

University of Groningen

Native T-1 reference values for nonischemic cardiomyopathies and populations with increased cardiovascular risk

van den Boomen, Maaike; Slart, Riemer H J A; Hulleman, Enzo V; Dierckx, Rudi A J O; Velthuis, Birgitta K; van der Harst, Pim; Sosnovik, David E; Borra, Ronald J H; Prakken, Niek H J

Published in: Journal of Magnetic Resonance Imaging

DOI: 10.1002/jmri.25885

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version Publisher's PDF, also known as Version of record

Publication date: 2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA): van den Boomen, M., Slart, R. H. J. A., Hulleman, E. V., Dierckx, R. A. J. O., Velthuis, B. K., van der Harst, P., ... Prakken, N. H. J. (2018). Native T-1 reference values for nonischemic cardiomyopathies and populations with increased cardiovascular risk: A systematic review and meta-analysis. Journal of Magnetic Resonance Imaging, 47(4), 891-912. https://doi.org/10.1002/jmri.25885

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Native T₁ Reference Values for Nonischemic Cardiomyopathies and Populations With Increased Cardiovascular Risk: A Systematic Review and Meta-analysis

Maaike van den Boomen, MS,¹* Riemer H.J.A. Slart, MD, PhD,² Enzo V. Hulleman, MD,³ Rudi A.J.O. Dierckx, MD, PhD,⁴ Birgitta K. Velthuis, MD, PhD,⁵ Pim van der Harst, MD, PhD,⁶ David E. Sosnovik, MD,⁷ Ronald J.H. Borra, MD, PhD,⁸ and Niek H.J. Prakken, MD, PhD³

Background: Although cardiac MR and T_1 mapping are increasingly used to diagnose diffuse fibrosis based cardiac diseases, studies reporting T_1 values in healthy and diseased myocardium, particular in nonischemic cardiomyopathies (NICM) and populations with increased cardiovascular risk, seem contradictory.

Purpose: To determine the range of native myocardial T_1 value ranges in patients with NICM and populations with increased cardiovascular risk.

Study Type: Systemic review and meta-analysis.

Population: Patients with NICM, including hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM), and patients with myocarditis (MC), iron overload, amyloidosis, Fabry disease, and populations with hypertension (HT), diabetes mellitus (DM), and obesity.

Field Strength/Sequence: (Shortened) modified Look-Locker inversion-recovery MR sequence at 1.5 or 3T.

Assessment: PubMed and Embase were searched following the PRISMA guidelines.

Statistical Tests: The summary of standard mean difference (SMD) between the diseased and a healthy control populations was generated using a random-effects model in combination with meta-regression analysis.

Results: The SMD for HCM, DCM, and MC patients were significantly increased (1.41, 1.48, and 1.96, respectively, P < 0.01) compared with healthy controls. The SMD for HT patients with and without left-ventricle hypertrophy (LVH) together was significantly increased (0.19, P = 0.04), while for HT patients without LVH the SMD was zero (0.03,

View this article online at wileyonlinelibrary.com. DOI: 10.1002/jmri.25885

Received Aug 4, 2017, Accepted for publication Oct 17, 2017.

*Address reprint requests to: M.v.d.B., 149 13th Street, Charlestown MA, 02139. E-mail: mvandenboomen@mgh.harvard.edu or m.van.den.boomen@ umcg.nl

From the ¹Department of Radiology, University of Groningen, University Medical Center Groningen, the Netherlands; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard-MIT Health Science and Technology, USA; ²Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, the Netherlands; Department of Biomedical Photonic Imaging, University of Twente, the Netherlands; ³Department of Radiology, University of Groningen, University Medical Center Groningen, University Medical Center Groningen, the Netherlands; ⁴Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, the Netherlands; ⁵Department of Radiology, University of Utrecht, University Medical Center Utrecht, the Netherlands; ⁶Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands; ⁷Cardiovascular Research Center, Massachusetts General Hospital and Harvard-MIT Health Science and Technology, USA; and ⁸Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Netherlands; Medical Imaging, Department of Southwest Finland, Turku University Hospital, Finland

Additional supporting information may be found in the online version of this article

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2017 The Authors Journal of Magnetic Resonance Imaging published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine 1 P = 0.52). The number of studies on amyloidosis, iron overload, Fabry disease, and HT patients with LVH did not meet the requirement to perform a meta-analysis. However, most studies reported a significantly increased T₁ for amyloidosis and HT patients with LVH and a significant decreased T₁ for iron overload and Fabry disease patients.

Data Conclusions: Native T₁ mapping by using an (Sh)MOLLI sequence can potentially assess myocardial changes in HCM, DCM, MC, iron overload, amyloidosis, and Fabry disease compared to controls. In addition, it can help to diagnose left-ventricular remodeling in HT patients.

Level of Evidence: 2

Technical Efficacy: Stage 3

m N onischemic cardiomyopathy (NICM) is a prevalent disease characterized by different patterns of fibrosis in the myocardium that can eventually cause heart failure. According to the American Heart Association (AHA) and the National Institutes of Health (NIH), NICM comprises a heterogeneous group of cardiac diseases presenting as: hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), or restrictive cardiomyopathy (RCM).¹ HCM alone affects 1/500 adults² and its prevalence increases with age. Other populations also have an increased risk of developing NICM according to the AHA. These include the one-third of the USA population that has high blood pressure,³ the approximately one-tenth that suffers from diabetes⁴; and the two-thirds that are either overweight (body mass index [BMI] ≥25) or obese (BMI ≥30).^{5,6}

Early detection of NICM is of key importance in preventing major cardiac events. However, the subtle changes that are often seen in the early stages of NICM are difficult to detect and distinguish from normal variation. Cardiac MR is commonly used to diagnose NICM by imaging standard parameters such as ventricular function, wall-mass, and myocardial fibrosis using late gadolinium enhancement (LGE).⁷⁻⁹ In the more advanced stages of NICM, cardiac MR can reveal fibrosis combined with either an increase in wall-mass (HCM) or in dilatation of the ventricular cavity (DCM).¹⁰ However, in the earlier stages of NICM the increases in wall-mass and dilation are less obvious, and the fibrosis patterns remain difficult to detect. This makes it difficult to recognize NICM at the onset of the disease.¹¹ It is even more difficult to distinguish NICM from hypertension (HT), diabetes melitus type 2 (DM), or obesity, because of their similarities in cardiac characteristics,¹² especially when left-ventricle hypertrophy (LVH) is present. Common characteristics include: increased left ventricular wall-thickness,13 diastolic dysfunction,¹⁴ increased left ventricle mass,¹⁵ and infiltration of myocardial fat.¹⁵ These similarities may lead to incorrect interpretation and possible mistreatment. Therefore, additional diagnostic techniques are needed to ensure accurate diagnosis of NICM.

 T_1 mapping has been proposed as a technique to aid earlier diagnosis of NICM patients.¹¹ Previous research has shown that cardiac native T_1 -mapping can differentiate between healthy myocardial tissue and pathologies including HCM, myocarditis (MC), iron loading, amyloidosis, and

J. MAGN. RESON. IMAGING 2017;00:000-000.

Fabry disease.¹⁶ In addition, T_1 values of myocardial tissue in HT patients without LVH do not seem to change,^{13,17} suggesting that it may be possible to differentiate HT from NICM tissue. Further research is needed to determine whether T_1 mapping can enable earlier detection of these NICM.

Although there are concerns about the physical accuracy of T_1 mapping, the overall precision and reproducibility are fairly high and of substantial clinical utility.¹⁸ There is, therefore, an increasing demand for normative reference T_1 values.^{19–21} These reference values will be of particular importance for HT, DM, and obese patients because they share cardiac MR characteristics with NICM.^{13–15} Because methodological differences can eventually affect the myocardial T_1 values,^{18,21} a meta-analysis is a suitable approach to determine the normal myocardial T_1 reference values.

Materials and Methods

Search Strategy

In June 2017, two independent reviewers (M.v.d.B and E.V.H) systematically searched for eligible studies published since 2011 in PubMed/MEDLINE and EMBASE using cardiac T_1 mapping in humans. The search was restricted to studies to NICM, cardiac inflammatory, or storage diseases and populations with increased cardiovascular risk. Keywords used were "cardiomyopathy," "hypertension," "obesity," "diabetes mellitus," "magnetic resonance imaging," and " T_1 -mapping" (see online Appendix for full search term).

Studies were included if they 1) published results from randomized controlled trials or cohort studies; 2) investigated human adults; 3) included subjects with NICM, MC, iron overload, amyloidosis, HT, DM or obesity who underwent cardiac MR with T_1 mapping; 4) contained native T_1 values from a modified Look– Locker inversion-recovery (MOLLI)^{22–24} or shortened MOLLI (ShMOLLI)²⁵ sequence; and 5) excluded subjects with a history of coronary artery disease or myocardial infarction. Studies had to be available in full text, published in peer-reviewed journals, and written in English. No additional hand-searched papers were found. The Preferred Reporting Items for Systemic Reviews and Meta-Analysis (PRISMA) statement²⁶ and the Cochrane Handbook for Systematic Review²⁷ were used to perform and report this systematic review and meta-analysis.

Study Selection

M.v.d.B and E.V.H. independently assessed the title and abstract of the studies that were proposed by the databases. Full-text reports

of the eligible studies were obtained and again independently assessed by these same authors for inclusion in this review. Differences of opinion between the two authors were resolved, which led to consensus about included papers. Quality assessment was performed by using the Newcastle-Ottawa quality assessment scale (NOS), in which the quality of the study was appraised using three domains: selection of study groups (0–4 stars), comparability of groups (0–2 stars), and ascertainment of exposure/outcome (0–3 stars). The cohort or case control version of the NOS was used, depending on the study type.

Data Collection

Data were extracted by the same authors noting: study population, age, gender, BMI, native T_1 value, magnetic field strength (Tesla), vendor, imaging analysis method, and MR sequence. No authors were contacted for additional information. The data were collected as reported (mean \pm standard deviation). The mean and standard deviation were calculated using the approach of Hozo et al.²⁸ for studies that only reported the median with interquartile (IQR) or full range. For studies with multiple groups, only the data from the relevant population were extracted. The data of healthy control groups (controls) were also extracted.

