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Preface

BNAIC is the annual Benelux Conference on Artificial Intelligence. In 2017, the
29" edition of BNAIC is organized by the Institute of Artificial Intelligence and
Cognitive Engineering (ALICE), University of Groningen, under the auspices
of the Benelux Association for Artificial Intelligence (BNVKI) and the Dutch
Research School for Information and Knowledge Systems (SIKS).

BNAIC 2017 takes place in Het Kasteel, Melkweg 1, Groningen, The Nether-
lands, on Wednesday November 8 and Thursday November 9, 2017. BNAIC
2017 includes invited speakers, research presentations, posters, demonstrations,
a deep learning workshop (organized by our sponsor NVIDIA) and a research
and business session.

The four BNAIC 2017 keynote speakers are:

e Marco Dorigo, Université Libre de Bruxelles
Swarm Robotics: Current Research Directions at IRIDIA

e Laurens van der Maaten, Facebook AT Research
From Visual Recognition to Visual Understanding

e Luc Steels, Institute for Advanced Studies (ICREA), Barcelona
Digital Replicants and Mind-Uploading

e Rineke Verbrugge, University of Groningen
Recursive Theory of Mind: Between Logic and Cognition

Three FACt talks (FACulty focusing on the FACts of Artificial Intelligence) are
scheduled:

e Bert Bredeweg, Universiteit van Amsterdam
Humanly Al: Creating smart people with Al

e Eric Postma, Tilburg University
Towards Artificial Human-like Intelligence

e Geraint Wiggins, Queen Mary University of London/Vrije Universiteit
Brussel
Introducing Computational Creativity

Authors were invited to submit papers on all aspects of Artificial Intelligence.
This year we have received 68 submissions in total. Of the 30 submitted Type
A regular papers, 11 (37%) were accepted for oral presentation, and 14 (47%)
for poster presentation. 5 (17%) were rejected. Of the 19 submitted Type B
compressed contributions, 17 (89%) were accepted for oral presentation, and
2 (11%) for poster presentation. None were rejected. All 6 submitted Type
C demonstration abstracts were accepted. Of the submitted 13 Type D thesis
abstracts, 5 (38%) were accepted for oral presentation, and 8 (62%) for poster
presentation. None were rejected. The selection was made using peer review.
Each submission was assigned to three members of the program committee, and
their expert reviews were the basis for our decisions.

All submissions accepted for oral or poster presentations and all demonstra-
tion abstracts appear in the electronic preproceedings, made available on the

vi



conference web site during the conference (http://bnaic2017.ai.rug.nl/).
All 11 Type A regular papers accepted for oral presentation will appear in the
postproceedings, to be published in the Springer CCIS series after the confer-
ence.

The BNAIC 2017 conference would not be possible without the support and
efforts of many. We thank the members of the program committee for their con-
structive and scholarly reviews. We are grateful to Elina Sietsema, Carlijne de
Vries and Sarah van Wouwe, members of the administrative staff at the Institute
of Artificial Intelligence and Cognitive Engineering (ALICE), for their tireless
and reliable support. We thank our local organisation team Luca Bandelli, Abe
Brandsma, Tomasz Darmetko, Mingcheng Ding, Ana Dugeniuc, Joel During,
Ameer Islam, Siebert Looije, René Mellema, Michaela Mrazkova, Annet Onnes,
Benjamin Shaffrey, Sjaak ten Caat, Albert Thie, Jelmer van der Linde, Luuk van
Keeken, Paul Veldhuyzen, Randy Wind, and Galiya Yeshmagambetova, all stu-
dents in our BSc and MSc Artificial Intelligence programs, for enthusiastically
volunteering to help out in many ways. We thank Annet Onnes for preparing
the preproceedings, Jelmer van der Linde for developing the web site, Randy
Wind for designing the program leaflet, and Albert Thie for coordinating the
local organisation.

We are grateful to our sponsors for their generous support of the conference:

e Target Holding

e NVIDIA Deep Learning Institute
e Anchormen

e Quint

e the Netherlands Research School for Information and Knowledge Systems
(SIKS)

e SIM-CI

e Textkernel

o LuxAl

e IOS Press

e Stichting Knowledge-Based Systems (SKBS)
e SSN Adaptive Intelligence

We wish you a pleasant conference!

Bart Verheij & Marco Wiering
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Learning-based diagnosis and repair

Nico Roos

Data Science and Knowledge Engineering
Maastricht University
roos@maastrichtuniversity.nl

Abstract. This paper proposes a new form of diagnosis and repair based
on reinforcement learning. Self-interested agents learn locally which agents
may provide a low quality of service for a task. The correctness of learned
assessments of other agents is proved under conditions on exploration
versus exploitation of the learned assessments.

Compared to collaborative multi-agent diagnosis, the proposed learning-
based approach is not very efficient. However, it does not depend on
collaboration with other agents. The proposed learning based diagnosis
approach may therefore provide an incentive to collaborate in the exe-
cution of tasks, and in diagnosis if tasks are executed in a suboptimal
way.

1 Introduction

Diagnosis is an important aspect of systems consisting of autonomous and pos-
sibly self-interested agents that need to collaborate [4-7,10,8,9,11,12,14-18,
20, 19, 29, 30, 21-23, 25, 24, 2628, 32-34, 37]. Collaboration between agents may
fail because of malfunctioning agents, environmental circumstances, or malicious
agents. Diagnosis may identify the cause of the problem and the agents respon-
sible [31]. Efficient multi-agent diagnosis of collaboration failures also requires
collaboration and requires sharing of information. Agents responsible for collab-
oration failures may be reluctant in providing the correct information. Therefore
it is important to have an incentive to provide the right information. The ability
to learn an assessments of other agents without the need to exchange informa-
tion, may provide such an incentive.

This paper addresses the learning of a diagnosis in a network of distributed
services. In such a network, tasks are executed by multiple agents where each
agent does a part of the whole task. The execution of a part of a task will be
called a service.

The more than 2000 year old silk route is an example of a distributed network
of services. Local traders transported silk and other goods over a small part of the
route between China and Europe before passing the goods on to other traders. A
modern version of the silk route is a multi modal transport, which can consists
of planes, trains, trucks and ships. Another example of distributed services is the
computational services on a computer network. Here, the processing of data are
the distributed services. In smart energy networks, consumers of energy may also



be producers of energy. The energy flows have to be routed dynamically through
the network. A last example of a distributed service is Industry 4.0. In Industry
4.0, the traditional sequential production process is replaced by products that
know which production steps (services) are required in their production. Each
product selects the appropriate machine for the next production step and tells
the machine what is should do.

To describe a network of distributed services such that diagnosis can be
performed, we propose a directed graph representation. An arc of the graph
represents the provision of a service by some agent. The nodes are the points
where a task! is transferred from one agent to another. Incorrect task executions
are modeled as transitions to special nodes.

The assumption that agents are self-interested and no agent has a global view
of the network, limits the possibility of diagnosis and repair. We will demonstrate
that it is still possible to learn which agents are reliable w.r.t. the quality of
service that they provide.

The remainder of the paper is organized as follows. In the next section, we
will present our graph-based model of a network of distributed services. Section
3 presents an algorithm for locally learning the reliability of agents providing
services. Section 4 presents the experimental results and Section 5 concludes the
paper.

2 The model

We wish to model a network of services provided by a set of agents. The services
provided by the agents contribute to the executions of tasks. The order of the
services needed for a task need not be fixed, nor the agents providing the services.
This suggests that we need a model in which services cause state transitions, and
in each state there may be a choice between several agent-service combinations
that can provide the next service. The service that is provided by an agent may
be of different quality levels. We can model this at an abstract level by different
state transitions. If we also abstract from the actual service descriptions, then
we can use a graph based representation.

We model a network of services provided by a set of agents Ag using a graph
G = (N, A), where the N represents a set of nodes and A = {(n;, n}, ag;) | {ni,n}}
C N,ag; € Ag}yi‘1 set of arcs. Each arc (n,n’, ag) € A represents a service (n,n’)
that is provided by an agent ag € Ag. We allow for multiple services between
two nodes provided that the associated agents are different; i.e., several agents
may provide the same service.

A set of tasks T is defined by pairs of nodes (s,d) € T. Any path between
the source s and the destination d of a task (s,d) € T} i.e., a path (a1,...,ax)
with a; = (n4,mi41, ag;), n1 = s and ni+1 = d, represents a correct execution of
the task.

An incorrect execution of a task (s, d) € T is represented by a path that ends
in a node d’ not equal to d; i.e., a path (ai,...,ar) with a; = (n;,nit1, ag;),

! In smart energy networks the tasks are the directions in which energy must flow.



ny = s and nipy1 = d' # d. A special node f is used to denote the complete
failure of a service provided by an agent. No recovery from f is possible and no
information about this failure is made available.

To describe a sub-optimal execution of a task (s,d) € T, we associate a
set of special nodes with each destination node d. These nodes indicate that
something went wrong during the realization of the task. For instance, goods may
be damaged during the execution of a transport task. The function D : N — 2V
will be used for this purpose. Beside the nodes denoting suboptimal executions,
we also include the normal execution; i.e., d € D(d). Moreover, f € D(d).

To measure the quality of the execution of a task (s,d) € T, we associate
a utility with every possible outcome of the task execution: U(d’,d) for every
d' € D(d). Here, U(f,d) < U(d',d) < U(d,d) for every d' € D(d)\d.

The possible results of a service provided by agent ag in node n for a task
t = (s,d) with destination d, will be specified by the function E(n,d, ag). This
function £ : N x N x Ag — 2"V specifies all nodes that may be reached by the
provided service. The function must satisfy the following requirements:

= E(n,d,ag) € {n" | (n,n", ag) € A}

We also define a probability distribution e : N x N x Ag x N — [0,1] over
E(n,d, ag), describing the probability of every possible outcome of the provided
service; i.e.,
- e(n,d, agvn/) = P(nl | n7d7 ag)
where n' € E(n,d, ag) and }_, c g, 4,09 €(0: d; ag, ') = 1.
There may be several agents in a node n that can provide the next service
for a task ¢ = (s,d) with destination d. The function succ : N x N — 249 will

be used to denote the set of agents succ(n,d) = {ag, ..., ag,} that can provide
the next service.

aBu1

b— 3844

Fig. 1. An example network.

Figure 1 gives an illustration of a network of services represented as a graph.
The network shows two starting nodes for tasks, s; and ss, two successful desti-



nation nodes for tasks, d; and d4, two unsuccessful destination nodes for tasks,
dy and d3, the failure node f and seven intermediate nodes.

3 Distributed learning of agent reliability

Agents may learn locally diagnostic information using feedback about the result
of a task execution. The diagnostic information learned by each agent may enable
it to pass on a task in a node to a next agent such that the task is completed in
the best possible way. So, an agent must learn the reputation of the agents to
which it passes on tasks. This reputation may depend on the node in which the
coordination with the next agent takes place as well as on all future agents that
will provide services for the task.

We could view our model of a network of services provided by agents as
a Markov Decision Process (MDP) [1,13]. In this markov decision process the
nodes in D(d) given the task (s,d), are absorbing states. Only when reaching
a node in D(d) a reward is received. All other rewards are 0. The transition
probabilities are given by e(n,d, ag,n’). If these probabilities do not depend on
the destination; i.e., e(n,d,ag,n’) = P(n’ | n,ag), then we have a standard
markov decision process for which the optimal policy can be learned using Q-
learning [35, 36]. However, Q-learning requires that an agent providing a service
knows the Q-values of the services the next agent may provide. This implies that
we have a Decentralized MDP [2, 3] in which collaboration is needed to learn the
optimal Q-values of services. If agents are willing to collaborate, it is, however,
more efficient to use the traditional forms of diagnosis [31]. Therefore, in this
section, we assume the agents are self-interested and do not collaborate.

