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ARTICLE INFO ABSTRACT

The habenula (Hb) is an evolutionary well-conserved structure located in the epithalamus. The Hb receives
inputs from the septum, basal ganglia, hypothalamus, anterior cingulate and medial prefrontal cortex, and
projects to several midbrain centers, most importantly the inhibitory rostromedial tegmental nucleus (RMTg)
and the excitatory interpeduncular nucleus (IPN), which regulate the activity of midbrain monoaminergic nuclei.
The Hb is postulated to play a key role in reward and aversion processing across species, including humans, and
to be implicated in the different stages of transition from recreational drug intake to addiction and co-morbid
mood disorders. The Hb is divided into two anatomically and functionally distinct nuclei, the lateral (LHb) and
the medial (MHDb), which are primarily involved in reward-seeking (LHb) and misery-fleeing (MHb) behavior by
controlling the RMTg and IPN, respectively. This review provides a neuroanatomical description of the Hb,
discusses preclinical and human findings regarding its role in the development of addiction and co-morbid mood
disorders, and addresses future directions in this area.
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1. Introduction

The habenula (Hb) (from the Latin, little rein) is a phylogenetically
old structure highly conserved among vertebrates located in the dor-
somedial portion of the thalamus (Benarroch, 2015; Loonen and
Ivanova, 2015). The habenular nuclei are paired structures and belong
to the epithalamus, which also harbors the pineal gland and the stria
medullaris. The Hb is considered to be an important relay between
cortical and subcortical structures implicated in emotion and reward
processing (Hetu et al., 2016). The Hb receives inputs from the septum,
basal ganglia, lateral hypothalamus, anterior cingulate and medial
prefrontal cortex, and projects to several midbrain centers, most im-
portantly the tail of the ventral tegmental area (also known as the

rostromedial tegmental nucleus [RMTg]) and to the interpeduncular
nucleus, which regulate the activity of midbrain monoaminergic nuclei
(Bianco and Wilson, 2009; Herkenham and Nauta, 1977). As emotional
and reward-related impairments are relevant across psychiatric dis-
orders, particularly within addiction and mood disorders (Goya-
Maldonado et al., 2015; Jentsch and Pennington, 2014), the function of
the Hb in humans is of great clinical importance.

Functionally, the Hb is divided into lateral (LHb) and medial (MHb)
parts (Benarroch, 2015; Klemm, 2004). The MHb is connected to the
amygdalo-hippocampal system through fornix and medial septal area
and to the LHb via the striatopallidal (i.e. extended) amygdala and
lateral hypothalamus (Loonen and Ivanova, 2016b). The LHb plays an
important role in brain reward responses, and has been linked to drug
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addiction, as well as reward-related processes in major depression
(Matsumoto and Hikosaka, 2007; Sartorius et al., 2010). The MHb —
which has not yet been studied as extensively as the LHb — has been
mainly associated with the regulation of nicotine intake (Fowler et al.,
2011; Salas et al., 2009) and may also be implicated in the regulation of
depressive mood (Viswanath et al., 2013). It has been postulated that
the LHb might be more implicated in the initial stages of recreational
drug intake (associated with positive reinforcement), while the gradual
shift towards compulsive drug use in addiction, strongly associated
with negative affect (negative reinforcement), might be mediated by an
enhanced activity of the LHb and a gradually greater involvement of the
MHb (Loonen et al., 2017; Loonen et al., 2016).

The structure and function of the Hb have been mainly explored in
preclinical studies using rodent and monkey models. The study of the
Hb in humans has been hampered by its small size and difficulties re-
solving its boundaries (Ely et al., 2016; Kim et al., 2016; Lawson et al.,
2013). Despite this limitation, several groups have attempted to study
the Hb at conventional fMRI resolutions (Erpelding et al., 2014;
Garrison et al., 2013; Ide and Li, 2011; Li et al., 2008; Noonan et al.,
2011; Schiffer et al., 2012; Ullsperger and von Cramon, 2003) and more
recently at high resolutions (Ely et al., 2016; Hennigan et al., 2015;
Hetu et al., 2016; Lawson et al., 2016; Lawson et al., 2014; Salas et al.,
2010), providing fairly consistent findings of Hb activation when
studying punishment and reward processing.

The present review focuses on the neuroanatomical description of
the Hb, and discussion of preclinical and human findings regarding the
role of the Hb in the transition from recreational drug intake to ad-
diction and co-morbid mood disorders. We first describe the neuroa-
natomical properties of the LHb and MHb together with their afferent
and efferent projections. Second, we review animal studies showing
how the Hb is involved in reward processes and aversive states, and
how this may mediate the transition from recreational to compulsive
drug use and development of co-morbid mood disorders. Third, we
review neuroimaging studies investigating the structure and function of
the Hb in humans, as well as its role in reward, aversive states, addic-
tion and depression. Finally, we propose a model of transition from
recreational drug use to substance use and mood disorders, we discuss
the limitations of the existing findings and we offer suggestions for
future work in this area.

2. Habenula neuroanatomy
2.1. Connections of the habenula with other brain structures

2.1.1. Inputs

The Hb receives signals from the septum, hippocampus, ventral
pallidum, lateral hypothalamus, global pallidus, and other areas of the
basal ganglia (Fig. 1). The main input to the MHb comes from the
septum, particularly the medial septum and the adjacent nucleus of the
diagonal band of Broca (Benarroch, 2015; Klemm, 2004). The input to
the MHb from these septal areas is primarily cholinergic and gamma-
aminobutyric acid (GABA)ergic, although some inputs are glutama-
tergic (Benarroch, 2015). Moreover, the MHb receives dopaminergic
input from the ventral tegmental area (VTA), adrenergic (nor-
epinephrine) input from the locus coeruleus and serotonergic (5-hy-
droxytryptamine, 5-HT) input from the raphe nuclei (Benarroch, 2015;
Bianco and Wilson, 2009; Xie et al., 2016). The LHb primarily receives
glutamatergic afferents from the preoptic area, lateral hypothalamus,
the entopeduncular nucleus (EPN; analog of globus pallidus in pri-
mates), the anterior cingulate and medial prefrontal cortex (Benarroch,
2015). The LHb also receives strong GABAergic innervations (Poller
et al., 2013) from various other brain regions, including e.g. the EPN,
nucleus accumbens and VTA. However, most of the inputs of the Hb
functional inputs are still unknown (Shabel et al., 2012). Hence, there is
a large heterogeneity in GABAergic inputs onto LHb neurons. Although
the input from the basal ganglia is thought to be primarily inhibitory,