Data Analysis

The T₁ outcome values of the individual studies were combined in a random-effects model, leading to computations of standard mean difference (SMD) and 95% confidence intervals (CI). I² was used as a measure of heterogeneity with $I^2 \ge 50\%$ and P < 0.05 on the χ^2 test defined as a significant degree of heterogeneity. This was further explored by meta-regression, bias, and sensitivity analyses for groups with sufficient (>10) included studies.²⁷ A mixed-effect model approach was used for the meta-regression and performed with available covariates to determine association with the myocardial T1 value. A backwards elimination approach with a removal criteria of P > 0.05 was used for this. Included covariates were at least: gender, age, field strength, MRI vendor information, and the used sequence, even though it is shown that for T₁ values under 1200 msec the MOLLI and (Sh)MOLLI have good overall agreement.²⁵ Funnel plots with missing studies analysis and Egger test were performed to determine publication bias. Sensitivity analysis was conducted by omitting each study sequentially and recalculating the model. These statistical analyses were performed using Review Manager (RevMan) v. 5.3 (Cochrane Collaboration, Copenhagen, Denmark) and the package "metafor" in R v. 3.22 (R Foundation for Statistical Computing, Vienna, Austria). Furthermore, the weighted mean and weighted standard deviation were determined separately for all studied populations and field strengths using the number of subjects as weight-factor. These results are also presented to give a complete overview of the analysis.

Results

Results of the Literature Search

The search strategy identified 660 relevant abstracts in PubMed and EMBASE. In addition, eight handpicked papers were included. After removing the duplicates, a total of 557 abstracts were evaluated. In total, 49 articles remained for the

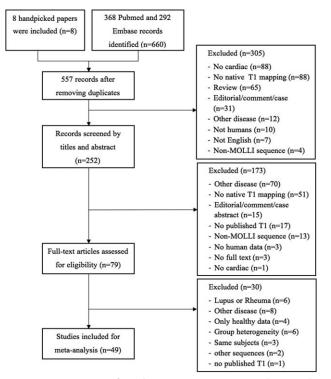


FIGURE 1: Overview of study review process according to the PRISMA flow diagram. $^{\rm 26}$

meta-analysis; 305 studies were excluded based on title and abstract, 173 were excluded based on full text screening, and 30 were excluded based on the published data. More specific reasons for exclusion are listed in Fig. 1. A total of ten studies were included for the HCM group,^{17,29–37} nine for DCM,^{11,30,33,35,38–42} twelve in MC,^{30,43–53} five in iron overload,^{54–58} six in amyloidosis,^{32,59–63} two in Fabry disease,^{64,65} ten in HT,^{13,17,34,37,66–71} four in DM,^{72–75} and one in obesity⁷⁴ (Table 1). The field strength is known to influence the T₁ values significantly⁶⁵; therefore, results from studies performed on a 1.5T or 3T are shown separately, but used as covariant in the meta-regression analysis.

Study Quality

One study³⁴ received the maximum score in the NOS in all areas and only two studies^{46,57} received the full score in the category of study group selection. Not every study included a control group, which led to a minimum score at the comparability area and a lower score in ascertainment for these studies. The studies that did include control subjects, but had a poor description of patient and control subject selection, received a lower score in the selection category. A total of 24 studies reported the use of blinded analysis and evaluation by at least two analysts, which increased their score on ascertainment (see Table 1 for NOS scores).

Hypertrophic and Dilated Cardiomyopathy

The weighted mean (Sh)MOLLI T_1 values in HCM patients and controls, respectively, measured at 1.5T were

TABLE 1. NOS Scores	VOS Scores								
First author, year	Disease (n)/ Control (n)	T1 (msec) Disease	T1 (msec) Control	<i>P</i> value	ROI placement	Study design	Sequence and specifics	Quality	Population
Hypertrop	Hypertrophic Cardiomyopathy	ıthy							
1.5T									
Fontana 2014 (29)	46/52	1026 ± 64	967 ±34		Average basal SAX or 4- chamber	Prospective, single center	ShMOLLI (25)	3,0,2	fulfilling diagnostic criteria, 72% asymmetrical septal HCM, 60% LV outflow obstruction, 76% LGE. Con- trols were pre-screened.
Goebel 2016 (30)	12/54	980 ±43.6	955 ±33.5	<0.05	Average mid- SAX	Retrospective single center	MOLLI 5(3)3 FA=35 TI= 120-4103	3,0,1	Unselected subjects referred for CMR, diagnosis after image analysis
Kuruvilla 2015 (17)	20/22	996 ±32.5	967.4 ±35	<0.01	Average basal and mid-SAX	Prospective, single center	MOLLI (22) FA=35	3,0,1	HCM based on ventricular mass >81g/m ² for man and >61g/m ² for woman, with HT BPM >140/90 mmHg
Malek 2015 (31)	25/20	987 ±52*	939.7 ± 47.9*	<0.01 <0.01	Segment basal or mid septal/ lateral	Prospective, single center	ShMOLLI (25)	2,0,1	Clinically diagnosed HCM referred for CMR, confirmed with LV muscle hypertrophy ≥15mm
White 2013 (32)	25/50	1058 **	968 **		4-chamber septum basal- mid LGE ROI	Prospective, single center	ShMOLLI (25)	3,0,2	Diagnostic criteria, 80% asymmetrical septal HCM, mean max wall thickness 20 ± 4mm, 21 with LGE.
3Т									
Dass 2012 (33)	28/12	1209 ±28	1178 ±13	<0.05	Average 3 SAX Prospective, single center	Prospective, single center	ShMOLLI (25)	2,0,1	Genetic determination of pathogenic mutation or LV hypertrophy ≥ 15 or \ge 12mm familial disease
Hinojar 2015 (34)	95/23	1102 ±58	1023 ±44		Average mid- SAX	Prospective, multicenter	MOLLI (23) 3(3)3(3)5	4,2,2	LV hypertrophy > 15mm, nondilated LV and absence LV wall stress, expressed asymmetrical septal HCM

		of II	сE-	ЗЕ			ients cted sed	ch-	pa	with gno- R DV rea
		LV hypertrophy, absence of increase LV wall stress or other systemic diseases. All asymmetric septal HCM	LV wall thickness ≥ 15mm by CMR, LGE + and LGE- divided (only LGE- included)	LV wall thickness ≥ 15mm by CMR, LGE + and LGE- divided (only LGE- included)			Retrospectively DCM patients with HF symptoms suspected of DCM diagnosis, increased LVEDV and LVEDD and reduced LVEF (<45%)	Referred for cardiac resynch- ronization therapy, pre- implant MRI	Unselected subjects referred for CMR, diagnosis after image analysis	Cohort of adult patients with non-ischemic DCM. Diagno- sis was confirmed by CMR on basis of increased LVEDV indexed to body surface area and reduced EF.
	_	LV hypertrophy, absence increase LV wall stress or other systemic diseases. A asymmetric septal HCM	ckness LGE + Ily LGF	LV wall thickness by CMR, LGE + divided (only LGE- included)			Retrospectively DCM p with HF symptoms sus of DCM diagnosis, incu LVEDV and LVEDD a. reduced LVEF (<45%)	Referred for cardiac res ronization therapy, pre- implant MRI	Unselected subjects referr for CMR, diagnosis after image analysis	adult pi uic DCN firmed increas body su d EF.
	Population	hypertre ease LV rr syster nmetric	LV wall thi by CMR, I divided (on included)	LV wall thi by CMR, I divided (on included)			ospective HF sy DCM di DV an	Referred for a ronization the implant MRI	Unselected sub for CMR, diag image analysis	iort of a -ischem vas con basis of xed to reduce
		LV incr othe asyn	LV - by O divio inclu	LV , by O divio inclu			Retr with of L LVE redu	Refe roni imp	Uns for imag	Coh non- sis v on t inde and
	Quality	3,0,2	2,0,1	3,0,1			3,0,1	2,0,2	3,0,1	3,0,2
	e and	25) =50	(23)	(23)			(23) 4400	3(3)5	MOLLI 5(3)3 FA=35 TI=120- 4103	(31)
	Sequence and specifics	MOLLI (22, 23, 25) 3(3)5 FA=50	MOLLI (23)	MOLLI (23)			MOLLI (23) TI=100-4400 FA=35	MOLLI 3(3)5 FA=50	MOLLI 5(3)3 FA=35 TI=11 4103	MOLLI (31) 3(3)3(3)5 FA=50
	s, s,						0 H			
	dy ign	Prospective, single center	Prospective, single center	Prospective, single center			Prospective and retrospective single center	Prospective, single center	Retrospective single center	Prospective, Multicenter
	Study design	Pro sinę								III Pro Mu
	ment	Rectangular ROI septal mid-SAX	Average basal and mid-SAX	Basal and mid SAX			Mean of mid-SAX ROI in 17 AHA segments	ROI septum 1 mid SAX	Average mid- SAX	Septal and full Prospective, mid-SAX Multicenter
	ROI placement	Rectangul ROI septa mid-SAX	Avera and n	Basal SAX			Mean of mid-SAX in 17 AH segments	ROI septi mid SAX	Avera, SAX	Septal and mid-SAX
	<i>P</i> value	<0.01	<0.05 <0.01				<0.01		<0.01	
			36.5							
	T1 (msec) Control	1070 ±55	1114.6 ±				1020 ±40		955 ±33.5	
	Co I	107	111				102		955	
	sc)	43	78.5	26.5			62	83	7.3	[4]* 73*
	T1 (msec) Disease	1254 ±43	1241 ±78.5	1216 ±26.5			1056 ±62	1075 ±83	992 ±37.3	SAX: 945 ± 141* Septal: 1004 ± 73*
		1	1	1	λ		1		6	N 9 N H
pənu	Disease (n)/ Control (n)	25/20	28/14		nyopatł		29/56		'54	
Contin	C Di			11	Cardion			16 21) 17/54	n 357)
TABLE 1: Continued	First author, year	Puntmann 2013 (35)	Wu 2016 (36)	Wu 2016 (37)	Dilated Cardiomyopathy	1.5T	aus dem Siepen 2015 (38)	Chen 2016 21 (39)	Goebel 2016 (30)	Puntmann 2016 (11)
TAI	First authc year	Р1 20	\mathfrak{S}	® ©	D	1	au Si	\odot	G 20	Р. 2С

