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Abstract

This paper studies synchronization of dynamical networks with event-based communication. Firstly, two estimators are
introduced into each node, one to estimate its own state, and the other to estimate the average state of its neighbours. Then,
with these two estimators, a distributed event-triggering rule (ETR) with a dwell-time is designed such that the network
achieves synchronization asymptotically with no Zeno behaviours. The designed ETR only depends on the information that
each node can obtain, and thus can be implemented in a decentralized way.

Key words: distributed event-triggered control, asymptotic synchronization, dynamical networks.

1 Introduction

Synchronization of dynamical networks, and its re-
lated problem — consensus of multi-agent systems, have
attracted a lot of attention due to their extensive ap-
plications in various fields (see Arenas et al. (2008);
Olfati-Saber et al. (2007); Ren et al. (2007); Wu (2007)
for details). Motivated by the fact that connected nodes
in some real-world networks share information over
a digital platform, these problems have recently been
investigated under the circumstance that nodes commu-
nicate to their neighbours only at certain discrete-time
instants. To use the limited communication network
resources effectively, event-triggered control (ETC) (see
Heemels et al. (2012) and reference therein) introduced
in networked control systems has been extensively used
to synchronize networks. Under such a circumstance,
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each node can only get limited information, and the
main issue becomes how to use these limited informa-
tion to design an ETR for each node such that the
network achieves synchronization asymptotically and
meanwhile to prevent Zeno behaviours that are caused
by the continuous/discrete-time hybrid nature of ETC,
and undesirable in practice (Tabuada (2007)).

In Dimarogonas and Johansson (2009), distributed ETC
was developed to investigate consensus of a multi-agent
system. To prevent Zeno behaviour, a decentralized ETR
with a time-varying threshold was introduced to achieve
consensus in Seyboth et al. (2013). Self-triggered strate-
gies were proposed in De Persis and Frasca (2013) and
shown to be robust to skews of the local clocks, de-
lays, and limited precision in the communication. How-
ever, all these works focused on dynamical networks
with simple node dynamics (single-integrators or double-
integrators), which do not appear to extend in a straight-
forward way to networks with generalized node dynam-
ics. Further, most of these existing results only guar-
antee bounded synchronization rather than asymptotic
synchronization in order to exclude Zeno behaviour (e.g.
Demir and Lunze (2012); Zhu et al. (2014)). In view of
these issues, we study asymptotic synchronization of net-
works with generalized linear node dynamics with ETC.
Firstly, a new sampling mechanism is used with which
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two estimators are introduced into each node. One is
used to estimate its own state, and the other is used
to estimate the average state of the node’s neighbours.
A distributed ETR is then designed based on these es-
timators which guarantees asymptotic synchronization
of the network. Moreover, inspired by the method pro-
posed in Tallapragada and Chopra (2014), a dwell-time
(Cao and Morse (2010)) is used to exclude Zeno, which
can simplify the implementation of the designed ETR.

Our contribution is to propose a control law that for
the first time has the three essential and desirable prop-
erties: i). the proposed ETR can guarantee asymptotic
synchronization with no Zeno behaviours for networks
with generalized linear node dynamics, whereas most
of the existing results sacrifice synchronization perfor-
mance and can only get bounded synchronization; ii).
by introducing a new sampling mechanism, we reduce
the number of estimators needed for each node to two,
whereas existing results need d; + 1 estimators (d; is the
degree of the node); iii). by introducing an estimation of
synchronization errors between neighbours into the de-
signed ETR, networks with proposed ETC can reduce
the number of sampling times significantly.

2 Network Model and Preliminaries

Notation: Denote the set of real numbers, non-negative
real numbers, and non-negative integers by R, R, and
77 the set of n-dimensional real vectors and n x m
real matrices by R™ and R™*™. [,,, 1,, and 1,,x., are
the n-dimensional identity matrix, n-dimensional vec-
tor and n X m matrix with all entries being 1, respec-
tively. || - || represents the Euclidean norm for vectors
and also the induced norm for matrices. The superscript
T is the transpose of vectors or matrices. ® is the Kro-
necker product of matrices. For a single w : RT — R",
w(t™) = limgy w(s). Let G be an undirected graph con-
sisting of a node set ¥V = {1,2,..., N} and a link set
E ={é1,ea,...,ep}. If there is a link e, between nodes
i and j, then we say node j is a neighbour of node 7 and
vice versa. Let A = (a;;) € RNV*N be the adjacency ma-
trix of G, where a;; = 0 and a;; = a;; > 0, 7 # j, if node
¢ and node j are neighbours, otherwise a;; = a;; = 0.
The Laplacian matrix L = (I;;) € RV*Y is defined by