To enable local learning of the agents’ reputations, we assume that for every
task t = (s,d) € T one and the same agent ag, is associated with all nodes in
D(d)\ f. Moreover, we assume that each agent that provided a service for the
task execution, has added its signature to the task. The incentive for adding
a signature is the payment for the provided service. The agent ag, uses these
signatures to make the payments and to inform the agents that provided a service
about the success of the whole task execution. The latter information enables
each service agent to assess the quality of the agents to which it passes on tasks.
If the payments depend on the quality of service of the whole chain, the agents
providing services will have an incentive to provide the best possible service and
to pass on a task to a next agent such that the quality of the next services is
maximized.

An agent ag that provided a service must pass on task ¢t = (s,d) € T to the
next agent if the task is not yet finished. There may be k agents that can provide
the next service: agq, ..., ag,. Assuming that agent ag can identify the current
node n and thereby the quality of its own service, ag would like to learn which
of the k agents is the most suited to provide the next service for the task.

The agent ag, associated with the destination d of task ¢ = (s,d) € T will
inform agent ag about the actual quality d’ € D(d) that is realized for the task.
This feedback enables agent ag to evaluate the quality of the whole chain of



services starting with a next agent ag;. So, even if agent ag; is providing a high
quality service, it may not be a good choice if subsequent agents are failing.

An agent ag can learn for each combination of a task destination (the node
d) a next agent ag’ and the current node n, the probability that the remainder
of the task execution will result in the quality d’ € D(d)\f. The probability
estimate is defined as:

pe(d | d,ag',m.i) =S4

where ¢ is the number of times that a task ¢ with destination d is passed on to
agent ag’ in the node n, and Cy | ; is the number of times that agent ag, gives
the feedback of d’ for task ¢ with destination d.

Agent ag may not receive any feedback if the execution of task ¢ ended in a
complete failure, unless agent ag,; knows about the execution of ¢. In the absence
of feedback, agent ag can still learn the probability estimate of a complete failure:

Cr i

i
where Cy | ; is the number of times that no feedback is received from agent ag,.
An underlying assumption is that agent ag, always gives feedback when a task
is completed, and that the communication channels are failure free.

Estimating the probability is not enough. The behavior of future agents may
change over time thereby influencing the probability estimates pe(d’ | d, ag’, n, 7).
Assuming that the transition probabilities e(n,n’, ag,n”) of provided services do
not change over time, the coordination between agents when passing on tasks
is the only factor influencing the probability estimate pe(d’ | d, ag’,n,4). Since
agents have an incentive to select the best possible next agent when passing on a
task, we need to address the effect of this incentive on the probability estimates.
First, however, we will investigate the question whether there exist an optimal
policy for passing on a task to a next agent and a corresponding probability
P(d' | d,ag’,n,).

To answer the above question, utilities of task executions are important.
With more than two possible outcomes for a task execution, i.e., |[D(d)| > 2, the
expected utility of a task execution needs to be considered. Therefore, we need
to know the utility U(d’,d) of all outcomes d' € D(d). We assume that either
this information is global knowledge or that agent ag, provides this information
in its feedback.

Using the utilities of task outcomes, we can prove that there exists an optimal
policy for the agents, and corresponding probabilities.

pe(f | d ag’,n,i) =

Proposition 1. Let ag be an agent that has to choose a next agent ag’ to provide
a service for the task t = (s,d) € T in node n. Moreover, let P(d' | ag’,d,n) be
the probability of reaching d’ given the policies of the succeeding agents.

The utility U(d, ag,n) an agent ag can realize in node n for a task t with des-
tination d, is maximal if every agent ag chooses a next agent ag* in every node
n in which it can provide a service, such that the term Y-, c (g P(d’ | ag*,d,n)-
U(d',d) is mazimal.



Proof. Given a task t = (s,d) € T we wish to maximize the expected utility
agent ag can realize in node n by choosing the proper next agent to provide a
service for the task.

U(d,ag,n)= > P(d |d,n)-U(d,d)

d’€D(d)

= > Y P(d|agdn)-Plag' | dn)-U(d,d)
d’eD(d) ag’

=> Plag' |dn)- Y P(d|ag' dn) Ud,d)
ag’ d’'eD(d)

Here P(ag’ | d,n) is the probability that agent ag chooses ag’ to be the next
agent.

Suppose that the term >, cpq) P(d | ag’,d,n) - U(d',d) is maximal for
ag’ = ag*. Then U(d, ag,n) is maximal if agent ag chooses ag* to be the next
agent with probability 1; i.e., P(ag* | d,n) = 1. Therefore,

U(d,ag,n) = > P(d'|ag*,d,n) U(d,d)
d’eD(d)

We can rewrite this equation as:

U(d,ag,n) = > P(d'|ag*,d,n) U(d,d)
d'eD(d)

> > P(d | dn)-P(n'|ag*d,n) Ud,d)

d'eD(d) n'€E(n,d,ag*)

> P |ag*dn)- > Pd|dn)-Ud,d)

n'€E(n,d,ag*) d’'eD(d)

= Y e(ndag,n)-Ud ag',n)

n’€E(n,d,ag*)

Here P(n' | ag*,d,n) is the transition probability of the service provided by
agent ag*, and U(d, ag*,n') = Zd,eD(d) P(d | d,n")-U(d,d) is the expected
utility agent ag* can realize in node n’ by choosing the proper next agent to
provide a service.

We can now conclude that to maximize U(d, ag,n), agent ag must choose
the agent ag* for which the term }_, cp ) P(d" | ag’,d,n)-U(d', d) is maximal,
and agent ag* ensures that U(d, ag*,n’) is maximized. This result enables us to
prove by induction to the maximum distance to a node d’ € D(d) that for every
agent ag, U(d, ag,n) is mazimal if every agent ag chooses a next agent ag* for
which the term 3, cpq) P(d’ | ag*,d,n) - U(d’,d) is maximal.

— Initialization step Let the current node be d’ € D(d). Then the maximum
distance is 0 and the current agent is the agent ag, receiving the result of

the task. So, U(d, agy,d’) =U(d',d).



— Induction step Let U(d, agy,n') be maximal for all distances less than
k. Let n be a node such that the maximum distance to a node in D(d)
is k. Then according to the above result, U(d, ag,n) is maximal if agent
ag chooses a next agent ag” for which the term ;¢ p) P(d' | ag*,d,n) -
U(d',d) is maximal, and for every n’ € E(n,d, ag*), U(d, ag*,n’) is maximal.
The former condition holds according to the prerequisites mentioned in the
proposition. The latter condition holds according to the induction hypothesis.
Therefore, the proposition holds.

O

The proposition shows that there exists an optimal policy for the agents,
namely choosing the next agent for which the expected utility is maximized.
The next question is whether the agent can learn the information needed to make
this choice. That is, for every possible next agent, the agent must learn the
probabilities of every value in D(d) for a task ¢t = (s,d) € T with destination d.
Since these probabilities depend on the following agents that provide services,
the optimal probabilities, denoted by the superscript *, can only be learned if
these agent have learned to make an optimal choice. So, each agent needs to
balance exploration (choosing every next agent infinitely many times in order to
learn the optimal probabilities) and exzploitation (choosing the best next agent).
We therefore propose the following requirements

— Every agent ag uses a probability P;(ag’ | d,n) to choose a next agent ag’
for the task with destination d. The index i denotes that this probability
depends on the number of times this choice has been made till now.

— The probability P;(ag’ | d,n) that agent ag will choose agent ag’ of which
the till now learned expected utility is sub-optimal, approximates 0 if i — oco.

~ Y Pilag’ | din) = o

The first requirement states that we use a probabilistic exploration. The sec-
ond requirement ensures that the agent will eventually only exploit what it has
learned. The third requirement ensures that the agent will select every possible
next agent infinitely many times in order to learn the correct probabilities.

A policy meeting the requirements is the policy in which the agent ag chooses
the currently optimal next agent ag’ with probability 1 — ﬁ Here, k is the
number of agents that can perform the next service for a task with destination
d, and 7 is the number of times agent ag has to choose one of these k agents for
a task with destination d. The agents that are currently not the optimal choice
are chosen with probability (k%l)l

We can prove that any approach meeting the above listed requirements will
enable agents to learn the optimal policy.

Theorem 1. Let every agent ag meet the above listed requirements for the prob-
ability P;(ag’ | d,n) of choosing the next agent. Moreover, let P*(d' | ag,d,n) be
the optimal probability of reaching the node d' € D(d) if every agent chooses a
next agent ag* for which the term y_ ;¢ pgy P(d" | ag™,d,n)-U(d', d) is mazimal.



Then, every agent ag learns P*(d' | ag’,d,n) through pe(d’ | ag’,d,n,i) if
the number of tasks with destination d for which agent ag has to choose a next
agent ag’, denoted by i, goes to infinity.

Proof. We have to prove that: lim;_, o pe(d’ | ag’,d,n,i) = P*(d' | ag’,d,n).
We can rewrite lim;_,~ pe(d’ | ag,d,n,i) as:

|
3

lim pe(d’ | ag’,d,n, i)

1—> 00

C”/|i.cd/‘cn’li
] Cn’ | 4

=lim

n’€E(n,d,ag’)

Coc, .,
— 1 12 / o\ n’ | i
lim 0 pe(n' | ag’,d.n.i) el
n’€E(n,d,ag")
Coc., .
= Z P’ | ag’,d,n) - lim e
71— 00 n/ ‘ i

n'€E(n,d,ag")

We will prove that C, | ; = oo if i — oo and P(n’ | ag’,d,n) > 0. That is,
for every x € N, lim; oo P(Cyyr | > 2) = 1.

lim P(Cy | ;> x) = lim 1 - P(Cy | ; <)

1—00 1—00
=1 lim Y (P(n' | ag’,d,n))’ - (1= P(n' | ag,d,n))"~
71— 00 _j:O
=1

So, Cyr | § = 00 if i = oco. Therefore,

lim pe(d’ | ag',d,n,i)= Y P(n'|ag’,dn)- lim pe(d | d,n’,j)
e n'€E(n,d,ag") I

The estimated probability pe(d’ | d,n’, j) depends on the probability of choosing
the next agent. This probability is a function of the j-th time agent ag’ must
choose a next agent ag” for a task with destination d in node n'.

C ’ " 5
lim pe(d [ d,n',j)=lm Y. Piag” | dn') 219"
J—00 J—0o0 Cag” | j
ag’’ €suce(n’,d)

where Cygr | ; is the number of times that agent ag” was chosen to be the next
agent, and Cg | 4~ ; is the number of times that subsequently node d’ was
reached.

We will prove that C,gv | ; — 00 if j — oo and Pj(ag” | d,n) > 0 for every
J- That is, for every x € N, lim; o P(Cyyrr | ; > x) = 1. A complicating factor
is that P;j(ag’ | d,n) can be different for every value of j. Let y be the index of



the last time agent ag” is chosen, and let p, be the probability of all possible
sequences till index y. Then we can formulate:

411111 P(Cagu | j > x) = hm 1-— P(Cag” | j S .Z')
j—o0 j—o0

J
=1-p,- lim [ (01— Pelag” | d,n))
]—)OC
k=y+1
=1 eln(pm)-&-z;ﬁ"‘;yﬂ ln(l—Pk(ag” ‘ dan))

According to the Taylor expansion of In(-): In(1—Px(ag” | d,n)) < —Pi(ag’ | d,n).
Therefore,
lim P(cogr | ;> 1) = 1 — ePPe) =Sy Pulag” [ din)
Jj—oo
=1 — )= _— 1

The above result implies:

lim pe(d’ | d,n’,j) = lim E Pj(ag” | d,n') - lim pe(d' | ag”,d,n' k)
j—o0 j—o0 1 suee(n’ d) k—o0
ag succ(n’,

We can now prove the theorem by induction to the maximum distance to a
node d’ € D(d).