van den Boomen et al.: Native Myocardial T_1 of NICM

First author, year	Disease (n)/ Control (n)	T1 (msec) Disease	T1 (msec) Control	<i>P</i> value	ROI placement	Study design	Sequence and specifics	Quality	Population
Van Oorschot 2016 (40)	20/8	1166 ±66	1026 ±21	<0.01	ROI histology based in 3 mid-SAX	prospective, single center	MOLLI (22, 23) FA=35	0,0,1	Idiopathic DCM in addition to MRI on explanted hearts of DCM
3Т									
Dass 2012 18/12 (33)	18/12	1225 ± 42	1178 ±13	<0.01	Average 3 SAX Prospective, single center	Prospective, single center	ShMOLLI (25)	2,0,1	echocardiography LVEF < 45% and coronary angiogra- phy (exclude coronary artery disease)
Hong 2015 41/10 (41)	41/10	1247.5 ± 66.8	1205.4 ± 37.4	Not sig	Average seg- ments ROI in 3 SAX	Prospective, single center	MOLLI 3(3)3(3)5 FA=35	3,0,2	LV dilatation, LVEDD ≥ 6cm, systolic dysfunction and LVEF≤40% (excluding ische- mic and restrictive CM)
Puntmann 2013 (35)	25/30	1254 ±43	1070 ±55	0.05	Rectangular ROI septal mid-SAX	Prospective, single center	MOLLI (22, 23, 25) 3(3)5 FA=50	3,0,2	Non-ischemic DCM, based on increased LV volume and reduced systolic function (no LGE enhancement)
Puntmann 2014 (42)	82/47	SAX: 1102 \pm 72 SAX: 1035 ROI: 1145 \pm 37 ROI: 1055	± 47 ± 22	<0.01	Rectangular ROI septal + full mid-SAX	Prospective, single center	MOLLI (35) 3(3)5 FA=50	3,0,1	Increased LVEDV indexed to body surface area, reduced LVEF, no LGE enhancement, absence other causes.
Puntmann 2016 (11)	280	SAX: 1048 ± 127* Septal: 1111 ± 69*			Septal and full Prospective, mid-SAX Multicenter	Prospective, Multicenter	MOLLI (35) 3(3)3(3)5 FA=50	3,0,2	Cohort of adult patients with non-ischemic DCM. Diagno- sis was confirmed by CMR on basis of increased LVEDV indexed to body surface area and reduced EF.
Myocarditis									
1.5T									
Bohnen 2015 (43)	16 of 31	$1125 \pm 93.5^*$		<0.05	Mean 3 SAX	Prospective, Single center	MOLLI (22, 23) 2,0,2 FA=35 TI= 188-3382	2,0,2	Recent-onset HF, LVEF<45%, no coronary artery disease, Endomyocar- dial biopsy and CMR confirmed

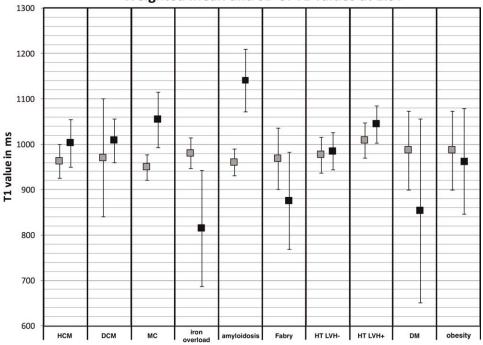
TABLE 1: Continued

TABLE 1: Continued	ontinued								
First author, year	Disease (n)/ Control (n)	T1 (msec) Discase	T1 (msec) Control	<i>P</i> value	ROI placement	Study design	Sequence and specifics	Quality	Population
Ferreira 2014 (44)	60/50	1011 ±64	946 ±23	<0.01	Mean of basel-, apical-SAX	Prospective, multicenter	ShMOLLI (25)	2,2,1	Suspected acute myocarditis
Ferreira 2013 (45)	50/45	1010 ±65	941 ±18	<0.01	ROI myocar- dium \geq 40mm^2 > threshold	Prospective, multicenter	ShMOLLI (25)	2,2,1	Suspected myocarditis, acute chest pain, elevation in tropo- nin I level, recent viral dis- ease, no ischemic
Goebel 2016 (30)	A:19, C:26 / 54	A: 974 ± 35.9 C: 965 ± 39.5	955 ±33.5	< 0.05 0.240	Average single mid-SAX	Retrospective, single center	MOLLI 5(3)3 FA=35 TI= 120-4103	3,0,1	Established diagnostic criteria
Hinojar 2015 (46)	A:61, C:67 / 40	A: 1064 ± 37 C: 995 ± 19	940 ±20	<0.05<0.05	Single mid- SAX	Prospective, international multicenter	MOLLI (23) 3(3)3(3)5	3,0,1	Clinical diagnosis of viral myocarditis (list), active: within week after symptoms and serological marker conva- lescent: no symptoms and no serological marker
Luetkens 2016 (47)	34/50	MOLLI: 1048.6 ± 51.9 ShMOLLI: 887 ± 37.2	MOLLI: 966.9 ± 27.8 ShMOLLI: 831.4 ± 26.9	<0.01 <0.01	3 SAX (basal, mid, apex), segmental approach	Prospective, single center	MOLLI (23) 3(3)3(3)5 / ShMOLLI (25)	2,0,2	Suspected acute MC based on clinical observation (clinical and laboratory). Controls were referred for nonspecific thoracic pain with no CMR results of abnormalities.
Luetkens 2016 (48)	24/45	1047.7 ± 44.0	965.1 ± 28.1	< 0.01	End diastolic SAX (basal, mid, apex) segmental approach	Prospective, single center	MOLLI (23) 3(3)3(3)5 FA=35	3,0,2	Clinically defined acute myo- carditis (acute chest pain, myocardial injury, viral infec- tion, serum marker)
Lurz 2016 (49)	A:43, C:48	A: 1113 ± 67 C: 1096 ± 64		<0.05	VLA, HLA, SA whole myocardium manual ROI	Prospective, single center	MOLLI (84, 85)	1,0,1	Suspected MC (onset symp- toms, myocardial damage, viral disease, no CAD) acute ≤ 14 days /chronic > 14 days – excluding MC without biopsy evidence

Population	Recent infection, elevated tro- ponin, acute chest pain (n=38) or new onset heart failure $(n=66)$	Recent infection, elevated tro- ponin, acute chest pain and Lake Louise Criteria, includ- ing CMR reference method for myocardial injury (some of the data was previously published(46)		Clinical diagnosis of viral myocarditis, active: within week after symptoms and serological marker convales- cent: no symptoms and no serological marker	Acute MC, viral infection, elevated serum marker, myo- cardial injury, no history heart disease, no CAD. Controls: healthy and referred for non- specific thoracic pain (normal CMR)	Suspected MC (onset symptoms, myocardial damage, viral disease, no CAD) acute ≤ 14 days /chronic > 14 days - excluding MC without biopsy evidence
Quality	2,0,2	1,0,1		3,0,1	2,0,1	1,0,1
Sequence and specifics	MOLLI FA=35 TI=150-3871	MOLLI 3(3)5 FA=35 TI=88- 3382		MOLLI (23) 3(3)3(3)5	MOLLI (23)	MOLLI 3(3)5 FA=35 TI=108- 2965
Study design	3 Prospective, single center	Prospective, single center		Prospective, international multicenter	Prospective, l single center	Prospective, single center
ROI placement	End diastolic 3 Prospective, SAX global single center	3 SAX with ROI based on LGE manual/ auto		Single mid- SAX	End systolic 3 Prospective, SAX segmental single center approach	VLA, HLA, SA whole myocardium ROI
<i>P</i> value	<0.01	<0.01		<0.05<0.05	<0.01	
T1 (msec) Control	$1041 \pm 42^{*}$	1045 ±34*		1045 ±23	1089.1 ± 44.9	
T1 (msec) Disease	1098 ±62*	1225 ± 109*		A:61, C:67 / A: 1189 \pm 52 40 C: 1099 \pm 22	1185.3 ± 49.3	A: 1203 ± 71 C: 1185 ± 78
Disease (n)/ Control (n)	104/21	20/20		A:61, C:67 / 40	24/42	Lurz 2016 A:43, C:48 (49)
First author, year	Radunski 2014 (50)	Radunski 2016 (51)	3Т	Hinojar 2015 (46)	Luetkens 2014 (52)	Lurz 2016 (49)

TABLE 1: Continued

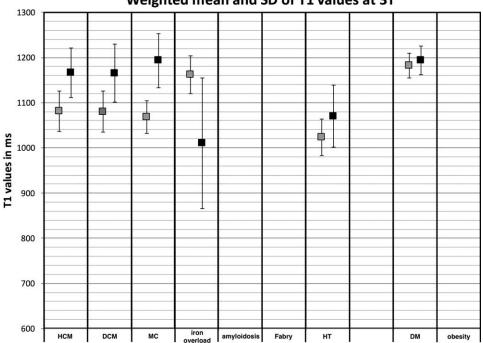
TABLE 1: Continued	ontinued								
First author, year	Disease (n)/ Control (n)	T1 (msec) Disease	T1 (msec) Control	<i>P</i> value	ROI placement	Study design	Sequence and specifics	Quality	Population
Toussaint 2015 (53)	9	LGE ROI 1179.2 ± 48.3			Manually defined ROIs LGE based	Prospective, single center	MOLLI (23)	1,0,1	Clinical MC: chest pain, fever, ECG changes, elevation of cardiac enzyme levels
Iron Overload	oad								
1.5T									
Alam 2015 53/20 (54)	5 53/20	939 ±113*	$1005 \pm 40^{*}$	0.21	T2* threshold mid-SAX sep- tum ROI	Prospective, single center	MOLLI (23) FA=35 TI=120- 280	2,2,2	Referral for cardiac siderosis screening or follow-up. Wide dynamic range of iron over- load population
Feng 2013 (55)	52	653 ± 133			ROI left ven- tricular sep- tum, mid-SAX	Prospective, single center	MOLLI (23 TI=100-260	1,0,0	Regularly transfused patients with thalassemia major receiving iron chelation therapy, 52 had T2* < 20 ms
Hanneman 19/10 2015 (56)	19/10	850.3 ± 115.1	1006.3 ± 35.4	<0.01	Basal, apical, mid-SAX	prospective, single center	MOLLI 5(3)3 FA=35 TI=120- 4000	2,0,2	Thalassemia major patients who received regular blood transfusion (iron chelation therapy) with T2*<20ms
Sado 2015 (57)	88/67	827 ±135	968 ±32	<0.01	T2* threshold ROIs	prospective, single center	ShMOLLI (25)	4,0,2	88 patients with 53 beta- thalassemia major and the others had several different other underlying diagnosis
3T									
Alam 2015 53/20 (54)	5 53/20	1038 ± 167*	1155 ±52*	<0.01	T2* threshold mid-SAX sep- tum ROI	Prospective, single center	MOLLI (23) FA=35 TI=100- 260	2,2,2	Referral for cardiac siderosis screening or follow-up. Wide dynamic range of iron over- load population
Camargo 2016 (58)	5/17	868.9 ± 120.2	1171.2 ± 25.5	<0.05	ROI ventricu- lar mid- septum	Prospective, single center	MOLLI (22) FA=35	3,0,2	Referred patients for iron quantification, all patients has $T2^* < 20ms$