277

Neuroscience and Biobehavioral Reviews 80 (2017) 276-285

Shabel et al. (2012) have shown that transmission from the basal
ganglia to the LHb can also be excitatory glutamatergic, and suppressed
by serotonin. These neurons may correspond to part of the habenula-
projecting globus pallidus (GPh) of human’s earliest vertebrates an-
cestors, a structure primarily involved in decision making in reward-
driven behavior (Loonen and Ivanova, 2015). Additionally, the LHb
receives dopaminergic innervation from the VTA, serotonergic in-
nervation from the medial raphe nucleus, and adrenergic input from the
locus coeruleus (Benarroch, 2015; Stamatakis et al., 2013). The LHb
neurons express tyrosine hydroxylase (TH) and DA type 2 and 4 re-
ceptors (Aizawa et al., 2012; Geisler et al., 2003; Good et al., 2013;
Gruber et al., 2007). A single-pulse stimulation of the VTA inhibits the
firing of ~90% of the LHb neurons, whereas tetanic stimulation in-
creases the activity of LHb units (Shen et al., 2012). Although the MHb
sends projections to the LHb, there is no connection from LHb to the
MHDb (Kim and Chang, 2005).

2.1.2. Outputs

Information encoded by the LHb and the MHb is transmitted
through the fasciculus retroflexus (FR) axon bundle to several midbrain
monoaminergic nuclei (Hikosaka, 2010). However, the majority of the
output is given to two specific midbrain areas: the rostromedial teg-
mental nucleus (RMTg) and the interpeduncular nucleus (IPN) (Fig. 1).

The FR is divided into two regions, the outer and the inner areas. The
outer region originates in the LHb and projects mainly to the RMTg,
next to numerous monoaminergic nuclei in the mid- and hindbrain
(Bianco and Wilson, 2009). These efferents are predominantly gluta-
matergic, but some are GABAergic and cholinergic (Bianco and Wilson,
2009). The RMTg is a small nucleus that contains mainly inhibitory
GABAergic cells and thereby regulates activity of VTA/substantia nigra
compacta (SNc) and the dorsal raphe nucleus (Benarroch, 2015). More
specifically, LHb neurons predominantly inhibit dopaminergic (DA)
neurons of the midbrain (Ji and Shepard, 2007; Matsumoto and
Hikosaka, 2007). Electrical stimulation of LHb abolished the firing
of ~ 90% of DA neurons of VTA and SNc (Christoph et al., 1986;
Matsumoto and Hikosaka, 2007). Vice versa, lesion of LHb increased
DA turnover in terminal projection areas of these midbrain nuclei
(Lecourtier et al., 2008). Similarly, through its RMTg projection, sti-
mulation of the LHb caused transient inhibition of the firing activity of
serotonergic neurons in the raphe nucleus (Wang and Aghajanian,
1977). LHb neurons also directly target the DA VTA (Lammel et al.,
2012) and substantia nigra pars compacta, the serotonergic medial and
dorsal raphe nuclei, cholinergic laterodorsal tegmentum and nora-
drenergic locus coeruleus (Herkenham and Nauta, 1979).

The inner area of the FR originates in the MHb and projects to the
IPN (Benarroch, 2015; Bianco and Wilson, 2009; Klemm, 2004;
Sutherland, 1982). The MHb contains both cholinergic neurons (in its
ventral two-thirds) and dorsally located substance P-containing neu-
rons, which innervate the ventral and dorsal versus the lateral IPN,
respectively (Artymyshyn and Murray, 1985; Contestabile et al., 1987).
This neuronal pathway is highly conserved across various species
(Broms et al., 2015). The results of Qin and Luo (2009) suggest that, at
least in mice, also glutamate is used as a neurotransmitter next to
acetylcholine and substance P (Qin and Luo, 2009). The MHD is the
main source of input for the IPN (Bianco and Wilson, 2009; Klemm,
2004; Morley, 1986), although cholinergic fibers may also originate in
the posterior septum (Contestabile and Fonnum, 1983; Fonnum and
Contestabile, 1984). The IPN is a singular, unpaired structure located at
the ventral midline of the midbrain (Klemm, 2004; Morley, 1986). The
major efferent pathways originating in the IPN project to the dorsal
tegmental nucleus (Morley, 1986), the VTA (Klemm, 2004) and the
raphe nuclei (Bianco and Wilson, 2009; Klemm, 2004). However, the
IPN is well known for its widespread ascending and descending pro-
jections (Klemm, 2004; Morley, 1986). Apart from a low number of
serotonergic neurons (continuous with the B8 cell group of the medial
raphe nucleus) numerous peptidergic neurons (substance P, met-
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hypothalamus

Fig. 1. Scheme showing the connectivity of the amygdalo-hippocampal system to the midbrain through the habenular complex.
BST = bed nucleus of the stria terminalis; DR = dorsal raphe nucleus; DTg = dorsal tegmental nucleus; IPN = interpeduncular nucleus; LHb = lateral habenula; MHb = medial ha-
benula; PHC = parahippocampal cortex; RMTg = rostromedial tegmental nucleus; sCg = subgenual cingulate gyrus; VTA = ventral tegmental area. Reproduced from Loonen and

Ivanova (doi: in press) with permission of the copyright owner.

enkephalin, somatostatin) have been identified within the IPN (Morley,
1986).

2.2. Neurons in the LHb and MHb

Most of the LHb neurons are glutamatergic, with enriched expres-
sion of vesicular glutamate transporter (VGluT2) (Li et al.,, 2011;
Stamatakis and Stuber, 2012). Also, there is a small population of in-
hibitory GABAergic interneurons (Smith et al., 1987). Both GABA, and
GABAg receptors were detected in the rodent LHb (Liang et al., 2000;
Rodriguez-Pallares et al., 2001). LHb cells showed various firing pat-
terns, including regular pace-making, irregular discharge activity or
spontaneously occurring trains of bursts (Kowski et al., 2009; Weiss and
Veh, 2011). Electrophysiological experiments indicate that excitatory
transmission onto LHb neurons is mainly induced by a-amino-3-hy-
droxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR), with a
low expression of N-methyl-p-aspartate receptors (NMDAR) (Li et al.,
2011; Maroteaux and Mameli, 2012).

