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Abstract

This paper studies the formation tracking problem for multi-agent systems, for which a distributed estimator-controller
scheme is designed relying only on the agents’ local coordinate systems such that the centroid of the controlled
formation tracks a given trajectory. By introducing a gradient descent term into the estimator, the explicit knowledge
of the bound of the agents’ speed is not necessary in contrast to existing works, and each agent is able to compute the
centroid of the whole formation in finite time. Then, based on the centroid estimation, a distributed control algorithm is
proposed to render the formation tracking and stabilization errors to converge to zero, respectively. Finally, numerical
simulations are carried to validate our proposed framework for solving the formation tracking problem.

Keywords: Formation control, Cooperative control, Rigidity graph theory, Multi-agent systems

1. Introduction

Formation control for multi-agent systems has attracted increasing attention from control scientists and engineers
due to its broad applications [1, 2]. A central problem is to drive the agents to realize some prescribed formation
shape, and such a problem is usually referred to as the formation stabilization problem. In this line of research,
formation stabilization for those with different shapes has been investigated, see, for example, circular formation5

[3, 4], acyclic formation [5], and formations associated with tree graphs [6], minimally rigid graphs [7, 8], and more
general rigid graphs [9]. Time-varying formation control problems for linear multi-agent systems under switching
directed topologies are also investigated in [10]. In addition, the effects of the measurement inconsistency between
neighboring agents on the formation’s stability are addressed in [11], where it is shown the resulted distorted formation
will move following a closed circular orbit in the plane for any rigid, undirected formation consisting of more than10

two agents. In [12], the steady-state rigid formation is achieved using an estimator-based gradient control law; in
addition, both the static and time-varying mismatched compasses are studied in [13].

Another key problem concerned with formation control for multi-agent systems is formation tracking, which
requires to stabilize the prescribed formation, and, additionally, requires that the whole formation follows a given
reference trajectory. One commonly reported approach to deal with the formation tracking problem is to use the15

virtual structure strategy. This technique is built upon assigning a virtual leader to the centroid of the formation to be
tracked while achieving the prescribed formation shape [14]. Under this framework, it is shown that the formation
tracking can be achieved in finite time by employing the signum function if the virtual leader has directed paths to all
the followers [15]. The virtual structure approach is also reported in [16], in which the control and estimation on a
common virtual leader is addressed using a consensus algorithm. Integrating the techniques from nonsmooth analysis,20

collective potential functions and navigation feedback, a distributed algorithm for second-order systems is designed
such that the velocity consensus to the virtual leader is achieved [17]. The formation tracking problem can also be
solved using the distributed receding horizon control (RHC), for a group of nonholonomic multi-vehicle systems [18].
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By applying RHC, some additional tasks, e.g., collision avoidance and consistency, can be realized through adding
constraints on allowed uncertain deviation.25

Akin to the virtual structure approach, the leader-follower strategy has also been widely employed to solve for-
mation tracking problems (e.g., [19, 20, 21, 22, 23]). In [19], the formation tracking problem is solved based on
formation stabilization with one designated leader among the group. To deal with the intrinsic unknown parameters
for a class of nonlinear systems, an adaptive control law using the backstepping technique is proposed in [20], such
that all the subsystems’ outputs are regulated to achieve consensus tracking. In [21], to compensate the unknown30

slippage effect of mobile robots, a distributed recursive design strategy involving the adaptive function approximation
technique is developed. More recently, the formation tracking problem for second-order multi-agent systems under
switching topologies is studied in [22], where one of the agents is set to be the leader to perform tracking tasks. The
results therein are also feasible to the target enclosing problem for multi-quadrotor unmanned aerial vehicle systems.
In [23], different from the one-leader tracking case, the formation tracking problem with multiple leaders is addressed.35

To drive the followers to the convex hull spanned by the leaders, a protocol is designed via solving an algebraic Riccati
equation.

It should be noted that in the results discussed above, almost all the desired formations are specified by offset
vectors with respect to the virtual/real leader or virtual centroid of the group. Those offset vectors are required to be
set a priori in a common global coordinate system. In addition, each agent needs to know its corresponding desired40

offsets as well as its neighbors’. In particular, the agreement reached on the estimations of the virtual centroid is
normally different from the real centroid of the group. However, it is sometimes meaningful to locate the real centroid
when performing tasks like the transportation of objects. Furthermore, the approaches developed in these existing
works are only applicable to the scenarios where the reference trajectory is an exogenous signal that is independent
of the states of the system. To estimate the centroid of the formation, a consensus-based algorithm is proposed in45

[24], wherein the estimation of each agent is updated by averaging their projections and directions. However, the
convergence can be ensured only when the underlying graph is complete. In [25], a tree-based algorithm is adopted
to estimate the centroid, while, each agent is required to maintain a list of trees with constant size. Recently, the
weighted-centroid tracking problem has been considered in [26, 27, 28]. Unlike the leader-follower structures in
which the dynamics of the followers and leaders can be separated, the control objective therein is to track some50

globally assigned function which is implicitly related to all agents’ dynamics. In [26], a controller-observer scheme
is designed for the single integrator dynamics such that the weighted centroid of the whole formation follows some
given trajectory. As an extension, one additional task function for the formation is introduced in [27]. In [28], a
finite-time centroid observer is constructed, and the distance-based control laws are developed by employing rigidity
graph theory.55

In the present paper, we consider the formation tracking problem, in which the centroid of the formation moves as
the agents move and is unknown to all of the agents. Under this case, the problem becomes more challenging due to the
inner coupling and conflict between centroid estimation, formation stabilization and reference tracking. By adopting
the feedback term from the gradient descent control, we design a new class of finite-time centroid estimator that is
continuously differentiable. Based on the output of the estimator, the proposed distance-based control laws render the60

convergence to the prescribed formation shape while keeping its centroid following the reference. Compared with the
previous work of using virtual/real leader structure, the proposed estimator-controller framework can be implemented
in agents’ local coordinate systems, which not only increases the robustness to the noises in the sensing signals but
also reduces the equipment cost of the overall system. Moreover, the control law in this paper is more scalable and
distributed in the sense that some constraints are removed, including the a priori knowledge of the position information65

of the reference trajectory [26, 27] and the agents’ maximum speed [28]. In addition, the precise knowledge of the
time-varying centroid can be obtained in finite time via the proposed smooth centroid estimator, which renders a faster
convergence speed than that in [24, 25]. In addition, the centroid estimator in [24] is only valid under complete graphs
whereas the one in this paper can be directly applied to any general undirected graphs.