van den Boomen et al.: Native Myocardial T_1 of NICM

				Histologically proven TTR amyloid by endomyocardial biopsy and exclusion of any TTR gene variant by molecu- lar genetic testing	Included 60 patients from baseline study (61. Histologi- cal proof systemic AL amy- loidosis and assessed at AM Center	Biopsy proven systemic AL, 91% histological proof ATTR, 9 TTR mutations people with no evidence	Genetically proven TTR, car- diac/non cardiac was defined on CMR findings. Cardiomy- opathy AM was defined as presence uptake 99mTC- DPD tracer	Histological confirmation of systemic AL AM and echocar- diography for no, possible and definite cardiac AM	Cardiac AL AM, proven by noncardiac biopsy and echo- cardiography with Mayo clinic classification 2 or 3.
	Population			Histologically pro- amyloid by endon biopsy and exclusi TTR gene variant lar genetic testing	Included 60 J baseline study cal proof syst loidosis and a Center	Biopsy proven systemic A 91% histological proof ATTR, 9 TTR mutations people with no evidence	Genetically proven TTR diac/non cardiac was def on CMR findings. Cardi opathy AM was defined presence uptake 99mTC. DPD tracer	Histological confirmation systemic AL AM and ech diography for no, possibl and definite cardiac AM	Cardiac AL AM, proven noncardiac biopsy and ec cardiography with Mayo clinic classification 2 or 3
	Quality			2,2,2	3,0,2	2,0,1	1,0,1	3,0,1	3,0,2
	Sequence and specifics			MOLLI FA=35 TI=100-4400	ShMOLLI (25)	ShMOLLI (25)	MOLLI	ShMOLLI (25)	ShMOLLI (25)
	Study design			Prospective single center	Prospective, single center	Prospective, - single center -	ROI mid basal Prospective, and mid SAX multicenter and 4-chamber	ų .	P .
	ROI placement			Mean SAX	ROI in 4- chamber in basal septum	ROI in 4- chamber basal- mid inferosep- tum (2 segments)	ROI mid basal and mid SAX and 4-chamber	Average T1 of mid SAX and 4-chamber	ROI basal-mid in 4-chamber, LGE based
	<i>P</i> value				<0.01			<0.01 <0.01 <0.01 <0.01	
	T1 (msec) Control				954 ±34			958 ±20	968**
	T1 (msec) Disease			1009 ±48*	1080 ±87	all:1082 ± 75 AL:1150 ± 68 ATTR: 1113 ± 47	all:1197 \pm 54 not cardiac: 1265 \pm 31 cardiac: 1184 \pm 47	No: 1009 ± 31 Possible: 1048 ± 48 Definite: 1140 ± 61	1137**
ontinued	Disease (n)/ Control (n)	S		6	100/54	250 (30 and 83) /	31 (5 and 26)	14, 11 and 28 /36	20/50
TABLE 1: Continued	First author, year	Amyloidosis	1.5T	aus dem Siepen 2015 (59)	Banypersad 100/54 2015 (60)	Fontana 2015 (61)	Gallego- Delgado 2016 (62)	Karamitsos 2013 (63)	White 2013 (32)

				1					1. 1. 0	60	
	Population			Genetically confirmed diagno- sis of Fabry disease from department of inherited car- diovascular diseases	Genetically proven Fabry dis- ease Patients from inherited cardiac disease unit			As control group for renal patients: treated HT patients referred to a dedicated hyper- tension clinic with no LVH	Essential HT, no other signifi- cant comorbidities, antihyper- tensive treatment >3 months, no severe LV hypertrophy	HT with and without LV hypertrophy. HT sbp > 140mmHg or dbp>90mmHg or taking medication	HT clinic, on SBP and DBP, no cardiomyopathy, no decreased filtration rate, no severe valvular heart disease. With and without LVH
	Quality			3,2,2	3,0,1			1,2,1	2,2,1	3,0,1	3,0,2
	Sequence and specifics			ShMOLLI	ShMOLLI (25)			MOLLI 3(3)5	ShMOLLI (25)	MOLLI (22) FA=35 TI=30- 10000	MOLLI (85) FA=35
	Study design			Prospective single center	Prospectively Single center			Prospective single center	6 segments per Prospective, slice single center	Basal and mid- Prospective, SAX single center	Mean pixels in Prospective, ROI mid- single center septum SAX
	ROI placement			Average septal mid to basal sax	Average of ROI in basal and mid SAX			Average ROI septum basal/ mid SAX	6 segments pe slice	Basal and mid SAX	Mean pixels ir ROI mid- septum SAX
	<i>P</i> value							Not sig	Not sig	Not sig/ < 0.05	Not sig/ <0.05
	T1 (msec) Control			968 ±32	968 ±32			955 ±30	$954 \pm 16\ 958 \pm 19$	967.4 ±35	1026 ±41
	T1 (msec) Disease			$904 \pm 46 / 853 \pm 50$	882 ±47			956 ±31	958 ±23	$974 \pm 34 / 996 \pm 33$	$1035 \pm 37 /$ 1070 ± 46
ontinued	Disease (n)/ Control (n)	ase		LVH- 25 and LVH+ 38 /63	44/67	Chronic Hypertension		LVH- 43 /43	LVH- 14 /31	LVH-23 and LVH+ 20 /22	LVH-80 and LVH+20 /25
TABLE 1: Continued	First author, year	Fabry Disease	1.5T	Pica 2014 (65)	Sado 2013 (64)	Chronic H	1.5T	Edwards 2015 (66)	Ferreira 2016 (67)	Kuruvilla 2015 (17)	Rodrigues 2016 (68)

TABLE 1: Continued	ontinued								
First author, year	Disease (n)/ Control (n)	T1 (msec) Disease	T1 (msec) Control	<i>P</i> value	ROI placement	Study design	Sequence and specifics	Quality	Population
Rodrigues 2016 (69)	LVH-41 + 15 and LVH+ 24 + 8 /29	$1031 \pm 35 \\ 1029 \pm 45/ \\ 1054 \pm 41 \\ 1062 \pm 41$	1024 ±41	Not sig/ <0.05	ROI in mid- septum SAX	Observational, single center	MOLLI (85) FA=35	3,0,2	Tertiary HT clinic referred for CMR, no decreased filtra- tion rate, no severe valvular heart disease. With and with- out LVH in 2 different groups
Roux 2016 (70)	Roux 2016 LVH-10 /10 (70)	952 ±51	929 ±80	Not sig	Manual ROI mean T1 in 6 segments	Prospective Single center	MOLLI 3(3)3(3)5 FA=35	1,0,2	As control group for Cush- ing's disease: asymptomatic HT volunteers with no other cardiovascular risks and no LVH
Treibel 2015 (13)	LVH- 40 /50	948 ±31	965 ±38	Not sig	Septum basal- SAX	Prospective, single center	(87) ShMOLLI	3, 1, 1	HT patients were included without LV hypertrophy but 35% still showed LVH on MRI with BPM ≥140/ 90mmHg
Venkatesh 2014 (71)	LVH- M: 208/415 F: 196/377	M: 970 ± 38 F: 984 ±48	M: 966 ± 37 F: 986 ± 45	Not sig	Single mid- SAX, manual ROI around core myocardium	Observational cohort study, multicenter	MOLLI (24)	1,0,2	MESA, population based observational cohort study of 6814 men and woman in 4 ethnic groups. HT based on Joint National Committee VI criteria
3Т									
Hinojar 2015 (34)	LVH- 69 /23 1033 ±68	1033 ±68	1023 ±41		Whole mid SAX and sep- tal ROI	Prospective, single center	MOLLI (23) 3(3)3(3)5	4,2,2	Treated HT SBP>140mmHg DBP>95mmHg and concen- tric LVH >12mm in basal and without dilated LV
Wu 2016 (2 (37)	LVH+ 20	1197 ±10.5			Basal and mid Prospective, SAX single center	Prospective, single center	MOLLI (23)	3,0,1	


TABLE 1: Continued	ontinued								
First author, year	Disease (n)/ Control (n)	T1 (msec) Disease	T1 (msec) Control	<i>P</i> value	ROI placement	Study design	Sequence and specifics	Quality	Population
Diabetes Mellitus	Aellitus								
1.5T									
Jellis 2014 49 (72)	49	850 ± 293 881 ± 227			T1 maps in 16 Prospective, segments in 3 single center SAX	Prospective, single center	MOLLI FIESTA 2,0,1 readout (73)	2,0,1	Screening Healthy subjects with type 2 DM with echo- cardiography for myocardial dysfunction (included)
Jellis 2011 (73)	13 and 54	Reg E: 786 ± 43 Irreg E: 841 ± 185			Mean T1 from Prospective 16 segmented single center 3 SAX	Prospective single center	MOLLI FIESTA 1,0,1 readout (73)	1,0,1	Type 2 DM without vascular complications, valvular or ischemic heart disease or other comorbidities
Khan 2014 11/6 (74)	£ 11/6	944.0 ±93	985.5 ± 86.6	0.457	Whole mid ventricular 1 SAX	Prospective, single center	Molli (23)	2,2,1	Type 2 DM without history of cardiovascular diseases from primary and secondary care services.
3T									
Levelt 2016 46/20 (75)	6 46/20	1194 ±32	1182 ±28	0.23	Myocardial 1 mid SAX	Prospective, single center	ShMOLLI (25)	2,2,1	Only stable type 2 DM, no known complications. No his- tory of cardiovascular disease, chest pain, smoking, HT, ischemic changes on electrocardiography.
Obesity									
1.5T									
Khan 2014 9/6 (75)	£ 9/6	962.3 ± 116.1	985.5 ± 86.6		Whole mid ventricular 1 SAX	Prospective, single center	Molli (23)	2,2,1	Obese, non-diabetic controls, excluding body mass >150kg.

