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Abstract 26 Using atomic force microscopy imaging and nanoindentation measurements, we 27 investigated the effect of the minor capsid proteins pUL17 and pUL25 on the structural 28 stability of the icosahedral Herpes Simplex Virus capsids. pUL17 and pUL25 that form 29 the capsid vertex-specific component (CVSC) particularly contributed to the capsid 30 resilience along the 5-fold and 2-fold, but not along the 3-fold icosahedral axes. Our 31 detailed analyses, including quantitative mass spectrometry on the protein composition 32 of the capsids, revealed that pUL17 and pUL25 are both required to stabilize the capsid 33 shells at the vertices. This indicates that herpesviruses withstand the internal pressure 34 that is generated during DNA genome packaging by locally reinforcing the mechanical 35 sturdiness of the vertices, the most stressed part of the capsids. 36  37 
Importance 38 In this study the structural, material properties of Herpes Simplex Virus type 1 were 39 investigated. The capsid of Herpes Simplex Virus is built up of a variety of proteins and 40 we scrutinized the influence of two of these proteins on the stability of the capsid. For 41 this we used a scanning force microscope that makes detailed, topographic images of the 42 particles and that is able to perform mechanical deformation measurements. Using this 43 approach we revealed that both studied proteins play an essential role in viral stability. 44 These new insights support us to form a complete view on viral structure and could 45 furthermore possibly not only help to develop specific anti-virals, but also to build 46 protein shells with improved stability for drug delivery purposes.   47 
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Main Text 48 Herpes Simplex Virus type 1 (HSV-1) is an important human pathogen that causes a 49 variety of diseases ranging from common cold sores to life threating encephalitis(1-3). 50 Herpesvirus particles are enveloped virions with T = 16 icosahedral capsids harboring 51 the dsDNA genomes. After synthesis and nuclear import of the capsid proteins, they 52 initially assemble into rather spherical immature procapsids (4, 5). Upon proteolytic 53 cleavage of the internal scaffold, consisting mostly of the protein VP22a, these 54 procapsids mature into three icosahedral capsid types (6-9). B-type capsids have failed  55 to expel the protein scaffold, A-type capsids are considered to have aborted DNA 56 packaging and lack both DNA and the internal scaffold, and C-type capsids, also called 57 nucleocapsids, result from successfully replacing the internal protein scaffold with the 58 152 kb dsDNA genome of HSV-1. C capsids then leave the nucleus and undergo 59 secondary envelopment in the cytoplasm to generate mature, infectious, enveloped 60 virions (10, 11). Recent nanoindentation experiments using atomic force microscopy 61 (AFM) have revealed remarkable insights on the mechanical basis of HSV1 genome 62 packaging and capsid maturation (12-14).  63  64 In AFM-nanoindentation experiments, viral capsids are deposited on a glass surface, 65 imaged by AFM, and subsequently indented to probe the mechanical resilience of the 66 particle (15, 16). Such AFM studies have revealed how the structural stability of capsids 67 depends on environmental conditions, packaged genome length, and the protein 68 composition of the particle (17-23). Moreover, it has been shown that the mechanical 69 resilience of viral capsids is directly related to (i) local conformational dynamics (Minute 70 Virus of Mice) (24), (ii) the virus’s infectivity (HIV-1) (25), and (iii) the particle’s 71 propensity for efficient uncoating (Adenovirus) (26, 27). 72 
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In the case of HSV-1 capsids, we have shown that scaffold expulsion and genome 73 packaging result in molecular changes that strengthen the particles (12). This is 74 reflected by an increase in the threshold for the breaking force Fbreak required for 75 structural collapse. By treating HSV1 capsids with a moderate, partially denaturing 76 concentration of guanidine hydrochloride (GuHCl), the penton-fraction of the major 77 capsid protein VP5, the small capsid protein VP26 located on the tips of the VP5 hexons, 78 the scaffold protein VP22a, the minor capsid proteins pUL17 and pUL25 as well as the 79 DNA genomes are extracted (12, 28, 29). Using such penton-less B, A, and C capsids , we 80 showed that their stiffness is reduced, indicating that the vertex proteins of HSV-1 81 capsids are especially important for the mechanical resilience of the capsids (12, 13). In 82 addition, it has been recently reported that the protein pUL25 reinforces the capsid (30). 83 The two minor capsid proteins pUL25 and pUL17 form heterodimers that are attached 84 to the capsid vertices (c.f. Fig. 1a), and hence have been called capsid vertex-specific 85 components (CVSC) (31-44).  