The paper is organized as follows. Section 2 introduces the formation tracking problem and basic concepts of70

graph rigidity. In Section 3, the main results are presented including the estimator-controller scheme and the theoreti-
cal analysis. Section 4 extends the results to a more general case. The numerical simulations are presented in Section
5. Finally, we give the conclusions in Section 6.
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2. Problem formulation

A team of n > 1 agents is considered, each of which is characterized by the single integrator dynamics

q̇g
i = ug

i , i = 1, · · · , n, (1)

where qg
i ∈ Rd and ug

i ∈ Rd are, respectively, the position and the control input of mobile agent i with respect to the
global coordinate system gΣ. Each agent i is also assigned with the local coordinate system iΣ, whose origin is exactly
the point qg

i . In this paper, the local coordinate systems are assumed to share the same orientations. We use qi
j to

denote agent j’s position with respect to iΣ. This definition also applies to other variables. Note that the local variable
qi

j and the global one qg
j have the following relationship

qg
j = qi

j + qg
i .

Here, qg
i is actually unknown to the agents, since the global coordinate system is introduced only for analysis purposes.75

The neighboring relationships between the agents are defined by an undirected graph G with the vertex set V =

{1, 2, · · · , n} and the edge set E ⊆ V×V where there is an edge (i, j) if and only if agents i and j are neighbors of each
other. We useNi to denote the set of neighbors of agent i. The graph G is embedded in Rd when q = [qT

1 , q
T
2 , · · · , q

T
n ]T

is realizable and the pair (G, q) is called a framework. The adjacency matrix A = [ai j ∈ Rn×n associated with G is
defined as ai j = a ji = 1 if (i, j) ∈ E, and ai j = 0 otherwise. The interaction relationships among the agents and the
reference signal is denoted by matrix B = diag {b1, · · · , bn}, where bi = 1 if agent i has access to the reference signal
directly, and bi = 0 otherwise. By assigning an arbitrary orientation to G, the incidence matrix H = [hi j] ∈ R|E|×n is
defined by

hi j =


1, ith edge enters node j,
− 1, ith edge leaves node j,
0, otherwise,

where |E| represents the cardinality of the edge set E, and it is taken to be m throughout the paper. The Laplacian
matrix is then given by L = HT H ∈ Rn×n.

Now, we formulate the problem to be investigated in this paper. On one hand, to achieve a desired shape of the
formation, each agent i is required to keep some prescribed distance di j, j ∈ Ni, namely, the agents are driven to the
following target set

Td = {qg ∈ Rnd | ‖qg
i − qg

j‖ = di j, ∀(i, j) ∈ E}. (2)

On the other hand, at the same time, the stabilized formation is guided through the control law such that its centroid
qg

c tracks some smooth reference signal qg
d(t) : t → Rd, where the centroid of the formation is defined by

qg
c =

1
n

n∑
i=1

qg
i . (3)

Equivalently, the tracking task can be written as

lim
t→∞

(qg
c − qg

d(t)) = 0. (4)

To introduce the notion of graph rigidity, we firstly define a function

fG(qg
1, · · · , q

g
n) = [· · · , ‖qg

i − qg
j‖

2, · · · ]T , (5)

where (i, j) ∈ E, and ‖ · ‖ denotes the Euclidean norm in Rn. Then, graph rigidity is defined as follows.

Definition 1. [29] A framework (G, q) is rigid if there exists a neighborhood U of q in Rnd such that f −1
G

( fG(q))∩U =

f −1
K

( fK (q) ∩ U, where K is the complete graph with the same vertices as G.80
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For a rigid framework, it means if one node moves, the rest also moves as a whole in order to satisfy the distance
constraints. To characterize the rigidity of a framework, the rigidity matrix R(q) ∈ Rm×nd is defined by

R(q) =
1
2
∂ fG(q)
∂q

. (6)

The relationship between the rigidity matrix and the rigidity of a graph is as follows:

Lemma 1. [30] A framework (G, q) is infinitesimally rigid in a d-dimensional space if

rank(R(q)) = nd − d(d + 1)/2.

In general, infinitesimal rigidity implies rigidity, but the converse is not true. Infinitesimal rigidity only allows the
combinational motions of translation and rotation. In this paper, we consider the generic shapes which exclude all
collinear (2D) or coplanar (3D) ones.

Definition 2. [31] A framework is minimally rigid if it is rigid and no edge can be removed without losing rigidity.85

To be specific, a rigid framework (G, q) with n vertices in 2D or 3D is minimally rigid, if it has exactly 2n − 3 or
3n − 6 edges, respectively.

3. Formation tracking control

In this section, we first present the estimation algorithm for each agent to obtain the centroid information in finite
time. Then, distributed control laws are proposed in local coordinate systems such that the formation tracking problem90

is solved.
Some useful lemmas are introduced as follows.

Lemma 2. [32]. For an undirected connected graph, the following property holds,

min
x,0

1T
n x=0

xT Lx
‖x‖2

= λ2(L),

where λ2 is the algebraic connectivity of the undirected graph, i.e., the smallest non-zero eigenvalue of the Laplacian
matrix.