Weighted mean and SD of T1 values at 1.5T

FIGURE 2: Weighted mean T_1 values with weighted mean and standard deviation of all included studies per HCM, DCM, MC, iron overload, amyloidosis, HT with (LVH+) and without (LVH–) left ventricular hypertrophy, DM, and OB population (black) and healthy controls (gray) in 1.5T studies.

 1002 ± 52 msec and 962 ± 37 msec (Table 1, Fig. 2). At 3T these weighted means were 1166 ± 55 msec and 1081 ± 45 msec, respectively (Table 1, Fig. 3). The metaanalysis showed a significant increase of the myocardial T₁ values for HCM patients (SMD = 1.41, 95% CI 0.93–1.88, P < 0.01, $I^2 = 78\%$, Fig. 4). The meta-regression determined the machine vendor and the age of HCM patients as significant covariates, which accounted for the heterogeneity in the meta-regression model, with no other remaining significant residual factors ($I^2 = 0\%$). This indicates that the

Weighted mean and SD of T1 values at 3T

FIGURE 3: Weighted mean T_1 values with weighted mean and standard deviation of all included studies per HCM, DCM, MC, iron overload, amyloidosis, HT with (LVH+) and without (LVH-) left ventricular hypertrophy, DM, and obesity population (black) and healthy controls (gray) in 3T studies.

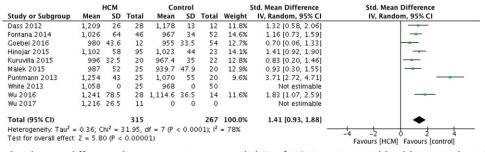


FIGURE 4: Standardized mean difference between native myocardial T₁ of HCM patients and healthy controls with associated random effects weight factors, CI = confidence interval, IV = inverse variance.

SMD between HCM patients and controls is independent of field strength and MOLLI sequence. Only younger HCM patients and the use of a Siemens MRI (Avanto or Trio) scanner were shown to decrease the SMD. No significant funnel asymmetry was found for the random or mixed effect models (P < 0.24 and P < 0.37, respectively). The sensitivity analysis demonstrated that one study³⁵ influenced the model, but this was not significant (P > 0.09). This specific study used a different scanner and a relatively young HCM patient population (44 ± 11 years) compared to the other studies.

The weighted mean (Sh)MOLLI T₁ values in DCM patients and controls, respectively, measured at 1.5T were 1008 ± 48 msec and 970 ± 130 msec (Table 1, Fig. 2). At 3T these were 1165 ± 64 msec and 1080 ± 46 msec, respectively (Table 1, Fig. 3). The meta-analysis confirmed this increase in T₁ values in the myocardium for DCM patients (SMD = 1.48, 95% CI 0.86–2.10, P < 0.01, $I^2 = 85\%$, Fig. 5). The heterogeneity and study bias could not be investigated further, because there were fewer than 10 studies included that compared DCM patients with controls. However, an exploratory meta-regression analysis indicated that the percentage men in the DCM population and the age of the subjects in the control population might be the source of heterogeneity.

Myocarditis, Iron Loading, Amyloidosis, and Fabry Disease

The weighted mean (Sh)MOLLI T_1 value in active/acute MC patients and controls, respectively, measured at 1.5T were 1054 ± 61 msec and 949 ± 28 msec (Table 1, Fig. 2).

At 3T these were 1193 ± 60 msec and 1068 ± 36 msec, respectively (Table 1, Fig. 3). Studies that compared the active/acute MC patients with controls showed a significant increase of the T1 value for MC patients. The meta-analysis confirmed this significant increase (SMD = 1.96; 95% CI 1.42–2.51; $I^2 = 91\%$, P < 0.01, Fig. 6). Significant covariates were vendor and left ventricular ejection fraction (LVEF) of the MC patients, which accounted for the heterogeneity in the meta-regression model with no other remaining significant residual factors ($I^2 = 0\%$, P = 0.77). A significant funnel asymmetry was found for the random effect model with one possible missing study (P = 0.03), but not for the mixed effect model including the two moderators (P = 0.45). The sensitivity analysis demonstrated that one study⁴⁶ introduced some heterogeneity into the model, but only the 1.5T data of this study had significant influence on the model fit (P < 0.05).

The weighted mean (Sh)MOLLI T_1 value, in iron overload patients and controls, respectively, measured at 1.5T were 814 ± 128 msec and 980 ± 34 msec (Table 1, Fig. 2). At 3T these were 1010 ± 144 msec and 1162 ± 42 msec, respectively (Table 1, Fig. 3). Only three studies restricted the inclusion to one specific iron overload patient population,^{54–56} the other two studies used a mixed population of patients.^{57,58} The number of included studies was not sufficient to conduct a meta-analysis, but the direction of the overall effect was similar for all studies (Fig. 7).

Amyloidosis is the most typical type of restrictive cardiomyopathy.⁷⁶ The weighted mean (Sh)MOLLI T₁ values were only measured at 1.5T and were 1140 \pm 69 ms for patients and 960 \pm 29 for controls (Table 1, Fig. 2). Three

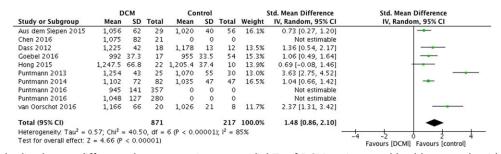


FIGURE 5: Standardized mean difference between native myocardial T_1 of DCM patients and healthy controls with associated random effects weight factors, CI = confidence interval, IV = inverse variance.

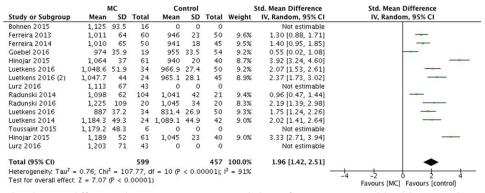


FIGURE 6: Standardized mean difference between native myocardial T_1 of MC patients and healthy controls with associated random effects weight factors, CI = confidence interval, IV = inverse variance.

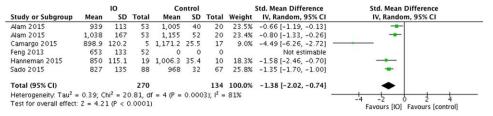


FIGURE 7: Standardized mean difference between native myocardial T_1 of iron overload (IO) patients and healthy controls with associated random effects weight factors, CI = confidence interval, IV = inverse variance.

studies^{32,60,63} compared amyloidosis patients with controls, and all concluded that there was a significant increase of the T_1 for amyloidosis patients. Some studies divided the amyloidosis patient populations in immunoglobulin light chain (AL) or transthyretin (ATTR),²⁹ or cardiac or no cardiac involvement amyloidosis.^{62,63} Karamitsos et al.⁶³ showed that all their subpopulations, including no cardiac involvement amyloidosis patients, had a significantly increased T_1 value compared to healthy controls. No meta-analysis was performed because of the small number of included studies. However, the direction of the overall effect was similar for all studies (Fig. 8).

Fabry disease is a less common restrictive cardiomyopathy and only two studies were included. Nevertheless, the weighted mean (Sh)MOLLI T₁ values at 1.5T were 875 ± 48 msec for patients and both studies used the same pool of controls that had T₁ values of 968 \pm 23 msec (Table 1, Fig. 2). No further meta-analysis or regression could be performed on these data (Fig. 9)

Chronic Hypertension, Overweight/Obesity, and Type 2 Diabetes Mellitus

The weighted mean (Sh)MOLLI T_1 value measured by 1.5T was 1044 ± 41 for HT patients with LVH, 984 ± 41 msec for HT patients without LVH, and 975 ± 40 msec for controls (Table 1, Fig. 2). At 3T these were 1070 ± 68 msec for HT patients and 1023 ± 41 msec for controls (Table 1, Fig. 3). Four studies^{13,17,68,69} compared HT patients with LVH to controls and HT patients without LVH. They all reported a significant increase of T1 of the LVH populations compared with controls (P < 0.05) and three^{13,68,69} also reported a significant increase compared with HT patients without LVH, while this last group had no significant change in T₁ values. Two studies^{34,37} compared HT patients to HCM patients. The comparison with HT without LVH showed a significant higher T1 value for HCM patients (P < 0.01),³⁴ while the comparison with HT with LVH showed no significant difference between the two.37 The meta-analysis of all HT patients (with and

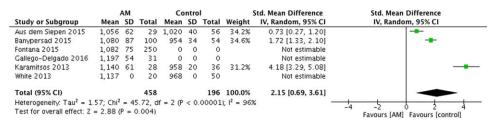


FIGURE 8: Standardized mean difference between native myocardial T_1 of amyloidosis (AM) patients and healthy controls with associated random effects weight factors, CI = confidence interval, IV = inverse variance.

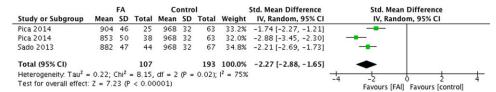


FIGURE 9: Standardized mean difference between native myocardial T_1 of Fabry (FA) disease patients and healthy controls with associated random effects weight factors, CI = confidence interval, IV = inverse variance.

