi linked to growth and 

morphology. In an effort to identify causal candidate genes in the QTLepi region or their 

putative trans-targets we performed in silico small RNA and qPCR analyses. Differentially 

expressed genes were further studied by phenotypic and metabolic analyses of knockout 

mutants. Three genes were detected that recapitulated the detected QTLepi effects, 

providing strong evidence for epigenetic regulation in cis and in trans. 
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5.1 Introduction 

The accumulation of secondary metabolites in specific plant tissues enables a balanced 

division of resources that contributes to increased fitness and competitive ability [238, 239]. 

Flowers form the basis of the sexual reproductive organs, and as such they are important 

organs for the plant to protect from herbivores and pathogens. Moreover, they serve very 

specialized functions, such as attracting pollinators and securing anthesis, further 

strengthening the need for specific chemical compounds. In this respect, it is not surprising 

that flowers have a much more complex metabolic profile than vegetative tissues and that 

defense compounds are most concentrated in the reproductive organs of plants [240–242]. 

Because of adaptation to various biotic and abiotic environments, extensive natural variation 

in phytochemical profiles exists between and within species, which can be investigated to 

unravel the underlying regulation of secondary metabolism [243]. The combination of 

genetic mapping populations with the (un)targeted analysis of large numbers of metabolites 

has revealed strong genetic regulation, both qualitatively and quantitatively [244–248].  

Although the genetic basis of secondary metabolite variation is becoming better understood, 

the role of epigenetics in secondary metabolism has so far been largely overlooked. 

However, epigenetic variation that causes phenotypic diversity has been identified in plants 

and can be successfully transmitted to offspring for several generations, providing evidence 

for epigenetic inheritance [79, 249–254]. A number of studies have also reported a role for 

epigenetics in the regulation of secondary metabolism, suggesting the involvement of small 

RNA biosynthesis [255] and DNA methylation states [256, 257]. 

Epigenetic recombinant inbred lines (epiRILs) in Arabidopsis were especially designed to 

study the impact of heritable epigenetic variation on complex traits [252] and epigenetic 

quantitative trait loci (QTL) mapping approaches have shown that specific differentially 

methylated regions (DMRs) in the epiRILs can affect complex traits [251, 253, 258]. 

Here we analyzed the metabolic profile of 96 epiRILs using untargeted liquid 

chromatography–mass spectrometry (LC-MS) metabolomics of both rosette leaves and 

flower heads and associated the observed qualitative and quantitative variation to 

epigenetic variation in DNA-methylation. To explore the epigenetic mechanisms underlying 

the detected QTLepi effects, we tested two possible hypotheses: (1) methylation variation in 

promoters of genes involved in secondary metabolite regulation controls metabolic and/or 
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morphological variation in cis and (2) methylation variation in the QTLepi interval changes the 

production of small RNA that targets genes in trans leading to altered regulation of 

metabolic and morphological phenotypes. Supporting evidence for both hypotheses could 

be obtained. 

 

5.2 Results 

5.2.1 Tissue-specific epigenetic variation in plant secondary metabolism 

To evaluate the effect of epigenetic variation on plant secondary metabolism, aqueous-

methanol extracts of rosette leaves and flower heads from 96 epiRILs and their parents, Col-

0 and ddm1-2 (Decreased DNA Methylation 1) mutants, were analyzed by an essentially 

untargeted Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry (LC-

QTOF-MS) based metabolomics approach. This method is particularly suited for the analysis 

of semi-polar metabolites including glucosinolates, hydroxycinnamates, flavonoids, alkaloids, 

saponins and phytochemicals from various biochemical pathways present in plants [259, 

260]. It is therefore not surprising that most of the annotated compounds in the used epiRIL 

population belong to the classes of glucosinolates and flavonoids, which are strongly 

enriched in Arabidopsis. 

In both tissues, qualitative and quantitative variation in metabolite accumulation could be 

observed among the epiRILs. In the leaves, 8,955 reproducible mass signals corresponding to 

203 reconstructed metabolites (mass clusters) were retrieved, using the Metalign- and 

MSClust-based untargeted data processing workflow [261]. The observed variation in leaf 

metabolites was substantial, with an average coefficient of variation (CV) of 54%, ranging 

from 2% to 206% (Figure 5.1A). These values are in general much higher compared to 

morphological variation in the same set of lines under the same conditions and should thus 

provide ample variation for genetic mapping [239]. Comparison of metabolic profiles 

showed that the vast majority of metabolites were detected in both parents and their 

derived epiRILs. However, in leaves, eight metabolites were only detected in Col-0, while 

thirteen, including quercetin-3-O-hexoside, were uniquely detected in ddm1-2 (Figure 5.1B). 