Lemma 3. [33] Let ξ1, · · · , ξn ≥ 0 and 0 < p ≤ 1, then

n∑
i=1

ξ
p
i ≥

 n∑
i=1

ξi

p

.

Lemma 4. [33]. Suppose that the function V(t) : [0,∞) → [0,∞), is differentiable (the derivative of V(t) at 0 is in
fact its right derivative) and

dV(t)
dt
≤ −KV(t)α,

where K > 0 and 0 < α < 1. Then V(t) will reach zero at some finite time T0 ≤ V(0)1−α/(K(1 − α)) and V(t) = 0 for95

all t ≥ T0.

Assumption 1. The reference signal is bounded, as well as its first derivative, satisfying supt>0 ‖q̇
g
d(t)‖ ≤ σ. In

addition, at least one of the n followers has access to the reference signal.

Remark 1. The reference signal is defined locally, namely, the information of the reference known by agent i is qi
d if

agent i has access to the reference signal. And, the local variable can be transformed to the global one through the
following equation

qg
d = qi

d + qg
i .
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We first introduce the vector zg = [(zg
1)T , · · · , (zg

m)T ]T ∈ Rmd [34], defined as

zg = (H ⊗ Id)qg,

where H ∈ Rm×n is the incidence matrix. Then, it is straightforward to check that zg lies in the column space of
(H ⊗ Id), i.e., zg ∈ Im(H ⊗ Id). zg

k = qg
j − qg

i denotes the relative position of agents i and j connected by the kth edge.
Note that zg

k = zi
k, i = 1, · · · , n, owing to the fact that the local coordinate systems share the same orientation with the

global one. Let q̂i
ci be agent i’s estimation of the centroid with respect to iΣ, then

q̂g
ci = q̂i

ci + qg
i , (7)

where q̂g
ci is agent i’s estimation of the centroid with respect to gΣ.

For controlling an infinitesimally rigid formation shape, we employ the standard quadratic potential function [11]

P(qg) =
1
4

m∑
k=1

(‖zg
k‖

2 − d2
k )2. (8)

Correspondingly, the gradient of P(q) with respect to qg
i , denoted by ∇qg

i
P(q) is given by

∇qg
i
P(qg) =

∑
j∈Ni

(‖zg
k‖

2 − d2
k )(qg

i − qg
j ) = −

∑
j∈Ni

(‖zi
k‖

2 − d2
k )zi

k. (9)

It can be aggregated as
∇P(qg) = R(qg)Tφ(qg), (10)

where R(qg) is the rigidity matrix defined in (6) and φ(qg) is as follows

φ(qg) =
[
· · · , ‖zg

k‖
2 − d2

k , · · ·
]T
∈ Rm.

For achieving the tracking of the centroid to the reference with a prescribed formation shape, we propose the
following control law for each agent i with respect to the reference qd in iΣ

ud
i = q̇d

i = −kpbi
q̂g

ci − qg
d

δ + ‖q̂g
ci − qg

d‖
− ks∇qg

i
P(qg), (11)

where δ > 1 is a constant scalar, and kp and ks are positive control gains. It also follows from (1) and (7) that

q̂g
ci − qg

d = q̂i
ci + qg

i − (qi
d + qg

i ) = q̂i
ci − qi

d.

Then, the control law ud
i can be equivalently written as

ud
i = −kpbi

q̂i
ci − qi

d

δ + ‖q̂i
ci − qi

d‖
+ ks

∑
j∈Ni

(‖zi
k‖

2 − d2
k )zi

k. (12)

The first term of the control law (12) is responsible for driving the centroid of the formation to track the reference100

signal, and the second one aims for stabilizing the desired formation. Note that not all the agents need to implement
the first term but only those having access to the reference signal qi

d, which is encoded in the binary variable bi ∈ {0, 1}
as described in Section 2. However, all the agents are required to estimate the centroid of the formation through q̂i

ci
and to share this information with their neighbors. The dynamics of q̂i

ci will be given later. It can be shown that the
estimator can be implemented in a fully distributed manner. For the second term of (12), the relative position zi

k and105

the distance ‖zi
k‖ between neighbors can be measured by sensors in the local coordinate system iΣ.

The dynamics of q̂i
ci is given by

˙̂qi
ci = −k1

∑
j∈Ni

ai jsig
(
q̂i

ci − q̂i
c j

)ρ
− k2

∑
j∈Ni

ai j

q̂i
ci − q̂i

c j

fi j(q̂i
ci, q̂

i
c j)
− ks

∑
j∈Ni

(‖zi
k‖

2 − d2
k )zi

k. (13)

5



fi j(q̂i
ci, q̂

i
c j) = ‖q̂i

ci − q̂i
c j‖ +

(√
1 + ‖q̂i

ci − q̂i
c j‖ − 1

)
, and k1 and k2 are positive constants, and ks is defined in (11). ai j is

the (i, j)th entry of the adjacency matrix A. q̂i
c j is the centroid estimation of agent j with respect to iΣ. For any x ∈ R,

sig(x)ρ =
[
sgn(x1)|x1|

ρ, · · · , sgn(xn)|xn|
ρ]T , (14)

where sgn(·) is the signum function and ρ ∈ (0, 1). For a vector x ∈ Rd, the function sig(x) is defined componentwise.
It can be shown that the function sig(·)ρ is continuous. The initial values for q̂i

ci are chosen such that
∑n

i=1 q̂i
ci(0) = 0.