The MHD is distinctive from the LHb in that it co-expresses the
mRNA of a3, a5, and 34 nAChRs subunits at very high (a3 and 4) or
moderate (a5) levels (Bierut, 2011). The IPN, main the output from the
MHD, is also enriched in a5 and (34 nAChR subunits expression. Fur-
thermore, muscarinic cholinergic receptors have been identified within
the IPN (Kuhar et al., 1975), though less extensively distributed than
nAChRs (Rotter et al., 1979; Schwartz, 1986). Spencer et al. (1986)
demonstrated that within the IPN muscarinic receptors were almost
exclusively M2-class (inhibitory) autoreceptors on cholinergic terminals
(Spencer et al., 1986).

3. Functional role of the habenula in aversive states and reward
processing

3.1. Role of the LHb

The most important function of the LHb is to convey aversive states
(Hikosaka, 2010). For instance, the anticipation or (unexpected)

experience of air puffs in the eye have been shown to cause a strong
excitation of the LHb neurons recorded by in vivo electrophysiology in
monkeys (Matsumoto and Hikosaka, 2009). Notably, LHb neuronal
firing occurs in response to unpredicted aversive events, also known as
negative prediction errors; when a punishment could be predicted, LHb
firing was much less pronounced (Matsumoto and Hikosaka, 2009). In
line with this role in processing negative prediction errors, LHb neu-
ronal firing is also increased by the omission of an expected reward
(i.e., disappointment) (Matsumoto and Hikosaka, 2009).

Li et al. (2011) reported that enhanced excitatory synaptic trans-
mission onto VTA-projecting LHb neurons positively correlated with the
degree of helpless behavior, and that deep brain stimulation of the LHb,
resulting in decreased excitatory synaptic transmission, acutely re-
versed “learned helplessness” (Li et al., 2011), a rodent model of human
major depression (Shumake et al., 2003). Similarly, Yang et al. (2008)
found that rats with electrolytic lesions of the LHb displayed a decrease
in immobility time and an increase in climbing time in the forced swim
test, indicative for decreased depression-like mood (Yang et al., 2008).
Along this lines, Stamatakis and Stuber (2012) exposed mice to aversive
stimuli (footshocks), used to induce depressive-like phenotypes in ro-
dents. They found an increase in the frequency of miniature excitatory
post-synaptic potentials, and a decrease in paired-pulse ratio in the LHb
(Stamatakis and Stuber, 2012), suggesting that exposure to footshock
stress enhanced activity of LHb neurons projecting to the RMTg. Ad-
ditionally, activating this projection induced passive avoidance and
conditioned place aversion (Stamatakis and Stuber, 2012). Vice versa,
inhibition of the LHb using Designer Receptor Exclusively Activated by
Designer Drugs (DREADD) technology had anti-depressant effects in the
forced swim test (Nair et al., 2013).

The LHD is also involved in the regulation of reward processes. For
instance, it has been demonstrated that the activity of LHb neurons is
diminished by unexpected rewards or their cues (Jhou et al., 2009;
Matsumoto and Hikosaka, 2007). The LHb is believed to encode reward
probability, reward value and the availability of information about
potential rewards (Bromberg-Martin et al., 2010; Matsumoto and
Hikosaka, 2009). However, this is not necessarily encoded by the LHb
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itself, but can also be mediated along a pathway including the LHb. It
has also been demonstrated that activation of the VTA-LHb inhibitory
pathway resulted in place preference behavior, which was prevented by
intra-LHb microinjections of GABAa antagonist and disinhibition of
VTA dopaminergic neurons (Stamatakis et al., 2013).

Overall, current results suggest that the LHb plays an important role
in processing of aversive and rewarding stimuli. LHb activation is as-
sociated with aversive states and stimuli, while LHb deactivation is
related to rewarding states and stimuli, functioning as an anti-reward
node.

3.2. Role of the MHb

Studies into the functional role of the MHD are limited. A distinct/
specific role of the MHb in the motivational aspects of mood and an-
xiety disorders has been suggested (Viswanath et al., 2013). This is, for
example, concluded from altered metabolic activity in the MHb in rat
studies of “learned helplessness”, a test measuring the motivation to
escape a stressor (Shumake et al., 2003). Furthermore, it was demon-
strated that mice lacking the dorsal MHb perform poorly in motivation-
based locomotor behaviors, such as voluntary wheel running and the
accelerating rotarod, without abnormalities in gait, balance and basal
locomotion. These mice also showed reduced sucrose preference (in-
dicative for reduced motivation), but no changes in forced swim test
performance, measuring depressive mood (Hsu et al., 2014). This sug-
gests that the MHD is implicated in motivation, but not in depression-
like mood.

MHb-mediated motivation to undertake action is probably related
to projections of the MHDb to the IPN. Indeed, recent studies suggest that
the MHb-IPN pathway should be included as part of several well-known
circuitries regulating the aversive states associated with drug with-
drawal (Koob and Volkow, 2010; Lobo and Nestler, 2011). As outlined
previously, the MHDb is characterized by a striking high level of nAChR
expression. The $2 and a6 nAChRs present in MHb-IPN pathway are
involved in the affective symptoms of nicotine withdrawal. For in-
stance, animal studies in mice have shown that knockout of the B2
nAChR subunit, mainly/highly expressed within the MHb-IPN pathway,
reduced anxiety and conditioned place aversion during nicotine with-
drawal from chronic nicotine exposure (Jackson et al., 2008). This ef-
fect has also been observed in mice after administration of a6 nAChR
antagonist; nicotine-induced conditioned place preference was blocked
as well as withdrawal-associated conditioned place aversion and an-
xiety (Jackson et al., 2009). Overall, animal studies indicate that a2,
B2, ab contribute to the affective domain of aversive symptoms of ni-
cotine withdrawal (Fowler et al., 2008) but the specific role of the MHb
in aversive states still needs to be clarified.

The assumed involvement of the MHb in reward-related processes is
largely based on animal studies with nicotine administration
(Viswanath et al., 2014). For instance, it has been shown that mice
without choline acetyltransferase (ChAT; responsible for acetylcholine
synthesis) in habenular neurons were resistant to nicotine-induced re-
ward as measured by acute nicotine-induced psychomotor activity
(Frahm et al., 2015). This implies that acetylcholine in the MHb is
important for (nicotine) reward and highlights the role of the MHb in
motivational aspects associated with reward processes (e.g. translating
motivation into action).