Demethylation thus does not only reduce or enhance metabolite levels, but it can also cause 

the accumulation of additional metabolites. It should be noted that non-detection can either 

mean that the metabolites were not synthesized or that their concentration did not pass the 

5 
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detection threshold limit. In the majority of cases, however, these qualitative differences 

were of high order of magnitude, implying substantial variation between the parents. 

Besides qualitative and quantitative differences between the parents, eighteen metabolites 

were identified that were solely detected in (a part of) the epiRIL population while being 

absent in both parents (Figure 5.1B). These are most likely the result of epi-allelic 

transgressive segregation [262] that gave rise to the accumulation of novel metabolite 

structures, or alternatively de novo epigenetic or genetic variation accumulated during the 

development of the epiRIL population. 

 

Figure 5.1. Metabolite variation in leaves and flowers of epiRIL population. (A) Frequency distribution of 

coefficient of variation (%) for all 203 leaf (light grey) and 149 flower (dark grey) metabolites detected in the 

Col-0 x ddm1-2 epiRIL population using untargeted LC-QTOF-MS-based metabolomics. (B) Number of 

metabolites that were detected in the leaves of the parents of the population, Col-0 and ddm1-2, and the 

epiRILs (C) Number of metabolites that were detected in the flowers of the parents of the population, Col-0 and 

ddm1-2, and the epiRILs. 
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In the flowers, 6,738 mass signals were extracted corresponding to 149 metabolites with an 

average CV of 31% ranging from 8% to 191% (Figure 5.1A). Although the variation in 

metabolite accumulation in the flowers is somewhat lower than in the leaves, it is still high 

compared to morphological variation in the same epiRILs under the same conditions [253].   

As was the case in leaf tissue, the majority of metabolites in flowers were detected in both 

parents and their derived epiRILs, whereas twelve metabolites were only detected in Col-0 

flowers and six metabolites only in ddm1-2 flowers (Figure 5.1C). Four metabolites were only 

detected in a portion of the epiRILs and not in the parents, suggesting that epi-allelic 

transgressive segregation has resulted in the accumulation of these metabolites. These 

findings indicate that epi-allelic variation can increase metabolic variation in a quantitative 

and qualitative manner in both flowers and leaves. 

 

Figure 5.2. Correlation matrix of detected metabolites in the epiRIL population. Pearson correlation between 

metabolites within and between tissues is indicated by color intensity from -1 (red) to 1 (blue). Variation in 

metabolites correlates strongly within the same tissue, but correlations between different tissues is much 

weaker. 
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Strong correlations between metabolites across all epiRILs were detected within the same 

tissue, but much weaker correlations occurred between metabolites in different tissues 

(Figure 5.2). Although the total number of correlating metabolites was quite similar in leaves 

and flowers (55% over 53%, respectively, ρ > 0.2), the proportion of negative correlations 

between metabolites was much higher in leaves than in flowers (46% over 8%, respectively) 

(Figure 5.2), suggesting a stronger competition for resources in the leaves than in the 

flowers, possibly because of the dual role of leaves as both sink and source tissue. The high 

proportion of positive correlations in the flowers indicates that flowers show a much more 

coordinated regulation of metabolite accumulation, which might be caused by the tight 

developmental control and specific function of this tissue. The various glucosinolates in the 

flowers, for example, showed very strong positive correlations (P < 0.05) mutually as well as 

with other identified compounds such as D-gluconic acid and dihydroxybenzoic acid-xyloside 

III. Similar positive correlations were observed among the flavonoids and between 

flavonoids and most other compounds, although a negative correlation of flavonoids was 

detected with 1-methoxy-3-indolylmethyl glucosinolate. 

Although the leaf and flower tissues were not harvested from the same plant, some 

significant correlations (P < 0.05) between leaf and flower metabolites (10%, |ρ| > 0.2) could 

be observed, with the majority of them being negative (8.3%, ρ < -0.2) (Figure 5.2). For 

example, strong negative correlations (-0.37 < ρ < -0.2) between dihydroxybenzoic acid-

xyloside III in the leaves and the majority of glucosinolates in the flowers were observed. 