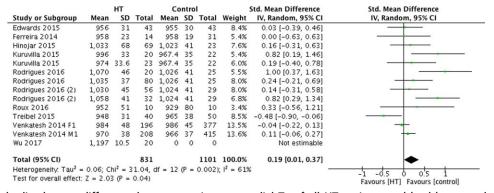


FIGURE 10: Standardized mean difference between native myocardial T_1 of all HT patients and healthy controls with associated random effects weight factors, CI = confidence interval, IV = inverse variance, F1 = female subgroup, M1 = male subgroup.

without LVH) together showed a significant difference between T₁ values of healthy controls and HT patients (SMD: 0.19; 95% CI 0.01–0.37; $I^2 = 61\%$; P = 0.04, Fig. 10). The meta-regression analysis showed that in HT patients LVH was the only significant covariate which changed the I² to 4%. A second meta-regression was performed excluding those patients with LVH. The analysis of the HT patients without LVH showed no significant difference between the T₁ values of healthy controls and HT patients (SMD: 0.03; 95% CI –0.07–0.13; $I^2 = 2\%$; P = 0.52, Fig. 11). Analysis on funnel symmetry, missing studies or influencing studies, of this restricted inclusion all turned out to be not significant for both analyses (HT without LVH: P < 0.83, P = 0.5, and P > 0.05, respectively, and all HT: P = 0.09, P = 0.5, P > 0.05, respectively).

DM and obese patient populations are studied less extensively with T_1 -mapping compared with the above-

mentioned diseases. The weighted mean MOLLI T₁ value measured on 1.5T was 853 ± 202 msec for DM patients,^{72–74} 963 ± 116 msec for obesity subjects and 986 ± 87 msec for controls⁷⁴ (Table 1, Fig. 2). At 3T the only measured T₁ values were 1194 ± 32 msec for DM patients and 1182 ± 28 msec for controls⁷⁵ (Table 1, Fig. 3). No meta-analysis was performed, because of the small number of included studies (Figs. 12 and 13).

Discussion

The findings of this systematic review and meta-analysis show that native myocardial T_1 values changes significantly in patients with HCM, DCM, MC, amyloidosis, and iron overload. This supports previously published research on the diagnostic value of native T_1 mapping to detect diffuse myocardial fibrosis, inflammation, iron accumulation, and protein deposition.^{16,77} HT patients without any LVH

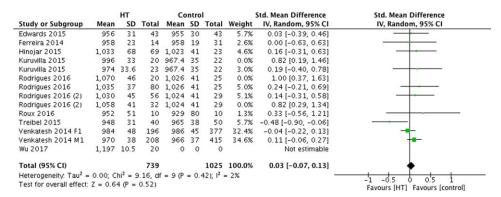


FIGURE 11: Standardized mean difference between native myocardial T_1 of HT patients without LVH with associated random effects weight factors, CI = confidence interval, IV = inverse variance, F1 = female subgroup, M1 = male subgroup.

Journal of Magnetic Resonance Imaging

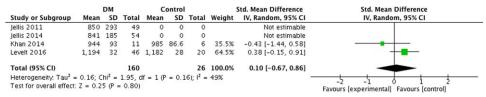


FIGURE 12: Standardized mean difference between native myocardial T_1 of DM patients and healthy controls with associated random effects weight factors, CI = confidence interval, IV = inverse variance.

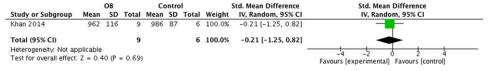


FIGURE 13: Standardized mean difference between native myocardial T_1 of obese (OB) populations and healthy controls with associated random effects weight factors, CI = confidence interval, IV = inverse variance.

showed no significant change in the T_1 value, which indicates the absence of the tissue modifications, while HT patients with LVH had a significantly increased T_1 value. Insufficient numbers of publications have been conducted in Fabry disease and populations with increased cardiovascular risk (DM and obesity) to draw any conclusions about changes in those myocardial T_1 values.

The current meta-analysis confirms the clinical potential of T_1 mapping,^{78,79} but also shows a lack of standardization considering the different reported T_1 values for controls. Although T_1 values at 1.5T seemed to vary, none of the T_1 values of the controls were significantly different from the expected MOLLI T_1 value of 950 ± 21 msec.⁸⁰ In studies performed at 3T, none of the T_1 values for controls were significantly different from the expected MOLLI T_1 value of 1053 ± 23 msec.⁸⁰ Moon et al.²¹ stressed the need to improve standardization of T_1 mapping by describing protocol recommendations. However, they also state that there is no current standard for T_1 mapping sequences, nor for analysis and mapping methods. It is recognized that the T_1 value is influenced by these factors, which probably led to the inconsistencies in the reported T_1 values.¹⁸

In addition, the postprocessing of the T_1 map can also introduce bias, errors, and loss of precision, particularly in protocols using regional regions of interest (ROIs), image segmentation, variable slice orientations.²¹ Almost half of the included studies used ROIs to determine the T_1 .^{32,35,38–42,45,49,51,53–55,57–62,66,68–71} Conversely, Moon et al.²¹ recommended global myocardial T_1 measurements. Puntmann et al. clearly showed the importance of this in their studies on DCM patients.^{11,35,42} They used rectangular ROIs in the septum, the average of the whole short axis slice (SAX). The T_1 value for the whole SAX showed no significant difference between DCM patients and controls (P = 0.05), while the T_1 values in the septal ROI were significantly increased for DCM patients (P < 0.05). In addition to this, the T_1 values of studies that used the segmental approach also suffered from averaging.^{31,38,47,48,52,59,61,67,70,72,73} Furthermore, some studies used the 4-chamber plane for T_1 mapping,^{29,32,60–63} which can lead to errors due to through-plane respiratory motion. All these factors, together with the lack of standard protocols, make it difficult to determine a normative T_1 value range for healthy myocardium, and therefore also for diseased myocardium.

Fortunately, SMD between controls and the studied cardiac diseases are shown to be less variable across studies and sites. The SMDs were shown to be independent of the applied field strength and MR sequence, and only for the HCM and MC population the SMD did depend on the system type (vendor). Moon et al.²¹ recommend correcting for variation in the scanner's characteristics and this metaanalysis demonstrates that this correction should probably mainly be based on vendor. Apart from the variation and lack of standardization, the SMD shows that native T₁ has diagnostic value for most of the included cardiac diseases.

NICM can have subtle and diffuse fibrosis patterns that are difficult to determine¹¹ and inclusion and study bias are a remaining concern in NICM studies. The funnel plots and Egger tests show that there is indeed some publication bias for the MC analysis, which should be kept in mind when evaluating the SMD. However, none of the other populations showed this bias, and only showed heterogeneity in T₁ values caused by the vendor, age or gender. These factors are well known to influence myocardial T₁ values and are important to correct for.^{21,81} In addition, some studies $^{32,33,3\hat{6},41}$ reported T₁ values of LGE-based ROIs, which is known to be highly nonspecific and misses the full representation of the disease.^{21,82} These LGE-based ROI data were excluded from the meta-analysis. After correcting the SMD for these heterogeneity factors, the metaanalysis still shows that there are significant changes in T₁, and although LGE is still the clinical standard to determine focal fibrosis, a change of native T_1 is clearly also associated with an increase in fibrotic tissue.¹⁶

In addition to sensitivity for myocardial fibrosis, T_1 values can also indicate edema formation (inflammation), and deposition of substances like protein and iron, which makes it a nonspecific parameter.^{16,78} T_1 values seem sensitive enough to differentiate between clinical disease stages of patients with myocarditis when a baseline scan and clinical records are provided.^{46,49,83} T_1 values may therefore help to follow disease progression and treatment⁸³; however, this meta-analysis only confirms the significant changes in myocardial T_1 values in the acute phase of MC.

Iron accumulation also changes myocardial T_1 values by shortening the relaxation times significantly, which suggests T_1 mapping is also of value in the assessment of myocardial iron loading.^{55,64} One of the included studies⁵⁷ evaluated the T_2^* of an iron overload patient population and concluded that one-third had a normal T_2^* but a decreased T_1 value. They state that T_1 mapping might be more sensitive to iron accumulation than T_2^* imaging, but the amount of accumulated iron that correlates with these T_1 values still needs to be confirmed by human histology. The differences in iron concentration of all included subjects in the different studies might have caused the broad range in T_1 values. Further research to the correlation between T_1 values and the iron concentration in the myocardium is needed to determine whether T_1 mapping could also be used for monitoring.

All amyloidosis studies reported a significant increase in myocardial T_1 values, even for amyloidosis patients who had no biopsy or decreased cardiac function that confirmed cardiac involvement. This meta-analysis shows that it is sensitive to increases of the interstitial space caused by myocardial protein depositions in amyloidosis,¹⁶ which indicates that myocardial T_1 mapping might be better in early detection of amyloidosis deposition in the heart than regular cardiac MRI. The significant increase SMD is even found when there is a high variation caused by the studies that used the 4-chamber imaging plane for T_1 mapping, which is commonly used to study amyloidosis patients.^{29,32,60} Further research with cardiac axial slices is needed to determine the classification potential of the T_1 value in amyloidosis patients.

HT and NICM patients seem to have several standard cardiac MR parameters in common; nevertheless, none of the included studies in this meta-analysis reported a significant increase in T_1 values for HT patients without LVH. Only patients with HT in combination with LVH showed a significant change in T_1 value.^{68,69} However, all studies reported the mean T_1 value, which ignores the fact that HT might be associated with inhomogeneous T_1 distribution.⁸⁴ Further research is needed to determine the ability of T_1 mapping to image this inhomogeneity and whether it is applicable to follow HT progression.

Two studies reported clearly decreased T1 values for DM,^{72,73} but had no healthy control population to compare them with. A reason for this decrease might be that DM patients are known to develop myocardial steatosis due to their insulin resistance, and the associated myocardial fat lowers the native T₁ value.⁷⁴ However, the fat content of this myocardial steatosis is much smaller than in Fabry disease, and the number and size of T₁ mapping studies was too small to determine the influencing factors in this population. Two other studies reported much higher T₁ for DM patients and compared them with healthy controls, but both showed no significant change.^{74,75} Levelt et al⁷⁵ used healthy control subjects with a BMI of 28.6 ± 5.7 , which raises the question whether healthy controls should have a healthy weight (BMI <25). This concern is the same for the DM populations, because the DM patients in the included studies had a weighted mean BMI of 31 ± 5 , which makes most of them obese. Only one study⁸⁵ compared DM patients with a lean group of healthy controls and obese controls separately. However, the obesity subjects did not differ significantly from either of the two other populations in this study. Further research with lean controls and DM patients (BMI <25) is needed to confirm the reported changes in T₁ value, and whether it is possible to distinguish these populations from NICM patients.