lij = —Qyj, lfj 75 1 and l“‘ = Zjvzl Q.
We consider dynamical networks whose state equation is
2;(t) = Hx;(t) + Bu;(t), YVieV (1)

where z; = (21, Ti2, . .., Tin) | € R™ is the state of node
i. H e R™™" B e R" and u; € R are the node dynam-
ics, input matrix, and control input, respectively. Gen-
erally, continuous communication between neighbouring

nodes is assumed, i.e., u;(t) = K Zj\le a;j(x;(t)—z;(t)).

This yields the following network
] N
ii(t) = Hz; + BK ZFI aij(z;(t) — zi(t). (2

In this paper, we assume that connections in (1) are real-
ized via discrete communication, i.e., each node only ob-
tains information from its neighbours at certain discrete-
time instants. We will present an event-triggered ver-
sion of network (2), and study how to design an ETR
for each node to achieve asymptotic synchronization. We
suppose that the topological structure of the network is
fixed, undirected and connected. For simplicity, we only
consider unweighted networks, i.e., a;; € {0,1}; but the
obtained results can be extended to weighted networks
directly. We further assume that: there is no time delay
for computation and execution, i.e., tx, represents both
the k;th sampling time and the k;th time when node ¢
broadcasts updates; and the communication network is
under an ideal circumstance, i.e., there are no time de-
lays or data dropouts in communication.

We introduce two estimators O; and Oy, into each node
i, where O; is used to estimate its own state, and Oy, is
used to estimate the average state of its neighbours. We
adopt the following control input

ui(t) = K (&y,(t) — li®i(t)) (3)
where K € R'*™ is the control gain to be designed, &; €
R™ and 2y, € R" are states of O; and Oy, respectively.
The state equations of O, and Oy, are given by

0, : :i'l(t) = Hi’z(t), te [tk,;atki—&-l) (4)
jl(t) = xz(t)’ U =1,
Ty, (t) = Hiy, (t)v te [tEivtEi+1)

i ivl(t) = '%Vi t_) - 62;7 ej(t_)a

t=1tg,.

The increasing time sequences {tx, } and {tz,}, ki, k; €
7T represent time instants that node i sends updates
to its neighbours and that it receives updates from one
or more of its neighbours, respectively. The set J; =
Ti(tg,) = {J | te, = tz,.J € Vi} is a subset of V;, from
which node i receives updated information at ¢ = tg_,
and V; = {j | a;; = 1, j € V} is the index set of the
neighbours for node i. The error vector e;(t) = &;(t) —
x;(t) represents the deviation between the state of esti-
mator O; and its own. The time sequence {tj,} is de-
cided by the following ETR

lp,41 = inf {t >ty | ’I“i(t,l‘i,i‘i,i‘vi) > 0} (6)

where 7;(+,+,+,-) : RT x R™ x R" x R" — R is the event-
triggering function to be designed. For ¢ > ¢, if r; > 0
at t = t; ., then node i samples z;(t; ), Zi(ty, 1),
calculates e;(t; ,,), sends e;(t; ;) to its neighbours,



and reinitialize the estimator O; at t = tg,41 by
2;(tg,+1). In addition, node 4 will reinitialize the estima-
tor OVi by i'Vi (t/;:i-ﬁ—l) = ‘%Vi (tl;+1) - ZjEJi ej(t]gﬁ_l)
each time when it receives updates from its neighbours.

We assume the network is well initialized at t = t,
i.e., #;(tp) = 0 and each node samples and sends e;(¢o)
to its neighbours. Therefore, we have Z;(to) = x;(to),
Ty, (to) = Xjey, Tj(to) and Ji(to) = V; for all i € V.
Then, the problem is with the given network topology, to
determine the time sequence {ty, }, k; € Z" by designing
a proper ETR (6) such that network (1) achieves syn-
chronization asymptotically without Zeno behaviours.