Negative correlations were also detected between different flavonoids in leaves and flowers: 

quercetin-3-O-hexoside in the leaves was negatively correlated with kaempferol 3-O-

glucoside, kaempferol-deoxyhexoside and kaempferide 3-glucoside in the flowers (-0.27 < ρ 

< -0.23). On the other hand, the leaf quercetin-3-O-hexoside was positively correlated with 

1-methoxy-3-indolylmethyl glucosinolate in the flowers. This illustrates the metabolic 

separation in tissue types and their functionally different roles in the life cycle of the plant 

demanding distinct phytochemical profiles. The wide range of quantitative variation in 

metabolites between the WT Col-0 and ddm1-2 parents of the population as well as 

between epiRIL individuals further suggests that the methylation status is important for 

tissue specific metabolic control. 

 

5 
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5.2.2 Site-specific differential methylation explains qualitative and 

quantitative metabolic variation 

To gain deeper insight into the regulation of plant metabolism within the epiRIL population, 

QTLepi analysis was performed on all metabolites using a genetic map based on differentially 

methylated regions (DMRs) as physical markers [263]. In total, 34 QTLepi were identified for 

30 different metabolites (Figure 5.3). Significant LOD scores of the detected QTLepi ranged 

from 2.49 for the unidentified compound #1537 to 4.81 for 1-methoxy-3-indolylmethyl 

glucosinolate, both detected in flowers and explaining 11.7% and 21.4% of the variation, 

respectively. The widespread quantitative and qualitative variation that was detected in the 

epiRILs was reflected in the detected QTLepi. For example, QTLepi were identified for two 

metabolites (compound #1619 in the flowers and quecertin-3-O-hexoside in the leaves) that 

showed qualitative variation such that the metabolite was only detected in the ddm1-2 

parent and a number of epiRILs but not in WT Col-0. Likewise, QTLepi were detected for seven 

metabolites for which a substantial difference (at least two-fold) between the two parents of 

the population could be observed. Finally, QTLepi could be detected for twenty-three 

metabolites that showed no clear distinction between the two parents, indicating that 

transgressive segregation of the epigenetic markers within the population is probably 

responsible for the mapped metabolic variation in these epiRILs. 

Out of the thirty-four QTLepi, ten QTLepi were detected in the leaves and twenty-four in the 

flowers. The epigenetic variation resulted in increased or decreased metabolite content 

depending on the metabolite and the tissue. Sixteen of the 34 QTLepi displayed a negative 

effect sign, representing an increase in metabolite content between 4 and 41% in the ddm1-

2-inherited epigenotypes. This was true for nine of the ten QTLepi detected for leaf 

metabolites, while this was the case for only eight of the twenty-four QTLepi detected in the 

flowers. All glucosinolate QTLepi displayed positive effect signs, resulting in increased 

glucosinolate levels in lines with the Col-0 inherited epigenotype. These analyses illustrate 

that the observed metabolic variation among the epiRILs can at least partly be explained by 

methylation variation at DMRs. 
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5.2.3 Epigenetic variation exerts pleiotropic effects on molecular and 

morphological traits 

Twenty-one different QTLepi regions could be assigned, divided over the five chromosomes 

with many coinciding QTLepi (Figure 5.3). One QTLepi region was shared between leaf and 

flower metabolites, while five regions were specific for leaf metabolites and fifteen for 

flower metabolites. For most of the annotated compounds, QTLepi could only be detected in 

flowers although for quercetin-3-O-hexoside (a flavonoid) and D-gluconic acid, QTLepi could 

only be detected in leaves. For dihydroxybenzoic acid xyloside III, different QTLepi were 

identified in leaves compared to flowers, and it thus indicates differential metabolic 

regulation between tissues. For variation in the accumulation of flavonoids, QTLepi were 

detected on both chromosome 1 and 4. QTLepi explaining the variation in glucosinolate 

accumulation were detected at several positions in the genome and in two cases variation in 

different glucosinolates was found to be associated with the same genomic region. An QTLepi 

on chr 4 explained variation for (4- or 5-)hydroxy-3-indolylmethyl glucosinolate and 4-

methylsulfinylbutyl glucosinolate, while a second QTLepi on chr 5 explained variation in 4-

methylthiobutyl, 8-methylthiooctyl and 4-methylthiohydroxybutyl glucosinolates. 