Several mouse lines lacking nAChR subunits have been generated.
For instance, mice without 34 subunit did not self-administer nicotine.
These animals also showed absence of nicotine-induced dopamine re-
lease in the ventral striatum (Picciotto et al., 1998). These effects could
at least in part be mediated by alterations in MHb function. The a4
subunit is also important for regulation of reward in mice (Tapper et al.,
2004). Activation of a4 subunit of AChRs by a low dose of nicotine in
a4 mutant mice carrying a point mutation causing substitution of leu-
cine to alanine at 9th amino acid and thereby mimicking hypersensi-
tivity to nicotine, induced reinforcing effects of acute nicotine
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administration (Tapper et al., 2004). Hence, 34 and a4 subunits of A-
ChRs can be considered as “addiction targets”.

In sum, current results suggest that the LHb plays a role in proces-
sing aversive and rewarding stimuli, whilethe MHb plays a role in re-
ward processing and motivation. While LHb activation is associated
with aversion, LHb deactivation is associated with reward. On the other
hand, MHb activation seems to be associated with reward and moti-
vation and deactivation with the lack of both.

4. The habenula in substance use disorders and associated
aversive (mood) states: pathways to addiction and mood disorders

4.1. Transition to substance abuse and mood disorders

Drug addiction is a chronic relapsing disorder characterized by a
loss of control over drug use, a high motivation for obtaining the drug,
and maintaining drug use despite negative consequences (American
Psychiatric Association, 2013). It has been proposed that drug addic-
tion, in contrast to recreational drug use, involves a dysregulation of the
neural circuits mediating reinforcement, reflecting two parallel me-
chanisms: dysfunction of the brain reward systems that normally
mediate natural rewards and the recruitment of brain stress systems
that drive aversive states (Koob and Volkow, 2010; Wise and Koob,
2014). Addiction is often conceptualized as a three-stage cycle: binge/
intoxication, withdrawal/negative affect, and preoccupation/anticipa-
tion (Munro, 2015). These stages of the addiction cycle feed into each
other, become more intense, and ultimately lead to the pathological
state known as addiction. During this transition the positive re-
inforcement of the early stages of drug use turns into negative re-
inforcement, which ultimately predominates (Koob and Volkow, 2010).
Not surprisingly, there is a high comorbidity between depression and
drug addiction: subjects suffering from cocaine addiction are twice as
likely to be depressed (National Survey on Drug Use and Health, 2012)
compared with healthy controls.

The transition from positive to negative reinforcement during the
development of addiction is where the Hb may play a key role. Positive
reinforcement is defined as a learning process related to experiencing
positive affective states (rewards). Negative reinforcement is defined as
a learning process related to the alleviating of negative affective states
(removal of an aversive stimulus). The aversive, negative emotional
state that drives the negative reinforcement of addiction is produced by
two opponent processes. First, the negative affective state is hypothe-
sized to be mediated by deficits in the brain systems that mediate re-
ward. Second, the negative affective state is thought to be mediated by
recruitment of brain stress systems, i.e. the frontotemporal amygdalo-
hippocampal complex (Wise and Koob, 2014).

It is generally acknowledged that drugs of abuse modulate the ac-
tivity of dopaminergic neurons in the VTA (Luscher and Malenka,
2011), leading to increased dopamine release in the nucleus ac-
cumbens, which plays a central role in positive reinforcement (Wise,
2004). Negative reinforcement is thought to be mediated by the neu-
roadaptive changes that occur during drug withdrawal. These involve
changes in the mesolimbic dopamine system, changes in corticotropin-
releasing factor (CRF), norepinephrine, and dynorphin in the extended
amygdala, and changes in the dynorphin-k opioid system in the nucleus
accumbens and extended amygdala (Wise and Koob, 2014). Given the
functional profile of the habenula, neuroadaptive changes in this area
may be added to this list.

4.2. The specific role of the LHb

Since glutamatergic neurons of the LHb display relatively high rates
of spontaneous activity allowing disinhibition in rewarding circum-
stances (Hong et al., 2011; Matsumoto and Hikosaka, 2007) and LHb
firing increases in cases of reward omissions or other unpleasant events,
the LHb may serve as an“anti-reward”center. In reward states,
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habenular activity is generally below average, and in aversive states
(e.g., during disappointing events), the habenular signal is above the
spontaneous level (Velasquez et al., 2014). In addition, expectation of
aversive events results in increased phasic firing of LHb neurons, which
is reduced after positive outcomes (Bromberg-Martin et al., 2010;
Matsumoto and Hikosaka, 2007, 2009). Therefore, the LHb functioning
corresponds to what occurs during the addictive state according to the
anti-reward process theory (Koob and Volkow, 2010). This is in line
with the findings that LHb stimulation promotes conditioned avoidance
and reduces reward-related responding (Lammel et al., 2012;
Stamatakis and Stuber, 2012). This is linked to addiction as mouse
experiments revealed that cocaine enhanced glutamatergic transmis-
sion in LHb neurons targeting the RMTg (Meye et al., 2015). Disrupting
this mechanism prevented development of depressive-like symptoms
(that is, depression-like mood as measured in the forced swim test)
during withdrawal from repeated cocaine administration (Meye et al.,
2015). A limitation of this elegant study is that repeated systemic drug
administration as employed in this study was insufficient to trigger an
addictive state. Nonetheless, these findings do shed some light on the
effect of drugs of abuse on LHb function under non-pathological con-
ditions. Taken together, these results suggest that anti-reward signals
carried by the LHb may serve as a key factor to continue drug seeking.
Supporting this hypothesis, deep brain stimulation of the LHb can re-
duce cocaine intake, facilitate extinction and attenuate drug-induced
relapse in rats trained to self-administer cocaine (Friedman et al.,
2011).

How do drugs of abuse disturb the activity of the LHb? It has been
recently demonstrated that the EPN (the mouse equivalent of the globus
pallidus) projects to a subset of LHb neurons innervating the RMTg. Of
interest, this EPN-to-LHb (probably the mouse homologue of the earlier
mentioned GPh) excitatory signaling was limited by GABAergic co-
transmission, and this inhibitory component decreased during cocaine
withdrawal as a result of reduced presynaptic vesicular GABA trans-
porter (VGAT). This shifted the EPN-to-LHb GABA/glutamate balance
to glutamate, disinhibiting EPN-driven LHb activity. If signals coming
out of the LHb are tonically amplified after cocaine exposure, VTA
dopamine neurons receive a greater amount of tonic inhibition from the
RMTg and therefore less DA is released from VTA neurons. Thus, ex-
citatory activity of LHb neurons and their afferents may be elevated as a
form of homeostatic regulation, to counteract the robust increase in
dopaminergic firing following intense cocaine exposure (Jhou et al.,
2013; Zahm et al., 2010). Suppression of signaling the value of events
would then be expected to lead to an incapability to decide what option
- e.g. drug or other relevant events — may be‘better’ in terms of survival.
Whereas under non-pathological conditions organisms prefer food over
drugs (Lenoir et al., 2007), when LHb function gets disrupted the drug
may get progressively the overhand relative to food intake (and other
events important for survival) (Lenoir et al., 2013), particularly when
dysfunction of the MHbD gets gradually involved (see Sections 4.3 and
6).