@i (ty,)

Fig. 1. The block diagram of &;(t).

Remark 1 In Liu et al. (2012), u; = BKZ;(t) and ETR
tiyer = mf{t > 1, | @00 = pll ()|} were adopted
where &;(t) = xi(t) —xi(ty,) and Z(t) = 3 ey, (z(tr;) —
xi(tr,)). It turns out that the ETR with €;(t) and Z;(t)
cannot avoid Zeno behaviours, in particular for networks
whose nodes synchronize to a time-varying solution. Sup-
pose indeed the network achieves asymptotic synchro-
nization under the above ETR. As x;(t) and x;(t) ap-
proach to each other and converge to a time-varying so-
lution, Z;(t) may converge to zero as well. However, é;(t)
will not converge to zero (see Figure 1), and this makes
tg,+1 — ti, close to zero and may lead to Zeno behaviour.
This is the reason that we introduce estimators into each
nodes. By doing so, e;(t) will approach zero, which may
exclude Zeno behaviours for each node. For each node,
d; + 1 estimators were used to achieve bounded synchro-
nization in Demir and Lunze (2012); whereas controller
(3) only needs two estimators O; and Oy, . Therefore, the
advantage of our control method is clear, in particular for
networks with large degrees. Moreover, we will show that
our controller (3) with a distributed ETR can achieve
asymptotic synchronization with no Zeno behaviours.

Remark 2 The state error e;(t) = &;(t) — x;(t) (or
e;(t) = x;(tg,) — zi(t) for networks with no estimators)
is extensively used to design ETR in the literature (see
Seyboth et al. (2013); Tallapragada and Chopra (2014);
Zhu et al. (2014) for examples) where each node sam-
ples its state and sends the sampled state to its neigh-
bours. In order to reduce the number of estimators, we
make each node send the sampled error e;(t,) instead of
x;(t,) to its neighbours who will use this information to
update the corresponding estimator Oy, . The implemen-
tation of the this new sampling mechanism needs no more
information than that used in the literature. It should be
noted that most synchronization algorithms for network

(2) with continuous nodes’ interactions only use relative
state information, and it is very important to study net-
work (7) by also using the relative state information for
the design purposes which should be studied in the future.

To simplify the analysis, we will show that network (1)
with controller (3) and estimators (4), (5) is equivalent
to the following system where each node maintains an
estimator of the state of each of its neighbours.

ii(t) = Ha;(t) — BK ZL lijz;(t),Vi €V (Ta)

25(t) = Hi;(t), t € [tr, tr,+1)
.f)i(t) = l‘i(t), t = tki-

Defining z; = 3y, &5 gives Zi(t) = > cy, zi(t) =
HZzi(t), t € [tg,,tg,+1), which has the same dynamics as
2y, defined in (5). Moreover, at t = tj,, we have

A= Y &)+ Y )

JEV:/Ti(t) JETi(t)

= > HE)+ D (#E) —e(t)
JEV:/Ti(t) JETi(t)

= 2y, (t). (8)

Thus, we have z;(t) = &y, (t) for all ¢ > ;. Then, con-
troller (3) becomes

u; = K (21' - l”i‘l) =K (-')}Vi — l”.’i‘z) . (9)

Substituting (9) into (1) gives that network (1) with (3),
(4), and (5) is equivalent to (7).

Moreover, let 2; = >y, (£ — @;). We have &y, = z; =
Z; 4+ lii&;. Then, ETR (6) can be reformulated as

thy+1 = inf {t > g, ‘ ’I’i(t7$i7ii'i7 21) > 0} . (10)

This paper will use model (7) and ETR (10) for the
analysis. But the obtained results can be implemented
by using controller (3) with the two estimators O;, Oy,
and ETR (6). To finish this section, we give the definition
of asymptotic synchronisation based on network (7).