Altogether, these QTLepi analyses suggest that epigenetics plays a significant role in 

regulating the tissue-specific accumulation of secondary metabolites.  

Interestingly, the metabolic QTLepi identified in this study overlapped with the morphological 

QTLepi that were analyzed in the same experiment [253] and with morphological QTLepi 

detected in a previous study [251] (Figure 5.3). Twelve pleiotropic QTLepi-regions were 

detected, divided over the five chromosomes but with especially strong pleiotropic loci in 

the middle of chr 1 and 4, the start of chr 4 and the middle and lower arm of chr 5. The 

majority of metabolites for which a QTLepi could be detected strongly correlated with the 

morphological traits that mapped to the same regions. For instance, leaf area correlated 

significantly with both the unknown metabolite #1584 (r = -0.24) and 7-methylthioheptyl 

glucosinolate (r =0.22) which all mapped to the same region on chr 1 (Figure 5.3). 

Furthermore, plant height at 1st silique correlated significantly with two as yet unknown 

metabolites #1443 (r =-0.20) and #1438 (r = -0.21) that mapped to the same region on chr 1 

(Figure 5.3). For another QTLepi on chr 1,   a similar observation  was made as two  flavonoids  

  

5 
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(kaempferide-3-glucoside and kaempferol deoxyhexoside) correlated significantly with both 

main stem branching (r = -0.33 and -0.35, respectively) and average internode length (r = 

0.22 and 0.20, respectively) (Figure 5.3). The highest correlation was detected between 

flowering time and kaempferol-deoxyhexoside (r=-0.43) while both mapped to the same 

DMR on chr 1 (Figure 5.3). This suggests that these metabolites are strongly connected to 

the morphological traits and that they might be regulated by the same epigenetic 

mechanisms. 

 

5.2.4 Regulation of secondary metabolism in cis by epigenetic variation in 

biosynthesis genes 

To investigate epigenetically regulated candidate genes involved in secondary metabolism, 

we focused our attention on variation in glucosinolate and flavonoid content of the flowers, 

because the metabolic pathways of these metabolites are well defined and most of the 

QTLepi (14 out of 15) for flavonoids and glucosinolates were detected in the flowers. To 

narrow down the list of candidate genes, we focused on the known structural genes, 

regulatory genes and modifying enzymes of the glucosinolate and flavonoid pathways. 

Therefore, sixty-seven candidate genes were selected within the 1.5 LOD QTLepi confidence 

intervals, based on their involvement in glucosinolate and/or flavonoid metabolism 

according to the TAIR, ARACYC and KEGG databases (www.arabidopsis.org, 

www.plantcyc.org and www.genome.jp/kegg). To gain confidence in assigned candidate 

genes we next submitted each gene to a series of strict selection criteria. For all 67 genes, 

differentially methylated regions (DMRs) in the promoter, gene body and 1kb downstream 

of the candidate gene in the epiRILs were associated to their metabolic trait values. For 27 

out of 67 genes, significant (P < 0.05) associations were detected between methylation state 

and metabolic level. Because methylation states can be gained and lost, independent of the 

crossing scheme, it was investigated whether the methylation state at the DMR was in 

linkage with the most significant marker from the QTLepi study to determine whether the 

DMR of the candidate gene can explain the QTLepi. This was the case for 17 of the 27 

remaining genes. From these 17 genes, we selected 9 candidates based on the relationship 

between gene function and metabolite pathway, position of the DMRs (promoter > gene 

body > downstream), presence of TEs close to DMRs and gene expression variation  between 
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Figure 5.4. Confirmation analyses for AT1G50740. Methylation variation in the promoter of AT1G50740 causes 

variation in gene expression and metabolite content. (A) Scatterplot indicating the correlation between 

methylation at promoter and gene expression of AT1G50740 in all epiRILs. Red circles indicate epiRILs with 

wild-type allele at the DMR MM123, black circles indicate epiRILs with ddm1-2 allele at DMR MM123. (B) 

Histograms indicating the association of the methylation level at the promoter of AT1G50740 (light grey) and 

DMR MM123 (dark grey) with the relative gene expression of AT1G50740. (C) Histograms indicating the 

association of the methylation level at promoter of AT1G50740 with the relative metabolite content of 

kaempferol-deoxyhexoside (light grey) and kaempferide-3-glucoside (dark grey). Hypo-methylated indicates a 

methylation level between -1 and -0.3, methylated indicates a methylation level between 0.3 and 1. (D) eQTL
epi

 

analysis for AT1G50740 in epiRILs. (E) Variation in metabolite content of kaempferol-3-O-glucoside and 

kaempferol deoxyhexoside in wild-type Col-0 and AT1G50740 knock-out mutant SALK1. 