— Initialization step Let the current node be d’ € D(d). The maximum dis-
tance is 0 and the current agent is the agent ag, receiving the result of the
task. So, lim; oo pe(d’ | agy,d,d’ i) = P*(d' | agy,d,d’) = 1.

— Induction step Let lim;_,o pe(d’ | ag’,d,n’,j) = P*(d’ | ag’,d,n’) be max-
imal for all distances less than k. Moreover, let the maximum distance from

n to d’ be k.
Then, the expected utility of agent ag” € succ(n/,d) is:

lim Uj(ag”,d,n') = lim Z pe(d | ag”,d,n',j) U(d,d)
Jj—o0 — 0
d'eD(d)
= > P |ag’dn) Ud,d)=U(ag”,d,n')
d’eD(d)

According to the requirement,

lim Pj(agj | d,n") =1 for ag} = argmax,,.U;(ag",d,n’)
j—o0

So,
ag® = lim ag;
j—o0

. " /
= lim argmax,,.Uj;(ag",d,n")
J—00

= argmax,,,»U"(ag”,d,n’)
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This implies:

lim pe(d’' | d,n’,j) = lim Z Pi(ag" | d,n) - lim pe(d' | ag”,d,n’ k)
j—o0 j—o0 k—o0
ag’’ €succ(n’,d)
= Z P*(dl | ag”,d,n') : hm F)j(agl/ | dvn)
ag'’ €succ(n’,d) I7ee

=P(d | ag”,d,n) = P*(d"|d,n')

Therefore,
. 7 ’ N ’ ’ BT 7 /.
ilg(r)lope(d | ag’,d,n,i) = Z P(n' | ag’,d,d) jli)lglcpe(d | d,n',5)

n'€E(n,d,ag")

= Y endagn)- P | )
n’€E(n,d,ag")

=P*(d'| ag’,d,n)
O

The theorem shows us that each agent can learn which next agent results in
an expected high or low quality for the remainder of a task. In order to learn
this assessment, the agents must explore all possible choices for a task infinitely
many times. At the same time the agents may also exploit what they have learned
sofar. In the end the agents will only exploit what they have learned. Hence, the
learning-based approach combines diagnosis and repair.

An advantage of the learning-based approach is that intermitting faults can
be addressed and that no collaboration between service agents is required. A
disadvantage is that making diagnosis requires information about many execu-
tions of the same task. However, as we will see in the next section, a repair is
learned quickly at the price that correctly functioning agents may be ignored.

Agents learn an assessment for each possible destination. In special circum-
stances, they need not consider the destination, and can focus on the next agent
that can provide a service for a task. First, the quality of service provided by
an agent does not depend on the destination of the task. Second, we do not use
utilities for the result of a task and only identify whether a task execution is
successful. If these conditions are met, an agent can learn for every next agent
the probability that the task execution will be successful.

4 Experiments

To determine the applicability of the theoretical results of the previous section,
we ran several experiments. For the experiments, we used a network of n2 normal
nodes organized in n layers of n nodes. Every normal node in a layer, except
the last layer, is connected to two normal nodes in the next layer. Moreover,
from every normal node in de first layer, every normal node in the last layer
can be reached. With every transition a different agent is associated. To model

11



that these agents may provide a low quality of service, for every transition from
normal node n to normal node n’ representing the correct execution of a service
by an agent, there is also a transition from n to an abnormal node n” representing
the incorrect execution of the service. Here, the abnormal node n”’ is a duplicate
of the normal node of n’. For every normal node except the nodes in the first
layer, there is a duplicate abnormal node denoting the sub-optimal execution of
a service. In this model, no recovery is possible. Figure 2 show a 4 by 4 network.
The normal nodes that can be used for a normal execution of tasks are shown
in yellow, blue and green. The duplicate abnormal nodes representing a sub-
optimal execution are shown in orange. The transitions to the latter nodes and
the transitions between the latter nodes are not shown in the figure.

Fig. 2. The network used in the experiments. Note that the dashed arrows denote
transitions from nodes (1,4), (2,1) and (3,4) to nodes (2,1), (3,4) and (4,1) respectively.

In our first experiment we determined how often a randomly chosen service
is executed in 10000 randomly chosen tasks. We used a network of 10 by 10
nodes in this experiment. Figure 3 shows the cumulative results as a function of
the number of processed task. Figure 4 shows in which experiment the service
is used.

In the second experiment we used the same network. A fault probability
of 0.1 was assigned to the randomly chosen service. Again, we measured how
often a service is executed in 10000 randomly chosen tasks. Figure 5 shows the
cumulative results as a function of the number of experiments, and Figure 6
shows in which task the service is executed. We clearly see that the agents learn
to avoid the agent that provides a low quality of service.

The results show that each agent learns to avoid passing on a task to an
agent that may provide a low quality of service. An agent uses the estimated
probabilities of a successful completion of a task when passing on the task to
the next agent. Nevertheless, as shown in Figure 6, the agents still try the low
quality service, but with an increasingly lower probability. This exploration is
necessary to learn the correct probabilities.

12
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Fig. 3. The number of times a selected service is chosen as a function of the number
of processed task.

chosen
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Fig. 4. The tasks in which a selected service is chosen.

Inspection of the learned probabilities shows that the learning process is
slow w.r.t. the total number of executed tasks. Figure 7 shows the learning of
the probability that choosing an agent in a node n will result in a good quality
of service for a task with a specific destination d. The probability that must be
learned is 0.5. The agents only learn when they provided a service for a task
with destination d. In Figure 7, the service is executed only 4 times for tasks
with destination d of 10000 executions of randomly chosen task. Although the
learning process is slow, it is not a problem for the behavior of the network of
distributed services. However, it does result in avoiding the services provided by
some agents while there is no need for it.

In the third experiment we learned the probability that choosing an agent will
result in a good quality of service for a task, independent of the destination of
the task. Figure 8 shows the result of the learning process. Again the probability
that must be learned is 0.5. The learning process is much faster. However, as

600 T T T T T T T T T

400 i

200 b

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Fig. 5. The number of times a selected service is chosen as a function of the number
of processed task.
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Fig. 6. The tasks in which a selected service is chosen.

discussed at the end of the previous section, ignoring the destination of a task
is only possible if the quality of service does not depend on the destination, and
if we only identify whether a task is successful.

05 i

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Fig. 7. Learning of the service success probability given a destination.

0.5

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Fig. 8. Learning of the service success probability ignoring the destination.

5 Conclusions

This paper presented a model for describing a network of distributed services
for task executions. Each service is provided by an autonomous, possibly self-
interested agent. The model also allows for the description of sub-optimal and
failed services.

When a task is completed with a low quality, we would like to determine
which service was of insufficient quality, which agent was responsible for the
provision of this service, and how we can avoid agents that might provide a low
quality of service. To answer these questions, the paper investigated an approach
for learning in a distributed way an assessment of other agents. The learned in-
formation can be exploited to maximize the quality of a task execution. The
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correctness of the learned diagnosis an repair approach is proved, and demon-
strated through experiments.

An important aspect of the distributed learning approach is that agents do
not have to collaborate. Since diagnosis of distributed services is about identify-
ing the agents that are to blame for a low quality of service, this is an important
property. It provides an incentive for being honest if agents make a diagnosis in
a collaborative setting. Systematic lying will be detected eventually.

This research opens up several lines of further research. First, other policies
that balance exploration and exploitation could be investigated. Second, more
special cases in which the learning speed can be improved should be investi-
gated. The topology might, for instance, be exploited to improve the learning
speed. Third, since agents learn to avoid services of low quality before accu-
rately learning the corresponding probabilities, we may investigate whether we
can abstract from the actual probabilities. Fourth, as mentioned in the Introduc-
tion and above, the learned assessments provide an incentive for honesty when
agents make a collaborative diagnosis. Is this incentive sufficient for agents to
collaborate if traditional diagnostic techniques are used?
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Abstract. A paper needs to be good enough to be published; a grant
proposal needs to be sufficiently convincing compared to the other pro-
posals, in order to get funded. Papers and proposals are examples of co-
operative projects that compete with each other and require effort from
the involved agents, while often these agents need to divide their efforts
across several such projects. We aim to provide advice how an agent
can act optimally and how the designer of such a competition (e.g., the
program chairs) can create the conditions under which a socially opti-
mal outcome can be obtained. We therefore extend a model for dividing
effort across projects with two types of competition: a quota or a suc-
cess threshold. In the quota competition type, only a given number of
the best projects survive, while in the second competition type, only the
projects that are better than a predefined success threshold survive. For
these two types of games we prove conditions for equilibrium existence
and efficiency. Additionally we find that competitions using a success
threshold can more often have an efficient equilibrium than those using
a quota. We also show that often a socially optimal Nash equilibrium
exists, but there exist inefficient equilibria as well, requiring regulation.

1 Introduction

Cooperative projects often compete with each other. For example, a paper needs
to have a certain quality, or to be among a certain number of the best papers to
be published, and a grant needs to be one of the best to be awarded. Either the
projects that achieve a certain minimum level, or those that are among a certain
quota of the best projects attain their value. Agents endowed with a resource
budget (such as time) need to divide this resource across several such projects.
We consider so-called public projects where agents contribute resources to create
something together. If such a project survives the competition, its rewards are
typically divided among the contributors based on their individual investments.

Agents often divide effort across competing projects. In addition to co-
authoring articles or books [6,7,10] and research proposals, examples include
participating in crowdsensing projects [8] and online communities [9]. Exam-
ples of quotas for successful projects include investing effort in manufacturing
several products, where the market becomes saturated with a certain number
of products. Examples of success thresholds are investing in start-ups, where a

** Most of this work was done at Delft University of Technology.
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minimum investment is needed to survive, or funding agencies contributing to
social projects, where a minimum contribution is required to make the project
succeed. Another example is students investing effort in study projects.

The ubiquity and the complexity of such competing projects calls for a
decision-support system, helping agents to divide their efforts wisely. Assum-
ing rationality of all the others, an agent needs to know how to behave given the
behavior of the others, and the designer of the competition would like to know
which rules lead to better results. In the terms of non-cooperative game theory,
the objective of this work is to find the equilibria and their efficiency.

Analyzing the NE and their efficiency helps characterizing the influence of
a quota or a success threshold on how efficient the stable strategies are for the
society and thus increase the efficiency of investing time in the mentioned enter-
prises. For example, Batchelor [4] suggests increasing the publication standards.
However, in addition to maximizing the total value of the published papers, he
considers goals such as reducing the noise (number of low quality publications).

To make things clear, we employ this running example:

Ezample 1. Consider scientists investing time from their time budget in writing
papers. A paper attains its value (representing the acknowledgment and all the
related rewards) if it stands up to the competition with other papers. The com-
petition can mean either being one of the ¢ best papers, or achieving at least the
minimum level of §, depending on the circumstances. A scientist is rewarded by
a paper by becoming its co-author if she has contributed enough to that paper.