Note that under the assumption that the orientation of the local coordinate systems are the same, the variable q̂i
c j in

(13) can be calculated by
q̂i

c j = q̂ j
c j + qi

ji. (15)

where the neighbor’s estimation q̂ j
c j is transmitted to agent i through communication. The relationship between q̂ j

c j

and q̂i
c j is shown in Fig. 1. Therefore, the estimator (13) can be implemented locally, and thus the proposed distributed

control actions (12) and (13) can be implemented by only employing local information.

O x

y

Oi
xi

yi O j

x j

y j

Ô j
c

q̂
g c j qi

ji

q̂i c j

q̂ j
c j

Figure 1: Relationship between q̂ j
c j and q̂i

c j

To precisely estimate the centroid, it is required that all the local coordinate systems share the same orientation110

with the global one. However, it will be shown in Section 4 that this constraint can be removed.
Now, we present the following main result.

Theorem 1. Suppose the framework (G, q) is minimally and infinitesimally rigid. Under Assumption 1, the formation
tracking task (4) can be achieved using the control law (22) for each agent i together with the estimator (13), if the
parameters are chosen such that

k2 ≥
(kp + σ)

√
n

ε
√

1 − cos πn
, (16)

and

ks >
kpn
2δ

, (17)

where ε is a positive scalar satisfying ε ∈ (0, 2/3]. Under an undirected connected graph, the estimation q̂g
ci, i =

1, · · · , n, will converge to qg
c in finite time.

Proof. We carry out the proof in two steps. We first prove the estimation q̂g
ci, i = 1, · · · , n, will converge to qg

c in finite
time. Consider the following equality

q̂i
ci − q̂i

c j = q̂i
ci − q̂ j

c j − qi
ji = −

(
q̂ j

c j − q̂i
ci − qi

i j

)
.

In view of the definition (14), we have

sig
(
q̂i

ci − q̂ j
c j − qi

ji

)ρ
= −sig

(
q̂ j

c j − q̂i
ci − qi

i j

)ρ
.

6



Note that for an undirected graph, ai j = a ji, thus it follows

n∑
i=1

˙̂qi
ci = 0. (18)

Define the estimation error with respect to the global coordinate system gΣ as

q̃g
ci = q̂g

ci − qg
c , i = 1, · · · , n.

Now, consider the following Lyapunov function candidate

V1 =
1
2

n∑
i=1

‖q̂g
ci − qg

c‖
2 =

1
2

n∑
i=1

(q̃g
ci)

T (q̃g
ci), (19)

where the centroid qg
c is defined in (3). The time derivate of V1 is given by

V̇1 =

n∑
i=1

(q̃g
ci)

T
(
˙̂qi

ci + q̇g
i − q̇g

c

)
. (20)

By combining (18) and the initial conditions for the estimator, i.e.,
∑n

i=1 q̂i
ci(0) = 0, it follows

∑n
i=1 q̂i

ci(t) = 0,∀t > 0.
Consequently, recalling (7), we have

∑n
i=1 q̂g

ci =
∑n

i=1 qg
i = nqg

c , and thus

n∑
i=1

(q̃g
ci)

T q̇g
c =

n∑
i=1

(
q̂g

ci − qg
c

)T
q̇g

c =

 n∑
i=1

q̂g
ci −

n∑
i=1

qg
c

T

q̇g
c = 0. (21)

From the geometrical relationship, we know qd
i = −qi

d, and qi
d = qg

d − qg
i . Then, in view of the system model (1), the

control input with respect to the global coordinate system gΣ, i.e., ug
i is

q̇g
i = ug

i = q̇g
d − kpbi

q̂i
ci − qi

d

δ + ‖q̂i
ci − qi

d‖
+ ks

∑
j∈Ni

(‖zi
k‖

2 − d2
k )zi

k. (22)

Then substituting (21) and (22) into (20), together with the facts that qi
ji = qg

j − qg
i and q̂g

ci = q̂i
ci + qg

i , we have

V̇1 = − k1

n∑
i=1

(q̃g
ci)

T
∑
j∈Ni

ai jsig
(
q̂g

ci − q̂g
c j

)ρ
− k2

n∑
i=1

(q̃g
ci)

T
∑
j∈Ni

ai j

q̂g
ci − q̂g

c j

fi j(q̂
g
ci, q̂

g
c j)

− kp

n∑
i=1

bi(q̃
g
ci)

T

 q̂i
ci − qi

d

δ + ‖q̂i
ci − qi

d‖

 +

n∑
i=1

(q̃g
ci)

T q̇g
d,

where fi j(q̂
g
ci, q̂

g
c j) = ‖q̂g

ci − q̂g
c j‖ +

(√
1 + ‖q̂g

ci − q̂g
c j‖ − 1

)
.115

Note that
q̂g

ci − q̂g
c j = q̂g

ci − qg
c − (q̂g

c j − qg
c) = q̃g

ci − q̃g
c j.

When g(xi− x j) is an odd function, under an undirected graph, we have
∑

i, j ai jxig(xi− x j) = 1
2
∑

i, j ai j(xi− x j)g(xi− x j).
Therefore, V̇1 satisfies

V̇1 ≤ −
k1

2

n∑
i=1

∑
j∈Ni

ai j

 d∑
k=1

∣∣∣∣q̃g
ci(k) − q̃g

c j(k)

∣∣∣∣ρ+1
 − k2

2

n∑
i=1

∑
j∈Ni

ai j

(
q̃g

ci − q̃g
c j

)T (
q̃g

ci − q̃g
c j

)
fi j(q̃

g
ci − q̃g

c j)