5 
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Col-0 and ddm1-2 in publicly available data [166, 229]. 

To determine whether the epigenetic variation was associated with variation in gene 

expression, Q-PCRs were performed on these nine genes in all epiRILs. Only one gene, 

AT1G50740, displayed a significant effect of both the DMR marker and the methylation 

levels around the gene on the gene expression levels (P < 0.05) (Figure 5.4A and B). 

Specifically, 9 DMRs in the promoter region of AT1G50740 were significantly associated with 

variation in gene expression and the metabolic levels of 2 flavonoids that were associated 

with the QTLepi (Figure 5.4C). When the promoter of AT1G50740 is demethylated, the 

relative expression of the encoding gene and the metabolite content of the 2 flavonoids, 

kaempferol-deoxyhexoside and kaempferide-3-glucoside, is significantly increased. Although 

 

Figure 5.5. Theoretical model for the regulation of DNA methylation by differential targeting of sRNA to loci 

in trans. Changes in DNA methylation can be induced directly by differential recruitment of components of the 

RdDM pathway, or indirectly by post-transcriptional silencing of genes. DCL: dicer; M: methylated; Pol: RNA 

polymerase; RDR: RNA-dependent RNA polymerase, U: unmethylated. 
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linkage tests showed a significant effect of the DMR marker on gene expression levels (P < 

0.05), a cis-expressionQTLepi (eQTLepi) did not surpass the more stringent QTLepi significance 

threshold (Figure 5.4D). Two suggestive eQTLepi however, one close to the DMR marker on 

chr 1 and one on chr 4, almost passed the significance threshold, suggesting that the 

expression of AT1G50740 might be affected by the methylation state at these two loci 

(Figure 5.4D). AT1G50740 is a transmembrane protein possibly involved in defense 

responses and in the regulation of flavonoid biosynthetic processes [264]. To confirm the 

involvement of AT1G50740 in secondary metabolism a knock-out mutant was analyzed using 

untargeted LC-MS profiling and deep phytochemical phenotyping. Indeed, the comparison of 

the knock-out mutant of AT1G50740 with the Col-0 WT revealed strong effects of this gene 

on the levels of several flavonoids, oxylipins and 4-hydroxy-3-indolylmethyl glucosinolate 

(data not shown). Illustratively, the levels of kaempferol-deoxyhexoside and kaempferol-3-

glucoside were doubled in the mutant compared to Col-0 wildtype (Figure 5.4E). The effects 

of the mutation are partly counter-intuitive, as reduced rather than increased flavonoid 

levels were expected upon inhibition of gene expression. Nevertheless, these findings 

strongly indicate that methylation in the promoter of AT1G50740 regulates gene expression 

and flavonoid content. Furthermore, it implies that epigenetics can play an important role in 

the accumulation of secondary metabolites, particularly in the specialized Arabidopsis 

flowers. 

 

5.2.5 Regulation of secondary metabolism and plant morphology in trans by 

epigenetic variation in putative small RNA 

Exploratory analyses revealed that the peak markers in the QTLepi intervals are also strongly 

associated with DNA methylation states at promoter regions of 324 genes in trans, and that 

these associations are not simply a signature of polygenic or epistatic selection during epiRIL 

inbreeding (data not shown). One molecular model that could explain these associations is 

that TE or repeat-associated DMRs in QTLepi intervals lead to the differential production of 

small RNA that affects DNA methylation maintenance at loci in cis but also possibly in trans 

via the canonical or non-canonical RNA directed DNA methylation (RdDM) pathways [265].  

Differential targeting of sRNA to loci in trans could induce DNA methylation changes either 

5 



102 

 

directly by altering the recruitment of components of the RdDM pathway, or indirectly by 

post-transcriptional silencing of genes flanking the trans-target loci (Figure 5.5). 