86 Next to HSV-1, similar CVSC complexes are present on purified capsids of the swine 87 alphaherpesvirus pseudorabies virus with even higher occupancy levels (45-47). 88 Furthermore, homologs of these minor capsid components exist in other 89 alphaherpesviruses: the betaherpesviruses (e.g. pUL77 and pUL93 in human 90 cytomegalovirus) (48), and the gammaherpesviruses, (e.g. ORF32 and ORF19 in Kaposi-91 sarcoma associated virus) (44), suggesting that functional stabilizing CVSCs are a feature 92 of all herpesviruses (49).  93 In HSV-1 the CVSCs also mediate interactions with the inner tegument protein pUL36 94 and the outer tegument protein VP13/14 that link the capsids to envelope components 95 during assembly (50-52). Previous studies have shown that pUL17 and pUL25 depend 96 on each other for optimal capsid binding, since capsids derived from either UL17 or 97 
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UL25 deletion mutants lack most of the CVSC altogether (53). Furthermore, a recent 98 study using cryo-electron microscopy reconstructions  clearly shows that the CVSCs 99 directly link the pentons to the adjacent triplexes (45). In the current study, we used 100 AFM to determine at the single particle level how the CVSC contributes to the 101 mechanical properties of HSV-1 capsids.  102 
 103 
Materials and Methods  104 
Capsid purification. Nuclear capsids were isolated from cells infected with HSV-1 wild-105 type (WT HSV-1 strain F, ATCC VR-733), or with the mutants HSV1-ΔUL17 (derived 106 from HSV-1 strain F, see ref (38)) or HSV1-ΔUL25 (HSV-1 strain KUL25NS derived from 107 strain KOS, see ref (32))  after cell homogenization and purification on a linear 20 to 50 108 % (w/w) sucrose gradient in 20 mM Tris-HCl, pH 7.5, 500 mM NaCl, 1 mM EDTA 109 supplemented with 10 mM dithiothreitol as described before (12, 54, 55). While during 110 WT infection B, A, and C capsids are assembled, B- and A-type capsids are formed in the 111 absence of pUL25 (32), and only B-type capsids in the absence of pUL17 (35, 38, 56).  112 
AFM imaging and nanoindentation. The capsids were deposited onto silanized glass 113 substrates and analyzed at room temperature in 50 mM Tris buffer pH 7.5, 150 mM 114 sodium chloride, by AFM imaging and nanoindentation as described in detail elsewhere 115 (12, 57, 58). The experiments were performed with a Nanotec AFM (Tres Cantos, Spain), 116 using cantilevers with an approximate tip-radius of 15 nm and a spring constant of 0.05 117 N/m (Olympus OMCL-RC800PSA). Imaging was performed in jumping mode AFM, which 118 is a very gentle imaging mode where lateral forces are almost absent, and which is 119 therefore ideally suited to image proteinaceous assemblies such as viral caspids (59). 120 The probe velocity during nanoindentation was 60 nm/s.  The data were analysed with 121 the WSxM software (Nanotec; Version 4) and a home written Labview programme (58). 122 
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Capsid absorption to the surface was expected to be random with respect to the 123 icosahedral orientation; in addition to absorption to the 2-, 3- or 5-fold symmetry axes, 124 we detected also intermediate positions. As the intermediate positions were difficult to 125 classify, we focused on particles that adhered to the 2-, 3- or 5-fold symmetry axes.  126 
Protein extraction and LC-MS/MS and data analysis: HSV-1 capsids were resuspended 127 in 50 mM ammonium bicarbonate, 5% (w/v) sodium deoxycholate and heated at 90 °C 128 for 5 min. For each reaction, 100 μg of protein were reduced using dithiothreitol (DTT) 129 for 30 min at 56 °C and then alkylated by iodoacetamide for 30 min in the dark.  After 130 dilution to a final concentration of 0.5% sodium deoxycholate, each sample was digested 131 overnight at 37°C with trypsin at an enzyme to protein ratio of 1:50. The sodium 132 deoxycholate was precipitated, and the reaction/digestion quenched by adding formic 133 acid to a final concentration of 2% (v/v). The samples were centrifuged for 20 minutes 134 at 20,000 x g, and the supernatants were analyzed on a mass spectrometer (Q-Exactive 135 Plus coupled to an Agilent 1290 Infinity UHPLC system). Briefly, the peptides were 136 loaded onto the trapping column (Dr Maisch Reprosil C18, 3 μm, 2 cm × 100 μm) with a 137 flow rate of 5 μl/min for 10 min with reversed-phase solvent A, whereas peptide 138 separation was performed at a column flow rate of ~300 nl/min (Agilent Poroshell 120 139 EC-C18, 2.7 μm, 50 cm × 75 μm). Nanospray was achieved with an in-house pulled and 140 gold-coated fused silica capillary (360 µm outer diameter, 20 µm inner diameter, 10 µm 141 tip inner diameter) and an applied voltage of 1.9 kV. Full-scan MS spectra (from m/z 350 142 to 1500) were acquired in the Orbitrap with a resolution of 35,000. HCD fragmentation 143 was performed with a data dependent mode, as previously described(60). 144 Peak lists were generated (Proteome Discoverer; version 1.4, Thermo Scientific, 145 Bremen, Germany) and  searched against a database containing the Human Herpes Virus 146 1 strain 17 sequences (77 protein entries) using Mascot (version 2.4 Matrix Science, 147 