Serotonin is also implicated in the behavioral effects mediated by
the LHDb, although serotonin’s role only has been investigated in relation
to anxiety and mood, and not in relation to the effects of drugs of abuse.
In vivo microdialysis studies indicated that serotonin levels in the DRN
in animals displaying behavioral despair induced by chronic un-
predictable stress were significantly lower than in control animals
(Yang et al., 2008), which is in accordance with the inhibitory control
of the LHb over midbrain/brainstem areas like the DRN and the key
role of serotonin in anxiety and mood. Serotonin also influences LHb
input; serotonin has an inhibitory effect on the excitatory input from
the EPN (i.e. from GPh) to the LHb (Shabel et al., 2012). This is in line
with the finding that negative prediction errors can be modulated by
serotonin (Fischer et al., 2015) and suggests that reduced serotonin
release in the raphe nuclei upon LHb stimulation leads to disinhibition
of LHb input, as a self-regulating loop to maintain homeostasis.
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4.3. The specific role of the MHb

Evidence for the role of the MHDb in drug addiction is derived from
studies focusing on morphine and tobacco addiction. For instance,
chronic morphine administration has been found to decrease c-fos ac-
tivity in the MHb whereas morphine withdrawal elevates c-fos protein
levels in the LHb (Neugebauer et al., 2013). Furthermore, the MHb
expresses mRNA for all three of a3, a5, and 4 nAChRs subunits at very
high (a3 and $4) or moderate (a5) levels (Bierut, 2011), and genome-
wide association studies (GWAS) found consistent results across distinct
laboratories showing an association between a3, a5, and (34 nAChRs
gene cluster and tobacco use and addiction (Amos, 2007; Berrettini
et al., 2008). Of interest, no change in the basal or nicotine-induced
neuronal firing was observed in cholinergic MHb neurons from mice
chronically treated with nicotine, while during withdrawal (associated
with negative affect) re-exposure to nicotine doubled the firing of
cholinergic neurons (Gorlich et al., 2013). Furthermore, nicotine
withdrawal-induced anxiety increases activity of neurons in the inter-
peduncular intermediate (IPI), a subregion of the IPN, through its
glutamatergic input from MHb (Zhao-Shea et al., 2015). MHb choli-
nergic neurons regulate nicotine withdrawal-induced anxiety via in-
creased signaling through nicotinic receptors containing the a6 sub-
unit. This was demonstrated using mice expressing these gain-of-
function nAChRs. The mice exhibited increased nicotine-withdrawal
induced anxiety-like behavior that was alleviated by blockade with a
nAChR antagonist (Pang et al., 2016). These findings demonstrate that
cholinergic MHb neurons particularly control aversive states associated
with withdrawal.

The MHb may regulate nicotine reward by directly controlling
glutamate release in the IPN. Mice characterized by local elimination of
choline acetyltransferase (Chat) in the MHb neurons were found to be
insensitive to nicotine-conditioned reward and withdrawal, due to the
absence of ACh control over the quantal size and release frequency of
glutamate at habenular synapses in the IPN (Frahm et al., 2015). The
IPN, on its turn, may control dopamine release in the striatum through
projections to the VTA (Groenewegen et al., 1986; Klemm, 2004). In-
deed, injections of 34 antagonists into the MHb prevented nicotine-
induced dopamine release in the nucleus accumbens (McCallum et al.,
2012), and micro-infusion of an alpha3beta4 nicotinic antagonist into
the MHb prevented nicotine-induced behavioral sensitization and sen-
sitization-related dopamine release in the nucleus accumbens (Eggan
and McCallum, 2016). As to whether the MHD is also implicated in
substance use disorders other than tobacco addiction is an outstanding
question for future research. Since mu opioid receptor expression is
weak in the LHb but strong in the septum, MHb (co-localization with
substance P and Ach neurons), fasciculus retroflexus (fr) and IPN
(Gardon et al., 2014), also opiate dependence may be driven by the
MHb. In support, chronic morphine administration with escalating
doses (20, 40, 60, 80, 100, 100, and 100 mg/kg, IP, 3 times a day
(08.30, 13.00, and 18.30 h) caused a reduction in acetylcholinesterase
(AChE) activity in the MHb (Neugebauer et al., 2013), while a higher
dose of morphine (150 mg/kg three times a day) injected for a longer
period of time increased AChE activity in the MHb (Mohanakumar and
Sood, 1983). Notably, during morphine withdrawal, AChE activity in
MHD recovered to baseline (Neugebauer et al., 2013).

Apart from acetylcholine and catecholamines, also the serotonergic
system is intricately involved in mood and anxiety regulation. The MHb
is via IPN connected with the serotonergic upper raphe nuclei, which in
turn project to ventral and dorsal striatum, to the extended amygdala,
to the amygdalo-hippocampal complex and to the prefrontal cortex
(Nieuwenhuys, 1985). These serotonergic fibres inhibit dopamine re-
lease from its terminals. In turn, the amygdalo-hippocampal system is
probably an important source of input to the MHb via fornix and medial
septum (Loonen and Ivanova, 2016b). This circuit is believed to have an
important role in the regulation of the stress/anxiety response system.
The septohippocampal system can also be considered as the neural
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substrate regulating the behavioral inhibition system that modulates
reaction to stimuli indicating adverse events (Hahn et al., 2010). It has
been demonstrated anticipation of monetary loss elicited activation in
the hippocampus as well as in the amygdala (Hahn et al., 2010).

Furthermore, conditional deletion of cannabinoid type 1 receptors
(CB1R) from MHDb neurons reduced fear-conditioned freezing and
abolished conditioned odor aversion in mice, without affecting neutral
or reward-related memories. Local inhibition of nicotinic, but not glu-
tamatergic receptors in the IPN before retrieval, rescued these pheno-
types and optogenetic electrophysiological recordings of MHb-to-IPN
circuitry revealed that blockade of CBIR specifically enhances choli-
nergic, but not glutamatergic, neurotransmission (Soria-Gomez et al.,
2015). Thus, a dysfunction of the MHb-mediated fear without affecting
reward-related memories could drive to a selective motivation for drug
use above other rewards.