Here, the submitters need to know how to split their efforts between the
papers, and the conference chairs need to properly organize the selection process,
e.g. by defining the quota or threshold on the papers to get accepted.

There were several studies of contributing to projects but the projects did
not compete. For example, in the all-pay auction model, only one contributor
benefits from the project, but everyone contributes. Its equilibria are analyzed
in [5], etc. A famous example is the colonel Blotto game with two players [14],
where these players spread their forces among the battlefields, winning a battle
if allocating it more forces than the opponent does. The relative number of
won battles determines the player’s utility. Anshelevich and Hoefer [2] model
two-player games by an undirected graph where nodes contribute to the edges.
A project, being an edge, obtains contributions from two players. They study
minimum-effort projects, proving the existence of an NE and showing that the
price of anarchy (PoA)? is at most 2.

The effort-dividing model [13] used the model of a shared effort game [3],
where each player has a budget to divide among a given set of projects. The
game possesses a contribution threshold 6, and the project’s value is equally
shared among the players who invest above this threshold. They analyzed Nash

3 The social welfare is the sum of the utilities of all the players. The price of anar-
chy [11,12] is the ratio of the minimum social welfare in an NE to the maximum
possible social welfare. The price of stability [15,1] is the ratio of the maximum
social welfare in an NE to the maximum possible social welfare.
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equilibria (NE) and their price of anarchy (PoA) and stability (PoS) for such
games. However, they ignored that projects may compete for survival. We fill
this gap, extending their model by allowing the projects only to obtain their
modeled value if they stand up to a competition. To conclude, we study the yet
unanswered question of strategic behavior with multiple competing projects.

Compared to the contribution in [10], we model contributing to multiple
projects by an agent, and concentrate on the competition, rather than on shar-
ing a project’s utility. Unlike devising division rules to make people contribute
properly, studied in cooperative game theory (see Shapley value [16] for a promi-
nent example), we model given division rules and analyze the obtained game,
using non-cooperative game theory.

We formally define the following models:

1. Given a quota q, only g projects receive their value. This models the limit
on the number of papers to be accepted to a conference, the number of
politicians in a city council, the lobbyists being the agents and the politicians
being the projects, or the number of projects an organization can fund.

2. There exists a success threshold §, such that only the projects that have
a value of at least § actually receive their value. This models a paper or
proposal acceptance process that is purely based on quality.

Our contributions are as follows: We analyze existence and efficiency of NE
in these games. In particular, we demonstrate that introducing a quota or a
success threshold can sometimes kill existing equilibria, but sometimes allow for
new ones. We study how adjusting a quota or a success threshold influences the
contribution efficiency, and thereby the social welfare of the participants. We
derive that competitions using a success threshold have efficient equilibria more
often than those with a quota. We also prove that characterizing the existence
of an NE would require more parameters than just the quota or the threshold
and the number of the agents and the projects.

We formalize our models in Section 2, analyze the Nash equilibria of the first
model and their efficiency in Section 3, and analyze the second model in Sec-
tion 4. Theorems 2, 3, 5 and 6 are inspired by the existence and efficiency results
for the model without competition. Having analyzed both models of competition
between projects, Section 5 compares their characteristics, the possibility to in-
fluence the authors’ behavior through tuning the acceptance criteria, and draws
further conclusions. Some proofs are deferred to the appendix (Section A).

2 Model

We build our model on that from [13], since that is a model of investment
in common projects with a general threshold. We first present their model for
shared effort games, which also appears in [3]. From Definition 1 on, we introduce
competition among the projects.

There are n players N = {1,...,n} and a set £ of m projects. Each
player ¢ € N can contribute to any of the projects in (2;, where § C 2; C (2;
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the contribution of player i to project w € §2; is denoted by ¢, € R,. Each
player ¢ has a budget B; > 0, so that the strategy space of player ¢ (i.e., the set
of her possible actions) is defined as {a:Z = (2}))wen, € IleiH D wen, T < B,-}.
Denote the strategies of all the players except i by = ~%.

The next step to define a game is defining the utilities. Let us associate each
project w € {2 with its project function, which determines its value, based on the
total contribution z,, = (z},);cn that it receives; formally, P, (z,): R? — Ry.
The assumption is that every P, is increasing in every parameter. The increasing
part stems from the idea that receiving more effort does not make a project
worse off. When we write a project function as a function of a single parameter,
like P, (z) = ax, we assume that project functions P, depend only on the

>ien (@h), which is denoted by x,, as well, when it is clear from the context.

The project’s value is distributed among the players in N, 2 {i € N|lw € £;}
according to the following rule. From each project w € 2;, each player i gets a
share ¢}, (z,): R} — R, with free disposal:

Vwe R2: > ¢l (x,) < Poly). (1)

i€Ny,

We assume the sharing functions are non-decreasing. The non-decreasing as-
sumption fits the intuition that contributing more does not get the players less.

Denote the vector of all the contributions by = = (xij)fuee% The utility of a
player ¢ € N is defined to be

wi(z) 23" ¢l (aw).

wes?;

Consider the numerous applications where a minimum contribution is re-
quired to share the revenue, such as paper co-authorship and homework.
To analyze these applications, define a specific variant of a shared effort
game, called a 6-sharing mechanism. This variant is relevant to many ap-
plications, including co-authoring papers and participating in crowdsensing
projects. For any 8 € [0,1], the players who get a share are defined to be
N® 2 {i € No|z, > 6 - max;cn, #J,}, which are those who bid at least § fraction
of the maximum bid size to w. Define the #-equal sharing mechanism as equally
dividing the project’s value between all the users who contribute to the project
at least 6 of the maximum bid to the project.

The 0-equal sharing mechanism, denoted by ng, is

Pu(2w) ip - 0
o (xw)é N ifi e N7,
v 0 otherwise.

Let us consider #-equal sharing, where all the project functions are linear,
ie. Py(ry) = aw(Den ). Wlog, am > apm-1 > ... > a;. We denote

w
the number of projects with the largest coefficient project functions by k € N,
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Fig. 1. Scientists contribute time to papers (arrows up), and share the value of the
accepted ones (arrows down).

ie. Q= Qo1 = ... = Qm—k+1 > Qm—k > Qm—k—1 > ... > 1. We call those
projects steep. Assume w.l.o.g. that B, > ... > By > Bj.
A project that receives no contribution in a given profile is called a vacant

project. A player is dominated at a project w, if it belongs to the set D, 2

N, \ N9 A player is suppressed at a project w, if it belongs to the set S, 2
{ie N, :al,>0}\ NY. That is, a player who is contributing to a project but
is dominated there.

We now depart from [13] and model competition in two different ways.

Definition 1 In the quota model, given a natural number ¢ > 0, only the q
highest valued projects actually obtain a value to be divided between their con-
tributors. The rest obtain zero. In the case of ties, all the projects that would
have belonged to the highest q under some tie breaking rule receive their value;
therefore, more than q projects can receive their value in this case. Formally,
project w is in the quota if [{w’ € 2|P,(zw) > Py(zy)}| < ¢, and w is out of
the quota otherwise, and, effectively, P,,(z.,) = 0.

The second model is called the success threshold model.

Definition 2 In the success threshold model, given a threshold §, only the
projects with value at least §, meaning that P,(x,) > §, obtain a value, while if
P, (zw) <6, then, effectively, P,(z.) = 0.

Ezample 1 (Continued). Figure 1 depicts a success threshold model, where paper
C does not make it to the success threshold, and is, therefore, unpublished. The
other two papers are above the success threshold, and get published; such a
paper’s recognition is equally divided between the contributors who contribute
at least 6 of the maximum contribution to the paper, and become co-authors.

3 The Quota Model

In this section, we study the equilibria of shared effort games with a quota
and their efficiency. We first give an example of an NE, and generalize it to a
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sufficiency theorem. Then, we provide equilibrium existence and efficiency theo-
rems for the quota model. Finally, we show that no simple setting of parameters
guarantees the existence of an equilibrium or the lack thereof.

Intuitively, introducing a quota can make previously unstable profiles become
NE, by making deviations non-profitable. This would increase the price of sta-
bility but decrease the price of anarchy. On the other hand, a profile that is an
NE without a quota can cease being so in our model, since some projects may
obtain no value because of the quota.

Having a quota can lead to counter-intuitive results. In the following example,
there can be an NE where no steep project obtains a contribution. The idea is
that any deviation from the project where everyone contributes is non-profitable,
because it would still leave the other projects out of quota.

Ezample 2. Given projects 1 and 2, such that as > «ay, assume that all the
players contribute all their budgets to project 1. If asB, < Z?;ll B; and
q = 1, then no player can deviate to project 2, as this would still leave that
project out of the quota, and therefore, this profile is an NE.

In this NE, the social welfare is equal to a3 ), n Bi. The optimal social
welfare, achieved if and only if all the players contribute all their budgets to
project 2, is equal to ap ),y Bi. The ratio between the social welfare in this
NE and the optimal one is $t. That ratio is an upper bound on the price of
anarchy of this game. In addition, since the optimal profile is also an NE, the
price of stability is 1.

The price of anarchy is smaller than g—; if and only if some agents do not
contribute all their budgets. This can only happen in an NE if  is positive, and
if this is the case, then we can have arbitrarily low price of anarchy, down to the

case when only agent n contributes, if #B,, > B,,_1, and then, PoA = #B"B.
1eN T

We now generalize these ideas to the following theorem about possible NE.

Theorem 1. Consider a 0-equal sharing game with n > 2 players with budgets
B, > ...> By > By (the order is w.l.o.g.), 0 < 0 < 1, linear project functions
with coefficients ay = Qp—1 = ... = Qp—kt1 > Qm—k = Qp—f—1 = ... > Q]
(the order is w.l.o.g.), and quota q.

This game has a pure strateqy NE, if ¢ = 1 and B, < E?:ll B;. Addition-

ally, PoA = —ala i:ZB"Z;BgVBi < 5 ford 2 min {j €:anB, <a;) ?;11 Bi},
m i€ @ m L
PoS =1.

Proof. If all the players contribute to any single project j > [, then since
B, < Z?:_ll B;, no player can deviate to any project, because this would still
leave this project out of the quota. Therefore, this profile is an NE.

In particular, when all the players invest all their budgets in project m, it is
an NE; and thus, PoS = 1.

To find the price of anarchy, notice that the worst equilibrium for the so-
cial welfare is when everyone contributes to the least profitable possible project,
i.e. [, and only those who have a reason to do so contribute. Having an incen-
tive means being not below the threshold amount, #B,,. This equilibrium yields

Y B;>0B,, B;. -
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This theorem, in accord with the intuition above, shows that reducing the
quota can either facilitate an optimal NE, or a very inferior NE. Actually, every
efficiency of the form J*- is possible at equilibrium, which brings us to the

question of equilibria apr;néaring and disappearing, which we treat next.

Example 3. A game with NE can cease having equilibria after introducing a
quota. For example, consider 6 € (0, 1), 2 players with budgets B; = 6By and 2
projects with the coefficients «, (1—€)a. This game has an NE if no quota exists,
by Theorem 3 from [13]. However, introducing the quota of ¢ = 1 implies there
is no NE. Indeed, the only candidate profile for an equilibrium is both agents
contributing everything to the same project or when both projects obtain the
same value. In the former case, agent 2 would like to deviate, to avoid sharing,
since the projects are close for small enough an e. In the latter case, agent 2
contributes to both projects, since for small enough an ¢, agent 1 alone would
make the project be out of quota. Since there exists at least one project where
agent 1 contributes less than 0B;, say project i, agent 2 would benefit from
contributing to that project all its budget. This is because she would gain at
least (1 — €)ax? while losing at most (B + 22)/2, which is smaller, for small
enough € and 6.