Although this hypothetical mechanism is difficult to validate experimentally, a key 

requirement is that regions in the QTLepi intervals have sequence similarity with their 

putative trans-targets and that these target sequences match functional sRNA.  To evaluate 

this, we searched the promoters of the 324 genes whose methylation levels correlated with 

those of the peak QTLepi marker for segments sharing perfect similarity with DNA regions 

inside their associated QTLepi. These regions were then decomposed, in silico, into sets of 

artificial sRNA (artsRNA) with a length in the range 21-24 nt to simulate candidate sRNA 

sequences that can map to the gene and the QTLepi interval. Selected artsRNA were then 

submitted to the SAILS computational framework [193] to predict whether these artsRNA 

have the necessary sequence properties to load into plant Argonaute (AGO) proteins 4/6/9, 

which are known to be involved in transcriptional silencing in plants [266]. artsRNA that had 

low probability for AGO-loading were discarded. The remaining artsRNAs were matched to 

true sRNAs from wild-type (WT) and ddm1 sRNA libraries [83] to obtain further evidence 

that support these segments as real sRNA.  

Thirteen of the potential artsRNA target genes were further analyzed for gene expression 

variation in the flower heads of the epiRIL population using Q-PCR. We used the expression 

levels of these genes as unique molecular phenotypes and performed a genome-wide search 

for expression epigenetic QTL (eQTLepi).  Three of the 13 genes (AT3G24360, MED8 

(AT2G03070) and AT2G16835) were significantly associated with one or multiple eQTLepi. For 

AT3G24360 and MED8, the detected eQTLepi mapped to regions inside the trans-QTLepi 

interval that contain artsRNA predicted to mediate transcriptional silencing (504 for 

AT3G24360 and 1 for MED8). Especially, the eQTLepi for AT3G24360 on chr 1 was highly 

significant (LOD > 20). Following this approach, we thus established a link between 

methylation variation in small RNAs and trans-genes and their level of expression (Figure 

5.6A and B).  

Interestingly, we found that MED8 and AT3G24360 contain TEs in their promoters and that 

all artsRNA originating from the QTLepi interval are complementary to TEs or their flanking 

sequences (< 1000 bp). In the case of AT3G24360, TEs from VANDAL families are found in all 

candidate regions targeted by artsRNA. From the 33 homologous sites detected, 24 (72.7%) 

co-localize with transposons of the VANDAL2 family and the remaining 9 (27.3%) with 
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VANDAL2N1 members. VANDAL transposons from the MuDR superfamily in maize have 

been shown to modulate the expression of genes through epigenetic mechanisms [267].  

To illustrate that loss of expression affects metabolic and morphological traits, two 

independent KO mutants for each of the two genes AT3G24360 and MED8 were analyzed by 

untargeted LC-MS and their metabolite profiles compared with that of the Col-0  wildtype.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6. Expression QTL analysis in epiRILs: (A) AT2G03070 and (B) AT3G24360. RNA was extracted for 93 

epiRILs, reverse transcribed to cDNA and quantified by SYBR Green qPCR. Gene expression was normalized 

against the reference gene TIP41 and subjected to eQTL
epi

 analyses. The horizontal line indicates the LOD 

significance threshold that was calculated using 1000 random permutations with α=0.05 as the genome-wide 

type 1 error level. Markers positions are indicated on the bottom of the graph. 
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Both MED8 mutants were significantly altered in the levels of 70 (KO1) and 64 (KO2) 

metabolites, respectively. The accumulation of the majority of these metabolites was 

affected in both KOs and when the metabolite levels of the two mutants were compared to 

Col-0 WT and the other mutants, 99 metabolites, among which various glucosinolates and 

flavonoids, were significantly altered (P < 0.05) (Figure 5.7A). Although this QTL was initially 

detected based on differential levels of 7-methylthioheptyl glucosinolate, the levels of 

similar aliphatic glucosinolates were significantly increased in the flowers of both KO 

mutants (Figure 5.7A). Interestingly, flowering time and main stem branching were 

significantly increased in the mutants as well, while total plant height and average internode 

length were significantly reduced (Figure 5.7B). For AT3G24360, the two KO mutants 

significantly altered the levels of 98 (KO1) and 14 (KO2) metabolites, respectively, among 

which were several oxylipins, flavonoids and glucosinolates. Both KOs showed significantly 

increased levels for kaempferol deoxyhexoside, agreeing with the sign of effect for which the 

initial QTL was detected (Figure 5.7C). When the metabolite levels of both mutants were 

tested jointly against the Col-0 wildtype, kaempferol deoxyhexoside was the second most 

significantly different metabolite between mutants and wildtype. For KO1, we also observed 

many morphological differences compared to the wild-type. Plant height and average 

internode length were significantly reduced, while rosette branching was significantly 

increased (Figure 5.7D). The more severe effects of KO1, compared to KO2, might be due to 

differences in the insertion site of the T-DNA. KO1 was inserted in the promoter of 