+ kp

n∑
i=1

bi‖q̃
g
ci‖

 ‖q̂i
ci − qi

d‖

δ + ‖q̂i
ci − qi

d‖

 + ‖(q̃g
c)T (1n ⊗ q̇g

d)‖, (23)
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where fi j(q̃
g
ci, q̃

g
c j) = ‖q̃g

ci − q̃g
c j‖ +

(√
1 + ‖q̃g

ci − q̃g
c j‖ − 1

)
, and q̃g

ci(k) denotes the kth entry of the vector q̃g
ci. In addition,

we have (
q̃g

ci − q̃g
c j

)T (
q̃g

ci − q̃g
c j

)
‖q̃g

ci − q̃g
c j‖ +

(√
1 + ‖q̃g

ci − q̃g
c j‖ − 1

) ≥ ε‖q̃g
ci − q̃g

c j‖, (24)

where ε ∈ (0, 2/3]. The proof of (24) is given in Appendix. It is also straightforward to know

‖q̂i
ci − qi

d‖

δ + ‖q̂i
ci − qi

d‖
< 1. (25)

Substituting (24) and (25) into (23), we obtain

V̇1 ≤ −
k1

2

n∑
i=1

∑
j∈Ni

ai j

d∑
k=1

∣∣∣∣q̃g
ci(k) − q̃g

c j(k)

∣∣∣∣ρ+1
−

k2

2
ε

n∑
i=1

∑
j∈Ni

ai j‖q̃
g
ci − q̃g

c j‖ + kp

n∑
i=1

bi‖q̃
g
ci‖ +

√
nσ‖q̃g

c‖. (26)

It is clear that
n∑

i=1

bi‖q̃
g
ci‖ = ‖(B1n)T q̃g

c‖ ≤ ‖B1n‖‖q̃
g
c‖ ≤

√
n‖q̃g

c‖. (27)

In light of Lemma 3 and Lemma 2, it yields

n∑
i=1

∑
j∈Ni

ai j‖q̃
g
ci − q̃g

c j‖ ≥

 n∑
i=1

∑
j∈Ni

a2
i j‖q̃

g
ci − q̃g

c j‖
2


1
2

≥
√

2λ2(LAs )‖q̃
g
c‖, (28)

where As = [a2
i j] ∈ R

n×n is an adjacency matrix and q̃g
c = [(q̃g

c1)T , · · · , (q̃g
cn)T ]T .

From [35], we know that λ2(LAs ) ≥ 2e(G)(1−cos π
n ), where e(G) is the edge connectivity of the underlying graphG,

i.e., the minimal number of those edges whose removal would result in losing connectivity of the graph G. Obviously,
for an undirected connected graph, e(G) > 1. Under the condition (16), and combining (27) and (28), we have

−
k2

2
ε

n∑
i=1

∑
j∈Ni

ai j‖q̃
g
ci − q̃c j‖ + kp

n∑
i=1

bi‖q̃
g
ci‖ +

√
nσ‖q̃g

c‖

≤ −
k2
√

2
ε
√
λ2(LAs )‖q̃

g
c‖ + kp

√
n‖q̃g

c‖ +
√

nσ‖q̃g
c‖ ≤ 0. (29)

By Substituting (29) into (26), and applying Lemma 3, it can be obtained that

V̇1 ≤ −
k1

2

n∑
i=1

∑
j∈Ni

ai j

 d∑
k=1

∣∣∣∣q̃g
ci(k) − q̃g

c j(k)

∣∣∣∣ρ+1


≤ −
k1

2

∑
i, j

ai j

 d∑
k=1

(q̃g
ci(k) − q̃g

c j(k))
2


ρ+1

2

≤ −
k1

2
(2q̃g

c LAρ q̃
g
c)

1+ρ
2 ,

where Aρ = [a
2
ρ+1

i j ] ∈ Rn×n. From Lemma 2, we have

V̇1(t) ≤ −
k1

2

[
2λ2(LAρ )

] 1+ρ
2

(
‖q̃c‖

2
) 1+ρ

2
≤ −k12ρ[λ2(LAρ )]

1+ρ
2 V1(t)

1+ρ
2 .
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Consequently, we conclude from Lemma 4 that

lim
t≥T0

(
q̂g

ci(t) − qg
c(t)

)
= 0, (30)

where T0 ≤ V1(0)/k1(1 − ρ)2ρ−1
[
λ2(LAρ )

] 1+ρ
2 . This completes the proof that q̂g

ci converge to qg
c in finite time.

Now we prove that the tracking errors converge to zero.
We will prove in Appendix 7.2 that, by applying the proposed estimator and control algorithms, the state of the

closed-loop system, i.e., q̃g
d, is bounded in (0,T0]. In addition, the states qg

i , the control signal ug
i and the estimation120

variable q̂i
ci are also bounded in finite time given bounded initial states qg

i (0) and q̂g
ci(0).

Now we are in the position to show the effectiveness of our control laws in achieving estimation based average
tracking. Note that control laws (11) can be written in a stacked form as

ug = 1n ⊗ q̇g
d − kp

(
BQ̂δ ⊗ Id

)
(q̂g

c − 1n ⊗ qg
d) − ks∇P(qg), (31)

where

Q̂δ =


1

δ+‖q̂g
c1−qg

d‖
· · · 0

...
. . .

...

· · · · · · 1
δ+‖q̂g

cn−qg
d‖

 .
It is easy to show the matrix Qδ is positive definite. From Theorem 1, when t ≥ T0, q̂g

ci can be replaced by qg
c . Then,

ug becomes
ug = 1n ⊗ q̇g

d − kp (BQδ ⊗ Id)
[
1n ⊗ (qg

c − qg
d)
]
− ks∇P(qg), (32)

where
Qδ =

1
δ + ‖qg

c − qg
d‖

In.