A game can also start having equilibria after introducing a quota. For in-
stance, consider a game with two players, Bs = By, o, = 1.9a,,—1. Then
Theorem 3 from [13] implies that no NE exists, but if we introduce the quota of
1, then both agents contributing to project m is an NE, since a deviator would
be out of quota.

We now present an existence theorem. The theorem presents possible equi-
libria, providing advice on possible stable states. Afterwards, we study efficiency.

Theorem 2. Consider an equal 0-sharing game with n > 2 players with budgets
B, > ...> By > By (the order is w.l.o.g.), 0 < 6 < 1, linear project functions
with coefficients ay = Qp—1 = ... = Qp—kt1 > Qm—k = Qpef—1 = ... > Q]
(the order is w.l.o.g.), and quota q.

This game has a pure NE if one of the following holds.*

1. Bl > kaBn; k < q and %amkarl > Um—k
2. Bi > 0B, k> q and B, < Y0~ Bi/q;

8. B,_1< %Bn and all the project functions are equal, i.e. qy, = aq.

The proof provides a profile and shows that no deviation is profitable.

Proof. To prove part 1, distinguish between the case where k < ¢ and k& > q.
If k < g, then the profile where all the players allocate 1/kth of their respective
budgets to each of the steep projects is an NE for the same reasons that were
given for the original model, since here, the quota’s existence can only reduce
the motivation to deviate.

4 If i does not exist, consider the containing condition to be vacuously true.
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As for the part 2, consider the profile where all the players allocate 1/gth of
their respective budgets to each of the ¢ steep projects m,m —1,...,m—q+ 1.
This is an NE, since the only deviation that is possibly profitable, besides real-
locating between the non vacant projects, is a player moving all of her contribu-
tions from some projects to one or more of the vacant projects. This cannot bring
profit, because these previously vacant projects will be outside of the quota, since
B, < Z;L:_ll B;/q. As for reallocating between the non-vacant projects, this is
not profitable, since By > ¢qfB,, means that suppressing is impossible. Therefore,
this is an NE.

We now prove part 3. Let every player divide her budget equally among
all the projects. No player wants to deviate, for the following reasons. All the
projects obtain equal value, and therefore are in the quota. Player n suppresses
all the rest and obtains her maximum possible profit, o, (D ,cy Bi). The rest
obtain no profit, since they are suppressed whatever they do. [

We now prove an efficiency result, based on Theorem 2.

Theorem 3. Consider an equal 0-sharing game with n > 2 players with budgets
B, >...> By > DB, 0< 6 <1 (the order is w.l.o.g.), linear project functions
with coefficients ay = Qp—1 = ... = Qp—kt1 > Qm—k = Qmef—1 = ... > Q]
(the order is w.l.o.g).%, and quota q.

1. If at least one of the following holds.
((1) Bl > kaBn; k < q and %amflﬂ»l > A —k,
(b) B > q0By, k > q and B, < 37" B;/q;
Then, there exists a pure strategy NE and there holds: PoS = 1.
2. Assume Bp_1 < %'Bn and all the project functions are equal, i.e. vy = ar7.
Then, there exists a pure strategy NE and the following holds: PoS =

1,PoA = «Bo
? 216{1,2 ..... n} B

Proof. We first prove part 1la and 1b. According to the proof of parts 1 and 2
of Theorem 2, equally dividing all the budgets among min {k, ¢} steep projects
is an NE. Therefore, PoS = 1.

For part 2, recall that in the proof of part 3 of Theorem 2, we show that
everyone equally dividing the budgets between all the projects is an NE. This
is optimal for the social welfare, and so PoS = 1. We turn to find the price
of anarchy now. If player n acts as just mentioned, while the other players do
not contribute anything, then this is an NE, since all the projects are equal
and therefore, in the quota, and players 1,...,n — 1 will be suppressed at any
contribution. An NE cannot have a lower social welfare, since n gets at least
am B, in any NE, since this is obtainable alone. Therefore, the fraction between

the two social welfare values, namely %, is the PoA. [
m 2.ie{1,2,...,n} Pi

The condition “k > ¢ and B,, < Z;L:_ll B;/q” in Theorem 3 does not hold

if the largest budget can be much larger than the rest, implying that we shall

5 If a1 does not exist, consider the containing condition to be vacuously true.
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ask whether our optimum NE is guaranteed by part la, which requires that the
quota has to be at least k. When there are many equally glorious projects to
contribute to, meaning that k is large, this constraint becomes non-trivial to
implement. The condition “k < ¢ and %am,kﬂ > a—” in Theorem 3 does
not hold if the difference between the two largest projects is not big enough, and
then the quota has to be at most k if one wants our optimum NE to follow from
part 1b. This is non-trivial when we have few most glorious (steep) projects.

We do not know a full characterization of the existence of equilibria; we do
know that it would require many parameters. We prove now that the quota with
the number of agents and projects do not determine existence.

Proposition 1. For any quota q > 1, any number of agents n > 2 and projects
m > 2, there exists a game which possesses an NE, and a game which does not.

The proof engineers games with the given parameters with and without NE.
Proof. A game that satisfies the conditions of Theorem 2 provides evidence for
the existence.

To find a game without an NE, we first treat the case of ¢ = 1. Let all the
project coefficient be equal to one another and let

n—1
Bn > Z Bi» (2)
=1

Z?:l B;

d B, > — .
& Bn > T E N B, > 0B,]

3)

Because of the equality of all the project coefficients and of (2), in an equilibrium,
all the agents with budgets at least 6 B,, will be together with n. Then, (3) implies
agent n will deviate, contradictory to having an equilibrium.

For quota ¢ > 2, let B,,_1 < %Bn. In any NE, agent n dominates all the
rest in the sense that it invests (strictly) more than B, _16 in any project that
is in the quota, because otherwise, the other agents could get a share at some
projects, and assuming oy(z + §) > am () for every project I, agent n would
prefer to suppress that. However, if a,, > a,;,—1, n would always prefer to move
a bit more contribution to project m, contradictory to the assumption of an NE.

]

4 The Success Threshold Model

In this section, we consider the NE of shared effort games with a success thresh-
old. We allow success thresholds § be at most the sum of all the budgets times
Qam, to let at least one project to obtain its value, in at least one strategy pro-
file. We begin with an example, which inspires a theorem, and then we study
existence and efficiency with a given success threshold.
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In a profile, we call a project that has a value of at least the threshold an
accepted project, and we call it unaccepted otherwise. In Example 1, the accepted
papers are A and B.

Success threshold can cause counter-intuitive results, as follows.

Exzample 4. Given the projects 1 and 2, such that as > aq, assume that all the
players contribute all their budgets to project 1. If § > a5 B,,, then no player can
deviate to project 2, as this would leave that project unaccepted, and therefore,
this profile is an NE.

The conclusions about the prices of anarchy and stability are the same as in
Example 2, besides that the price of anarchy can be even zero if ay Y ;- | B; < 6.

The exemplified ideas yield the following theorem.

Theorem 4. Consider an equal 0-sharing game with n > 2 players with budgets
B, > ...> By > By (the order is w.l.o.g.), 0 < 6 < 1, linear project functions
with coefficients ay = Qp—1 = ... = Qup—kt1 > Qm—k = Qm_f—1 = ... > Q]
(the order is w.l.o.g.), and success threshold d.

This game has a pure NE, if a,,, B,, < 6. In addition, PoA < 5—71” and PoS = 1.
If a1 1" | B; < 8, then PoA = 0.

Proof. If all the players contribute to any single project, then since «,, B, < 9,
no player can deviate to any project, because this would still leave that project
unaccepted. Therefore, this profile is an NE.

In particular, when all the players invest all their budgets in project m, it is
an NE, and thus, PoS = 1. When all the players invest in 1, it also is an NE,
showing that PoA < &% and if oy 37, B; < 9, then PoA = 0. =

This theorem, in accord with the intuition above, shows that increasing the
success threshold can either facilitate an optimal NE, or an inferior NE. Actually,
every efficiency of the form 2, for j > min {i:a; >2)_, By > 8}, is possible at
an equilibrium.

Ezample 5 (Introducing a success threshold can kill or create new NE). The
game with 6 € (0,0.5), 2 players with budgets By = 20B5 and 2 projects with
the coefficients «,a has an NE if no success threshold exists, by Theorem 3
from [13]. If we introduce the success threshold of aBs, then in any NE both
agents have to contribute to the same project. Then, agent 2 will deviate. For an
emerging NE, consider a game with two players, By = By, &, = 1.9,,—1. Then
Theorem 3 from [13] implies that no NE exists, but if we introduce the success
threshold of 2Bja,,, then both agents contributing to project m constitute an
NE, since a deviator would be at a project below the success threshold.

Next, we provide sufficient conditions for the existence of an NE.

Theorem 5. Consider an equal 0-sharing game with n > 2 players with budgets
B, > ...> By > By (the order is w.l.o.g.), 0 < 6 < 1, linear project functions
with coefficients ay = Qp—1 = ... = Qup—kt1 > Qm—k = Qm_f—1 = ... >
(the order is w.l.o.g.), and success threshold §.
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This game has a pure NE, if one of the following holds.5 Define p 2
{%J ; intuitively, it is the number of the projects that can be accepted.
1. Bl > kaBn; k < p and %amkarl > Qm—k,

2. By >p0By, k>p>1and amBy < 9;
8. B,_1< %Bn, all the project functions are equal, i.e. q, = aq.

Proof. We first prove part 1. The profile where all the players allocate 1/kth
of their respective budgets to each of the steep projects is an NE for the same
reasons that were given for the original model, since here, the requirement to be
not less than the success threshold can only reduce the motivation to deviate.

In part 2, consider the profile where all the players allocate 1/pth of their
respective budgets to each of the p steep projects m, m—1,...,m—p+1. Thisis an
NE, since the only deviation that is possibly profitable, besides moving budgets
between the non vacant projects, is a player moving all of her contributions from
some projects to one or more of the vacant projects. This cannot bring profit,
because these previously vacant projects will be unaccepted, since a,, B,, < 9.
Additionally, any reallocating between the non-vacant projects is not profitable,
since B; > pf#Bs means that suppressing is impossible. Therefore, the current
profile is an NE.

We now prove part 3. We distinguish between the case where the condition
p > |£2| holds or not. If p > |£2|, then the proof continues as in the case of part 3
of Theorem 2, where every player divides her budget equally among all the
projects. All the projects are accepted, so no new deviations become profitable.

In the case that p < |§2|, consider the profile where all the players allocate
1/pth of their respective budgets to each of the p projects m,m—1,...,m—p+1.
This is an NE, since the only deviation that is possibly profitable is some player
j < n moving all her budget to a vacant project. However, this is not profitable,
since the project would be unaccepted, because B; < B, _; < |%an <00/ <

0/ The penultimate inequality stems from p < |2| <— Q’"X‘:#TVB < 4.

Therefore, this is an NE. ]

We now provide an efficiency result, proven in the appendix.

Theorem 6. Consider an equal 0-sharing game with n > 2 players with budgets
B, >...> By > B;,0< 60 <1 (the order is w.l.o.g.), linear project functions
with coefficients Qm = ... = Qm—f+1 > Qm—k > Qm—k—1 > ... > a1 (the order

is w.l.0.g).”, and success threshold §. Define p 2 {MJ , as in Theorem 5.