AT3G24360 and covers a large part of the first exon, which strongly suggests that the gene 

has lost its entire function. The second KO, however, was introduced in an intron and it 

covers part of the very small third exon, suggesting that although heavily impaired it might 

still function. In addition, using the recently released methylation data from the 1001 

Genomes Consortium [268], variation could be observed in the level of methylation in the 

promoters of the three candidate genes in natural accessions.  The promoters of At1G50740 

(cis-QTLepi) and AT2G03070 (trans-QTLepi) are clearly demethylated in a small subset of the 

natural accessions, while the promoter of AT3G24360 (trans-QTLepi) is demethylated in the 

majority of natural accessions, but methylated in a small subset. These findings indicate that 

variation in the level of methylation may play a role in natural settings as well. 
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5.3 Discussion 

The findings presented here strongly indicate that epigenetics is at least partly involved in 

the regulation of plant (secondary) metabolism in both leaves and flowers of Arabidopsis. It 

must be noted,  however, that the number and strength of QTLepi was considerably lower 

than the detected metabolic QTL in genetic studies on classical RILs [244, 269]. Although the 

populations that were used in those studies were substantially larger, which enhances the 

power to find QTL, the results strongly indicate that genetic variation is a much larger source 

for metabolic variation than epigenetic variation. Nonetheless, the epigenetic control of 

secondary metabolite content in terms of number and strength of QTLepi was much stronger 

in flowers than in leaves. Flowers, as reproductive organs, are important plant tissues in 

terms of fitness and should thus be well protected [270].  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7. Metabolic and morphological trait analyses in mutants and wild-type. (A) Metabolic values for 3 
different glucosinolates (4-methylthiobutyl glucosinolate, 5-methylthiopentyl glucosinolate and 8-methylthiooctyl 
glucosinolate) in Col-0 wild-type and two AT2G03070 mutants med8 and SALK4. (B) Phenotypic trait values for 
flowering time (FT), total plant height (TPH), main stem branching (MSB) and average internode length (AIL) in 
col-0 wild-type and two AT2G03070 mutants med8 and SALK4. (C) Metabolic values for kaempferol 
deoxyhexoside in Col-0 wild-type and two AT3G24360 mutants SALK2 and SALK3. (D) Phenotypic trait values for 
plant height 1

st
 silique (PH1S), rosette branching (RB) and average internode length (AIL) in col-0 wild-type and 

two AT3G24360 mutants SALK2 and SALK3.  
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DNA methylation variation, as was also observed in natural accessions [268], is evidently the 

most likely reason for the observed phenotypic variation in the epiRILs. We provide evidence 

that methylation variation in candidate genes can either be due to methylation variation in 

cis, co-locating with the DMRs, or that methylation variation is regulated in trans through 

the activation or repression of small RNAs that target specific genes in RNA-directed DNA 

methylation (RdDM). Independent knock-out mutant and eQTLepi analyses further confirmed 

that methylation-directed loss of expression of candidate genes can cause significant 

variation in plant metabolism. Besides the variation in flavonoids and glucosinolates, we 

detected strong differences in the content of so-called Arabidopsides, such as dinor-

oxophytodienoic acid monoacylglyceride (dn-OPDA-DGMG), dn-OPDA-DGMG derivatives 

and dn-OPDA-DGMG isomers, which contain esterified oxylipins and are precursors for the 

plant defense hormone jasmonic acid. The Arabidopsides may act as an important supply of 

oxylipins in plant defense and are strongly induced upon wounding [271, 272]. 

Intriguingly, the epigenetic variants underlying the QTLepi affect many phenotypic traits in 

parallel. The majority of QTLepi detected for morphological traits in control and stress 

conditions, phenotypic plasticity and secondary metabolism collapsed into 12 QTLepi regions 

[251, 253]. The master epigenetic regulators are most likely sRNA that became inactive 

through hypo-methylation in the F1 and contributed to the alteration of the methylation 

state at various loci in trans, which have maintained that state through meiosis. These sRNAs 

must be guiding most of the observed variation in phenotypic traits in the epiRIL population. 
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