4.4. The specific role of the fasciculus retroflexus

On the long-term, when drugs are used for a substantial period of
time, the increased excitability of LHb glutamatergic efferents may lead
to dysfunction of the outer area of the fasciculus retroflexus. It has been
reported that substance use disorders and rats with a history of cocaine
self-administration are characterized by degeneration of the fasciculus
retroflexus (Ellison, 2002; Lax et al., 2013). In rats this was reflected by
a decreased number of LHb neurons labeled with a retrograde tracer
injected into the VTA (Lax et al., 2013). Cocaine may cause damage to
brain tissue via oxidative stress and mitochrondial impairment (Cunha-
Oliveira et al., 2008; Numa et al., 2008; Poon et al., 2007). Since a
dysregulation of glutamate neurotransmission can lead to abnormal
levels of glutathione, an antioxidant, and oxidative stress can lead to
degeneration of myelination (Kulak et al., 2013), the excessive gluta-
mate release may be one cause of fasciculus retroflexus degeneration. A
recent study demonstrated that nicotine self-administration in mice was
associated with differential (i.e. opposing) expression of micro-RNAs in
the LHb and MHb, which target various genes of cell signaling path-
ways related to the degeneration of the fasciculus retroflexus (e.g.
mmu-miR-669c¢-3p regulated the sortilin 1 (Sort1)), one of the receptors
involved in cell-death signaling (Lee et al., 2015). Hence, micro-RNAs
may provide another pathway by which long-term self-administration
of drugs of abuse can lead to degeneration of the outer area of the
fasciculus retroflexus. It is tempting to speculate that under these
conditions less efficient efferent function of the LHb, leads to an in-
crease of the relative contribution of the MHb to behavior.

5. Function of the habenula in human neuroimaging studies

Despite the considerable amount of data available from preclinical
and experimental animal studies (Bianco and Wilson, 2009), the func-
tional role of the Hb in humans remains largely unexplored (Ely et al.,
2016; Furman and Gotlib, 2016; Hennigan et al., 2015; Hetu et al.,
2016; Lawson et al., 2016; Lawson et al., 2014). An important limita-
tion has been the small size of the structure, which is reported to be
approximately 30 mm3 in each hemisphere (LHb plus MHb) post-
mortem (Ranft et al., 2010). However, in vivo estimates report sizes
around 18.5 mm® per hemisphere (Savitz et al., 2011), which means
that in each hemisphere the Hb may be even smaller than the standard
functional MRI voxel size (i.e. 27 mm?>, with a resolution of 3 mm iso-
tropic voxels). Recently, several groups have employed a high-resolu-
tion fMRI approach to examine resting state (Ely et al., 2016; Hetu
et al., 2016) and task-related (Furman and Gotlib, 2016; Hennigan
et al.,, 2015; Lawson et al., 2016; Lawson et al., 2014) Hb activity
with <2 mm isotropic voxel sizes, providing novel and more reliable
information about the Hb network in humans. Because this resolution is
still coarse to study in the Hb in detail, these studies cannot distinguish
between the lateral and medial parts as in animal studies.
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5.1. Functional connectivity of habenula during resting state

Resting-state high-resolution fMRI studies indicate that the Hb is
functionally connected with several cortical and subcortical regions
involved in reward and aversion processing (Ely et al., 2016; Hetu et al.,
2016). At the cortical level, the Hb has shown to be functionally cou-
pled to the insula and somatosensory and motor regions, which are
involved in interoception and sensorimotor planning, respectively. The
Hb is also functionally coupled to areas of the default mode network,
including the PCC, retrosplenial cortex, pregenual ACC, and para-
hippocampal gyrus (Ely et al., 2016; Hetu et al., 2016). At the sub-
cortical level, the thalamus, striatum (caudate body), pons, SN/VTA
complex, periaqueductal gray (PAG) and locus coeruleus have been
shown to be functionally connected with the Hb (Ely et al., 2016; Hetu
et al., 2016).

These results are consistent with observations from animal studies,
highlighting the VTA, thalamus, (para)hippocampus and ACC as the
main Hb afferents, and the SN, VTA and raphe nuclei as the main (in-
direct) efferents (Benarroch, 2015; Bianco and Wilson, 2009). In par-
ticular, evidence of Hb connectivity with the VTA in humans adds to the
growing body of evidence that the Hb functionally interacts with the
midbrain dopaminergic reward system (Benarroch, 2015; Ely et al.,
2016; Hetu et al., 2016). In addition, clusters of activity within the
dorsal medial pons in the vicinity of the dorsal raphe nuclei support the
connection of the Hb with the primary serotonergic target reported in
the preclinical literature (Benarroch, 2015; Ely et al., 2016). Finally, the
network activity of the Hb appears to also extend into the noradrenergic
locus coeruleus, which is known to be bi-directionally connected with
both the MHb and LHb (Ely et al., 2016) (see Section 2.1. for details).

In summary, the functional coupling between the Hb and cortical/
subcortical regions is in agreement with the proposed role of the Hb as a
relay between cognitive/sensory processing structures and the ami-
nergic regions of the midbrain involved in affective and reward pro-
cessing (Bianco and Wilson, 2009; Hikosaka, 2010; Proulx et al., 2014).

5.2. Functional role of habenula in aversive processing

As stated in previous sections, several animal studies have shown
that the Hb plays an important role in the processing of aversive stimuli
and negative prediction errors (Lammel et al., 2012; Matsumoto and
Hikosaka, 2007, 2009; Stamatakis and Stuber, 2012). High-resolution
fMRI studies in humans have revealed that regions known to be in-
volved in emotional processing, such as the posterior insula, the PAG
and the limbic system, are functionally connected with the Hb (Ely
et al., 2016; Hetu et al., 2016). Task-related high-resolution fMRI stu-
dies have extended these findings by showing that the Hb is involved in
the processing of cues predicting noxious stimuli in humans. Lawson
et al. (2014, 2016) demonstrated in two studies that the Hb encodes the
negative conditioned value of stimuli predicting electric shocks, with
greater activation elicited by greater expectation of receiving a painful
electric shock (Lawson et al., 2016; Lawson et al., 2014). In Lawson
et al. (2014), the (right) Hb also displayed increased functional con-
nectivity with several structures including the amygdala with in-
creasing aversive value of the conditioned stimulus (Lawson et al.,
2014). Consistent with these results, Hennigan et al. (2015) showed
increased Hb activation in anticipation of electric shocks as compared
with neutral stimuli, as well as increased functional connectivity with
the VTA (Hennigan et al., 2015). These results suggest that the func-
tional connections identified in resting-state studies between the Hb
and the VTA/limbic system are most likely part of the functional net-
work processing aversive stimuli (Ely et al., 2016; Hennigan et al.,
2015; Hetu et al., 2016; Lawson et al., 2016; Lawson et al., 2014).