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London, UK) and a mass tolerance of 50 ppm for precursor masses and ±0.05 Da for 148 fragment ions. Enzyme specificity was set to trypsin with 2 missed cleavages allowed. 149 Carbarmidomethylation of cysteines was set as fixed modification while oxidation of 150 methionine, was used as variable modification. False discovery rate was set to <1%. To 151 further filter for high quality data we used the following parameters: high confidence 152 peptide spectrum matches, minimal Mascot score of 20, minimal peptide length of 6, and 153 only unique rank 1 peptides. The mass spectrometry proteomics data have been 154 deposited to the ProteomeXchange Consortium via the PRIDE partner repository with 155 the dataset identifier PXD005104(61). 156  157  158 
Results 159 From AFM images taken immediately prior to the nanoindentation experiments, we 160 determined the orientation of each capsid based on its capsomer morphology and the 161 orientation of the triangular facets on the capsid surface. Figure 1b shows a projection of 162 the facets on the AFM images. UL17- and UL25-null capsids that adhered to the surface 163 in different orientations were compared to similarly oriented B-, A- and C- type capsids 164 of the WT strain. There was a marked decrease in the spring constants k of the capsids 165 from both deletion strains (Figure 2a).   166 We then stratified these data into B, A, and C capsids, and based on our AFM images 167 further into measurements along the 2-fold, the 3-fold, or the 5-fold axes. The deposition 168 onto the 2-, 3- or 5-fold axes occurred at a ratio of 61:63:47 (Fig. 2b). In an icosahedral 169 particle, there are 30 2-fold axes, 20 3-fold axes and 12 5-fold axes. A similar ratio of 170 deposition was determined previously using Hepatitis B Virus (HBV) capsids (62). In the 171 current study, there was roughly the same number of particles deposited on the 2- or 172 
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the 3-fold axis. Thus, compared to the T=3 and T=4 HBV capsids of ~30 nm diameter, 173 the larger T=16 HSV-1 capsids of 125 nm likely elicit additional surface interaction 174 effects that slightly favor a stable deposition on a 3-fold axis over a 2-fold axis. The 175 spring constant analysis revealed that the reduction in stiffness was particularly 176 prominent for certain icosahedral orientations (Figure 2b). Capsids that had been 177 deposited on a triangular facet of the icosahedral shell, and thus probed along the 3-fold 178 icosahedral symmetry axis of the capsid, exhibited no significant loss of stiffness for the 179 UL25-null or UL17-null mutants as compared to WT capsids. However, there was a 180 significant decrease in the stiffness of UL25- or UL17-null capsids compared to WT 181 capsids when the particle had been deposited on the edge between two facets (i.e. 2-fold 182 icosahedral symmetry axis), or deposited on a vertex (5-fold icosahedral symmetry 183 axis). 184 We  then determined the protein composition of the different capsid type of the 185 wildtype and the two deletion mutants by quantitative mass spectrometry using a label-186 free approach in which the number of peptide-spectrum matches (PSM’s) serve as a 187 proxy for the relative protein amounts (see Supplementary Table S1). We used the 188 major capsid protein VP5 (pUL19) that forms the pentons and hexons in each capsid for 189 normalization since it is considered to be present in constant amounts among different 190 capsid types (54) (see Figure 3). Based on this normalization, we then determined the 191 amount of the other capsid proteins in the different samples. As expected, the 192 abundancy of two triplex proteins VP19c (pUL38) and VP23 (pUL18) were also similar 193 in the different samples, indicating that the different preparations from the HSV-1 wild-194 type and the mutants indeed contained capsids with an identical backbone architecture  195 In contrast neither of the CVSC proteins pUL17 and pUL25 could be detected in either of 196 the deletion mutants. This indicates that none of the CVSC components was recruited or 197 
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maintained on the capsids if one of them had been missing. This analysis of the protein 198 composition of all capsid types fits to our measurements of the capsid stability, since 199 both deletion mutants  displayed identical mechanics of their HSV capsids. 200  201 