Definition 1 Let z(t) = (] (t),z] (1), ... ,x;(t))-r €
RN and &#(t) = (2] (£),43 (£),..., 85 () € R™Y be
a solution of network (7) with initial condition xq =
(210, Tags - - s TNo) | andxig = x;(to). Then, the network
1s said to achieve synchronization asymptotically, if for
every xg € R™V the following condition is satisfied

Jim [lai(t) — 2,0 =0, Vijev. (1)

Remark 3 When the communication network is not
ideal, model (1) with (3) and O;, Oy, cannot be simplified



to (7). A more complicated model is needed to describe
the network dynamics. Time delays and packet loss will
influence the synchronization performance. However,
due to the robust property of asymptotic synchroniza-
tion, bounded synchronization can be guaranteed where
the final synchronization error may depend on the time
delay magnitude and probability of packet loss. These
issues should be studied in the future. Another important
problem for this situation is under what conditions the
network can still achieve synchronization asymptotically.

3 Event-Triggered Control

Denote e(t) = (] (t),ed (t), ..., ek (t)) with e;(t) =
Z;(t) — z;(t). Then, network (7a) can be rewritten by

t=(In®H—-L®BK)x—(L® BK)e. (12)

Since the topology of the network is undirected and con-
nected, the Laplacian matrix L is irreducible, symmetric,
and has only one zero eigenvalue. Further, there exists
an orthogonal matrix ¥ = (¢y,1s,...,9y) € RVXN
with ¢; = (Y1, %i2,...,%in) " and ¥ = Iy such
that WTLY = A = diag(\1, \2,..., \y) where 0 =
M < X2 < A3 < oo < Ay. Choose ¢; = 1/VNL}
for A\;. Due to the zero row sum property of L, we
have Zjvzl ¥i; = 0 for all i = 2,3,...,N. Defining
® = (1hg, ¥3,..., ) € RNNV=1) gives

PTO=1Iy_1, PO =Iy—1/Nlyxn. (13)
Let Ay = ®TL® = diag{\2,\3,...,An}, @ = P ® I,
and A = Ay ® BK = diag {\2BK, \3BK,...,ANBK}.
Defining y = ® "z gives

§(t) =" ((In ® H)z — (L ® BK)(In, — ®®"
+00")(z +¢))
=(INn-1®H - A ® BK)y—Ad'e (14)

where we use properties @' (Iy ® H) = (Iy_1 @ H)® T
and (L ® BK)(Inyn, — ®®") = 0 for any BK, which
are supported by facts L1y = 0 and (13). Denoting
H= (IN_1®H)—(A1®BK) = diag{Hg,Hg,... ,HN}
with H; = H — \;BK, system (14) can be simplified to

y=Hy—Ad"e. (15)

By defining 7 = 4 Zf\;l x;, we have ||y||? =2 TP Tz =
SN Nz — Z||? where the last equality follows from
®'® = Iy_; and (®®7)?2 = ®PT. Therefore, if
limy o0 [Jy(t)|| = 0, then x;(t) = z;(t) = Z(t) as t — oo,
i.e., network (7) achieves synchronization asymptoti-
cally. This result is summarized in the following lemma.

Lemma 1 If system (15) is asymptotically stable, i.e.,
lim; o |ly(t)|| = 0, then network (7) achieves synchro-
nization asymptotically.

It is shown in Trentelman et al. (2013) that a necessary
and sufficient condition for asymptotic synchronization
of network (2) with continuous interconnections is the
existence of positive definite matrices P; such that

H'P,+ PH; = —2I,,i=2,3,...,N.  (16)

This condition requires all the linear systems with sys-
tem matrices H; = H — \;BK, i = 2,..., N are asymp-
totically stable simultaneously, which is stronger than
that (H, B) is stabilizable. From (14), network (7) with
ETC can be regarded as network (2) with an external
input (or disturbance) A® "e. According to ISS (input-
to-state stability) theory, a necessary condition that the
linear system (14) is asymptotically stable is that the the
corresponding system (also described by (14) but with-
out the term A® e) is asymptotically stable. Hence, the
existence of matrix solutions P; to Lyapunov equations
(16) is also a fundamental requirement for network (7)
with ETC to achieve asymptotic synchronization. In this
paper, we assume that such matrices P; exist.