Finally, two studies explored the functional connectivity of the Hb
in individuals with subclinical depression (Ely et al., 2016) as well as
with major depression (Lawson et al., 2016). Ely et al. (2016) reported
that depressed mood was associated with stronger resting-state Hb
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connectivity with default mode network regions (dmPFC, anterior
middle temporal gyrus, temporal pole, and inferior lateral parietal
cortex) and weaker connectivity with salience network areas (anterior
insula, amygdala, and mid-cingulate cortex). However, these results
must be treated with caution due to the lack of correction for multiple
comparisons. Intriguingly, the study by Lawson et al. (2016) found that,
in contrast to healthy controls, the Hb of patients with major depression
showed decreasing activation as the expectation of receiving a painful
electric shock increased (Lawson et al., 2016). This result, which is at
odds with current models of depression based on animal studies, may
suggest that major depression is characterized by a loss of capacity to
avoid negative cues.

5.3. Connectivity with structures associated with reward processes

Neuroimaging studies have revealed that the Hb is functionally
connected with the striatum and the SN/VTA complex in humans (Ely
et al., 2016; Hetu et al., 2016), which is in line with its role in reward
learning and goal-directed actions (Bianco and Wilson, 2009; Hikosaka,
2010; Proulx et al., 2014). Animal studies have shown that the Hb plays
a major role in controlling the activity of dopamine neurons in the SNc
and the VTA (Matsumoto and Hikosaka, 2007). More precisely, the
firing rate of Hb neurons increases following unexpected aversive sti-
muli and decreases following unexpected reward (Matsumoto and
Hikosaka, 2007) (see Sections 3.1 and 3.2), while the firing rate of
dopamine neurons increases in response to unexpected rewards (see
Sections 4.2 and 4.5). Both structures are known to be part of the same
circuit, where the GABAergic RMTg —located in the caudal section of
the VTA- has been proposed to play a mediating role, translating acti-
vation/inhibition in the Hb into inhibition/activation in the SN/VTA
(see Sections 2.1.2 and 4.2).

Using fMRI, Hetu et al. (2016) have shown that activity in the right
Hb was negatively coupled with activity in the right VTA left caudate
during rest (although note that the left Hb was positively coupled with
regions in the bilateral SN/VTA complex) (Hetu et al., 2016). These
results suggest a similar functional architecture in humans as observed
in animal studies, i.e. an inhibitory influence of the Hb on the dopamine
system possibly mediated by the RMTg, which in turn reduces activity
within the striatum (Bianco and Wilson, 2009; Hikosaka, 2010; Proulx
et al., 2014). However, this finding has not been replicated so far. Ely
et al. (2016) identified functional connectivity between the Hb and
dorsal ACC, a key region for reward and emotion processing that has
been consistently implicated in major depression (Ely et al., 2016).

Consistent with the animal literature, high-resolution task-related
studies have reported decreased Hb activity during the experience of
rewarding stimuli (e.g., juice), but increased Hb activity following ne-
gative prediction errors, induced by exposure to noxious stimuli (e.g.
electric shocks) or experience of negative feedback (e.g. monetary pe-
nalties) (Furman and Gotlib, 2016; Hennigan et al., 2015; Lawson et al.,
2014; Salas et al., 2010).

5.4. Limitations of current neuroimaging studies

In order to obtain high spatial resolution while maintaining rea-
sonable temporal resolution, the reviewed studies herein were fre-
quently only able to achieve partial brain coverage (Hennigan et al.,
2015; Hetu et al., 2016; Lawson et al., 2016; Lawson et al., 2014). As a
result, the functional relationship of the Hb with the entire brain re-
mains an open question. Although current neuroimaging data provide
strong evidence that the Hb is functionally coupled to the VTA in hu-
mans during rest, they cannot inform us on the exact nature of these
connections, as it is difficult to precisely identify which subpopulation
of neurons within the VTA is functionally connected with the Hb in
humans using fMRI (Hetu et al., 2016). In addition, it is important to
note that since BOLD (Blood Oxygen Level Dependent) signal is only an
indirect measure of neuronal activity (Logothetis et al., 2001), caution
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is needed when interpreting positive/negative correlations as ex-
citatory/inhibitory influences (Hetu et al., 2016).

From animal studies it is known that the Hb can be further divided
into two functional parts, the MHb and LHb, which have different in-
puts and outputs and different functions (Lecca et al., 2011; Viswanath
et al., 2013) (see Sections 2 and 3). Unfortunately, current limitations of
neuroimaging methods (i.e. relatively low anatomical MRI contrast and
low functional resolution) do not allow to reliably distinguishing these
sub-parts on a structural image. This limitation raises the possibility
that Hb activity picked up with fMRI reflects an intermixing of signals
from functionally distinct regions (Ely et al., 2016; Furman and Gotlib,
2016; Hetu et al., 2016; Lawson et al., 2016; Lawson et al., 2014). In
addition, although there is agreement that the left and the right Hb do
not differ morphologically in humans (Ely et al., 2016; Lawson et al.,
2013; Ranft et al., 2010), differences in the delineating techniques that
often consider different boundaries (Kim et al., 2016; Lawson et al.,
2013; Savitz et al., 2011) might result in volume differences (left vs.
right) and identification discrepancies of the Hb among the studies.
Furthermore, standard pre-processing steps (e.g. normalization and
spatial smoothing) might lead to localization errors (Lawson et al.,
2013), making the signal from the Hb difficult to distinguish from ad-
jacent structures.