Discussion 202 Our results on the B and A capsids of the UL25-null mutant corroborate and extend the 203 recent finding  by Sae-Ueng et al. (30) who also reported  a reduced stability of HSV-1 204 capsids upon deletion of pUL25. However, they did not detect any changes in the 205 mechanical resilience  of the B capsids upon deletion of UL17. In contrast, we measured 206 a significant decrease in the stiffness for the B capsids of the UL17-null mutant (dark 207 blue columns in Fig. 2b). Furthermore, we have been able for the first time for 208 herpesviruses to separately analyze the spring constants along the different icosahedral 209 axes. As our data show that the spring constants k along the 3-fold axis remain largely 210 unaffected by deletion of either UL17 or UL25, it is possible that Sae-Ueng et al. (30) 211 predominantly measured the spring constants of the UL17-null mutant upon probing 212 the triangular sides, but not capsids with their 2-fold or 5-fold axes oriented towards the 213 AFM tip. Moreover, using quantitative mass spectrometry analysis we have 214 corroborated earlier findings that the capsid levels of pUL17 and pUL25 largely depend 215 on each other for stable capsid association (42, 53). In contrast, the immunoblot of Sae-216 Ueng et al. (30) and Huet et al. (45) revealed residual amounts of pUL17 on the capsids 217 of the UL25-null mutant. The reasons for this difference are unclear; it may be due to the 218 presence of dithiothreitol in our purification buffers to generate a similar reducing 219 environment as in the nucleoplasm or the cytoplasm.  220 Our new data and Sae-Ueng et al. (30) support the notion that the CVSCs provide 221 substantial mechanical resilience to HSV-1 capsids, and here we also show that pUL17 222 
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and pUL25 are both required to increase vertex resilience. Our finding that deletion of 223 either pUL17 or UL25 result in a reduced strength of capsids corroborates the recent 224 report of the structure of the CVSC that clearly shows how both proteins are intimately 225 linked to each other in the CVSC (45). As the CVSC is located at the 5-fold vertices and 226 oriented along the 2-fold symmetry axis,  it is very likely to impact the capsid resilience 227 along these symmetry axes, which is exactly what we find. The three-fold axis on the 228 other hand, does not appear to be affected by the presence or absence of the CVSC (45). 229 This also correlates with our findings, explaining the differences in observed impact of 230 CVSC removal for the different icosahedral orientations. The vertices are removed from 231 the capsid first when the particles are stressed, e.g. nanoindentation or partial 232 denaturation with urea or GuHCl (12, 28). Moreover, in the absence of the capsid 233 stabilizing CVSCs, e.g. in mutants lacking UL25, the capsids cannot maintain the viral 234 genomes in their lumena, presumably because the capsids are not stably sealed (32). 235 Actually, herpesviruses depend on the DNA terminase complex consisting of pUL15, 236 pUL28 and pUL33 and ATP hydrolysis to package their genomes into capsids, and to 237 work against the repulsive force of the highly confined, negatively charged DNA (63-65). 238 Thus, one major function of the CVSCs could be to reinforce the vertices of the 239 nucleocapsids to ensure retention of the genome inside the particle. Recent 240 experimental and theoretical studies of virus capsid nanoindentation have 241 demonstrated that the mechanical response of a capsid is basically a local property of 242 the capsid structure (24, 66). The local reinforcement of the capsid vertices by the CVSC 243 is therefore an example of a virus specifically adapting to mechanical limitations 244 imposed by packaging large genomes to near liquid crystalline density. 245  246 
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 471 
 472 
 473 
Figure Legends 474 
Figure 1. Atomic force microscopy imaging of HSV-1 capsids. A) Schematic of the 475 HSV-1 capsid vertex region; modified from ref. (41, 44). The UL25 part of the CVSC is 476 proposed to be closest to the vertex and likely touching it (45). B) AFM images of HSV-1 477 capsids. Based on the facet orientation and capsomer morphology, particles deposited 478 on the 2-, 3- and 5-fold icosahedral symmetry axis can be distinguished. Scale bar is 50 479 nm. 480  481 
Figure 2. Both CVSC components pUL17 and pUL25 contribute to the mechanical 482 
vertex stabilization of HSV-1 capsids. A) Frequency distributions of particle spring 483 constants (k) from particle with or without the CVSC, showing the shift to lower k values 484 
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for the latter particles. B) The average spring constant (k) for each orientation is shown 485 for all three capsid types, comparing capsids from UL17- or UL25-null backgrounds to 486 WT capsids. Error bars represent standard error of the mean (SEM), the numbers of 487 particles per type/orientation are indicated in white on each bar.  488  489 
Figure 3. Protein copy numbers on capsids. Quantitative Mass Spectrometry results 490 on the abundancy of pUL38, pUL18, pUL25 and pUL17 on the different capsids. On the y-491 axis the relative number of peptide-spectrum matches (PSM’s) (67) is indicated. 492 
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