Let zZ; = ZjEVi(‘rj — .’Ei), 21 = ZjEV{,(‘%j — .’ﬁl), z =
(2,29 5.y 2f) | = (—5L®In)x,2 = (ff,é;,...,é;f =
CLeld.p= ey M = % (e T
6 € (0,1), @ = maxj—p3..n {N[|PBK|}, a =
[H|| + [ H|| + Av 2| BK |, and b = An[|BKI|(1 + 2).
Next, we will give a useful lemma which will be used to
prove the main result of the paper.

Lemma 2 Consider network (7). The following two in-
equalities hold for any t > tg

IZIF < An(llell + N1yl (17)
Aollyll < Anllell + [12]]- (18)

PROOF. Due to ||(L® I,)|| = An, we have
121 = (L & In)(z + e)l| < [[z] + An e (19)

2]l = (L @ In)(Z — e)|| < [IZ] + Anllell.  (20)
Let U = ®&", then for any L, we have LU =
UL, ie, L and U are diagonalizable simultane-
ously. Further, we have UTLW = A and ¢'UV =
diag{Au1, Au2; ..., Aun}, where A1 = 0and A, = 1,4 =
2,3,..., N are eigenvalues of U. Let \;, i =1,2,..., N
be eigenvalues of the matrix (A\3U? — L?). Then with
U? = U, we have \; = 0 and \; = )\?V—)\f > 0,
i=2,3,...,N, which gives L? < A% U2 Thus, we have

I2]]* =2 (L2 @ I,)x < M2 (U2 ® L)z

. (21)
=A@ 2? = A%yl



Combining (19) with (21) gives inequality (17). Similar
o (21), we have |ly[|? = 2" (U? @ [,)r < 1/X\32T (L? ®
I,)x which with (20) gives (18). O

Theorem 1 Network (7) achieves synchronization
asymptotically under the distributed ETR

thp1 = Inf {t > tg, + 77 | [lesl| > pll %]} (22)
where .
* ap
=—-In({—+1) >0. 23
T T n(bﬂl i ) (29

Moreover, no Zeno behaviour occurs in the network.

PROOF. Under ETR (22), the existence of 7, =
tk,+1 — tg, > 0 is guaranteed by dwell-time 7. To
show asymptotic synchronization, we claim that the
network with (22) satisfies |le;|| < p||Z]| for all ¢ > tg.
This is true at ¢ = ¢o, as we have |le;(to)|| = 0 and
hence |le;(to)|| < pl|Z(to)] for all i € V. Now, suppose
this is not true at some t > tg, and let t* be the infi-
mum of the times at Which there exists a node ¢ € V
such that [le;(¢)] > p[|2(t)|| (the analysis is the same
if this happens in multiple nodes). There holds thus
lle; ()] < pl|2(t)]| for alli € V and all ¢ < t*, which gives

2 2 2
el Z led? < gl (2
Combining (17) with (24) yields

le@)] < gl\y(t)ll, vt € [to, 7). (25)

Based on (22), we can conclude that ||e; ()| > p||2(t)]]
can only happen when t* € (ty,,ty, + 7% with k >
1 since |le]] < pllzill < pll2ll, VE € (tg, + 75tk +1)-

Calculating <% ||‘e’ I for ¢ € [ty,, t*) directly gives
4 Jled] el IAIedel
S < (=) + 18 + I=TiecHiel
at Ty = WHI+ I Jor+ =
+awlBE] lel s sy B (26)

where we use (17) in Lemma 2 to get (26). Substituting
(25) into (26) gives

d leill _ el

< . 27)
@yl <Ml (

Based on the comparison theory (Khalil (2002)), we

have le;()|[/ly(t)| < &(t — tx,), whenever [le;(tx,)]|
/y@Ee) |l < d(tg,) where ¢(t — tg,) is the solution of the
ordinary differential equation

b=ap+b (28)

with the initial condition ¢(t,). At t = tx,, we have
lled @)/ ly(tr,)[| = 0. Setting ¢(t — tx,) = 0 gives

< ¢(t - tkl)’Vt € [tkut*)' (29)