Multiplying both sides of (32) by (1T
n ⊗ Id), we have

(1T
n ⊗ Id)(ug − 1n ⊗ q̇g

d) = −kp[
(
1T

n BQδ ⊗ Id

) [
1n ⊗ (qg

c − qg
d)
]
− ks(1T

n ⊗ Id)∇P(qg). (33)

When t ≥ T0, the Lyapunov function candidate is chosen as

V =
1
2

(q̃g
d)T (q̃g

d) + P(qg), (34)

where q̃g
d

∆
= qg

c − qg
d is the centroid tracking error. The derivative of V is given by

V̇ = (q̃g
d)T (q̇g

c − q̇g
d) + ∇P(qg)T q̇g. (35)

Note that

q̇g
c =

1
n

n∑
i=1

q̇g
i =

1
n

(1T
n ⊗ Id)q̇g =

1
n

(1T
n ⊗ Id)ug. (36)

Then it follows
q̇g

c − q̇g
d = −kp (BQδ ⊗ Id)

[
1n ⊗ (qg

c − qg
d)
]
− ks∇P(qg).

Substituting (31), (33), and (36) into (35), we get

V̇ = −
kp

n
(q̃g

d)T
(
1T

n BQδ1n ⊗ Id

)
q̃g

d −
ks

n
(q̃g

d)T
(
1T

n ⊗ Id

)
∇P(qg)

− kp∇P(qg)T (BQδ ⊗ Id)
(
1n ⊗ q̃g

d

)
− ks(∇P(qg))T∇P(qg) + (∇P(qg))T (1n ⊗ q̇g

d).
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From (10), we have (q̃g
d)T

(
1T

n ⊗ Id

)
∇P(qg) = 0 and (∇P(qg))T (1n ⊗ q̇g

d) = 0 due to the fact that R(qg)
(
1T

n ⊗ Id

)
= 0. In

light of (36), we obtain that

V̇ ≤ −
kp

n

n∑
i

bi

δ + ‖q̃g
d‖
‖q̃g

d‖
2 − ks‖∇P(qg)‖2 +

kp
√

n

δ + ‖q̃g
d‖
‖q̃g

d‖‖∇P(qg)‖

≤ −

[
‖q̃g

d‖

‖∇P(qg)‖

]T

Q
[
‖q̃g

d‖

‖∇P(qg)‖

]
, (37)

where

Q =


kp

δ+‖q̃g
d‖

−
kp
√

n
2(δ+‖q̃g

d‖)

−
kp
√

n
2(δ+‖q̃g

d‖)
ks

 .
It can be checked that the matrix Q is positive definite when the control gains kp and ks are chosen such that

ks >
kpn

4(δ + ‖q̃g
d‖)

,

which naturally holds if the condition (17) is satisfied.
Then, we know q̃g

d is bounded, which implies qg
c , and thus qg

i are bounded under Assumption 1. It follows from
(9) that ∇P(qg) is bounded. Hence, the control input (22), i.e., the velocity q̇g

i is bounded. Together with Assumption125

1, we know ˙̃qg
d and ∇Ṗ(qg) are bounded. Therefore, taking the time derivative of (37), we know V̈ is bounded. It can

be concluded from the Barbalat’s Lemma [36] that V̇ → 0, as t → ∞, i.e., q̃g
d → 0 and R(qg)Tφ(qg) → 0, as t → ∞,

which implies the tracking objective is achieved. For a minimally and infinitesimally rigid framework, the rigidity
matrix R(qg) is full row rank. Hence, we have φ(qg)→ 0, namely, all the agents converge to the target set Td in (2)

The proof of Theorem 1 is completed.130

Remark 2. It is worth noting that ug
i is employed in (22) for purposes of theoretical analysis. While the control input

to be implemented in practice is (12) and (13).

Remark 3. The assumption that the framework is minimally and infinitesimally rigid can be relaxed to that the
framework is only infinitesimally rigid [9, 11]. In view of the developed techniques for analyzing non-minimally135

infinitesimally rigid frameworks in [11], the proof is omitted here for the sake of brevity.

Remark 4. In this paper, to implement the centroid estimator (13), the underlying communication graph is only
required to be a general undirected graph, which could be the same one as required for formation shape control. To
explore whether the condition of an undirected graph is necessary for the convergence of the proposed estimator, we
carried out a numerical example with three agents under directed graphs. The results show that all the estimation140

errors will reach a consensus, but not at zero, which implies the proposed estimator fails in directed graphs, even in
the simplest case of three agents. Focusing on the second term of (12), i.e., the distance-based formation controller,
there has been progress for achieving such formations by employing directed graphs using the notion of persistency
[37].

4. Extension to more general scenarios145

The results in Section 3 are obtained under the condition that the local coordinate systems iΣ, i = 1, · · · , n, have
the same orientations with the global coordinate system gΣ. However, this constraint may not be satisfied in some
applications. In this section, we consider a more general case where the orientations of the local coordinate systems
differ from the global one, which is depicted in Fig. 2.

From Fig. 2, we have
q̂g

ci = Rg
i q̂i

ci + qg
i , (38)
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O x

y

Oi

x iy
i O j

x jy
j

q̂
g c j

Ô j
c

qi
ji

q̂
ic j

q̂ j
c j

Figure 2: Different orientations between local coordinate systems and the global one.

where Rg
i ∈ S O(d) is a constant rotation matrix. The centroid estimator is now given by

˙̂qi
ci = −k1

∑
j∈Ni

ai jsig
(
q̂i

ci − q̂i
c j

)ρ
− k2

∑
j∈Ni

ai j

q̂i
ci − q̂i

c j

fi j(q̂i
ci, q̂

i
c j)