1. If at least one of the following holds.
(a) By > k6B, k <p and %O&m_k_l,_l > Uk,
(b) By > plBy, k>p>1and anBy, < 0;
Then, there exists a pure NE and there holds: PoS = 1.

5 If aum— does not exist, consider the containing condition to be vacuously true.
" If am_r does not exist, consider the containing condition to be vacuously true.

27



2. Assume B,,_1 < |%‘Bn, all the project functions are equal, i.e. q, = aq.
Then, there exists a pure NE and PoS = 1. If, an addition, o, B,, > 0, then
PoA = D T— Bu

Condition 1a of Theorem 6 implies that if the second best project is close to a
best one, then the threshold should be big enough, for condition 1b to guarantee
our optimum NE. The contrapositive of the condition 1b implies that if the
biggest player is able to make a project succeed on her own, then the threshold
should be small enough so that p is at least the number of the most profitable
projects, for our optimum NE to be guaranteed by condition 1a.

There exists no simple characterization for the NE existence when ¢ < o, Bj,.

Proposition 2. For any success threshold 6 € [0, amBy] and any number of
agents n > 2 and projects m > 2, there exists a game which possesses an NE,
and a game which does not.

The proof appears in Section A.

5 Conclusions and Further Research

We analyze the stable investments in projects, where a project has to comply
to certain requirements to obtain its value. This models paper co-authorship,
investment in firms, etc. The goal is to advise which investments are individually
and socially preferable. Each agent freely divides her budget of time or effort
between the projects. A project that succeeds in the competition obtains a value,
which is divided between the contributors who have contributed at least a given
fraction of the maximum contribution to the project. We model succeeding in a
competition either by a quota of projects that actually obtain their value, or by
a success threshold on the value of projects that do.

For purposes like organizing a conference, we ask which quota or success
threshold would make the behavior of the players better for the social welfare.
Theorem 1 implies that if no player has a budget as large as the total budget
of all the other players times the ratio between the least and the largest project
coefficient, then the quota of 1 makes many equilibria, including an optimal one,
possible. Theorem 4 promises the same by choosing a success threshold that dis-
ables any player to make a project successful on her own. The first problem of
this approach is that it also allows very inefficient profiles constitute equilibria,
asking for some coordination. The second problem is that the discussed equilibria
have all the players investing in the same project, which is understandable be-
cause of the linear project functions but practically unreasonable in conferences,
though possible in other applications, such as sponsorship of large projects like
Uber, Lyft, Facebook and VKontakte.

Comparing these models, we see from Theorems 1 and 4 that the success
threshold allows ensuring that there exists a socially optimal equilibrium while
the quota requires also assuming that the largest effort budget is less than the
sum of the other ones times the ratio of the least to the most profitable project
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coefficients. In addition, comparing Theorems 3 and 6 shows that provided the
smallest budget is at least a certain fraction of the largest one, choosing large
enough a threshold or small enough a quota guarantees that an optimal profile
will be an equilibrium. Unlike in the described cases, where success threshold
seems stronger than quota, we notice that the second part of Theorem 6 actu-
ally contains an additional condition, relatively to the second part of Theorem 3,
but since the second parts of these theorems refer to the case of a single agent
being able to dominate everyone everywhere and all the projects being equally
rewarding, this is less practical. To conclude the comparison, sometimes, choos-
ing success threshold has more power, since choosing quota needs to assume an
additional relation between the budgets, in order to guarantee that socially opti-
mal equilibria exist. Intuitively, this stems from a quota needing an assumption
on what the players are able to do to increase their utility, given the quota, while
providing a success threshold can be done already with the budgets in mind.

Both a quota and a success threshold have a concentrating effect: equilibria
where the agents contribute to less projects than without any of these conditions.

Many directions to expand the research exist. First, some common projects
like papers and books have an upper bound on the maximal number of partici-
pants. Also a person has an upper bound on the maximal number of projects she
can contribute to. The model should account for these bounds. Second, compe-
tition can be of many sorts. For instance, a project may need to have a winning
coalition of contributors, in the sense of cooperative games. The fate of the
projects that fail the competition can also vary; for example, their value can be
distributed between the winning projects. We have extended the sufficiency re-
sults for existence from [13], and proven the necessity to be harder for analytical
analysis. Simulations or other analytical approaches may be tried to delineate
the set of Nash equilibria more clearly. Naturally, project functions do not have
to be linear, so there is a clear need to model various non-linear functions. Such
a more general model will make the conclusions on scientific investments, paper
co-authorship, and the many other application domains more precise, and en-
able us to further improve the advice to participants as well as organizers. We
can look at submitting a paper to a highly-ranked conference and reducing the
conference level till the paper gets accepted as on a series of shared effort games
with various quotas, success thresholds and participants. If we model the cost of
each submission, then the question is to which conference to submit first.
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A  Omitted Proofs

We now prove Theorem 6.

Theorem 6. Consider an equal 0-sharing game with n > 2 players with budgets
B, >...> By > B, 0< 60 <1 (the order is w.l.o.g.), linear project functions
with coefficients apy = Qp—1 = ... = Qp_k+1 > Qm—k = Qm—f—1 = ... > Q]

(the order is w.l.o.g).8, and success threshold §. Define p = {Q'"Z%NBJ

Theorem 5.

8 If i does not exist, consider the containing condition to be vacuously true.

, as in
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1. If at least one of the following holds.
((1) Bl > keBn; k < p and %amflvkl > Am—k;
(b) By > plBy, k>p>1 and apBy < 0;
Then, there exists a pure NE and there holds: PoS = 1.
2. Assume B,_1 < I%\B”’ all the project functions are equal, i.e. a, = aq.
Then, there exists a pure NE and PoS = 1. If, in addition, o, B, > 9§, then

Proof. We first prove parts la and 1b. According to proof of parts 1 and 2 in
Theorem 5, equally dividing all the budgets among min {k, p} steep projects is
an NE. Therefore, PoS = 1.

Part 2 is proven as follows. Since all the players dividing their budgets equally
between any min {p, m} projects constitutes an NE, we have PoS = 1.

To treat the PoA, we define the number of projects player n can make ac-

cepted on her own, r 2 Lam%J, and distinguish between the case where m < r
and m > r. If m < r, consider the profile where player n divides her budget
equally between all the projects, while the other players contribute nothing at
all. This is an NE, because all the projects are accepted, player n cannot increase
her profit and any other player will be suppressed, if she contributes anything
anywhere. On the other hand, if m > r, consider the profile where player n di-
vides her budget equally between m,m—1,...,m—r+1, while the other players
contribute nothing at all. The only possible deviation is player 7 < n contributing
to a vacant project. However, we have B; < B,,_; < ﬁBn < 08/am < 6/am.
This means that the project would be unaccepted. Therefore, this is an NE.
Therefore, PoA < #‘331). Since amBBn > 4, in any NE, player n receives
ze{l,z,T.L.

at least «,, B,,, and therefore, PoA = > =

Lm} Bi ’

We finally prove Proposition 2.

Proposition 2. For any success threshold § € [0,a,,B,] and any number of
agents n > 2 and projects m > 2, there exists a game which possesses an NE,
and a game which does not.

Proof. For § = 0, which means for no threshold, the theorem follows from The-
orem 3 from [13]. Therefore, we assume henceforth a positive success threshold.
A game that satisfies the conditions of Theorem 5 provides an example of
the existence. Notice that the p they define is positive, since § < a,, By .
To find a game that does not possess an equilibrium, let «a,,, = a3 and let

n—1
B, > B, (4)
i=1
Bi=...=B, 1 =0B, and § = aB,. (5)

Because of the equality of all the project coefficients, of (4) and of the choice of
the success threshold, in an equilibrium, all the agents with budgets at least 6 B,,
(which are 1,..., B,_1 here) will be together with n on the same single project.
Then, agent n will deviate, contradictory to being in an equilibrium. [
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Abstract. Recently, a heuristic was proposed for constructing Bayesian
networks (BNs) from structured arguments. This heuristic helps domain
experts who are accustomed to argumentation to transform their reason-
ing into a BN and subsequently weigh their case evidence in a probabilis-
tic manner. While the underlying undirected graph of the BN is automat-
ically constructed by following the heuristic, the arc directions are to be
set manually by a BN engineer in consultation with the domain expert.
As the knowledge elicitation involved is known to be time-consuming, it
is of value to (partly) automate this step. We propose a refinement of
the heuristic to this end, which specifies the directions in which arcs are
to be set given specific conditions on structured arguments.

Keywords: Bayesian networks - Structured argumentation

1 Introduction

In recent years, efforts have been made to gain a better understanding of the
relation between different normative frameworks for evidential reasoning, such as
argumentative and probabilistic approaches [9]. Argumentative approaches are
particularly suited for adversarial settings, where arguments for and against a
specific conclusion are constructed from evidence. The inferences which are used
to draw conclusions from evidence are generally defeasible, in that the conclusion
of an argument does not universally hold given the evidence. Arguments can be
attacked by other arguments; it can then be established which arguments are
accepted and which are rejected. In current argumentative approaches, however,
there is no emphasis on incorporating graded uncertainty.

In contrast, probabilistic approaches are well suited for handling graded un-
certainty. In particular, Bayesian networks (BNs) [2, 3] are powerful tools to
this end. BNs are compact graphical models of joint probability distributions,
which allow for evidence evaluation by calculating the probability of the truth
of a proposition of interest. However, BNs are generally difficult to construct;
in fact, they are often constructed by modelers with the relevant mathematical
background, called BN engineers, in consultation with a domain expert.
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Structured Bayesian

arguments networks
(Sect. 2.1) (Sect. 2.2)
Support graph method [6]
P (Sect. 3.1)

Heuristic of Bex and Renooij [1]
(Sect. 3.2)

v

Fig. 1. Outline of Sects. 2 and 3 of this paper.

Recently, a heuristic for constructing BNs from structured arguments was
proposed by Bex and Renooij [1]; in this paper, the heuristic will be referred
to as the BR heuristic. The heuristic helps domain experts who are more ac-
customed to argumentation to transform their reasoning into a BN (cf. Fig. 1)
and subsequently weigh their case evidence in a probabilistic manner. The focus
of the BR heuristic lies on obtaining the graphical structure of the BN, called
the BN graph, which captures the independence relations between the domain
variables. While the underlying undirected graph, or skeleton, of the BN graph
can be automatically constructed by following the BR heuristic, the heuristic
prescribes that the arc directions should be set manually by a BN engineer in
consultation with a domain expert. Although the heuristic further suggests that
the commonly used notion of causality be taken as a guiding principle [3], the
resulting graph still has to be verified and refined in terms of the independence
relations it represents. This type of knowledge elicitation is known to be time-
consuming [7], however, and moreover needs to be repeated for every adjustment
to the original arguments. As a consequence, letting arc directions be set by a BN
engineer is practically infeasible in investigative contexts such as police investiga-
tions, where evidence changes dynamically. It is, therefore, of value to investigate
whether the process of setting arc directions can be (partly) automated.

Accordingly, in this paper we propose a refinement of the BR heuristic, which
specifies the directions in which the arcs should be set in a BN graph under
specific conditions on structured arguments. These conditions are identified by
applying a method called the support graph method [6]. This method essentially
works in the opposite direction of the BR heuristic, in that structured arguments
are constructed from BNs (cf. Fig. 1). By applying the support graph method
to BN graphs obtained with the BR heuristic, it is determined whether and
under which conditions the original arguments are re-obtained. If the original
arguments are not re-obtained from the thus constructed BN graph, it may
be concluded that this graph represents the original arguments in a different,
possibly incorrect, way. Our refinement of the BR heuristic now ensures that
BN graphs from which the original arguments are not returned by the support
graph method are not constructed.
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The paper is structured as follows. Sections 2 and 3 provide some preliminar-
ies on structured argumentation, BNs, the support graph method and the BR
heuristic. In Sect. 4, our refinement to the BR heuristic is proposed, based on
observations from applying the support graph method. In Sect. 5, our findings
are summarized and possible directions for future research are discussed.