Further, combining (18) with (24) gives ||Z|| > ||yll/p1
which with (29) leads to

le®l _ lle®)]
EOT = y@) =

Solving (28) shows that it will take ¢(t — tx,) a positive
time constant 7* to change its values from 0 to p/p1, so
does ||e;(¢)]]/||y(t)]|- Therefore, it requires at least 7* to
make | e;(t)]] move from 0 to p||2(t)].

p1¢( tkl), Vit € [tkl;t*)-

Suppose, to obtain a contradiction, that t* < tkl +7*. In
that case, [lel(ll/ Iyl < 6t — 1) < 6(°) < plpr,
for all ¢ < t*. By continuity of ||e;||/||y||, this implies the
existence of an € > 0 such that |le;(¢)||/|ly(®)]| < ¢(7%)
for all ¢ < t* + e. Therefore, there holds then |le;(t)]] <
pll2(t)]| for all t < t* 4 £, in contradiction with t* being
the infimum of the times at which ||e;(¢)]| > pl|2(¢)]]-

Hence if such a t* exists, there must hold t* > ti, + 7%,
and |le;(t)|| < pll2(t)]| for all ¢ € [t,,tr, + 7). Thus, we
conclude that ||e;|| < pl|2]], Vt € [t,, tg, +7*). According
to ETR (22), we have |le;|| < pl||2||, Vt > to. Therefore,
we have (25) hold V¢ > to. This is equivalent to say that
(25) holds Vt > ty.

Now, select the Lyapunov function candidate V =y T Py
with P = diag{ P, Ps,..., Py}. Then, the derivative of
V along system (15) satisfies

V< =2[lyl* +2a]yll[| el (30)

Combining (25) with ||®|| = 1 yields
=T 5T 4
12 el < (|2 [lllell = flell < ~llyl- (31)
Substituting (31) into (30) gives

V < —=2(1-6)|ly|* <0, Y]yl #0. (32)

Therefore, equilibrium point y = 0 of system (15) is
asymptotically stable. Based on Lemma 1, the network
achieves synchronization asymptotically. O

Remark 4 Like most works in synchronization of dy-
namical network (with/without ETC), in particular for
networks with generalized linear node dynamics (e.g.
Trentelman et al. (2013); Guinaldo et al. (2013)),
one usually needs some global parameters to guaran-
tee asymptotic synchronization as well as to exclude



Zeno behaviours. These parameters can be estimated by
using methods proposed in the related literature (e.g.
Franceschelli et al. (2013)), and can be initialized to
each node at the beginning. However, how to use local
parameters rather than global ones (e.g. how to replace
N by using local parameter such as the degree of the node
d;) remains open, and deserves attention.

Remark 5 Most works in the literature (e.g. Demir
and Lunze (2012); Guinaldo et al. (2013); Seyboth et al.
(2013); Zhu et al. (2014) ) use decentralized ETRs
which can be summarized in a compact from as follows
(Guinaldo et al. (2013) )

the+1 = inf {¢ | [le;]| > co+cre '} (33)

where e;(t) = &;(t) — z;(t) (or e;(t) = x;(tg,) — x;(t)
for networks with no estimators), and c¢o > 0, ¢c1 > 0,
v > 0 are three design parameters. It is obvious that
only bounded synchronization can be achieved under ETR
(33) with co # 0 which is the case extensively studied in
the literature, i.e., co > 0 and ¢ = 0 (see Demir and
Lunze (2012); Zhu et al. (2014) for examples). Further,
these decentralized ETRs ignore the interactions (or dif-
ferences) between neighbours, and hence may have con-
servativeness, in particular when these differences are
large. Our new distributed ETR (22) achieves asymp-
totic synchronization by introducing ||%;||. The term ||3;]]
updated by x;(ty,) estimates synchronization errors be-
tween neighbours continuously, and thus provides each
node useful information for determining its sampling
times. Therefore, the proposed ETR can reduce the sam-
pling times significantly, in particular for cases where
|2:]] is large (see the example in Section 4 for details).