+ ks

∑
j∈Ni

(‖zi
k‖

2 − d2
k )qi

i j, (39)

where k1 and k2 are chosen according to Theorem 1, and fi j(q̂i
ci, q̂

i
c j) = ‖q̂i

ci − q̂i
c j‖+

(√
1 + ‖q̂i

ci − q̂i
c j‖ − 1

)
. Again, the

variable q̂i
c j is obtained through q̂i

c j = q̂ j
c j + qi

ji, where qi
ji is the relative position between O j and Oi with respect to iΣ,

which can be measured by agent i locally. It is worth noting that the variable qi
ji employed in (39) is measured in the

local coordinate system iΣ, allowing the distinction of the orientations between the local coordinate systems and the
global one, since the value of qi

ji will not be altered in that case. Summing up both sides of (38), we have

n∑
i=1

q̂g
ci =

n∑
i=1

Rg
i q̂i

ci +

n∑
i=1

qg
i . (40)

Since the local coordinate systems have the same orientation, we obtain that Rg
i = Rg

j , i, j = 1, · · · , n. By denoting

Rg
l

∆
= Rg

i , (40) can be written as
n∑

i=1

q̂g
ci = Rg

l

n∑
i=1

q̂i
ci +

n∑
i=1

qg
i .

Considering the estimator (39), we know
∑n

i=1
˙̂qi

ci = 0. Then, in combination with the initial condition
∑n

i=1 q̂i
ci(0) = 0,150

it yields
∑n

i=1 q̂g
ci =

∑n
i=1 qg

i = nqg
c . Following the similar steps as in Section 3, it can be shown that q̂g

ci converges to qg
c

in finite time.
In this scenario, the control law is designed as

ud
i = q̇d

i = −kpbi
q̂i

ci − qi
d

δ′ + ‖q̂i
ci − qi

d‖
− ks

∑
j∈Ni

(‖zi
k‖

2 − d2
k )qi

i j, (41)

where δ′ > 1 is a constant scalar, and kp and ks are chosen such that (17) holds. It can be seen that (41) has the same
form as that of (12), while the value of qi

i j here differs from qg
i j due to orientation difference between local and global

coordinate systems.155

Following the similar proof steps as in Section 3, the centroid of the formation can be proved to converge to the
reference signal. The details of the proof is omitted in this section to avoid repetition.

Remark 5. For the scenario where the orientations of the local coordinate systems are different from each other, it
can be shown that the estimator and the control law remain to be the same as (39) and (41) without loss of stability.
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While the variable q̂i
c j in (39) is now calculated by q̂i

c j = Ri
jq̂

j
c j + qi

ji, where Ri
j is the rotation matrix with respect to160

frames i and j. Note that the rotation matrix depends only on the relative rotation angle between local coordinate
systems iΣ and jΣ. Therefore, with the sensing capability of rotation angles with respect to neighbors, the proposed
control framework is still applicable to the case when the orientations of local systems are not necessarily equal to
each other. For those systems without such sensing capability, estimation techniques are reported in recent works,
e.g., [13, 38].165

5. Simulations

To validate the theoretical results, we consider the formation tracking problem for eight agents with dynamics (1),
whose interaction relationship is given in Fig. 3.

1
2

3

4
5

6

7

8

Figure 3: The prescribed framework of the eight agents–regular octagon

Take the initial positions for the eight agents as, respectively, [1, 3]T , [−1, 1]T , [−3, 0.2]T , [−2.7,−0.2]T , [0.2,−4]T ,
[2,−2]T , [1,−0.5]T , [1, 2]T . The reference signal is given by σd(t) = [6 ∗ t, 5 ∗ cos(t)]T . Let the initial values of the170

centroid estimation be q̂i
ci(0) = [4.5 − i, i − 4.5]T , i = 1, · · · , 8, which satisfies the condition that

∑8
i=1 q̂i

ci(0) = 0. The
control parameters are chosen as ρ = 1/4, k1 = 3, k2 = 12, kp = 9 and ks = 13.

−5 0 5 10 15 20 25 30 35
−10

−8

−6

−4

−2

0

2

4

6

q(1)

q(
2)

 

agent 1
agent 2
agent 3
agent 4
agent 5
agent 6
agent 7
agent 8
center

t=0s

t=1s

t=2s

t=3s
t=4s

t=5s

Figure 4: Formation shape evolution.

The simulation results are shown in Fig. 4 – 6, where we use x(i), i = 1, 2, to denote the ith component of vector x.
The formation geometries of the agents at t ∈ {0; 1; 2; 3; 4; 5}s are shown in Fig. 4, where the red cross and the solid
black line represent the centroid of the whole formation shape and the centroid’s reference trajectory, respectively.175

From Fig. 4 we can see that the prescribed regular octagon is achived with its centroid converging to the reference
trajectory. The convergence of the centroid tracking error is further shown in Fig. 5. Fig. 6 depicts the centroid
estimation errors associated with agents 1, 3, 5, and 7 as representatives, which demonstrates the effectiveness of the
proposed finite-time estimator.

12



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.4

−0.2

0

0.2

t/s

[q
g c
−

q
g d
](
1
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−6

−4

−2

0

2

4

t/s

[q
g c
−

q
g d
](
2
)

Figure 5: Centroid tracking error qg
c − qg

d .
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Figure 6: Centroid estimation error q̂i
ci − qi

c.

6. Conclusion180

In this paper, we have investigated the formation tracking problem using local coordinate systems. By introducing
a new gradient descent term, an alternative estimator is designed for each agent such that they can obtain the precise
knowledge of the formation’s centroid in finite time. Moreover, we propose a distributed estimator-controller strategy,
which can be implemented using only agents’ local coordinate systems. One future study is to extend the current
results to the case that the orientations of the local coordinate systems are inconsistent. Another possible exploration185

is to consider the time-varying formation tracking problems, e.g. formation spinning and formation scaling.

7. Appendix

7.1. Proof of (24)
Suppose x ∈ Rd and ‖x‖ , 0, when ε is chosen such that 0 < ε ≤ 2

3 , we have

(1 − ε)2‖x‖2 + ε(2 − 3ε)‖x‖ ≥ 0.