T1 mapping has numerous MRI-dependent and methodological factors that can influence the final T1 values.58 The field strength and sequence are two of these factors, but this meta-analysis shows that they do not influence the SMD, even though the T₁ values at 3T are overall 100msec higher than at 1.5T. More research towards understanding the effect on accuracy, precision, and reproducibility of T₁ mapping is needed.^{21,86} Without this knowledge, it remains unknown whether the variance of the T₁ maps is mainly caused by variability in physiological effects, or the inaccuracy of the technique itself. The HCM, DCM, MC, and HT patient populations were studied in groups of sufficient size to suggest that the significant SMD of T1 values is probably caused by changes in tissue physiology. Further research should be conducted on DM and obese populations and on other possible factors associated with variance in T_1 mapping values.

The nonuniform reporting of data in the included studies: heterogeneity of included patient populations, methods for T_1 mapping, differences in ROI placement, and for amyloidosis, iron overload, DM, and obese, and the small number of studies formed the major limitations of this meta-analysis. Most studies did not publish their data per patient, especially the studies with great sample sizes, and therefore no conclusions could be drawn on a per-patient basis. Future prospective studies should provide complete patient-level insight, which may help mitigate selection bias for amyloidosis, iron overload, DM, and obese studies. In

addition, the patient characteristics should be published together with the T_1 values to enable determination of correlation. Finally, we had to compare the T_1 values of a smaller number of amyloidosis, iron overload, DM, and obese studies with more widely studied HCM, DCM, MC, and HT diseases. However, the direction of the overall effect was similar for the iron overload and amyloidosis studies and can be ascribed to the physiological changes associated with the diseases. For the DM and obese populations, this direction is less obvious.

In conclusion, this meta-analysis shows that native T_1 mapping is a reliable way to distinguish HCM, DCM, MC, iron overload, amyloidosis, and HT patients with LVH from healthy controls and HT patients without LVH. This indicates that T_1 mapping could help diagnose certain cardiomyopathies at an earlier stage than other cardiac MR techniques alone. In addition, DM and OB seem to affect myocardial T_1 values, although the change in T_1 is opposite to that seen in noninfiltrative NICM. Further research into these risk populations is needed to determine the degree of overlap in myocardial T_1 values in the healthy, cardiovascular risk, and NICM populations.

References

- Wexler R, Elton T, Pleister A, Feldman D. Cardiomyopathy: An overview. Am Fam Phys 2009;79:778–784.
- Ommen SR, Nishimura RA, Tajik A. Hypertrophic cardiomyopathy. Chapter 33. In: Hurst's the Heart. 13th ed. Fuster V, Walsh R, Harrington RA (eds). New York: McGraw Hill; 2011.
- Go AS, Mozaffarian D, Roger VL, et al. Heart disease and stroke statistics-2013 update: A report from the American Heart Association. Circulation 2013;127.
- Centers for Disease Control and Prevention. National Diabetes Statistics Report: Estimates of diabetes and its burden in the United States. 2014;2014.
- Wang H, Dwyer-Lindgren L, Lofgren KT, et al. Age-specific and sexspecific mortality in 187 countries, 1970-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012;380:2071–2094.
- Flegal KM, Carroll MD, Kit BK OC. Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999-2010. J Am Med Assoc 2012;307:491–497.
- Prakken NH, Cramer MJ, Teske AJ, Arend M, Mali WP, Velthuis BK. The effect of age in the cardiac MRI evaluation of the athlete's heart. Int J Cardiol 2011;149:68–73.
- Shehata ML, Turkbey EB, Vogel-Claussen J, Bluemke DA. Role of cardiac magnetic resonance imaging in assessment of nonischemic cardiomyopathies. Top Magn Reson Imaging 2008;19:43–57.
- Noureldin RA, Liu S, Nacif MS, et al. The diagnosis of hypertrophic cardiomyopathy by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2012;14:17.
- Prakken NH, Velthuis BK, Cramer MJ, Mosterd A. Advances in cardiac imaging: the role of magnetic resonance imaging and computed tomography in identifying athletes at risk. Br J Sports Med 2009;43: 677–684.
- Puntmann VO, Carr-White G, Jabbour A, et al. T1-mapping and outcome in nonischemic cardiomyopathy all-cause mortality and heart failure. JACC Cardiovasc Imaging 2016;9:40–50.
- Jellis CL, Kwon DH. Myocardial T1 mapping: modalities and clinical applications. Cardiovasc Diagn Ther 2014;4:126–37.

- Treibel TA, Zemrak F, Sado DM, et al. Extracellular volume quantification in isolated hypertension — changes at the detectable limits? J Cardiovasc Magn Reson 2015;17:74.
- Wilmot EG, Leggate M, Khan JN, et al. Type 2 diabetes mellitus and obesity in young adults: The extreme phenotype with early cardiovascular dysfunction. Diabet Med 2014;31:794–798.
- Olivotto I, Maron BJ, Tomberli B, et al. Obesity and its association to phenotype and clinical course in hypertrophic cardiomyopathy. J Am Coll Cardiol 2013;62:449–457.
- Germain P, El Ghannudi S, Jeung M-Y, et al. Native T1 mapping of the heart — a pictorial review. Clin Med Insights Cardiol 2014;8:1–11.
- Kuruvilla S, Janardhanan R, Antkowiak P, et al. Increased extracellular volume and altered mechanics are associated with LVH in hypertensive heart disease, not hypertension alone. JACC Cardiovasc Imaging 2015;8:172–180.
- Kellman P, Hansen MS. T1-mapping in the heart? Accuracy and precision. J Cardiovasc Magn Reson 2014;16:2–22.
- Gai ND, Sandfort V, Liu S, et al. Dose correction for post-contrast T1 mapping of the heart: the MESA study. Int J Cardiovasc Imaging 2016;32:271–279.
- Hamdy A, Kitagawa K, Ishida M, Sakuma H. Native myocardial T1 mapping, are we there yet? Int Heart J 2016;57:400–407.
- Moon JC, Messroghli DR, Kellman P, et al. Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson 2013;15:92.
- Messroghli DR, Greiser A, Fröhlich M, Dietz R, Schulz-Menger J. Optimization and validation of a fully-integrated pulse sequence for modified Look-Locker inversion-recovery (MOLLI) T1 mapping of the heart. J Magn Reson Imaging 2007;26:1081–1086.
- Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP. Modified Look-Locker inversion recovery (MOLLI) for highresolution T 1 mapping of the heart. Magn Reson Med 2004;52:141–146.
- 24. Messroghli DR, Plein S, Higgins DM, et al. Human myocardium: single-breath-hold MR T1 mapping with high spatial resolution reproducibility study. Radiology 2006;238:1004–1012.
- Piechnik SK, Ferreira VM, Dall'armellina E, et al. Shortened modified Look-Locker inversion recovery (ShMOLLI) for clinical myocardial T1mapping at 1.5 and 3T within a 9 heartbeat breathhold. J Cardiovasc Magn Reson 2010;12.
- Moher D, Liberati A, Tetzlaff J, Altman DG, Grp P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. (Reprinted from Annals of Internal Medicine). Phys Ther 2009; 89:873–880.
- Higgins J, Green S. Cochrane handbook of systematic reviews of interventions. Version 5. The Cochrane Collaboration; 2011.
- Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol 2005;5.
- Fontana M, Banypersad SM, Treibel TA, et al. Native T1 mapping in transthyretin amyloidosis. JACC Cardiovasc Imaging 2014;7:157–165.
- Goebel J, Seifert I, Nensa F, et al. Can native T1 mapping differentiate between healthy and diffuse diseased myocardium in clinical routine cardiac MR imaging? PLoS One 2016;11.
- Malek LA, Werys K, Klopotowski M, et al. Native T1-mapping for noncontrast assessment of myocardial fibrosis in patients with hypertrophic cardiomyopathy — comparison with late enhancement quantification. Magn Reson Imaging 2015;33:718–724.
- White SK, Sado DM, Fontana M, et al. T1 mapping for myocardial extracellular volume measurement by CMR. JACC Cardiovasc Imaging 2013;6:955–962.
- Dass S, Suttie JJ, Piechnik SK, et al. Myocardial tissue characterization using magnetic resonance noncontrast T1 mapping in hypertrophic and dilated cardiomyopathy. Circ Cardiovasc Imaging 2012;5:726–733.