2 Preliminaries

In this section, structured argumentation and BNs are briefly reviewed.

2.1 Structured Argumentation

A simplified version of the ASPIC+ framework for structured argumentation [4]
is assumed throughout this paper. Let £ be a non-empty propositional literal
language with the unary negation symbol —. Informally, £ contains the basic el-
ements which can be argued about. Given a knowledge base K C L of premises,
arguments are constructed by chaining inference rules. These rules are defined
over L and are defeasible, in that the conclusion of a defeasible rule does not uni-
versally hold given the premises, in contrast with the strict inferences of classical
logic. Let R be a set of defeasible inference rules of the form d: ¢1,..., ¢, = ¢,
where ¢1,...,¢, and ¢ are meta-variables ranging over well-formed formulas
in £. An argument A is then either: (1) ¢ if ¢ € K, where the conclusion of
the argument A, denoted by CoNc(A), is equal to ¢; or (2) Ai,..., A, = ¢
with ¢ € £\ K, where Ay,..., A, are arguments such that there exists a rule
CONC(44),..., CONC(4,) = ¢ in R. In the first case, CONC(A) is an element
from the knowledge base, while in the second case, CONC(A) follows by applying
a defeasible rule to the conclusion(s) of arguments Ay, ..., A,,, which are called
the immediate sub-arguments of A. Generally, a sub-argument of an argument
A is either A itself or an argument that is (iteratively) used to construct A. The
smallest set of finite arguments which can be constructed from £, I and R is
denoted by A. An argument graph of A then graphically displays the arguments
in A and their sub-arguments. Fig. 3a shows an example of an argument graph.

The general ASPIC+ framework further includes the notion of attack. Infor-
mally, an argument in A is attacked on one of its non-premise sub-arguments by
another argument in A with the opposite conclusion of that sub-argument. Due
to space limitations, the focus of the current paper lies on argument structures
without attack relations.
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2.2 Bayesian Networks

BNs [3] are graphical probabilistic models which are being applied in many
different fields, including medicine and law [2]. A BN is a compact representation
of a joint probability distribution Pr(V) over a finite set of discrete random
variables V. The random variables are represented as nodes in a directed acyclic
graph G, where each node'! can take one of a number of mutually exclusive and
exhaustive values; in this paper, we assume all nodes to be Boolean. A node A
is a parent of another node B, called the child, in G if G contains an arc from A
to B. The BN further includes, for each node, a conditional probability table, or
CPT, given its parents; this table specifies the probabilities of the values of the
node itself conditioned on the possible joint value combinations of its parents.
A node is called instantiated iff it is fixed in a specific value. Given a set of
instantiated nodes, conditional probability distributions over the other nodes in
the network can be computed using probability calculus [3].

The BN graph captures the independence relations between its variables.
Let a chain be defined as a simple path in the underlying undirected graph, or
skeleton, of a BN graph. A node V is called a head-to-head node on a chain ¢
if it has two incoming arcs on c. A chain c is blocked iff it includes a node V/
such that (1) V is an uninstantiated head-to-head node on ¢ without instanti-
ated descendants; (2) V' is not a head-to-head node on ¢ and is instantiated. In
addition, instantiated end-points of the chain ¢, that is, instantiated nodes with
at most one incoming or outgoing arc on ¢, serve to block the chain [5]. A chain
is inactive if it is blocked; otherwise it is called active. Two nodes A # B are
called d-separated by a set of nodes Z if no active chains exist between A and
B given instantiations of nodes in Z. If two nodes are d-separated by Z, then
they are considered conditionally independent given Z. We note that conditional
independence thereby depends on the set of instantiated nodes [8].

An immorality in a BN graph is defined as a triple of nodes (A, B, C'), where
A and C are parents of B that are not directly connected by an arc. Two BNs are
said to be Markov equivalent iff they share the same skeleton and immoralities.
Markov equivalent networks constitute an equivalence class, for which Verma
and Pearl [10] proved that any two elements represent the same independence
relations over the variables involved. Arcs between nodes that are not involved
in an immorality can thus be reversed without changing the represented inde-
pendence relations as long as no new immoralities arise. Immoralities derive
their importance from providing for intercausal reasoning [11]. Specifically, if
the head-to-head node involved in an immorality is instantiated, an active chain
arises between the parents of the node. These parents can be seen as different
causes of the same effect modeled by the head-to-head node. If one of the causes
is now observed, then the probability of the other cause being present as well
can either increase, decrease or stay the same upon updating, depending on the
probabilities in the CPT of the head-to-head node.

! The terms ‘node’ and ‘variable’ are used interchangeably.
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3 Two Methods for Translating between Structured
Arguments and Bayesian Networks

In this section, the support graph method [6] and the BR heuristic [1] are re-
viewed; the support graph method is used to build structured arguments from
BNs, while the BR heuristic is used to construct BN graphs from structured
arguments.

3.1 The Support Graph Method

The support graph method, proposed by Timmer and colleagues [6], is a two-
phase method for constructing argument structures from BNs. The method al-
lows domain experts who are not familiar with BNs but are accustomed to
argumentation to understand the knowledge and reasoning patterns captured
by a BN. To this end, the method summarizes all reasoning chains from a set of
evidence to a conclusion in a given BN.

In the first phase of the method, a directed graph called the support graph
(SG) is constructed from a BN given a variable of interest V*; in this SG,
all reasoning chains in the BN ending in V* are captured. The SG does not
depend on specific instantiations, and can thus be re-used to build argument
structures for different evidence. An SG is iteratively constructed, starting with
a graph containing only V*. New parents are added to existing nodes in the
SG as new inference steps are identified in the BN. Three types of inference
step are distinguished: (1) an inference step along an arc from a parent to a
child; (2) an inference step along an arc from a child to a parent; and (3) an
inference step between two parents in an immorality. The last type directly
accommodates intercausal reasoning steps which occur between the parents of
an immorality, and summarizes the inference from one parent of an immorality
to another parent via the common child. In the constructed SG, V* is the only
node without children; every other node in the SG is an ancestor of V*.

In the second phase of the support graph method, arguments are constructed
from the SG for a given set of node instantiations. Given this evidence, the SG is
pruned such that only paths remain that start in an instantiated node. From the
thus pruned graph, arguments are constructed as follows. The logical language
L is taken to consist of all literals which correspond to the values of the nodes
in the BN; two literals ¢, v € L negate each other iff ¢ and v correspond with
the different values of the same node. Given the evidence, the knowledge base
consists of those literals in £ that correspond with the values of the instantiated
nodes. The defeasible rules in R are of the form (N1, 01),...,(Nk,0r) = (N,0),
where Ny, ..., Ny are parents of the node N in the pruned SG and oy, ...,0x,0
are values of these nodes. From L, K, and R, a set of arguments A is then
constructed.
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Fig. 2. A BN graph (a) and the corresponding SG for the variable of interest Crime
(b); Twin is pruned from the SG as only Psych report and DNA match are instantiated.

FEzample 1. An example by Timmer and colleagues [6] from the legal domain
is reviewed to demonstrate the support graph method. In the example, the BN
graph from Fig. 2a2 is constructed for a criminal case, in which we are interested
in whether the suspect committed the crime, that is, whether Crime = true.
Evidence for this possible conclusion would be the existence of a motive, which
may be mentioned in a psychological report. A match between the suspect’s
DNA and DNA found at the crime scene would further support the proposition
that the suspect committed the crime. This finding might also be explained,
however, if the suspect had an identical twin. For the variable of interest Crime,
the SG of Fig. 2b is obtained; the node Twin is directly added as a parent of
Crime, as the triplet (Crime, DNA match, Twin) is an immorality in the BN
graph. The literals in £ are the possible values of all nodes in the BN graph, that
is, £ contains crime, - crime, motive, ~"motive, . . .. Now, if we assume that Psych
report and DNA match are instantiated with the value true conform available
evidence, and Twin is not instantiated, then the path starting at the node Twin
is pruned from the SG. The knowledge base K then consists of psych report
and dna match. Among the defeasible rules extracted from the pruned SG are
dy : psych report = motive and do: dna match, motive = crime. The arguments
Ay : psych report, As: dna match, As: A1 = motive, and Ay: Ao, A3 = crime
can then be constructed. Also the rules ds: psych report = —~motive and dy: dna
match, ~motive = —crime are extracted from the SG, from which arguments
As: Ay = —motive and Ag: As, A5 = —crime are constructed. These arguments
have opposite conclusions of Az and Ajy. O

It should be noted that, when using the support graph method, the reasons pro
and con a given conclusion are not distributed over separate arguments, as is
usual in argumentation, but are instead encapsulated in a single argument. That
is, all literals that are relevant for a specific proposition are taken as the premises

2 In figures in this paper, circles are used in BN graphs, rectangles are used in ar-
gument graphs and rounded rectangles are used in SGs. Nodes and propositions
corresponding to evidence are shaded. Capital letters are used for the nodes in BN
graphs and SGs, and lowercase letters are used for propositions.
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of an argument for that proposition, which reflects the way in which Bayesian
networks internally weigh all evidence.

For every argument that is returned from a BN by the support graph method,
the method also returns an argument with the same ‘structure’ but with the
opposite conclusion. Timmer and colleagues [6] employ a quantitative step to
filter the set of arguments returned. As in the current paper the focus lies on
the graphical structures of BNs and not on the modeled probability distribution,
this quantitative step is not further discussed here.

3.2 The BR Heuristic for Constructing Bayesian Networks from
Structured Arguments

Bex and Renooij [1] have proposed the BR heuristic for constructing BN graphs
from structured arguments. This heuristic allows domain experts who are ac-
customed to argumentation to translate their reasoning expressed as arguments
into a BN graph. This graph is then supplemented with CPTs to arrive at a fully
specified BN for probabilistic inference over the original arguments. Focusing on
argument structures in which no attack relations are present, from a given set
of arguments A constructed from a logical language £, knowledge base K, and
a set of defeasible rules R, BN graphs are constructed as follows:

1. For every proposition ¢ € £ used in A, the BN graph includes a single node
V such that V' = true corresponds to ¢ and V' = false corresponds to —¢. For
every e € K, the corresponding node is instantiated at the observed value.

2. For every defeasible rule d: ¢4, ..., ¢, = ¢ € R used in A4, a set of undirected
edges between the node associated with ¢ and each of the nodes associated
with ¢1, ..., ¢, is created for inclusion in the BN graph.

3. The direction of the edges from the previous step is decided upon by a BN
engineer in consultation with the domain expert, where a causal direction is
chosen if possible, and an arbitrary direction otherwise. The resulting arcs
are inserted in the BN graph.

4. The BN engineer verifies that the graph is acyclic and that all chains that
should be active in the graph indeed are; if the graph does not yet exhibit
these properties, appropriate arcs are removed or reversed, once more in
consultation with the domain expert.