Equivalently,
(1 − ε)2‖x‖2 + 2ε‖x‖ − 2ε2‖x‖ ≥ ε2‖x‖. (42)

Then, adding ε2 to both sides of (42), we obtain that

(1 − ε)2‖x‖2 + 2ε(1 − ε)‖x‖ + ε2 ≥ ε2‖x‖ + ε2,

which is can be written as
[(1 − ε)‖x‖ + ε]2 ≥ ε2(1 + ‖x‖). (43)

By taking a square root of (43), it follows

(1 − ε)‖x‖ + ε ≥ ε
√

1 + ‖x‖.

After simple calculation, we get
‖x‖ ≥ ε‖x‖ + ε

( √
1 + |x| − 1

)
. (44)

Multiplying both sides of (44) by |x|, we have

|x|2 ≥ ε |x|2 + ε‖x‖
( √

1 + ‖x‖ − 1
)
.
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Since ‖x‖ + ‖x‖
(√

1 + ‖x‖ − 1
)
> 0, it is straightforward to know

‖x‖2

‖x‖ +
(√

1 + ‖x‖ − 1
) ≥ ε‖x‖. (45)

When ‖x‖ → 0, we have

lim
‖x‖→0

‖x‖2

ε‖x‖
(
‖x‖ +

(√
1 + ‖x‖ − 1

)) = lim
‖x‖→0

‖x‖2

ε‖x‖2 + 1
2 ε‖x‖

2
=

2
3ε
,

where we have used the equivalent infinitesimal
(√

1 + ‖x‖ − 1
)
∼ 1

2‖x‖. In view of the condition that 0 < ε ≤ 2
3 , we

further obtain that

lim
‖x‖→0

‖x‖2

ε‖x‖
(
‖x‖ +

(√
1 + ‖x‖ − 1

)) ≥ 1.

In addition, it holds that

lim
‖x‖→0

‖x‖2

‖x‖ +
(√

1 + ‖x‖ − 1
) = lim

‖x‖→0

‖x‖2

‖x‖ + 1
2‖x‖

= 0.

Hence, ∀x ∈ Rn, 0 < ε ≤ 2
3 , we have

‖x‖2

‖x‖ +
(√

1 + ‖x‖ − 1
) ≥ ε‖x‖.

7.2. Proof of the boundedness of q̃g
d in (0,T0]

Now we consider the system dynamics during t ∈ (0,T0]. Then (31) can be equivalently written as

ug =1n ⊗ q̇g
d − kp

(
BQ̂δ ⊗ Id

) (
q̂g

c − 1n ⊗ qg
c + 1n ⊗ qg

c − 1n ⊗ qg
d

)
− ks∇P(qg)

=1n ⊗ q̇g
d − kp

(
BQ̂δ ⊗ Id

) (
1n ⊗ qg

c − 1n ⊗ qg
d

)
− ks∇P(qg)

− kp

(
BQ̂δ ⊗ Id

) (
q̂g

c − 1n ⊗ qg
c

) (46)

Note that the first line after the second equality sign in (46) is exactly (32). In addition, we know

−
kp

n
(q̃g

d)T (1T
n BQ̂δ ⊗ Id)q̃g

c ≤
kp

2n

n∑
i=1

bi

δ + ‖q̂g
ci − qg

d‖
(‖q̃g

d‖
2 + ‖q̃g

ci‖
2)

≤
kp

2n

n∑
i=1

bi

δ + ‖q̂g
ci − qg

d‖
‖q̃g

d‖
2 +

kp

2nδ
‖q̃g

c‖
2

Then in view of (37), we have

V̇ ≤ −
kp

2n

n∑
i

bi

δ + ‖q̂g
ci − qg

d‖
‖q̃g

d‖
2 − ks‖∇P(qg)‖2 +

kp
√

n

δ + ‖q̂g
ci − qg

d‖
‖q̃g

d‖‖∇P(qg)‖

+
kp

2n

n∑
i=1

bi

δ + ‖q̂g
ci − qg

d‖
‖q̃g

ci‖
2

≤ −

[
‖q̃g

d‖

‖∇P(qg)‖

]T

Q′
[
‖q̃g

d‖

‖∇P(qg)‖

]
+

kp

2nδ
‖q̃g

c‖
2,

(47)

where

Q′ =


kp

2(δ+supt∈(0,T ]) ‖q̂
g
ci−qg

d‖)
−

kp
√

n
2(δ+supt∈(0,T ]) ‖q̂

g
ci−qg

d‖)

−
kp
√

n
2(δ+supt∈(0,T ]) ‖q̂

g
ci−qg

d‖)
ks

 .
14



Then, Q′ is positive definite if ks is chosen such that

ks >
kpn

2
(
δ + supt∈(0,T ]) ‖q̂

g
ci − qg

d‖
) ,

which automatically holds under the condition (17). It follows from (47) that

V(T0) = V(0) −
∫ T0

0

[
‖q̃g

d‖

‖∇P(qg)‖

]T

Q′
[
‖q̃g

d‖

‖∇P(qg)‖

]
dt +

∫ T0

0

kp

2nδ
‖q̃g

c‖
2dt

Recalling the convergence of ‖q̃g
c‖ from (30), we know

∫ T0

0
kp

2nδ‖q̃
g
c‖

2dt is bounded for finite number T0. It thus190

follows from the formula of V in (34) that V(T0) is bounded. Hence, during t ∈ (0,T0], q̃g
d and P(qg) are both

bounded.
In addition, we can also infer ∇P(qg) is bounded from the boundedness of P(qg), and thus the control input ug

i in
(22) is bounded. Hence, the position variable qg

i becomes bounded in finite time. It can also be obtained from (13)
that q̂i

ci is bounded in finite time.195
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