Remark 6 To simplify notations, this paper only con-
stders the case where u; is a scalar. However, the obtained
results can extend to multiple-input case directly. It is
pointed out in Heemels et al. (2013) that the joint design
of the controller and event-triggering rule is a hard prob-
lem. However, we can select any control gain K to syn-
chronizes the continuous-time network (2), i.e., to sta-
bilize (H,\;B), i = 2,..., N simultaneously. It can be
selected by solving a group of linear matrix inequalities.
Further, it is shown in Liu et al. (2013) that a similar
distributed ERT as (22) but with exponential term cy et
can also guarantees asymptotic synchronization. How-
ever, this paper replaces the exponential term by dwell
time term which can be implemented easily in practice.
Such a T gives an upper bound for the designed ETR
(22), and therefore, a modified ETR with0 < 7} < 7* can
also synchronize the network without Zeno behaviours.

Remark 7 Instead of monitoring the triggering condi-
tion continuously, a periodic ETC method was proposed
to stabilize linear systems exponentially in Heemels et al.
(2013) where the triggering condition was verified pe-
riodically. Similar idea was used to achieve consensus

of multi-agent systems in Meng and Chen (2013); Xiao
et al. (2015). However, bi-directional communication
were used, i.e., at each event time, the node needs to send
its sampled state to its neighbours and meanwhile also
needs its neighbours’ newest sampled state to update its
control signal; whereas in our paper, the node only needs
to send it sampled information to its neighbours but does
not need information from its neighbours. In the paper,
we don’t check the event-triggering condition in the time
interval [tg,,tx, + 7*), but need to check the condition
continuously during the period [ty, + 7%, tg,+1). It is of
great interest to study asymptotic synchronization by us-
ing periodic ETC and one-directional communications.

4 An Example

To show the effectiveness of our method, consider a net-
work with 10 nodes that have parameters as follows

H= (0?5 _8'5>, B= (?) K= (—0.5 1).

We adopt the two-nearest-neighbour graph to describe
the topology, i.e., Vi={j|j=i—2,i— 1,0+ 1,i+ 2},
i1 =1,2,...,10. If j € V; and j < O, then j = j +
11. If 5 € V; and 7 > 0, then j = j — 10. Since the
matrix H has two eigenvalues on the imaginary axis of
the complex plane, the network will synchronize to a
stable time-varying solution determined by the initial
condition. By calculating, we get a = 2.9061. We select
6 = 0.9. Figure 2 gives the simulation results of the
network with the distributed ETR (22) (DDT), which
shows the effectiveness of the proposed method. In the
figure, we only give the sampling time instants in the
first 2 seconds for clarity. The theoretical value of 7* is
0.0013 s. The minimum and maximum sample periods
(Timin/Tmaz) for each node during the simulation time
are given in Table 1 which shows that the actual sample
periods are much larger than 7*.

We also compared our method with the decentralized
ETR (33) (DET) proposed in Guinaldo et al. (2013).
According to Remark 5, only bounded synchronization
can be guaranteed with ¢g # 0 in (33) (Seyboth et al.
(2013)). For this case, the advantage of our method is
clear. So here, we only compare our method with the case
¢op = 0 where asymptotic synchronization under (33) can
also be achieved. We select ¢; = p and v = 0.30579.
During the simulation period (0 — 18 s), the network with
DDT samples 3432 times in total, whereas the network
with DET samples 212 times more (3644 times in total).

5 Conclusion

This paper has investigated asymptotic synchronization
of dynamical networks by using distributed ETC. With
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Fig. 2. Simulation for the network with DDT.

Table 1. The minimum/maximum sample period

Node1l Node2 Node3 Node4 Nodeb
Tmin  0.0153  0.0114 0.016 0.0214 0.0188
Tmaz  0.2651  0.5292  0.6336  0.0817 0.1851

Node 6 Node7 Node8 Node9 Node 10
Tmin  0.0046  0.0688  0.0116  0.0117 0.0117
Tmaz  0.3584  0.2841  1.4677  0.5347 0.5238

the help of the introduced estimators, a distributed ETR,
for each node has been explored, which only relies on
the state of the node and the states of the introduced
estimators. It has been shown that the proposed ETC
synchronizes the network asymptotically with no Zeno
behaviours. It is worth pointing out that time-delay and
data packet dropout are common phenomena which def-
initely affects the synchronization of a network with
event-based communication. Thus, it appears that the
synchronization of such networks with imperfect com-
munication is an important issue to pursue further for
both theoretical interest and practical consideration.
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