6. Model of gradually enhanced activity of LHb and MHb

The human prefrontal cortex is connected to the midbrain mono-
aminergic nuclei through a ventral route (passing through the medial
forebrain bundle) and a dorsal pathway (including the habenula and
RMTg/IPN). We have recently developed a model of how the activity of
this dorsal connection is regulated in addiction (Loonen et al., 2017;
Loonen et al., 2016) and depression (Loonen and Ivanova, 2016a). Of
interest, it has been proposed that depression, and in particular bipolar
depression, involves a dysregulation of the catecholaminergic and
cholinergic systems (Loonen et al., 2017; van Enkhuizen et al., 2015).
Evidence from neuroimaging studies, neuropharmacological interven-
tions, and genetic associations supports the notion that increased cho-
linergic functioning underlies depressive mood, whereas increased re-
lease of catecholamines (dopamine and norepinephrine) underlies the
behavioral activity changes of mania (van Enkhuizen et al., 2015).
Decreased activity of the latter is also likely to be implicated in core
motivational symptoms such as anhedonia (loss of enjoyment or plea-
sure), commonly present in both addiction and mood disorders (i.e.
unipolar and bipolar depression), which points at a common neural
substrate (Lawson et al., 2016). Given that the LHb regulates the ca-
thecholaminergic system, and that the MHb is enriched with nicotinic
cholinergic receptors and regulates the IPN, this view implies that the
transition from recreational drug use to substance abuse and mood
disorders, which is driven by negative reinforcement mechanistically,
could involve an enhanced activity of the LHb, with a gradually greater
involvement of the MHb.

Here we propose a model where the Hb plays a crucial role in the
transition from recreational drug use to addiction, by (1) development
of a negative affective state (contributing to negative reinforcement of
drug use) and (2) development of selective motivation for compulsive
drug use. In the early stages of drug use, the use of drugs has rewarding
effects, resulting in positive reinforcement learning. Based on the
functional roles of the LHb and MHb, we propose that during this phase
of recreational drug use, LHb activity is reduced upon drug intake,
whereas MHb activity is increased. This results in a positive affective
state and an increasing motivation to obtain the drug.

In the subsequent development of drug addiction, the LHb would
become steadily more activated in some individuals, due to homeostatic
processes, counteracting the repeated de-activation by ongoing drug
use. Drug use becomes then a way to compensate for this LHb hyper-
activity, by temporarily relieving the associated negative affective state
(negative reinforcement). At the same time, the progressive enhanced



A. Batalla et al.

activity of the MHb might contribute to reduced sensitivity for rewards
other than drugs of abuse, resulting in a selective motivation to obtain
these drugs of abuse. An increased MHb activity would also further
enhance the activity of the LHb, leading to increased negative affective
states and contributing to the development of core motivational
symptoms involved in addiction and mood disorders, such as anhe-
donia. Finally, a progressive dysfunction of the fasciculus retroflexus,
that is, a less efficient efferent function of the LHb, might further in-
crease the relative contribution of the MHb and therefore aggravate the
Hb dysfunction, intensifying the negative mood states (LHb) and the
selective motivation for using drugs of abuse above other rewards
(MHDb).

7. Future perspectives

Testing our model of gradually enhanced LHb and MHb activity
during the transition from recreational substance use to addiction and
associate aversive states requires that future research considers a
number of important factors. First of all, rodents should not be addicted
when being administered a drug in the early stages, or when self-ad-
ministering a drug on a regular basis. Rather, rats have to display a
gradual loss of control over self-administration behavior, as is typically
measured using the extended access model for drug self-administration
(Ahmed and Koob, 1998). Furthermore, it is important to emphasize
that only those animals showing an increased motivation to self-ad-
minister the drug, while being insensitive to conditioned suppression of
drug self-administration and continuing drug seeking behavior during
extinction, fulfill critical DSM-5 criteria for substance use disorders and
can be ‘diagnosed’ as being addicted (Deroche-Gamonet et al., 2004).
Likewise, the proper measurement of an aversive state, like depression,
is critical. Depression is a heterogeneous disorder, diagnosed based on
11 DSM-5 criteria (American Psychiatric Association, 2013). Although
not all of the depression-related criteria can be measured in rodents,
several of them can, like depressive mood, anhedonia, loss of energy,
changes in body weight, changes in activity, changes in circadian
rhythm and decreased cognitive functioning. Yet, most rodent studies
capture only a few of these and study the degree of dysfunction, which
is often insufficient for conclusions regarding depression understood as
a categorical disorder. It has been acknowledged that the integration of
dimensional (domains of dysfunction) with categorical (class of dis-
order) criteria is crucial in clinical and preclinical research in psy-
chiatry (Kraemer, 2015; Millan et al., 2015). We therefore recommend
the application of categorical approaches (e.g. DSM-5) to define de-
pression in rodents, while studying domains of dysfunction. In addition
it is clear that there is a need to elaborate studies on the role of the MHb
in addiction beyond nicotine as substance. Moreover, differences be-
tween type of processes driving MHb and LHb into encoding aversive
states should be clarified in experimental studies. The function of the
LHD is related to reward motivated behaviors and the MHb to stress/
danger motivated conducts. Depression consists of changes of both
components (Loonen and Ivanova, 2016a). When using animal models
of depressive-like behavior the relationship with these two components
should be explicitly considered in order to disentangle the contribution
of both parts of the Hb. At the neuroanatomical level, investigation of
changes in the structural and functional connectivity from the LHb to
the RMTg, VTA and DRN, the MHb to the LHb, and the MHb to the IPN
will be crucial to support our model. Novel technologies like cell-type
specific Rabies Virus monosynaptic retrograde tracing to characterize
anatomical projections, followed by their optogenetic or chemogenetic
manipulation to assess their function and contribution to behavior are
very suitable.

High-resolution fMRI offers the only non-invasive method to in-
vestigate the function of the Hb in humans, and provides a vital link
from animal models to clinical symptoms in humans. In the same way,
the integration of dimensional and categorical approaches is essential in
order to better classify trans-diagnostic dimensions of disease within a
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biological framework and promote the detection of potential bio-
markers. Human neuroimaging studies on the Hb will benefit from the
use of standardized segmentation methods that have shown to be robust
and objective for selecting Hb seed voxels for functional and diffusion
MRI using 3T (Kim et al., 2016). Future studies are needed to evaluate
the reproducibility of such segmentation scheme under various acqui-
sition and contrast conditions both in healthy controls and psychiatric
patients, including patients suffering from substance use and mood
disorders. High-resolution and high contrast 7T Hb imaging (Strotmann
et al,, 2014) and associated segmentation schemes represent a pro-
mising future research direction for more accurate Hb morphological
and functional evaluation. Such techniques could shed light on the
functional activity of the LHb and MHb in humans. As the Hb is in-
creasingly considered as a potential target for treatment of psychiatric
disorders, neuroimaging studies revealing the functional coupling of
this structure in humans are essential. A better understanding of the
altered networks involved in psychiatric conditions is of major im-
portance to identify the correlational and/or potential causal relation-
ships among specific symptoms domains (i.e. anhedonia), categorical
disorders (i.e. substance use and mood disorders) and treatment op-
tions. Such knowledge will contribute to the development of treatment
and prevention strategies for those vulnerable individuals.
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