- Hinojar R, Varma N, Child N, et al. T1 Mapping in discrimination of hypertrophic phenotypes: hypertensive heart disease and hypertrophic cardiomyopathy: findings from the International T1 Multicenter Cardiovascular Magnetic Resonance Study. Circ Cardiovasc Imaging 2015;8.
- Puntmann VO, Voigt T, Chen Z, et al. Native T1 mapping in differentiation of normal myocardium from diffuse disease in hypertrophic and dilated cardiomyopathy. JACC Cardiovasc Imaging 2013;6:475– 484.
- Wu L-M, Chen B-H, Yao Q-Y, et al. Quantitative diffusion-weighted magnetic resonance imaging in the assessment of myocardial fibrosis in hypertrophic cardiomyopathy compared with T1 mapping. Int J Cardiovasc Imaging 2016;32:1289–1297.
- Wu LM, An DAL, Yao QY, et al. Hypertrophic cardiomyopathy and left ventricular hypertrophy in hypertensive heart disease with mildly reduced or preserved ejection fraction: Insight from altered mechanics and native T1 mapping. Clin Radiol 2016;72:835–843.
- aus dem Siepen F, Buss SJ, Messroghli D, et al. T1 mapping in dilated cardiomyopathy with cardiac magnetic resonance: quantification of diffuse myocardial fibrosis and comparison with endomyocardial biopsy. Eur Heart J Cardiovasc Imaging 2015;16:210–216.
- Chen Z, Sohal M, Sammut E, et al. Focal but not diffuse myocardial fibrosis burden quantification using cardiac magnetic resonance imaging predicts left ventricular reverse modeling following cardiac resynchronization therapy. J Cardiovasc Electrophysiol 2016;27:203– 209.
- van Oorschot JWM, Güçlü F, de Jong S, et al. Endogenous assessment of diffuse myocardial fibrosis in patients with T1ρ-mapping. J Magn Reson Imaging 2016;45:132–138.
- Hong YJ, Park CH, Kim YJ, et al. Extracellular volume fraction in dilated cardiomyopathy patients without obvious late gadolinium enhancement: comparison with healthy control subjects. Int J Cardiovasc Imaging 2015;31:115–122.
- 42. Puntmann VO, Ucar EA, Baydes RH, et al. Aortic stiffness and interstitial myocardial fibrosis by native T1 are independently associated with left ventricular remodeling in patients with dilated cardiomyopathy. Hypertension 2014;64:762–768.
- Bohnen S, Radunski UK, Lund GK, et al. Performance of T1 and T2 mapping cardiovascular magnetic resonance to detect active myocarditis in patients with recent-onset heart failure. Circ Cardiovasc Imaging 2015;8.
- Ferreira VM, Piechnik SK, Dall'armellina E, et al. Native T1-mapping detects the location, extent and patterns of acute myocarditis without the need for gadolinium contrast agents. J Cardiovasc Magn Reson 2014;16.
- Ferreira VM, Piechnik SK, Dall'armellina E, et al. T1 mapping for the diagnosis of acute myocarditis using CMR: Comparison to T2weighted and late gadolinium enhanced imaging. JACC Cardiovasc Imaging 2013;6:1048–1058.
- Hinojar R, Foote L, Ucar EA, et al. Native T1 in discrimination of acute and convalescent stages in patients with clinical diagnosis of myocarditis: A proposed diagnostic algorithm using CMR. JACC Cardiovasc Imaging 2015;8:37–46.
- Luetkens JA, Homsi R, Sprinkart AM, et al. Incremental value of quantitative CMR including parametric mapping for the diagnosis of acute myocarditis. Eur Heart J Cardiovasc Imaging 2016;17:154–161.
- Luetkens JA, Homsi R, Dabir D, et al. Comprehensive cardiac magnetic resonance for short-term follow-up in acute myocarditis. J Am Heart Assoc 2016;5:e003603.
- Lurz P, Luecke C, Eitel I, et al. Comprehensive cardiac magnetic resonance imaging in patients with suspected myocarditis, the MyoRacer-Trial. J Am Coll Cardiol 2016;67:1800–1811.
- Radunski UK, Lund GK, Stehning C, et al. CMR in patients with severe myocarditis: Diagnostic value of quantitative tissue markers including extracellular volume imaging. JACC Cardiovasc Imaging 2014;7: 667–675.

- 52. Luetkens JA, Doerner J, Thomas DK, et al. Acute myocarditis: multiparametric cardiac MR imaging. Radiology 2014;273:383–392.
- Toussaint M, Gilles RJ, Azzabou N, et al. Characterization of benign myocarditis using quantitative delayed-enhancement imaging based on Molli T1 mapping. Medicine (Baltimore) 2015;94:e1868.
- Alam MH, Auger D, Smith GC, et al. T1 at 1.5T and 3T compared with conventional T2* at 1.5T for cardiac siderosis. J Cardiovasc Magn Reson 2015;17:102.
- Feng Y, He T, Carpenter JP, et al. In vivo comparison of myocardial T1 with T2 and T2* in thalassaemia major. J Magn Reson Imaging 2013;38:588–593.
- Hanneman K, Nguyen ET, Thavendiranathan P, et al. Quantification of myocardial extracellular volume fraction with cardiac MR imaging in thalassemia major. Radiology 2016;279:720–730.
- Sado DM, Maestrini V, Piechnik SK, et al. Noncontrast myocardial T1 mapping using cardiovascular magnetic resonance for iron overload. J Magn Reson imaging 2015;41:1505–1511.
- Camargo GC, Rothstein T, Junqueira FP, et al. Comparison of myocardial T1 and T2 values in 3T with T2* in 1.5 T in patients with iron overload and controls. Int J Hematol 2016;103:530–536.
- 59. aus dem Siepen F, Buss SJ, Andre F, et al. Extracellular remodeling in patients with wild-type amyloidosis consuming epigallocatechin-3-gallate: preliminary results of T1 mapping by cardiac magnetic resonance imaging in a small single center study. Clin Res Cardiol 2015;104:640–647.
- Banypersad SM, Fontana M, Maestrini V, et al. T1 mapping and survival in systemic light-chain amyloidosis. Eur Heart J 2015;36:244–251.
- Fontana M, Pica S, Reant P, et al. Prognostic value of late gadolinium enhancement cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 2015;132:1570–1579.
- Gallego-Delgado M, Gonzalez-Lopez E, Munoz-Beamud F, et al. Extracellular volume detects amyloidotic cardiomyopathy and correlates with neurological impairment in transthyretin-familial amyloidosis. Rev Esp Cardiol (Engl Ed) 2016;69:923–930.
- Karamitsos TD, Piechnik SK, Banypersad SM, et al. Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging 2013;6:488–497.
- Sado DM, White SK, Piechnik SK, et al. Identification and assessment of anderson-fabry disease by cardiovascular magnetic resonance noncontrast myocardial T1 mapping. Circ Cardiovasc Imaging 2013;6:392–398.
- 65. Pica S, Sado DM, Maestrini V, et al. Reproducibility of native myocardial T1 mapping in the assessment of Fabry disease and its role in early detection of cardiac involvement by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2014;16:99.
- Edwards NC, Moody WE, Yuan M, et al. Diffuse interstitial fibrosis and myocardial dysfunction in early chronic kidney disease. Am J Cardiol 2015;115:1311–1317.
- Ferreira VM, Marcelino M, Piechnik SK, et al. Pheochromocytoma is characterized by catecholamine-mediated myocarditis, focal and diffuse myocardial fibrosis, and myocardial dysfunction. J Am Coll Cardiol 2016;67:2364–2374.
- 68. Rodrigues JCL, Amadu AM, Ghosh Dastidar A, et al. ECG strain pattern in hypertension is associated with myocardial cellular expansion and diffuse interstitial fibrosis: a multi-parametric cardiac magnetic resonance study. Eur Heart J Cardiovasc Imaging 2017;18:441–450.
- Rodrigues JCL, Amadu AM, Dastidar AG, et al. Comprehensive characterisation of hypertensive heart disease left ventricular phenotypes. Heart 2016;102:1671–1679.
- Roux C, Kachenoura N, Raissuni Z, et al. Effects of cortisol on the heart: characterization of myocardial involvement in cushing's disease by longitudinal cardiac MRI T1 mapping. J Magn Reson Imaging 2016;45:147–156.

Journal of Magnetic Resonance Imaging

- Venkatesh BA, Volpe GJ, Donekal S, et al. Association of longitudinal changes in left ventricular structure and function with myocardial fibrosis: The Multi-Ethnic Study of Atherosclerosis. Hypertension 2014; 64:508–515.
- Jellis CL, Sacre JW, Wright J, et al. Biomarker and imaging responses to spironolactone in subclinical diabetic cardiomyopathy. Eur Heart J Cardiovasc Imaging 2014;15:776–786.
- Jellis C, Wright J, Kennedy D, et al. Association of imaging markers of myocardial fibrosis with metabolic and functional disturbances in early diabetic cardiomyopathy. Circ Cardiovasc Imaging 2011;4:693–702.
- Khan JN, Wilmot EG, Leggate M, et al. Subclinical diastolic dysfunction in young adults with Type 2 diabetes mellitus: a multiparametric contrast-enhanced cardiovascular magnetic resonance pilot study assessing potential mechanisms. Eur Heart J Cardiovasc Imaging 2014;15:1263–1269.
- Levelt E, Mahmod M, Piechnik SK, et al. Relationship between left ventricular structural and metabolic remodeling in type 2 diabetes. Diabetes 2016;65:44–52.
- Hare JM. The dilated, restrictive, and infiltrative cardiomyopathies. In: Braunwald's Heart Diseases: A Textbook of Cardiovascular Medicine.
 9th ed. Bonow RO, Mann DL, Zipes DP, Libby P (eds.). Amsterdam: Elsevier Saunders; 2011:1569–1581.
- Captur G, Manisty C, Moon JC. Cardiac MRI evaluation of myocardial disease. Heart 2016;102:1429–1435.
- Greulich S, Arai AE, Sechtem U, Mahrholdt H. Recent advances in cardiac magnetic resonance. F1000Research 2016;5:2253.

- Haaf P, Garg P, Messroghli DR, Broadbent DA, Greenwood JP, Plein S. Cardiac T1 mapping and extracellular volume (ECV) in clinical practice: a comprehensive review. J Cardiovasc Magn Reson 2016;18:89– 101.
- Dabir D, Child N, Kalra A, et al. Reference values for healthy human myocardium using a T1 mapping methodology: results from the International T1 Multicenter Cardiovascular Magnetic Resonance Study. J Cardiovasc Magn Reson 2014;16:69–81.
- Biernacka A, Frangogiannis NG. Aging and cardiac fibrosis. Aging Dis 2011;2:158–173.
- Moon JC. What is late gadolinium enhancement in hypertrophic cardiomyopathy? Rev Esp Cardiol 2007;60:1–4.
- Hinojar R, Foote L, Sangle S, et al. Native T1 and T2 mapping by CMR in lupus myocarditis: Disease recognition and response to treatment. Int J Cardiol 2016;222:717–726.
- Schelbert EB, Messroghli DR. State of the art: Clinical applications of cardiac T1 mapping. Radiology 2016;278:658–676.
- Boudina S, Dale Abel E. Diabetic cardiomyopathy, causes and effects. Rev Endocr Metab Disord 2010;11:31–39.
- Kellman P, Hansen MS. T1-mapping in the heart: accuracy and precision. J Cardiovasc Magn Reson 2014;16:1–20.
- Flett AS, Hayward MP, Ashworth MT, et al. Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: Preliminary validation in humans. Circulation 2010; 122:138–144.