Ezxample 2. A simple example is introduced to demonstrate the BR heuristic.
The logical language, knowledge base and defeasible rules involved are £ =
{p,p,q,—q,r,—r}, K ={p} and R = {p = ¢;q¢ = r}. The constructed argu-
ments are A = {A41: p; As: Ay = q; As: Ay = r}; the argument graph of A is
depicted in Fig. 3a. Following steps 1 and 2 of the BR heuristic, the skeleton of
the BN graph corresponding to this argument structure consists of nodes P, )
and R, with undirected edges between P and () and between ) and R. Following
step 3, one of the BN graphs of Fig. 3b-e is obtained, depending on how the arc
directions are set. O
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Fig. 3. An argument graph with arguments from p to r via ¢ (a); the four corresponding
BN graphs which can be constructed by following the BR heuristic (b-e).

For a given set of arguments .4, the skeleton of the BN graph is automatically
constructed by following the first two steps of the BR heuristic. Step 3 then
prescribes that the directions of the arcs should be set manually by a BN engi-
neer in consultation with the domain expert, using the notion of causality as a
guiding principle (see also [3]). For example, if the domain expert indicates for
a defeasible rule d: p = ¢ that p is a typical cause of ¢, then the arc is set from
node P to node Q. Since immoralities can result from following this guiding prin-
ciple, the independence relations in the constructed BN graph should be verified
manually, as prescribed by step 4 of the BR heuristic. This type of knowledge
elicitation and verification is known to be a time-consuming and error-prone pro-
cess in general [7]. Especially for larger or more densely connected BN graphs,
it quickly becomes infeasible to verify all independence relations manually, as
all possible chains for all possible combinations of instantiated variables need to
be investigated. Moreover, the elicitation and verification needs to be repeated
for every adjustment to the original argument graph. As this step is practically
infeasible in investigative contexts, such as police investigations, in which the
evidence for a case changes dynamically, the arc directions are preferably set
(semi-)automatically.

4 Refining the BR Heuristic

We propose a refinement of step 3 of the BR heuristic, which specifies the di-
rections in which arcs should be set in a BN graph under specific conditions on
structured arguments. These conditions are identified from applying the support
graph method. To this end, the arguments to which the BR heuristic is applied
are compared to the arguments returned by the support graph method when
applied to a BN graph constructed by steps 1-3 of the BR heuristic. In order to
apply the support graph method, a variable of interest has to be chosen. In this
paper, we assume that there is a single ultimate conclusion in the input argu-
ment graph, that is, a single argument that is not an immediate sub-argument of
another argument. The node corresponding to this ultimate conclusion is taken
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as the node of interest. We further assume that the input arguments for the BR
heuristic are linked, in the sense that all premises relevant for a conclusion are
encapsulated in a single argument; Fig. ba shows an example of an argument
graph with linked arguments only. Linked argument graphs are similar to the
type of argument graphs that are returned by the support graph method.

When applying the support graph method to a BN graph constructed by
steps 1-3 of the BR heuristic, a set of arguments is returned. This set may be
different from the set of arguments that was used as input for the heuristic. As
measures for the differences found, we distinguish between recall and precision,
which for a given BN graph respectively measure the proportion of original argu-
ments returned and the proportion of additional arguments returned. Formally,
let A be the set of input arguments for the BR heuristic, let B be a BN graph
constructed from A by steps 1-3 of the heuristic, and let A’ be the set of argu-
ments returned from B by the support graph method. We define the recall and
precision of B as follows:

- RecallB) = |ANA|/|A]|
- Precision(B) = |[ANA'|/|A]

where B has maximum recall and precision if these fractions are equal to 1.

In Sect. 4.1, we propose a refinement of the third step of the BR heuristic,
which serves to increase the recall of constructed BN graphs. In Sect. 4.2, we
address precision. As argued before, Timmer and colleagues [6] propose a quan-
titative step for filtering the set of arguments returned by the support graph
method, which suggests that for improving the precision of constructed BNs,
the CPTs need to be taken into account. As in this paper, the focus lies on the
graphical structure of a BN, we propose a further refinement of the third step
of the BR heuristic based on graphical considerations only.

4.1 Refining the BR Heuristic to Improve Recall

To illustrate how the BR heuristic can be refined such that BN graphs with
higher recall are constructed, we revisit Example 2 from Sect. 3.2. By applying
steps 1-3 of the heuristic to the argument graph of Fig. 3a, four possible BN
graphs over the nodes P, Q and R were constructed, as shown in Figs. 3b-e.
These graphs fall into two Markov equivalence classes; the first class consists of
the BN graphs of Figs. 3b-d, and the second class consists of the graph of Fig. 3e.
Timmer and colleagues [6] proved that for two Markov equivalent BNs and the
same node of interest, the same SG is obtained. By applying the support graph
method for the node of interest R, we now show that the recall of the original
arguments from the BN graph in the second equivalence class is lower than that
of the BN graphs in the first class. Since the logical language and knowledge base
of the argument structure returned by the support graph method are derived
from the BN skeleton, £® = {p,-p,q,—q,r,—r} and K' = {p} are the same

3 The prime symbol is used to denote objects which result from applying the support
graph method.
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Fig. 4. The (pruned) SG obtained from the BN graphs of Figs. 3b-d (a), and the SG
obtained from the BN graph of Fig. 3e (b), where @ is pruned as only P is instantiated.

for all four BN graphs. For the graphs in the first equivalence class, the SG
of Fig. 4a is obtained. The defeasible rules of the returned argument structure
correspond to the arcs of this SG, that is, R' = {p = ¢;p = —~¢;—p = ¢;—p =
g g = 1= r;og =10 = v As L C LK =K and R C R/, all
original arguments A;, A, A3 € A are re-obtained from the SG. Therefore, the
BN graphs of Figs. 3b-d have maximal recall.

For the BN graph in the second equivalence class, the SG of Fig. 4b is con-
structed. In this SG, node P is a direct parent of R and not of @, as (P,Q, R)
is an immorality. We recall that an SG is meant for constructing arguments for
different sets of evidence. In the example, where just P is instantiated, node @
is pruned from the SG. The defeasible rules corresponding to this pruned SG
are R = {p = r;p = —r;—p = r;—p = —r} and the arguments which can be
constructed are Ay : p, Ay: Ay = r and AY: A; = —r. Timmer and colleagues
[6] employ a quantitative step using the CPTs from the original BN to filter the
set of constructed arguments; by this step, arguments A}, and A} are filtered
out, as P and R are independent given that @ is not instantiated. The original
arguments A, are Az are not returned by the support graph method. The recall
of the BN graph from Fig. 3e is %, which is lower than that of the BN graphs in
the first equivalence class. It therefore seems desirable to prohibit construction
of this BN graph when using the BR heuristic.

Generalizing from the example, let A1, ..., A, € A, where A; is an immediate
sub-argument of A, for all i € {1,...,n—1}, let Conc(4;) = pi, ;1 € K,
and let p, be the ultimate conclusion of the argument graph of A. Further
assume that no immorality (P;—1, P, Pi+1) is formed for ¢ € {2,...,n — 1} by
steps 1-3 of the BR heuristic. As no immoralities (P;_1, P;, P;y1) are present for
1 € {2,...,n — 1}, upon constructing the SG for the node of interest P, parents
are added iteratively, that is, P,_1 is added as a parent of P,, ..., P; is added as
a parent of P». As P; corresponds to an instantiated variable, the path starting
in P; is not pruned from the SG. The support graph method, therefore, returns
the arguments Ay, ..., A,, and the recall is maximal. On the other hand, if for a
giveni € {2,...,n — 1} an immorality (P;_1, P;, P;41) would be formed by steps
1-3 of the BR heuristic, then an SG would result in which P;; is an ancestor of
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P,. As P;_ is directly added as a parent of P,11, the argument A; would not
be returned, and the recall would not be maximal.

Based on the above observations, the following refinement of step 3 of the
BR heuristic is proposed:

3. Let Ay,..., A, € A, where A; is an immediate sub-argument of A;,; for
any ¢ € {1,...,n — 1} and where CONC(4;) = p;. Then, the directions of
the arcs are set such that no immoralities (P;_1, P;, P;11) are formed for any
i €{2,...,n — 1}. Taking this constraint into account, the directions of the
(remaining) arcs are set by a BN engineer in consultation with the domain
expert, where a causal direction is chosen if possible.

4.2 A Further Refinement of the BR Heuristic

While in the previous section, simple chains in an argument structure were shown
to be best translated in the BN graph by a chain without any immoralities, we
now focus on argument structures that do enforce immoralities in the BN graph
and propose a further refinement of the refined third step of the heuristic.

Example 3. We consider the linked argument graph of Fig. 5a. The logical lan-
guage, knowledge base and defeasible rules involved are £ = {p, —p, q, 7q, r, -,
s,ms,t, -ty K ={p,q}, and R = {p = r;p,q = s;r, s = t}; the constructed ar-
guments are A = {A1: p; Ay: Ay = r; Ag: q; Ay Ay, As = 55 Ayt Ag, Ay =t}

t
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Fig. 5. An argument graph (a) and the corresponding BN skeleton that is constructed
by the BR heuristic (b); a corresponding BN graph with the immorality (R, P,S) (c)
and a BN graph with the immorality (R, T, S) (d).



Steps 1 and 2 of the BR heuristic result in the BN skeleton of Fig. 5b. In order
to obtain an acyclic directed graph from this skeleton, at least one immorality
has to be created in the subgraph induced by the nodes P, R, S and T.
According to the refined third step of the BR heuristic, an immorality (7', R, P)
should not be formed, as A;: p is an immediate sub-argument of As: Ay = r,
which in turn is an immediate sub-argument of As: Ao, Ay = t. Similarly, the
immorality (7,5, P) should not be formed. Now, the equivalence class of BN
graphs is considered which includes just the immorality (R, P, S); the BN graph
depicted in Fig. 5c is an element of this class. With T' as the node of interest,
the SG of Fig. 6 is obtained from this graph. The logical language and knowl-
edge base corresponding to this SG are £' = {p, —p, ¢, ~gq, r, -, s, s, t,~t} and
K" = {p, q}, matching those of the original argument graph. The set of defea-
sible rules R corresponding to the SG includes the rules p,q = s; p,s = r;
p=7r;pqr=sandrs=t. Among the arguments which can be constructed
from the SG are Ay: p, As: Ay = 1, As: q, Ay: A1, A3 = s, As: As, Ay =
Ab: Ay, Ay =y, Ay Ay, Ao, As = s, and Af: A, A) = t. While the recall of
the BN graphs from Fig. 5c¢ is maximal, the precision is not; more specifically,
the returned arguments A%, A} and AL were not in the original argument set A.
Now, the equivalence class of BN graphs with just the immorality (R, T,.5)
is addressed; the BN graph depicted in Fig. 5d is an element of this class. From
this BN graph, again the SG of Fig. 6 is constructed for the node of interest
T, and thus the same arguments as above are returned. While the precision of
the BN graph of Fig. 5d is equal to that of the BN graph from Fig. 5¢, we note
that the nodes R and S are conditionally independent given the evidence for
Z = {P,Q} in the former graph, that is, in the BN graph with just the im-
morality (R, T,S). The immediate sub-argument A4 of A} and the immediate
sub-argument As of A}, therefore, appear to be irrelevant, as the associated
reasoning is non-existent in this BN graph. As noted before, Timmer and col-
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Fig. 6. The SG corresponding to the BN graph of Figs. 5¢ and 5d, with T" as the node
of interest; the SG is annotated with some of the possible arguments which can be
extracted from it.
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leagues [6] employ a quantitative step to filter the set of arguments returned by
the support graph method; specifically, as the nodes R and S are conditionally
independent given the evidence in the BN graph in Fig. 5d, A4 and A, are fil-
tered out as immediate sub-arguments of A} and